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Overview
• Probability Review	


• Static Random Models	


• Poisson random graphs (completely random)	


• The configuration model (specify the degree 
distribution)	


• Power-law degree distribution	


• The small world model (Watts-Strogatz)	


• Exponential and Markov models	


• Growth models for random graphs
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Start with purely 
random models 
and see what 

occurs.  	

!

Modify model to 
better represent 
real networks
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Primary References
• Static models 

• Newman, The Structure and Function of Complex Networks, SIAM REVIEW, Vol.45, No.
2, pp.167–256, 2003. (terse and mathematical).	


• Sections IV, V, VI	


• Jackson, Chapter 4.  Similar to Newman. 	


• Barabasi, Chapters 3 & 4.  Less mathematical, buggy.	


• Models for growth of random networks 

• Newman, The Structure and Function of Complex Networks, SIAM REVIEW, Vol.45, No.
2, pp.167–256, 2003.	


• Sections VII	


• Jackson, Chapter 5.  	


• Barabasi, Chapters 5 & 6.
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Why Random Network Models?
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• Serve as a benchmark	


• If random graph doesn’t match real network data, then it points to systematic 
proerties in real data (e.g., triadic closure)	


• Even “bad” models can lend insight to some real-network properties	


• This can lead to better models	


• Given an accurate model	


• Predict information diffusion, epidemic properties	


• Allow us to run “what if” scenarios by changing conditions that were present 
during the collection of real data	


• e.g., What if friend recommendation algorithm was different?  How would a 
different corporate structure change our profitability?
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Probability Review Items
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• Some important random variables	


• Bernoulli, Binomial, Poisson, Gaussian	


• Bayes Law & Theorem of Total Probability	


• Moments and (Moment) Generating Functions	


• Linear MMSE estimation	


• Statistics	


• Law of Large Numbers	


• Central Limit Theorem	


• Confidence Intervals	


• Linear Regression	


• Markov Chains

Reference:	

!
A. Leon-Garcia, Probability, 
Statistics, and Random Processes 
for Electrical Engineer- ing, 3rd 
Edition, Addison Wesley, 2012. 	
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Purely Random Network
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• Poisson Random Networks	


• AKA: “Random Networks”, Binomial Random Nets, Edos-Renyi Networks	


• Fixed: 	


• N = number of nodes	


• p = probability that one of L_max possible edges is present	


• (Degree distribution)	


• Random (varying)	


• L = number of links in graph	


• K_i = degree of node i
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Purely Random Network
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• Other methods to generate “purely random” networks	


• Fixed and deterministic: 	


• N = number of nodes	


• L = number of links in graph	


• Random (varying)	


• K_i = degree of node i	


• This and model on previous slide yield largely the same results	


• Model from previous slide is typically adopted as statistical 
conclusions follow more directly
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Poisson Random Network
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All edges connected (or not) independently (Bernoulli trials)	


N nodes

L
max

=

⇣
N
2

⌘
=

N(N � 1)

2

potential edges

p = P (“possible edge (successfully) connected”)

q = 1� p = P (“possible edge not (successfully) connected”)

K ⇠ Binomial(N � 1, p) ⇡ Poisson(↵ = (N � 1)p)

L ⇠ Binomial(L
max

, p) ⇡ Gaussian(m = np,�2

= npq)

Degree Distribution	
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Poisson Random Network
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1.2. A SET OF EXAMPLES: 27

Figure 1.4: A Randomly Generated Network with Probability .02 on each Link

Given the approximation of the degree distribution by a Poisson distribution, the

class of random graphs where each link is formed independently with an identical

probability is often referred to as the class of Poisson random networks, and I will use

this terminology in what follows.

To provide a better feeling for the structure of such networks, I generated a couple

of Poisson random networks for di§erent pís. I chose n = 50 nodes as this produces a

network that is easy to visualize. Let us start with an expected degree of 1 for each

node. This is equivalent to setting p at roughly :02. Figure 1.4 pictures a network

generated with these parameters.15 This network exhibits a number of features that

are common to this range of p and n. First, we should expect some isolated nodes.

Based on the approximation of a Poisson distribution (1.4) with n = 50 and p = :02, we

should expect about 37.5 percent of the nodes to be isolated (i.e., have d = 0), which

is roughly 18 or 19 nodes. There are 19 isolated nodes in the network, by chance.

Figure 1.5 compares the realized frequency distribution of degrees with the Poisson

approximation.

15The networks in Figures 1.4 and 1.6 were generated and drawn using the random network generator

in UCINET [90]. The nodes are arranged to make the links as easy as possible to distinguish.

Jackson

N=50	


p=1/50=0.02	


This is one sample realization

• Ave. Degree ~ 1	


• No cycles	


• A “large” component	


• P(K=0) = 1/e = 37.5% = 18.75	


• 19 isolated nodes observed in this 
realization
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Poisson Random Network
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Jackson

N=50	


p=1/50=0.02	


This is a sample degree distribution based on 1 realization.	


If averaged over many realizations (or very large N) there will be 
excellent agreement

28 CHAPTER 1. INTRODUCTION

Figure 1.5: Frequency Distribution of a Randomly Generated Network and the Poisson

Approximation for a Probability of .02 on each Link
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Poisson Random Network
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Jackson

This is one sample realization

• Ave. Degree ~ 3.8	


• Many cycles	


• A “giant component”	


• P(K=0) = exp(-3.8) = 0.022	


• 1 isolated node observed in this 
realization

30 CHAPTER 1. INTRODUCTION

Figure 1.6: A Randomly Generated Network with Probability .08 of each Link

4.2.2. If the average degree is substantially above log(n), then probability of having

any isolated nodes goes to 0, while if the average degree is substantially below log(n),

then the probability of having at least some isolated nodes goes to 1. In fact, as we

shall see in Theorem 4.2.1, this is the threshold such that if the average degree is

signiÖcantly above this level then the network is path-connected with a probability

converging to 1 as n grows (so that any node can be reached from any other via a path

in the network), while below this level the network will consist of multiple components

with a probability going to 1.

Other properties of random networks are examined in much more detail in Chapter

4. While it is clear that completely random networks are not always a good approxi-

mation for real social and economic networks, the analysis above (and in Chapter 4)

shows us that much can be deduced in such models; and that there are some basic

patterns and structures that we will see emerging more generally. As we build more

realistic models, similar analyses can be conducted.

N=50	


p=ln(50)/50=0.078	
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Poisson Random Network
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Jackson

This is a sample degree distribution based on 1 realization.	


If averaged over many realizations (or very large N) there will be 
excellent agreement

1.2. A SET OF EXAMPLES: 31

Figure 1.7: Frequency Distribution of a Randomly Generated Network and the Poisson

Approximation for a Probability of .08 on each Link

N=50	


p=ln(50)/50=0.078	


95% confidence region

(check out the sample 
mean handout)
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Aside: confidence for probability estimates
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Gaussian approximation to Binomial:

c�K.M. Chugg – April 7, 2014 13

2.4 Bernoulli Sampling Distribution (Estimating Probabilities)

Consider the case where Zi(u) is drawn from a Bernoulli sampling distribution – i.e., Z1(u), Z2(u),
Z3(u), . . . Zn(u) are i.i.d. and each is 1 with probability p and 0 with probability q = 1�p. In this
case, m = p and �2 = pq and the sample mean is a binomial random variable, scaled by 1/n, that
has mean p and variance pq/n. For large values of np (i.e., when then number of successes observed
is large), the sample mean can therefore be approximated as Gaussian. If we use the confidence
region for a Gaussian sample mean with known variance, we obtain

p = p̂n ± z↵/2

r

pq

n
(31)

where p̂n = kn/n with kn being the number of successes observed in the sample of size n. This
is not directly applicable because the variance �2 = pq is not known. However, since the variance
is only a function of the mean (i.e., p is the mean and the variance is p(1 � p)), we may adopt
the above confidence interval. Specifically, we are typically interested in cases where the p̂n is a
reasonably accurate estimate of p. In this case, it is reasonable to replace pq in the MOE expression
by the corresponding estimates yielding

p = p̂n ± z↵/2

r

p̂nq̂n
n

= p̂n

 

1± z↵/2

r

q̂n
kn

!

