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Overview

® Probability Review
® Static Random Models
® Poisson random graphs (completely random)

® The configuration model (specify the degree
distribution)

® Power-law degree distribution
® The small world model (Watts-Strogatz)
® Exponential and Markov models

® Growth models for random graphs

Start with purely
random models
and see what
OCCUTYS.

Modify model to
better represent
real networks




Primary References

® Static models

® Newman, The Structure and Function of Complex Networks, SIAM REVIEWV,Vol.45, No.
2, pp.167-256,2003. (terse and mathematical).

® Sections IV,V,VI
® Jackson, Chapter 4. Similar to Newman.
® Barabasi, Chapters 3 & 4. Less mathematical, buggy.

® Models for growth of random networks

® Newman, The Structure and Function of Complex Networks, SIAM REVIEWV,Vol.45, No.
2, pp.167-256, 2003.

® Sections VIl
® Jackson, Chapter 5.

® Barabasi, Chapters 5 & 6.
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Why Random Network Models!?

® Serve as a benchmark

® |f random graph doesn’t match real network data, then it points to systematic
proerties in real data (e.g., triadic closure)

® Even “bad” models can lend insight to some real-network properties
® This can lead to better models

® Given an accurate model
® Predict information diffusion, epidemic properties

® Allow us to run “what if”’ scenarios by changing conditions that were present
during the collection of real data

® e.g,What if friend recommendation algorithm was different! How would a
different corporate structure change our profitability?

© Keith M. Chugg, 2014
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Probability Review ltems

Some important random variables

Bernoulli, Binomial, Poisson, Gaussian
Bayes Law & Theorem of Total Probability
Moments and (Moment) Generating Functions
Linear MMSE estimation
Statistics

Law of Large Numbers

Central Limit Theorem

Confidence Intervals

Linear Regression

Markov Chains

Reference:

A. Leon-Garcia, Probability,
Statistics, and Random Processes

for Electrical Engineer- ing, 3rd
Edition, Addison Wesley, 2012.



Purely Random Network

® Poisson Random Networks
® AKA:“Random Networks”, Binomial Random Nets, Edos-Renyi Networks
® Fixed:
® N = number of nodes
® p = probability that one of L _max possible edges is present
® (Degree distribution)
® Random (varying)
® | = number of links in graph

® K i=degree of node i

© Keith M. Chugg, 2014



Purely Random Network

® Other methods to generate “purely random” networks
® Fixed and deterministic:
® N = number of nodes
® | = number of links in graph
® Random (varying)
® K i=degree of node i
® This and model on previous slide yield largely the same results

® Model from previous slide is typically adopted as statistical
conclusions follow more directly

© Keith M. Chugg, 2014



Poisson Random Network

N nodes

N(N —1
Linax = ( ]%7 ) — ( 5 ) potential edges

p = P(“possible edge (successfully) connected”)

q =1 —p= P(“possible edge not (successfully) connected”)
All edges connected (or not) independently (Bernoulli trials)

K ~ Binomial(N — 1, p) ~ Poisson(a = (N — 1)p) Degree Distribution

L ~ Binomial( L.y, p) &~ Gaussian(m = np, o’ = npq)

© Keith M. Chugg, 2014



Poisson Random

@~ H @
p=1/50=0.02 e~ / o: &

Network

® Ave.Degree ~ |

® No cycles

® A*large” component

® P(K=0)=1/e=375%=18.75

® |9 isolated nodes observed in this
realization

Figure 1.4: A Randomly Generated Network with Probability .02 on each Link

Jackson

This is one sample realization
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Poisson Random Network

Degree Distribution p=.02 N 5 O

0.4 -

{\ p=1/50=0.02

0.25 \

—e— Realized Frequency

\ —=— Poisson Approximation
0.05 \

Frequency
=
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Figure 1.5: Frequency Distribution of a Randomly Generated Network and the Poisson
Approximation for a Probability of .02 on each Link

Jackson

This is a sample degree distribution based on | realization.

If averaged over many realizations (or very large N) there will be
excellent agreement
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Poisson Random Network
N=50
p=In(50)/50=0.078 e N

® Ave.Degree ~ 3.8

® Many cycles

19

® A ‘“giant component”

e P(K=0) = exp(-3.8) = 0.022

® | isolated node observed in this
realization

Figure 1.6: A Randomly Generated Network with Probability .08 of each Link
Jackson

This is one sample realization
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Poisson Random Network

95% confidence region T .. ccbuionsecs N=50
(check out the sample ] _ _
mean handout) ) S p=In(50)/50=0.078

—+— Realized Frequency
—=— Poisson Approximation

Frequency
[
o i
— o
| |

0.05 %

Figure 1.7: Frequency Distribution of a Randomly Generated Network and the Poisson
Approximation for a Probability of .08 on each Link

Jackson

This is a sample degree distribution based on | realization.

If averaged over many realizations (or very large N) there will be
excellent agreement

© Keith M. Chugg, 2014



Aside: confidence for probability estimates

Gaussian approximation to Binomial:

. A Pndn . dn
Reasonably accurate p estimates: P =DPn L 2q/2 — Pn | 1 £ 242 I
n
Example from last slide: = 0.22
q= 0.78
N= 50.00
sqrt(pq/N)= 0.06
MOE= 0.11
1.96 1.96

Table of z_(alpha/2), such that P(Z>z_(alpha/2))=alpha/2 when Z is Gaussian, m=0,sigma=1

confidence=1-alpha 0.5 0.8 0.95
alpha/2= 0.25 0.1 0.025
z (alpha/2)= 0.674 1.282 1.960

Figure 2: Table of values for t,/5(n — 1) and z, /o for common values of confidence 1 — a.

Chugg, sample mean handout
© Keith M. Chugg, 2014
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Asymptotic Thresholds

® Consider a property A of a graph and a Poisson graph with link
formation probability p=p(N)

if: ]\;Enoo (V) = o0 then: A}l_I)IlOO P(A|p(N)) =1
and

oo 1o PAV) .

f: 1 —_— — . p—

if:  lim T(N) 0 then ]\;gnoo P(A|p(N)) =0

T(N) is a threshold (on p) for A

® Property A occurs with probability | asymptotically as long as p(N)
grows as T(N) (and T(N) is the smallest such growth rate)



Asymptotic Thresholds

® Why use this method of analysis!?

® Very difficult to determine specific probabilities for network
properties exactly for a fixed value of N.

® Often interested in very large values of N
® Predicts “phase transitions”

® Thresholds mark significant changes in qualitative properties
of network



Poisson Asymptotic Thresholds

z
p-N
3 4 5 2 1
z|-2 -2 3 3 4 1 3 2
.
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T

Evolutian of random graph.

Barabasi

|

links (1/(n"2) | \(”)
cycles (1/n

® Thresholds for certain connectivity patterns in Poisson graphs



Poisson Asymptotic Thresholds

N e [ bn [ % [

3 | s 50 | 0.0004 | 0.0028 | 0.02 | 0.078
o o .1_8/—04 2 \ JER 36 *

3 34 037 P=OO|

27 ° 49

. expected degree = 0.5

o '\ .28 .29 23

38 -
22 /
) .23 16 30

FIGURE 4.4 A first component with more than two nodes: a random network on 50
nodes with p = .01.

Jackson

® Links & size 3 components
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Poisson Asymptotic Thresholds

AEREEEES
" 50 | 0.0004 | 0.0028 | 0.02 | 0.078
o 26 50 31 42 *
p=Y.
REREY ) 35 . \2/. \28 '18/‘
o expected degree = |.5

3
32
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‘ 49 S
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33 \17
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19 ‘ 23

o
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FIGURE 4.5 Emergence of cycles: a random network on 50 nodes with p = .03.
Jackson

® “Giant component,” many isolated nodes, and cycles
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Poisson Asymptotic Thresholds

1 1 In(N
N| % | 72 | % |
,s 1 50 | 0.0004 | 0.0028 | 0.02 | 0.078
> *
, p=0.05

expected degree = 2.5

FIGURE 4.6 Emergence of a giant component: a random network on 50 nodes with
p = .05.

Jackson

® Giant component with some isolated nodes

© Keith M. Chugg, 2014 I 9



Poisson Asymptotic Thresholds
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expected degree

® Dense connectivity with no isolated nodes

FIGURE 4.7 Emergence of connectedness: a random network on 50 nodes with p = .10.

Jackson

20
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Phase Transitions for Poisson Networks

® Heuristic argument (“hand wave”)

® Probability a node is not in giant component: u

u = P(v & GC) = P(All neighbors of v & GC)

= Z P(AIl neighbors of v € GC|degree(v) = k)pk (k)

© Keith M. Chugg, 2014
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Phase Transitions for Poisson Networks

Example realizations from Jackson

11 (n=50,p=0.078,5=0.98)
— (n=50, P=0.05, S=0.94)

A
\V; )
Q IS
T S B R e e § (n=50,p=0.03,5=0.62)
< o
= 05 £
S T~
= | —aS
S=1-c¢
5

0 L 23 4

" meandegree z (alpha = mean degree)
FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component

size (dotted line), for the Poisson random graph, Eqgs. (20)
and (21).