(32)

where we have also shown the MOE as a fraction of the the estimate. This is another nice aspect
of the Bernoulli sample – i.e., the MOE can be expressed as a relative error.

2.4.1 Example: Estimating a pdf/pmf

As a specific example, the his histogram generated in homework to approximate the uniform pdf
on [0, 1] is actually estimating the probability of being in each bin from a sample. This histogram
is shown in Fig. 9 for reference. For example, the first bin contains 20 of the 500 total samples,
so the probability estimate is p̂500 = 20/500 = 0.04. There were 20 bins in the histogram that I
generated for the solution, so the actual values of p is 1/20 = 0.05. Using the above expression we
have a 90% confidence region of

p = 0.04± (1.645)

r

(0.04)(0.96)

500
= 0.04± 0.014 = 0.4(1± 0.36) (33)

so that, with 20 observed samples in the bin, we have a relative MOE of 36%. Notice that over all
the bins in this histogram, we have the smallest number of samples to be 13 and the largest to be
34. For k500 = 13, we have p̂500 = 0.026 with a relative MOE of 45%. For 34 samples in the bin, we
have p̂500 = 0.068 with a 27% relative MOE (both with 90% confidence). Note that, for the case
of 34 samples in a bin, the actual value of p = 0.05 is just inside the 90% confidence region, while
for 13 samples in a bin, 0.05 is not in the 90% confidence region. Of the 20 bins, all but one have
the true value of p within the 90% confidence region.

2.4.2 Example: Estimating p ⇡ 0.5

Consider the case of p ⇡ 0.5 which is typically the case in opinion polling – e.g., political polling
in a close race. Here, pq . 1/4 – i.e., pq < 1/4 always holds, but pq ⇡ 1/4 for p ⇡ 0.5. It follows
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Consider the case of p ⇡ 0.5 which is typically the case in opinion polling – e.g., political polling
in a close race. Here, pq . 1/4 – i.e., pq < 1/4 always holds, but pq ⇡ 1/4 for p ⇡ 0.5. It follows

Reasonably accurate p estimates:

p= 0.22

q= 0.78

N= 50.00

sqrt(pq/N)= 0.06

MOE=	   0.11

Example from last slide:
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Table of t_(alpha/2), such that P(T_v>t_(alpha/2))=alpha/2 when T_v is standard T-distributed

confidence=1-alpha 0.5 0.8 0.9 0.95 0.98 0.99
deg. of freedom alpha/2

v = (n-1) 0.25 0.1 0.05 0.025 0.01 0.005
1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1.415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2.306 2.896 3.355
9 0.703 1.383 1.833 2.262 2.821 3.250
10 0.700 1.372 1.812 2.228 2.764 3.169
11 0.697 1.363 1.796 2.201 2.718 3.106
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.624 2.977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1.333 1.740 2.110 2.567 2.898
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1.325 1.725 2.086 2.528 2.845
21 0.686 1.323 1.721 2.080 2.518 2.831
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1.319 1.714 2.069 2.500 2.807
24 0.685 1.318 1.711 2.064 2.492 2.797
25 0.684 1.316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1.314 1.703 2.052 2.473 2.771
28 0.683 1.313 1.701 2.048 2.467 2.763
29 0.683 1.311 1.699 2.045 2.462 2.756
30 0.683 1.310 1.697 2.042 2.457 2.750
31 0.682 1.309 1.696 2.040 2.453 2.744
32 0.682 1.309 1.694 2.037 2.449 2.738
33 0.682 1.308 1.692 2.035 2.445 2.733
34 0.682 1.307 1.691 2.032 2.441 2.728
35 0.682 1.306 1.690 2.030 2.438 2.724
36 0.681 1.306 1.688 2.028 2.434 2.719
37 0.681 1.305 1.687 2.026 2.431 2.715
38 0.681 1.304 1.686 2.024 2.429 2.712
39 0.681 1.304 1.685 2.023 2.426 2.708
40 0.681 1.303 1.684 2.021 2.423 2.704

infinity 0.674 1.282 1.645 1.960 2.326 2.576

Table of z_(alpha/2), such that P(Z>z_(alpha/2))=alpha/2 when Z is Gaussian, m=0,sigma=1

confidence=1-alpha 0.5 0.8 0.9 0.95 0.98 0.99
alpha/2= 0.25 0.1 0.05 0.025 0.01 0.005

z_(alpha/2)= 0.674 1.282 1.645 1.960 2.326 2.576

Figure 2: Table of values for t↵/2(n� 1) and z↵/2 for common values of confidence 1� ↵.
Chugg, sample mean handout
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Asymptotic Thresholds
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• Consider a property A of a graph and a Poisson graph with link 
formation probability p=p(N)

if: lim
N!1

p(N)

T (N)
= 1 then: lim

N!1
P (A|p(N)) = 1

if: lim
N!1

p(N)

T (N)
= 0 then: lim

N!1
P (A|p(N)) = 0

and

T (N) is a threshold (on p) for A

• Property A occurs with probability 1 asymptotically as long as p(N) 
grows as T(N) (and T(N) is the smallest such growth rate)
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Asymptotic Thresholds
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• Why use this method of analysis?	


• Very difficult to determine specific probabilities for network 
properties exactly for a fixed value of N.	


• Often interested in very large values of N	


• Predicts “phase transitions”	


• Thresholds mark significant changes in qualitative properties 
of network
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Poisson Asymptotic Thresholds
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• Thresholds for certain connectivity patterns in Poisson graphs

components are trees, while the giant component contains 
numerous loops and cycles.  The supercritical regime lasts 
until all nodes are absorbed by the giant component.

(d) Connected regime: ‹k› ≥ lnN, (p ≥    ).

For sufficiently large p the giant component will absorb 
all nodes and components, hence NGݍN. In the absence 
of isolated nodes the network becomes connected. The av-
erage degree at which this happens depends on N as (Ad-
vanced Topic 3.E)

                                                                          (14)

Note that when we enter the connected regime the net-
work is still relatively sparse, as lnN / N q 0 for large N. 
The network turns into a complete graph only at ‹k› = N - 1.

In summary, the emergence of a network within the ran-
dom network model is not a smooth process: the isolated 
nodes and tiny components observed for small ‹k› orga-
nize themselves into a giant component rather sudden-
ly,  through a process called phase transition (Advanced 
Topics 3.F). Along the way we encounter four topologi-
cally distinct regimes (Image 3.6). The discussion offered 
above follows an empirical perspective, fruitful if we wish 
to compare the observed networks to real systems.  A dif-
ferent prospective, leading to it own rich behavior, is dis-
cussed in the mathematical literature (Box 3.5).

k N~ ln .〈 〉

Bo
x 

3.
5

Network evolution in graph theory.