® Emergence of the Giant Component: p(N)~I/N (alpha=1)

© Keith M. Chugg, 2014

22



Phase Transitions for Poisson Networks

“ =~ relative freq. of isolated nodes
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FIGURE 4.7 Emergence of connectedness: a random network on 50 nodes with p

23
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Phase Transitions for Poisson Networks

b) (k) <1 Subcritical regime
c No giant component.
. Cluster size distribution:
P(s) ~e
1 . The size of the largest cluster:
NG ~In N
a) 0.8 . The clusters are trees.
Z 0.6
> c) (k) =1  Critical point
= 04} *  No giant component.
. Cluster size distribution:
02} P(s) ~ s73/2
. Size of the largest cluster:
0 : Ng ~ N?/3
0 1 2 3 4 5 6 . The clusters may contain loops.

d) SN (k) > 1 Supercritical regime
.\‘:.,’ 0 Single giant component.
, P .\uk“]', »  Cluster size distribution:
Evolution of a random network. [ ‘“. ~;§. ' P(s) ~ =08
RS A*;,. () ~ e
S QV))%S %5 . Size of the giant component:
7RSS -
(a) The relative size of the giant component in function of the average { '.‘\ 'd Neg ~ (p—pe)N
. The small clusters are trees.

degree <k in the Erdds-Rényi model.
(b)-(e) The main network characteristics in the four regimes that charac-

terize a random network.
Barabasi

. GC has loops.

Fully connected regime

. Single giant component.

. No isolated nodes or clusters.

. Size of the giant component:
Ng =N

. GC has many loops.

© Keith M. Chugg, 2014



Poisson Random Network

1 1

1
N VN N1/3§ 025 1 N1/3§
1

size 4

links size 3 size 4 size 5 )
cliques

(size 2 trees) trees trees trees

“subcritical’” -
Cycles, giant

component

© Keith M. Chugg, 2014

size 5
cliques

“supercritical”

“connected’
Connected
Network

25
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Application: Contagion/Diffusion

Consider modeling the spread of an epidemic with a simplified model

® People are either completely immune or complete susceptible

® A fraction 1T of the population is immune
How severe will an outbreak be in this network if a single person is exposed?
Generate a Poisson random net with N nodes, prob p

® Remove a fraction TT of the nodes and their links

® Remaining network is the net of susceptible people

The size of the outbreak is given by “S curve” of the net of susceptible people

26



® Also view as p, N fixed and varying TT — “herd immunity”

© Keith M. Chugg, 2014

Application: Contagion/Diffusion

Fraction of susceptible nodes in giant component

outbreak 1O
limited to a
small
components 0.8
0.6 outbreak spreads through
giant component of size S
04 r
0.2 -
0.0 | | | | | | | | |
00 05 10 15 20 25 30 35 40 45 50

p(1-m)n

FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson
random network as a function of the proportion of susceptible nodes 1 — 7 times the link
probability p times the population size n.  garabasi
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Most Real Networks are Supercritical

Network N L <k> InN
Internet 192,244 609,066 |6.34 |12.17
Power Grid 4941 6,594 2.67 | 8.51
Science Collaboration 23133 |186,936 | 8.08 |10.04
Actor Network 212,250 (3,054,278 | 28.78 | 12.27
Yeast Protein Interactions| 2,018 {2,930 2.90 | 7.61

Table 3.1

Are real networks connected?
The number of nodes N and links L for several undirected networks,
together with ko and InN. A giant component is expected for > 1 and
all nodes should join the giant component for < = InN. While for all

networks <k > 1, for most «k» is under the /InN threshold.

Barabasi

© Keith M. Chugg, 2014

Internet

Power Grid

Science
Collaboration

|
X%
|

Actor Network .

Yeast Protein
Interactions

X

Supercritical

1
1
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Poisson Random Nets

® Does this model predict the characteristics of real
networks (social nets in particular)

Yes e Giant Component
) e small world property!?
5 ® degree distribution?

) ® clustering?

(No) ® homophily (assortative mixing)?

(No) e degree correlations!?

© Keith M. Chugg, 2014
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Degree Distribution!?

Internet

f}p
=
|

Image 3.5

Degree distribution of real networks.

Science Collaboration

1(:":' [ L5 I'Irlrfl'l L r I"I"'I"r T T rrrt 1]

g 0 » I-‘.l'-\"',‘ -
107 F ;p.l s
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The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-

sponds to the Poisson prediction, obtained by measuring « for the real network and then plotting Eq. (8). The significant deviation between the data and

the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs.

Barabasi

Real networks have degree distributions with heavier tails than Poisson:

a small fraction of nodes have very high degree

30



Poisson Random Network

® C(Cluster coefficient

® Expected value of cluster
coefficient is p=alpha/N

® Number of closed triples is
binomial(M_i,p) with
M i=L i choose 2

Poisson Model Predicts:

® For fixed average degree,
clustering should fall as |/N

® Expected local cluster coefficient
not a function of node degree

T
Internet

® (data shows both untrue)

) ® .
() @ 3
® o o0 R e
102 101 . 4
3 —~ « :.;'
N = %‘. ;
= Q ?'.:..:-
Q 104 102 %
~~—
(a) (b)
10 103
10! 103 10° 100 10! 10}; 103 104
100 /1 . T 100 T
Science Yeast Protein
|....__% . Collaboration Interactions
VN '.‘,'. /N
=2 . > | e,
N—" ) \_/10_1 [
O Y O
101 F S -
#25e
4
(c) (d)
102
100 10? 102 103 104 100 10? 102 103
Clustering in real networks.
Barabasi
kave

K {Cz} =3 {Cave} =K {Cglobal} =p~=

N

© Keith M. Chugg, 2014
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Poisson Random Network

® Does the small world property hold?

® Consider a fixed-degree k and expand from a given node
(similar arguments are given with k=average degree)

~ k(k—1)""1 nodes at level |

k
= O ) O (ﬁ) (k=1)'-1) nodes reached by level |

=2 () () () () ® ()

loe(N — 1
CZ D%ng(k 1) diameter
SO000000000 OO0 og(k —1)
practically: Ao A log (V)

log(k)

© Keith M. Chugg, 2014 32
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Poisson Random Network

Does the small world property hold?

® More complicated/accurate methods for computing the
diameter and/or shortest path based on this idea

® How fast does the graph “expand” as you do a BFS from a
node!

® How many levels in the BFS to reach all nodes!?

In(NV)
I (e

practically: d,ye ~

More complex analysis provides “corrections” to the above...

33



Poisson Random Network

Network Name N L ko 0k .. Ifg%

Internet 192,244 609,066 6.34 6.98 26 6.59

WWW 325,729 1,497,134 4.60 1.27 93 8.32

Power Grid 4,941 6,594 2.67 18.99 46 8.66

Mobile Phone Calls 36,595 91,826 2.51 11.72 39 11.42

Email 57194 103,731 1.81 5.88 18 18.4

Science Collaboration 23,133 186,936 8.08 5.35 15 4.81
Actor Network 212,250 | 3,054,278 | 28.78 - - -

Citation Network 449,673 | 4,707,958 10.47 11.21 42 5.55

E Coli Metabolism 1,039 5,802 5.84 2.98 8 4.04

Yeast Protein Interactions 2,018 2,930 2.90 5.61 14 714

Table 3.2

Six degrees of separation.

The average distance «b and the maximum distance d__ of the ten networks explored in this book. The last column provides «) predicted by Eq. (19),
indicating that it offers a reasonable approximation to «d. Yet, the agreement is not perfect - we will see in the next chapter that for many real networks
Eg. (19) needs to be adjusted. For directed networks we list the average out-degree «_»and the path lengths are measured only along the direction of
the links.

Barabasi

® Poisson networks do have the small world property!

© Keith M. Chugg, 2014
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Poisson Random Network

1d lattice f 2d lattice 1d |
° /f\ ,\rl_,“'2 2d
(d) ~ N (d) ~ N
3d
. dy ~ N3 =
~ 3d lattice Eﬂ
RN —
Random Network (d) ~ log N
N log N

Image 3.10

Why are small worlds surprising?
Much of our intuition about distance is based on our experience with reg-
ular lattices, which do not display the small world phenomenon. Indeed,

o For a one-dimensional lattice (a line of length N) the diameter and
the average path length scale linearly with N:d__ ~«h ~N.