In the random graph literature it is often assumed that the con-
nection probability p(N) scales as Nz, where z is a tunable param-
eter between -h and 0. The greatest discovery of Erdős and Rényi 
was that as we vary z, key properties of random graphs appear 
quite suddenly. To be precise, a graph has a given property Q if the 
probability of having Q approaches 1 as N J h. That is, for a given 
probability either almost every graph has the property Q or, almost 
no graph has it. For example, for z less than -3/2 almost all graphs 
contain only isolated nodes and edges. 

Image 3.7
Evolution of random graph.

The threshold probabilities at which different subgraphs appear 
in a random graph, as defined by exponent z in the p(N) ~ Nz 
relationship. For z < -3/2 the graph consists of isolated nodes 
and edges. When z passes -3/2 trees of order 3 appear, while at 
z = -4/3 trees of order 4 appear. At z = 1 trees of all orders are 
present, together with cycles of all orders. Complete subgraphs 
of order 4 appear at z =-2/3, and as z increases further, complete 
subgraphs of larger and larger order emerge.

THE EVOLUTION OF A RANDOM NETWORK | 59

N
N
ln

Barabasi

links (1/(n^2)
cycles (1/n)
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Poisson Asymptotic Thresholds
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• Links & size 3 components

p=0.01

N 1
N2

1
N3/2

1
N

ln(N)
N

50 0.0004 0.0028 0.02 0.078

92 Chapter 4 Random-Graph Models of Networks 
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FIGURE 4.4 A first component with more than two nodes: a random network on 50 
nodes with p = .01. 

These various thresholds are illustrated in Figures 4.4–4.7. Shown are Poisson 
random networks generated on 50 nodes (using the program UCINET). For n = 50, 
the first links emerge at p = 1/n2 = .0004. The threshold for the first component 
with more than two nodes to emerge is at p = n −3/2 = .003. Indeed, the first 
network with p = .01 has a component with three nodes, but the network is still 
very sparse, as seen in Figure 4.4. 

At the threshold of p = n 
1 = .02 cycles start to emerge. As an example, note that 

in Figure 4.4 (the network with p = .01) no cycles appear, while in Figures 4.5– 
4.7 the networks with p = .03 or more cycles are present. Moreover, the first signs 
of a giant component also appear at the threshold p = .02, as pictured in Figure 
4.5. 

As p increases the giant component swallows more and more nodes, as pictured 
log(n) in Figure 4.6. Eventually, at the threshold of p = n = .08 the network should 

become connected, as pictured in Figure 4.7. 
To better understand how these thresholds work, let us start by examining the 

connectedness of a random network. 

4.2.3 Connectedness 
Whether or not a network is connected—and more generally, its component 
structure—significantly affects the transmission and diffusion of information, 
behaviors, and diseases, as we shall see in Chapter 7. Thus it is important to 
understand how these properties relate to the network-formation process. 

The phase transition from a disconnected to a connected network was one of 
the many important discoveries of Erd¨ enyi [227] about random networks. os and R´
Exploring this phase transition in detail is not only useful for its own sake, but also 
because it helps illustrate the idea of phase transitions and provides some basis for 
extensions to other random-network models. 

*

Jackson

expected degree = 0.5 
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• “Giant component,” many isolated nodes, and cycles

p=0.03

N 1
N2

1
N3/2

1
N

ln(N)
N

50 0.0004 0.0028 0.02 0.078

*

Jackson

93 4.2 Properties of Random Networks 
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FIGURE 4.5 Emergence of cycles: a random network on 50 nodes with p = .03. 
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FIGURE 4.6 Emergence of a giant component: a random network on 50 nodes with 
p = .05. 

Theorem 4.1 (Erd¨ enyi [229]) os and R´ A threshold function for the con-
nectedness of the Poisson random network is t (n) = log(n)/n. 

The theorem states that if the probability of a link is larger than log(n)/n, then 
the network is connected with a probability tending to 1, while if it is smaller than 
log(n)/n, then the probability that it is not connected tends to 1. This threshold 
corresponds to an expected degree of log(n). 

The ideas behind Theorem 4.1 are relatively easy to understand, and a complete 
proof is not too long, even though the conclusion of the theorem is profound. To 

expected degree = 1.5 



© Keith M. Chugg, 2014

Poisson Asymptotic Thresholds

19

• Giant component with some isolated nodes

p=0.05

N 1
N2

1
N3/2

1
N

ln(N)
N

50 0.0004 0.0028 0.02 0.078

*

Jackson
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FIGURE 4.6 Emergence of a giant component: a random network on 50 nodes with 
p = .05. 

Theorem 4.1 (Erd¨ enyi [229]) os and R´ A threshold function for the con-
nectedness of the Poisson random network is t (n) = log(n)/n. 

The theorem states that if the probability of a link is larger than log(n)/n, then 
the network is connected with a probability tending to 1, while if it is smaller than 
log(n)/n, then the probability that it is not connected tends to 1. This threshold 
corresponds to an expected degree of log(n). 

The ideas behind Theorem 4.1 are relatively easy to understand, and a complete 
proof is not too long, even though the conclusion of the theorem is profound. To 

expected degree = 2.5 
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• Dense connectivity with no isolated nodes
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FIGURE 4.7 Emergence of connectedness: a random network on 50 nodes with p = .10. 

show that a network is not connected, it is enough to show that there is some isolated 
node. It turns out that t (n) = log(n)/n is not only the threshold for a network being 
connected, but also for there not to be any isolated nodes. To see why, note that the 
probability that a given node is completely isolated is (1 − p(n))n−1 or roughly 
(1 − p(n))n. When working with p(n) near the threshold, p(n)/n converges to 
0, and so we can approximate (1 − p(n))n by e −np(n). Thus the probability that 
any given node is isolated tends to e −p(n)n, which at the threshold is 1/n. For  n 

nodes, it is then not too hard to show that this is the threshold of having some of 
the nodes be isolated, as below the threshold the chance of any node being isolated 
is significantly less than 1/n, while above the threshold it is significantly greater 
than 1/n. The proof then shows that above this threshold it is not only that there 
are no isolated nodes, but also no components of size less than n/2. The intuition 
behind this logic is that the probability of having a component of some small 
finite size is similar (asymptotically) to that of having an isolated node: there 
need to be no connections between any of the nodes in the component and any 
of the other nodes. Thus either some of the nodes are isolated or else the smallest 
components must be approaching infinite size. However, the chance of having 
more than one component of substantial size goes to 0, as there are many nodes in 
each component and there cannot be any links between separate components. So 
components roughly come in two flavors: very small and (uniquely) very large. 

I now offer a full proof of Theorem 4.1 to give a rough idea of how some of the 
many results in random-graph theory have been proven: basically by bounding 
probabilities and expectations and showing that the bounds have the claimed 
properties. 

Proof of Theorem 4.1.14 Let us start by showing that t (n) = log(n)/n is the 
threshold for having isolated nodes. First, we show that if p(n)/t (n) → 0, then 

14. This proof is adapted from two different proofs by Bollobás (Theorem 7.3 in [86] and 
Theorem 9 on page 233 of [85]). 

expected degree = 5 
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• Heuristic argument (“hand wave”)	


• Probability a node is not in giant component: u

u = P (v 62 GC) = P (All neighbors of v 62 GC)
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Erdős and Rényi in a series of papers in the 1960s [141,
142, 143]. Typically the limit of large n is taken holding
the mean degree z = p(n−1) constant, in which case the
model clearly has a Poisson degree distribution, since the
presence or absence of edges is independent, and hence
the probability of a vertex having degree k is

pk =

(

n

k

)

pk(1 − p)n−k ≃
zke−z

k!
, (18)

with the last approximate equality becoming exact in the
limit of large n and fixed k. This is the reason for the
name “Poisson random graph.”

The expected structure of the random graph varies
with the value of p. The edges join vertices together
to form components, i.e., (maximal) subsets of vertices
that are connected by paths through the network. Both
Solomonoff and Rapoport and also Erdős and Rényi
demonstrated what is for our purposes the most impor-
tant property of the random graph, that it possesses what
we would now call a phase transition, from a low-density,
low-p state in which there are few edges and all compo-
nents are small, having an exponential size distribution
and finite mean size, to a high-density, high-p state in
which an extensive (i.e., O(n)) fraction of all vertices are
joined together in a single giant component, the remain-
der of the vertices occupying smaller components with
again an exponential size distribution and finite mean
size.

We can calculate the expected size of the giant compo-
nent from the following simple heuristic argument. Let
u be the fraction of vertices on the graph that do not
belong to the giant component, which is also the proba-
bility that a vertex chosen uniformly at random from the
graph is not in the giant component. The probability
of a vertex not belonging to the giant component is also
equal to the probability that none of the vertex’s network
neighbors belong to the giant component, which is just
uk if the vertex has degree k. Averaging this expression
over the probability distribution of k, Eq. (18), we then
find the following self-consistency relation for u in the
limit of large graph size:

u =
∞
∑

k=0

pkuk = e−z
∞
∑

k=0

(zu)k

k!
= ez(u−1). (19)

The fraction S of the graph occupied by the giant com-
ponent is S = 1 − u and hence

S = 1 − e−zS . (20)

By an argument only slightly more complex, which we
give in the following section, we can show that the mean
size ⟨s⟩ of the component to which a randomly chosen
vertex belongs (for non-giant components) is

⟨s⟩ =
1

1 − z + zS
. (21)

The form of these two quantities is shown in Fig. 10.
Equation (20) is transcendental and has no closed-form
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FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component
size (dotted line), for the Poisson random graph, Eqs. (20)
and (21).

solution, but it is easy to see that for z < 1 its only non-
negative solution is S = 0, while for z > 1 there is also
a non-zero solution, which is the size of the giant com-
ponent. The phase transition occurs at z = 1. This is
also the point at which ⟨s⟩ diverges, a behavior that will
be recognized by those familiar with the theory of phase
transitions: S plays the role of the order parameter in
this transition and ⟨s⟩ the role of the order-parameter
fluctuations. The corresponding critical exponents, de-
fined by S ∼ (z−1)β and ⟨s⟩ ∼ |z−1|−γ , take the values
β = 1 and γ = 1. Precisely at the transition, z = 1, there
is a “double jump”—the mean size of the largest compo-
nent in the graph goes as O(n2/3) for z = 1, rather than
O(n) as it does above the transition. The components
at the transition have a power-law size distribution with
exponent τ = 5

2 (or 3
2 if one asks about the component

to which a randomly chosen vertex belongs). We look at
these results in more detail in the next section for the
more general “configuration model.”

The random graph reproduces well one of the prin-
cipal features of real-world networks discussed in Sec-
tion III, namely the small-world effect. The mean num-
ber of neighbors a distance ℓ away from a vertex in a
random graph is zd, and hence the value of d needed to
encompass the entire network is zℓ ≃ n. Thus a typical
distance through the network is ℓ = log n/ log z, which
satisfies the definition of the small-world effect given in
Sec. III.A. Rigorous results to this effect can be found
in, for instance, Refs. 61 and 63. However in almost all
other respects, the properties of the random graph do not
match those of networks in the real world. It has a low
clustering coefficient: the probability of connection of two
vertices is p regardless of whether they have a common
neighbor, and hence C = p, which tends to zero as n−1 in
the limit of large system size [416]. The model also has a
Poisson degree distribution, quite unlike the distributions
in Fig. 6. It has entirely random mixing patterns, no cor-
relation between degrees of adjacent vertices, no commu-

• Emergence of the Giant Component: p(N)~1/N (alpha=1)

S = 1� e�↵S

(alpha = mean degree)

•

• •

(n=50, p=0.03, S=0.62)

(n=50, p=0.05, S=0.94)
(n=50, p=0.078, S=0.98)

Example realizations from Jackson
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• Emergence of the connectedness: 
p(N)~ log(N)/N

P (isolated node) = e�↵ ⇡ relative freq. of isolated nodes

e�↵
=

1

N
=) p(N) ⇠ log(N)

N
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FIGURE 4.7 Emergence of connectedness: a random network on 50 nodes with p = .10. 

show that a network is not connected, it is enough to show that there is some isolated 
node. It turns out that t (n) = log(n)/n is not only the threshold for a network being 
connected, but also for there not to be any isolated nodes. To see why, note that the 
probability that a given node is completely isolated is (1 − p(n))n−1 or roughly 
(1 − p(n))n. When working with p(n) near the threshold, p(n)/n converges to 
0, and so we can approximate (1 − p(n))n by e −np(n). Thus the probability that 
any given node is isolated tends to e −p(n)n, which at the threshold is 1/n. For  n 

nodes, it is then not too hard to show that this is the threshold of having some of 
the nodes be isolated, as below the threshold the chance of any node being isolated 
is significantly less than 1/n, while above the threshold it is significantly greater 
than 1/n. The proof then shows that above this threshold it is not only that there 
are no isolated nodes, but also no components of size less than n/2. The intuition 
behind this logic is that the probability of having a component of some small 
finite size is similar (asymptotically) to that of having an isolated node: there 
need to be no connections between any of the nodes in the component and any 
of the other nodes. Thus either some of the nodes are isolated or else the smallest 
components must be approaching infinite size. However, the chance of having 
more than one component of substantial size goes to 0, as there are many nodes in 
each component and there cannot be any links between separate components. So 
components roughly come in two flavors: very small and (uniquely) very large. 

I now offer a full proof of Theorem 4.1 to give a rough idea of how some of the 
many results in random-graph theory have been proven: basically by bounding 
probabilities and expectations and showing that the bounds have the claimed 
properties. 

Proof of Theorem 4.1.14 Let us start by showing that t (n) = log(n)/n is the 
threshold for having isolated nodes. First, we show that if p(n)/t (n) → 0, then 

14. This proof is adapted from two different proofs by Bollobás (Theorem 7.3 in [86] and 
Theorem 9 on page 233 of [85]). 

Jackson
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Image 3.6
Evolution of a random network.

(a) The relative size of the giant component in function of the average 
degree ‹k› in the Erdős-Rényi model. 
(b)-(e) The main network characteristics in the four regimes that charac-
terize a random network. 
Barabasi
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• Consider modeling the spread of an epidemic with a simplified model	


• People are either completely immune or complete susceptible 	


• A fraction π of the population is immune	


• How severe will an outbreak be in this network if a single person is exposed? 

• Generate a Poisson random net with N nodes, prob p	


• Remove a fraction π of the nodes and their links	


• Remaining network is the net of susceptible people	


• The size of the outbreak is given by “S curve” of the net of susceptible people
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• Also view as p, N fixed and varying π — “herd immunity”
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FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson 
random network as a function of the proportion of susceptible nodes 1 − π times the link 
probability p times the population size n. 

impact of informing a few agents in the population about the product, when they 
communicate by word of mouth with others and each individual is sure to learn 
about the product from any neighbor who buys it. 

This analysis is built on contagion taking place with certainty between any 
infected and susceptible neighbors. When the transmission is probabilistic, which 
is the case in some applications, then the analysis needs to account for that. Such 
diffusion is discussed in greater detail in Chapter 7. 