*  Forasquare lattice d__ ~ah~ N2
e  Foracubic lattice d__~«h~ N,
* Ingeneral, for a d-dimensional lattice we have d__ ~ «~ N7,

Such polynomial dependence predicts a much faster increase with N than
Eqg. (19), indicating that in reqular lattices the path lengths are signifi-
cantly longer than in a random network. The figure shows the predicted
N-dependence of « for regular and random networks on a linear (left)
and on a log-log (right) scale. If the social network would form a reqular
2d lattice, where each individual knows only its nearest neighbors, the
average distance between two individuals would be roughly (7 x109)"? =
83,666. Even if we correct for the fact that a person has about 1,000 ac-
quaintances, not four, the average separation will be orders of magnitude
larger than predicted by Eq. (19).

Barabasi

Our intuition tends to make us
think in terms of regular
networks

Some networks are regular
and do not exhibit small world
properties (non-social)

35



Poisson Random Network

At a glance: Random networks

e Definition: N nodes, where each node pair is connected with
probability p.

Average degree: (kY= p(N —1)

® Summary (Poisson predicts real?)

p(N-1)
2

Average number of links: <L> =

N -1

Begree tistbution: [ ) jpk(l—p)”'k. ® Degree distribution No

For sparse networks (k « N), Pk has the Poisson form

® Giant Component Yes

e Small World Yes

e Giant component (N,):

o < 1: no giant component (N ~InN) .
® (lustering No

1 <o < InN: one giant component and disconnected clusters

2

¢k > InN: all nodes join the giant component NG ~ (p — P;)N

logN
log(k)”

(k)

e  (lustering coefficient: (C =L

e Average distance: {d) o<

Barabasi
© Keith M. Chugg, 2014



Overview

® The configuration model (specify the degree
distribution)

® Power-law degree distribution
® The small world model (Watts-Strogatz)

® Exponential and Markov models

37



Configuration Model

® Since many real-world networks do not have a Poisson degree
distribution, generate a random network with a specific degree
sequence (implies degree distribution)

® Several models to approach this or similar

Configuration model

Expected Degree model (Jackson 4.1.5) and Hidden
Parameter model (Barabasi 4.8)

Degree-preserving randomization (Barabasi 4.8)

38



Configuration Model

® Given a specific degree sequence {k i}, set up
nodes with each node having the specified
number of degree stubs

® Randomly pick two stubs and connect with

link (these are no longer stubs) ﬁ

® Repeat until all stubs are links

® Allows for self-links and multi-links, but
the probability of these go to zero as N
goes to infinity

Provides random graph with specified degree distribution

(Poisson random network is a special case)

© Keith M. Chugg, 2014

k; “edge stubs”

k; “edge stubs”
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Configuration Model

® Condition for the emergence of the Giant Component

THRESHOLD condition for giant

2
I {K } — 2k {K} >0 component to exist asymptotically
G S = fraction of nodes in the GC
o ok = fraction of nodes in the
(1 B S) o Z(l S) pK(k) when above threshold is met

k=0

Note that for Poisson distribution with mean alpha:
E{K?} —2E{K} >0

mig — «
5 —>E{K2}:a%(—|—m%<:oz—l—a2 —> I
O =— U

a> 1

(This may have some issues since it allows for nodes to connect to themselves)
© Keith M. Chugg, 2014

40



Configuration Model

® Expected value of average/global cluster coefficient

kave _E K2 T kave_
E{Ci} = E{Cave} = E{Cglobar} = N { ki

ave

|

deviation from Poisson

(bracketed term is | for Poisson)

A {KQ} non-negligible correction term depending on the degree
(E{K})? distribution and the size of the network

© Keith M. Chugg, 2014
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Configuration Model

® Some more detailed derivations for the configuration model
(Poisson is a special case)

® Probability distribution of degree of node connected to randomly
selected edge (Jackson 4.2.1)

® Threshold for giant component (Jackson 4.2.6)

® Sub-threshold (GC) component size distribution (Jackson 4.4)
® |mplies Threshold for GC
® |mplies mean size of sub-threshold components

® Probability distribution of maximum degree in finite network
Newman (l11.C.2)

42



Poisson Model Mean Component Size

1

randomly selected node

1 T kave —|_ kaves T
/ N =10% —
. | | N =10% — -
N =10* —
) Theory =- |
3
e 2 _
! 2 2.5
0 i i
: 03 ) (randomly selected node)
2.5 T T T T .
(c) N =102 —
N =10° —
2r 4 N =10" =7
randomly selected component , Theory o
2 "
2 — kave + kaves
0.5
0 0.5 1 1.5 2 2.5
k
Barabasi ( )

(randomly selected component)
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Power Law Degree Distribution

® Heavy-tailed degree distribution that matches many real-world

network observed degree distributions
: :

' ' 100 g———rrrm

10! |

01r T [ " Poisson

«— Poisson 102 b

Pk
Pk
=

0.05 - |
104 F

10° F

/pkwk : /pkwk_Q'l

100 10! 102

103

© Keith M. Chugg, 2014

Poisson vs. power-law distributions

(a) A Poisson function and a power-law
function with y=2.1. Both distributions have
(k)= 10.