Distribution of Component Sizes* 
The derivations in Section 4.2.6 provide an idea of when a giant component will 
emerge, and its size, but we might be interested in more information about the 
distribution of component sizes that emerge in a network. Again, we will see 
how important this is when we examine network-based diffusion in more detail in 
Chapter 7. Following Newman, Strogatz, and Watts [510], we can use probability 
generating functions to examine the component structure in more detail. (For 
readers not familiar with generating functions, it will be useful to read Section 
4.5.9 before preceding with this section.) 

This analysis presumes that adjacent nodes have independent degrees, and so it 
is best to fix ideas by referring to the configuration model, in which approximate 
independence holds for large n. Let the degree distribution be described by P . 

Consider the following question. What is the size of the component of a node 
picked uniformly at random from the network? We answer this by starting at a 

Barabasi

outbreak 
limited to a 

small 
components 

outbreak spreads through 
giant component of size S 
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SECTION 7

REAL NETWORKS ARE SUPERCRITICAL

Two predictions of random network theory are of special 
importance for real networks:  

1. Once the average degree exceeds ‹k› = 1, a giant com-
ponent emerges that contains a finite fraction of all 
nodes. Hence only for ‹k› > 1 the nodes organize them-
selves into a recognizable network. 

2. For ‹k› > lnN all components are absorbed by the giant 
component, resulting in a single connected network.

But, do real networks satisfy the criteria for the existence 
of a giant component, i.e. ‹k› › 1? And will this giant com-
ponent contain all nodes, i.e. is ‹k› › lnN , or do we expect 
some nodes and components to remain disconnected? 
These questions can be answered by comparing the mea-
sured ‹k› with the theoretical thresholds uncovered above. 

The measurements indicate that real networks extrava-
gantly exceed the ‹k› = 1 threshold. Indeed, sociologists es-
timate that an average person has around 1,000 acquain-
tances; a typical neuron is connected to dozens of other 
neurons, some to thousands; in our cells, each molecule 
takes part in several chemical reactions, some, like water, 
in hundreds. This conclusion is supported by Table 3.1, 
listing the average degree of several undirected networks, 

in each case finding ‹k› > 1. Hence the average degree of 
real networks is well beyond the ‹k› = 1 threshold, implying 
that they all have a giant component.

Let us now inspect if we have single component (if ‹k› > 
lnN), or we expect the network to be fragmented into 
multiple components (if ‹k› < lnN ). For social networks 
this would mean that ‹k› ≥ ln(7 ×109) �22.7ݍ. That is, if the 
average individual has more than two dozens acquain-
tances, then a random society would have a single com-
ponent, leaving no node disconnected. With ‹k› ݍ� 1,000 
this is clearly satisfied. Yet, according to Table 3.1 most real 
networks do not satisfy this criteria, indicating that they 
should consist of several disconnected components. This 
is a disconcerting prediction for the Internet, as it suggests 
that we should have routers that, being disconnected from 
the giant component, are unable to communicate with 
other routers. This prediction is at odd with reality, as these 
routers would be of little utility. 

Table 3.1
Are real networks connected?
The number of nodes N and links L for several undirected networks, 
together with ‹k› and lnN.  A giant component is expected for ‹k› > 1 and 
all nodes should join the giant component for ‹k›  v lnN.  While for all 
networks ‹k› > 1, for most ‹k› is under the lnN threshold.

Image 3.8
Most real networks are supercritical.
The four regimes predicted by random network theory, marking with a 
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are 
expected to be broken into numerous isolated components. Only the actor 
network is in the connected regime, meaning that all nodes are expected 
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at ‹k› = 1, the 
boundary between the supercritical and the connected regimes is at lnN, 
hence varies from system to system. 
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routers would be of little utility. 

Table 3.1
Are real networks connected?
The number of nodes N and links L for several undirected networks, 
together with ‹k› and lnN.  A giant component is expected for ‹k› > 1 and 
all nodes should join the giant component for ‹k›  v lnN.  While for all 
networks ‹k› > 1, for most ‹k› is under the lnN threshold.

Image 3.8
Most real networks are supercritical.
The four regimes predicted by random network theory, marking with a 
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are 
expected to be broken into numerous isolated components. Only the actor 
network is in the connected regime, meaning that all nodes are expected 
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at ‹k› = 1, the 
boundary between the supercritical and the connected regimes is at lnN, 
hence varies from system to system. 

Network     N         L  <k>   ln N

Internet

Power Grid

Science Collaboration

Actor Network

Yeast Protein Interactions

192,244

4,941

23,133

212,250

2,018

609,066

6,594

186,936

3,054,278

2,930

6.34

2.67

8.08

28.78

2.90

12.17

8.51

10.04

12.27

7.61

Fully ConnectedSubcritical Supercritical

Internet

Power Grid

Science
Collaboration

Actor Network

Yeast Protein
Interactions

<k>1 10

60 | NETWORK SCIENCE



© Keith M. Chugg, 2014

Poisson Random Nets

• Does this model predict the characteristics of real 
networks (social nets in particular)	


• Giant Component	


• small world property?	


• degree distribution?	


• clustering?	


• homophily (assortative mixing)?	


• degree correlations?

(No)

(No)

?

?

?

Yes
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Image 3.5
Degree distribution of real networks.

The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring ‹k› for the real network and then plotting Eq. (8). The significant deviation between the data and 
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs. 

56 | NETWORK SCIENCE

The spread in the degrees of real networks is much 
wider than expected in a random network. This differ-
ence is captured by the dispersion σ k (Image 3.4a). For 
example, if the Internet were to be random, we would 
expect σ k = 2.52, while the measurements indicate      

         σ internet = 14.14, significantly higher than predicted.

These differences are not limited to the networks shown 
in Image 3.5, but all networks listed in Table 2.1 share this 
property. Hence the comparison with the real data indi-
cates that the random network model does not capture the 
degree distribution of real networks. While in a random 
network most nodes have comparable degrees, forbidding 
hubs, in real networks we observe a significant number of 
highly connected nodes and large differences in node de-
grees. We will resolve these differences in Chapter 4.

Real networks have degree distributions with heavier tails than Poisson: 	


a small fraction of nodes have very high degree
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Poisson Model Predicts:	


• For fixed average degree, 
clustering should fall as 1/N	


• Expected local cluster coefficient 
not a function of node degree	


• (data shows both untrue)

• Cluster coefficient	


• Expected value of cluster 
coefficient is p=alpha/N	


• Number of closed triples is 
binomial(M_i,p) with 
M_i=L_i choose 2

SECTION 9

CLUSTERING COEFFICIENT

The local clustering coefficient Ci captures the density of 
links in node i’s immediate neighborhood: C = 0 means 
that there are no links between i’s neighbors; C = 1 implies 
that each of the i’s neighbors link to each other (Sect. 2.10). 
To calculate Ci for a node in a random network we need 
to estimate the expected number of links Li between the 
node’s ki neighbors. In a random network the probability 
that two of i’s neighbors link to each other is p.  As there are 
ki(ki - 1)/2 possible links between the ki neighbors of node i, 
the expected value of Li is 

         
Thus the local clustering coefficient of a random graph is 
         
   
      (21)

Equation (21) makes two predictions:

(a) For fixed ‹k›, the larger the network, the smaller is a 
node’s clustering coefficient. Consequently the net-
work’s average clustering coefficient <C> is expected to 
decrease as  1 / N.

 
(b) The local clustering coefficient of a node is indepen-

dent of the node’s degree.

To test the validity of Eq. (21) we plot <C>/‹k› in function 
of N for several undirected networks (Image 3.16a). We 
find that <C>/‹k› does not decrease as N-1, but it is largely 
independent of N, in violation of Eq. (21) . In Image 3.16b-
d we also show the dependency of C on the node’s degree 
ki for three real networks, finding that C(k) systematically 
decreases with the degree, again in violation of Eq. (21) . 

Taken together, we find that the random network model 
does not capture the local clustering of real networks. In-
stead real networks have a much higher clustering coeffi-
cient than expected for a random network of similar N and 
L, and high-degree nodes tend to have a smaller clustering 
coefficient than low-degree nodes. 
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Image 3.16
Clustering in real networks.

(a) Comparison between the average clustering coefficient of real net-
works and the prediction Eq. (21) for random networks. Each circle corre-
sponds to a network from Table 3.2. Directed network were made undirect-
ed to calculate C. The dashed line corresponds to Eq. (21), predicting that 
for random networks the average clustering coefficient should decrease as 
N-1. In contrast, for real networks ‹C› has only a weak dependence on N.

(b)-(d) The dependence of the local clustering coefficient, C(k), on the 
node’s degree for (b) the Internet, (c) science collaboration network and 
(d) protein interaction network. C(k) is measured by averaging the local 
clustering coefficient of all nodes with the same degree k. The dashed line 
corresponds to the prediction of Eq. (21) of the random network model, 
for which C(k) is independent of k. In many real networks, the clustering 
coefficient decreases with k.
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• Does the small world property hold?	


• Consider a fixed-degree k and expand from a given node 
(similar arguments are given with k=average degree)

degree = 3

l=1

l=2

l=3

k(k � 1)l�1 nodes at level l
✓

k

k � 2

◆�
(k � 1)l � 1

�
nodes reached by level l

D ⇡ 2

log(N � 1)

log(k � 1)

diameter

practically: dave ⇡
log(N)

log(k)
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• Does the small world property hold?	


• More complicated/accurate methods for computing the 
diameter and/or shortest path based on this idea	


• How fast does the graph “expand” as you do a BFS from a 
node?	


• How many levels in the BFS to reach all nodes?

practically: 

• More complex analysis provides “corrections” to the above…

dave ⇠
ln(N)

ln(kave)
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• Poisson networks do have the small world property!

which represents the quantitative formulation of the small 
world phenomena. The key, however is its interpretation:

As derived, Eq. (18) predicts the scaling of the network 
diameter, dmax .  Yet, for most networks Eq. (18) offers a 
better approximation to the average distance between 
two randomly chosen nodes, ‹d›, than to dmax (Table 
3.2). This is because dmax is often dominated by a few 
extreme paths, while ‹d› is averaged over all node pairs, 
a process that diminishes the fluctuations. Hence typi-
cally the small world property is defined by 

      (19)

describing the dependence on N and ‹k› of the average 
distance in a network.

d
N
k

log
log

,〈 〉 ∝
〈 〉

Network Name N L ‹k› ‹d› dmax

Internet 192,244 609,066 6.34 6.98 26 6.59

WWW 325,729 1,497,134 4.60 11.27 93 8.32

Power Grid 4,941 6,594 2.67 18.99 46 8.66

Mobile Phone Calls 36,595 91,826 2.51 11.72 39 11.42

Email 57,194 103,731 1.81 5.88 18 18.4

Science Collaboration 23,133 186,936 8.08 5.35 15 4.81

Actor Network 212,250 3,054,278 28.78 - - -

Citation Network 449,673 4,707,958 10.47 11.21 42 5.55

E Coli Metabolism 1,039 5,802 5.84 2.98 8 4.04

Yeast Protein Interactions 2,018 2,930 2.90 5.61 14 7.14

In general log N « N, hence the dependence of ‹d› on 
logN implies that the distances in a random network 
are orders of magnitude smaller than the size of the net-
work. Consequently small world phenomena implies 
that the average path length or the diameter depends 
logarithmically on the system size. Hence, “small” 
means that ‹d› is proportional to log N, rather than N 
or some power of N (Image 3.10).

The 1 / log ‹k› term implies that the denser the network, 
the smaller is the distance between the nodes.

In real networks there are systematic corrections to Eq. 
(18), rooted in the fact that the number of nodes at dis-
tance d > ‹d› drops rapidly (Advanced Topics 3.F).

Table 3.2
Six degrees of separation.
The average distance ‹d› and the maximum distance dmax  of the ten networks explored in this book. The last column provides ‹d› predicted by Eq. (19), 
indicating that it offers a reasonable approximation to ‹d›. Yet, the agreement is not perfect - we will see in the next chapter that for many real networks 
Eq. (19) needs to be adjusted. For directed networks we list the average out-degree ‹kout› and the path lengths are measured only along the direction of 
the links.

THE SMALL WORLD PROPERTY | 63

d
N
k

log
log

,〈 〉 ∝
〈 〉
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Image 3.10
Why are small worlds surprising?
Much of our intuition about distance is based on our experience with reg-

ular lattices, which do not display the small world phenomenon. Indeed, 

s� For a one-dimensional lattice (a line of length N) the diameter and 

the average path length scale linearly with N: dmax~‹d› ~N. 

s� For a square lattice dmax~‹d› ~ N1/2.  

s� For a cubic lattice dmax~‹d› ~ N1/3. 

s� In general, for a d-dimensional lattice we have dmax ~ ‹d› ~ N1/d.

Such polynomial dependence predicts a much faster increase with N than 

Eq. (19), indicating that in regular lattices the path lengths are signifi-

cantly longer than in a random network. The figure shows the predicted 

N-dependence of ‹d›  for regular and random networks on a linear (left) 

and on a log-log (right) scale. If the social network would form a regular 

2d lattice, where each individual knows only its nearest neighbors, the 

average distance between two individuals would be roughly (7 ×10 9)1/2 = 
83,666. Even if we correct for the fact that a person has about 1,000 ac-

quaintances, not four, the average separation will be orders of magnitude 

larger than predicted by Eq. (19).

Image 3.11
Six degrees? Facebook finds only four.
Milgram’s experiment could not detect the true distance between his 

study’s participants, as he lacked an accurate map of the full social 

network. Today Facebook has the most extensive social network map ever 

assembled. Using Facebook’s social graph of May 2011, consisting of 721 

million active users and 68 billion symmetric friendship links, the average 

distance between the users was 4.74. The figure shows the distance 

distribution, pd , for all pairs of Facebook users worldwide (full dataset) and 

within the US only. Therefore, instead of ‘six degrees’ researchers detected 

only ‘four degrees of separation’ [4], closer to the prediction of Eq. (20) 

than to Milgram’s six degrees [23]. Using Facebook’s N and L Eq. (19) 

predicts the average degree to be approximately 3.90, not far from the 

reported four degrees.

Let us illustrate the implications of Eq. (19) for social net-
works. Using N109× 7 ݍ and ‹k›103ݍ, we obtain   
         
      (20)

Therefore, all individuals on Earth should be within three 
to four handshakes of each other, about a half of “six de-
grees”. The estimate (20) is probably closer to the real val-
ue given by Eq. (7) than the frequently quoted six degrees 
(Image 3.11).

While discovered in the context of social systems, the 
small world property applies beyond social networks. In 
Table 3.2 we compare the prediction of Eq. (19) with the 
average path length ‹d› for several real networks, finding 
that despite the diversity of these systems and the signif-
icant differences between them in terms of N and ‹k›, Eq. 
(19) offers a reasonable approximation to the empirically 
observed ‹d›.