(b) The curves in (a) shown on a log-log plot,
offering a better view of the difference be-
tween the two functions in the high-k regime.
(c) A random network with {k)=3 and N =50,
illustrating that most nodes have comparable
degree k =<{k).

(d) A scale-free network with {k)= 3, illustrat-
ing that numerous small-degree nodes coexist
with a few highly connected hubs.

Barabasi
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Power Law Degree Distribution

Bell Curve

Number of nodes with % links

Most nodes have
the same number of links

No highly
connected nodes

Number of nodes with % links

Power Law Distribution

Very many nodes
with only a few links

J

J\\ A few hubs with

TJ \ large number of links
R

BRI

e AL

Sty ok

© Keith M. Chugg, 2014

Number of links (k)

Random versus scale-free networks

Left column: the degrees of a random network
follow a Poisson distribution, which is rather
similar to the Bell curve shown in the figure.
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number
of links are absent (top panel). Consequently
a random network looks a bit like a national
highway network in which nodes are cities
and links are the major highways connecting
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no
city is disconnected from the highway system.

Right column: In a network with a power-law
degree distribution most nodes have only a
few links. These numerous small nodes are
held together by a few highly connected hubs
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network,
whose nodes are airports and links are direct
flights between them. Most airports are tiny,
with only a few flights linking them to other
airports. Yet, we can also have few very large
airports, like Chicago or Atlanta, that hold
hundreds of airports together, acting as major
hubs (bottom panel).

Once hubs are present, they change the way
we navigate the network. For example, if we
travel from Boston to Los Angeles by car, we
must drive through many cities (nodes). On
the airplane network, however, we can reach
most destinations via a single hub, like Chica-

go.

After [4].

Barabasi

o AKA “scale-free”

networks
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Power Law Degree Distribution

® Special case of configuration network
® Discussed in detail in Barabasi, chapter 4

® Networks can be grown with the Barabasi-Albert model for
preferential attachment

® Yields the power law degree distribution
® No longer has independent degrees for different nodes

® Model incorporates degree correlation explicitly

Cover power-law and preferential attachment later (soon)

© Keith M. Chugg, 2014
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Exponential, p*, Markov Random Nets
P p

® These models are more complicated than the Poisson and
configuration models

® Attempt to capture correlation properties to come degree
® Degree correlation, clustering, etc.

® There is a trade-off between more accurate models and more
difficulty in analyzing the resulting models

® The references point to these models as interesting/
promising, but not widely utilized

© Keith M. Chugg, 2014
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Small-World Models (Watts-Strogatz)

® Simple model that captures
® (lustering (triadic closure, transitivity)
® Small world property
® Basic idea
® Begin with a regular lattice (local, regular connections)
® provides clustering
® Add/rewire a subset of links randomly

® provides small-world properties
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Small-World Models (Watts-Strogatz)

random random add
rewire wires

starting point

FIG. 11 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or fewer lattice spacing, with
k = 3 in this case. (b) The small-world model [412, 416] is created by choosing at random a fraction p of the edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (c) A slight variation on the model [289, 324]
in which shortcuts are added randomly between vertices, but no edges are removed from the underlying one-dimensional lattice.

Newman

© Keith M. Chugg, 2014
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Small-World Models (Watts-Strogatz)
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(a) Nodes arranged in a grid
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(b) A network built from local structure and random edges

Figure 20.2: The Watts-Strogatz model arises from a highly clustered network (such as the
grid), with a small number of random links added in.

Easley & Kleinberg

Concept is applicable to any regular lattice (1D, 2D, 3D, etc.)
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Small-World Models (Watts-Strogatz)
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FIG. 12 The clustering coefficient C' and mean vertex—vertex
distance ¢ in the small-world model of Watts and Stro-
gatz [416] as a function of the rewiring probability p. For
convenience, both C' and ¢ are divided by their maximum val-
ues, which they assume when p = 0. Between the extremes
p =0 and p = 1, there is a region in which clustering is high
and mean vertex—vertex distance is simultaneously low.

Newman
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