The small world property has not only ignited the public’s 

imagination, but plays an important role in network sci-
ence as well. It affects most network characteristics, from 
the spread of ideas in social networks to search on net-
works. The small world phenomena can be reasonably well 
understood in the context of the random network model: 
it is rooted in the fact that the number of nodes at distance 
d from a node increases exponentially with d. While in 
the coming chapters we will see that in real networks we 
encounter systematic deviations from Eq. (19), forcing us 
to replace it with more accurate predictions, the intuition 
offered by the random network model on the origin of the 
phenomenon remains valid.

d
ln7 10
ln(10 )

3.28.
9

3
〈 〉 = × =

64 | NETWORK SCIENCE

Our intuition tends to make us 
think in terms of regular 

networks

Some networks are regular 
and do not exhibit small world 

properties (non-social)
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Bo
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3.
8

At a glance: Random networks

s� Definition:  N nodes, where each node pair is connected with 
probability p.

s� Average degree:  

s� Average number of links:  

s� Degree distribution:  

For sparse networks (k « N), Pk has the Poisson form

 

s� Giant component  (NG) :

‹k› < 1: no giant component  (NG~ lnN)

1 < ‹k› < lnN: one giant component and disconnected clusters

‹k› > lnN: all nodes join the giant component 

s� Average distance:     

s� Clustering coefficient:     

p
N
k
p p 

1
(1 ) .k
k N k1= −⎛

⎝⎜
⎞
⎠⎟

− − −

= −p e k
k! .k

k
k

⎛
⎝⎜

⎞
⎠⎟

N N~G

2
3

�N p p NG i( )−

d
N
k

log
log

,〈 〉 ∝
〈 〉

"C k
N .

( )= −k p N 1

( )= −L p N 1
2

• Summary (Poisson predicts real?)	


• Degree distribution	


• Giant Component	


• Small World	


• Clustering

Yes

Yes

No

No
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Overview
• Probability Review	


• Static Random Models	


• Poisson random graphs (completely random)	


• The configuration model (specify the degree 
distribution)	


• Power-law degree distribution	


• The small world model (Watts-Strogatz)	


• Exponential and Markov models	


• Growth models for random graphs

37
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• Since many real-world networks do not have a Poisson degree 
distribution, generate a random network with a specific degree 
sequence (implies degree distribution)	


• Several models to approach this or similar	


• Configuration model	


• Expected Degree model (Jackson 4.1.5) and Hidden 
Parameter model (Barabasi 4.8)	


• Degree-preserving randomization (Barabasi 4.8)
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i ki “edge stubs”

kj “edge stubs”j

• Given a specific degree sequence {k_i}, set up 
nodes with each node having the specified 
number of degree stubs	


• Randomly pick two stubs and connect with 
link (these are no longer stubs)	


• Repeat until all stubs are links	


• Allows for self-links and multi-links, but 
the probability of these go to zero as N 
goes to infinity

Provides random graph with specified degree distribution	


(Poisson random network is a special case)
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(This may have some issues since it allows for nodes to connect to themselves)

• Condition for the emergence of the Giant Component

THRESHOLD condition for giant 
component to exist asymptotically

E
�
K2

 
� 2E {K} > 0

(1� S) =
1X

k=0

(1� S)kpK(k)
S = fraction of nodes in the GC 
when above threshold is met

Note that for Poisson distribution with mean alpha:

�2
K = ↵

mK = ↵
E
�
K2

 
= �2

K +m2
K = ↵+ ↵2

↵ > 1

E
�
K2

 
� 2E {K} > 0
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• Expected value of average/global cluster coefficient

deviation from Poisson

E {Ci} = E {C
ave

} = E {C
global

} =
k
ave

N

"
E
�
K2

 
� k

ave

k2
ave

#
2

(bracketed term is 1 for Poisson)

E
�
K2

 

(E {K})2
non-negligible correction term depending on the degree 

distribution and the size of the network
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• Some more detailed derivations for the configuration model 
(Poisson is a special case)	


• Probability distribution of degree of node connected to randomly 
selected edge (Jackson 4.2.1)	


• Threshold for giant component (Jackson 4.2.6)	


• Sub-threshold (GC) component size distribution (Jackson 4.4)	


• Implies Threshold for GC	


• Implies mean size of sub-threshold components	


• Probability distribution of maximum degree in finite network 
Newman (III.C.2)
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randomly selected component

Image 3.21
Average component size.

a. Upper curve: the average size <s> of a component to which a ran-

domly chosen node belongs to as predicted by Eq. (39). Lower curve: 

the overall average size <s’> of a component as predicted by Eq. (37). 

The dotted vertical line marks ‹k› = 1 (Redrawn after Newman, 2010).

b. The average cluster size in a network measured in by numerical 

simulations, where we picked a node in the network and determined 

the size of the cluster it belongs to. This measure is biased, as each 

component of size s’ will be counted s’ times. The larger N becomes, 

the more closely the numerical data follows the prediction of Eq. (37). 

As predicted, <s> diverges at the ‹k›=1, critical point, supporting the 

existence of a phase transition in the system (Advanced Topics 3.F).

c. The average cluster size in a network, where we corrected for the bias 

in (b) by selecting each component only once.The larger N becomes, 

the more closely the numerical data follows the prediction of Eq. (39). 

emergence of the giant component at ‹k› = 1. Once again, 
numerical simulation support these predictions for large 
N (Image 3.21).

To determine the average component size for ‹k› > 1 using 
Eq. (37), we need to first determine the size of the giant 
component. This can be done in a self-consistent manner, 
obtaining that the average cluster size decreases for 
‹k› > 1, as most of the clusters are gradually absorbed by the 
giant component.

Note that Eq. (37) predicts the size of the component to 
which a randomly chosen node belongs to. This is a biased 
measure, as the chance of belonging to a larger cluster is 
higher than the chance of belonging to a smaller one. The 
bias is linear in the cluster size, s. If we correct for this bias, 
we obtain the average size of the small components that we 
would get if we were to inspect each cluster one by one and 
measuring their average size [24]

           
      (39)

Image 3.21 again offers numerical support for Eq. (39).
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• Heavy-tailed degree distribution that matches many real-world 
network observed degree distributions

THE SCALE-FREE PROPERTY 9

Poisson vs. power-law distributions
Figure 4.4

a

c

b

d

SECTION 4.3

HUBS

The main difference between a random and a scale-free network comes 
in the tail of the degree distribution, representing the high-k region of pk. 

Fig. 4.4 compares a power law with a Poisson function, indicating that:

• For small k the power law is above the Poisson function, hence a scale-
free network has a large number of small degree nodes that are virtually 
absent in a random network.

• For k the vicinity of ຊk the Poisson distribution is above the power law, 
indicating that in a random network most nodes have degree k ݍ�ຊk.

• For large k the power law is again above the Poisson curve. The differ-
ence is particularly visible if we show pk on a log-log plot Fig. 4.4b, indicating 
that the probability of observing a high-degree node, or hub, is several or-
ders of magnitudes higher in a scale-free than in a random network.

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k �100ݍ is about p100 30−�10ݍ in a Pois-
son distribution while it is about p100 4−�10ݍ if pk follows a power law. Con-
sequently, if the WWW were to be a random network with

                                

and N �1012ݍ Table 4.1, we would expect nodes with more than 100 links, or 
effectively none. In contrast, given the WWW’s power law degree distribu-
tion, with�ਠin = 2.1, we have Nk > 100 = 109 nodes with degree k >100.

HUBS

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: the genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 

(a) A Poisson function and a power-law 
function with ਠ= 2.1. Both distributions have 
.10  =ࢮkࢭ
(b) The curves in (a) shown on a log-log plot, 
offering a better view of the difference be-
tween the two functions in the high-k regime. 
(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have comparable 
degree k ࢭݍkࢮ. 
(d) A scale-free network with ࢭk3 =ࢮ, illustrat-
ing that numerous small-degree nodes coexist 
with a few highly connected hubs.
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Poisson vs. power-law distributions
Figure 4.4
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SECTION 4.3
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• AKA “scale-free” 
networks

Barabasi

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks
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• Special case of configuration network	


• Discussed in detail in Barabasi, chapter 4	


• Networks can be grown with the Barabasi-Albert model for 
preferential attachment	


• Yields the power law degree distribution	


• No longer has independent degrees for different nodes 	


• Model incorporates degree correlation explicitly

Cover power-law and preferential attachment later (soon)
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• These models are more complicated than the Poisson and 
configuration models	


• Attempt to capture correlation properties to come degree	


• Degree correlation, clustering, etc.	


• There is a trade-off between more accurate models and more 
difficulty in analyzing the resulting models 	


• The references point to these models as interesting/
promising, but not widely utilized
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• Simple model that captures	


• Clustering (triadic closure, transitivity)	


• Small world property	


• Basic idea	


• Begin with a regular lattice (local, regular connections)	


• provides clustering	


• Add/rewire a subset of links randomly	


• provides small-world properties
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28 The structure and function of complex networks

(c)(b)(a)

FIG. 11 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or fewer lattice spacing, with
k = 3 in this case. (b) The small-world model [412, 416] is created by choosing at random a fraction p of the edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (c) A slight variation on the model [289, 324]
in which shortcuts are added randomly between vertices, but no edges are removed from the underlying one-dimensional lattice.

of graphs. For the purposes of mathematical treatment,
the model can be simplified considerably by rewiring both
ends of each chosen edge, and by allowing both double
and self edges. This results in a system that genuinely in-
terpolates between a regular lattice and a random graph.
Another variant of the model that has become popular
was proposed independently by Monasson [289] and by
Newman and Watts [324]. In this variant, no edges are
rewired. Instead “shortcuts” joining randomly chosen
vertex pairs are added to the low-dimensional lattice—
see Fig. 11c. The parameter p governing the density of
these shortcuts is defined so as to make it as similar as
possible to the parameter p in the first version of the
model: p is defined as the probability per edge on the
underlying lattice, of there being a shortcut anywhere in
the graph. Thus the mean total number of shortcuts is
Lkp and the mean degree is 2Lk(1 + p). This version
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FIG. 12 The clustering coefficient C and mean vertex–vertex
distance ℓ in the small-world model of Watts and Stro-
gatz [416] as a function of the rewiring probability p. For
convenience, both C and ℓ are divided by their maximum val-
ues, which they assume when p = 0. Between the extremes
p = 0 and p = 1, there is a region in which clustering is high
and mean vertex–vertex distance is simultaneously low.

of the model has the desirable property that no vertices
ever become disconnected from the rest of the network,
and hence the mean vertex–vertex distance is always for-
mally finite. Both this version and the original have been
studied at some length in the mathematical and physical
literature [309].

A. Clustering coefficient

The clustering coefficient for both versions of the small-
world model can be calculated relatively easily. For the
original version, Barrat and Weigt [40] showed that

C =
3(k − 1)

2(2k − 1)
(1 − p)3, (50)

while for the version without rewiring, Newman [316]
showed that

C =
3(k − 1)

2(2k − 1) + 4kp(p + 2)
. (51)

B. Degree distribution

The degree distribution of the small-world model does
not match most real-world networks very well, although
this is not surprising, since this was not a goal of the
model in the first place. For the version without rewiring,
each vertex has degree at least 2k, for the edges of the
underlying regular lattice, plus a binomially distributed
number of shortcuts. Hence the probability pj of having
degree j is

pj =

(

L

j − 2k

)[

2kp

L

]j−2k[

1 −
2kp

L

]L−j+2k

(52)

for k ≥ 2k, and pj = 0 for j < 2k. For the rewired
version of the model, the distribution has a lower cutoff
at k rather than 2k, and is rather more complicated. The

Newman

starting point
random 
rewire

random add 
wires
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Easley & Kleinberg

614 CHAPTER 20. THE SMALL-WORLD PHENOMENON

(a) Nodes arranged in a grid (b) A network built from local structure and random edges

Figure 20.2: The Watts-Strogatz model arises from a highly clustered network (such as the
grid), with a small number of random links added in.

and 20.1(b). And, indeed, at an implicit level, this is a large part of what makes the small-

world phenomenon surprising to many people when they first hear it: the social network

appears from the local perspective of any one individual to be highly clustered, not the kind

of massively branching structure that would more obviously reach many nodes along very

short paths.

The Watts-Strogatz model. Can we make up a simple model that exhibits both of the

features we’ve been discussing: many closed triads, but also very short paths? In 1998,

Duncan Watts and Steve Strogatz argued [411] that such a model follows naturally from a

combination of two basic social-network ideas that we saw in Chapters 3 and 4: homophily

(the principle that we connect to others who are like ourselves) and weak ties (the links to

acquaintances that connect us to parts of the network that would otherwise be far away).

Homophily creates many triangles, while the weak ties still produce the kind of widely

branching structure that reaches many nodes in a few steps.

Watts and Strogatz made this proposal concrete in a very simple model that generates

random networks with the desired properties. Paraphrasing their original formulation slightly

(but keeping the main idea intact), let’s suppose that everyone lives on a two-dimensional

grid — we can imagine the grid as a model of geographic proximity, or potentially some

more abstract kind of social proximity, but in any case a notion of similarity that guides the

formation of links. Figure 20.2(a) shows the set of nodes arranged on a grid; we say that

Concept is applicable to any regular lattice (1D, 2D, 3D, etc.)
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(c)(b)(a)

FIG. 11 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or fewer lattice spacing, with
k = 3 in this case. (b) The small-world model [412, 416] is created by choosing at random a fraction p of the edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (c) A slight variation on the model [289, 324]
in which shortcuts are added randomly between vertices, but no edges are removed from the underlying one-dimensional lattice.

of graphs. For the purposes of mathematical treatment,
the model can be simplified considerably by rewiring both
ends of each chosen edge, and by allowing both double
and self edges. This results in a system that genuinely in-
terpolates between a regular lattice and a random graph.
Another variant of the model that has become popular
was proposed independently by Monasson [289] and by
Newman and Watts [324]. In this variant, no edges are
rewired. Instead “shortcuts” joining randomly chosen
vertex pairs are added to the low-dimensional lattice—
see Fig. 11c. The parameter p governing the density of
these shortcuts is defined so as to make it as similar as
possible to the parameter p in the first version of the
model: p is defined as the probability per edge on the
underlying lattice, of there being a shortcut anywhere in
the graph. Thus the mean total number of shortcuts is
Lkp and the mean degree is 2Lk(1 + p). This version
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FIG. 12 The clustering coefficient C and mean vertex–vertex
distance ℓ in the small-world model of Watts and Stro-
gatz [416] as a function of the rewiring probability p. For
convenience, both C and ℓ are divided by their maximum val-
ues, which they assume when p = 0. Between the extremes
p = 0 and p = 1, there is a region in which clustering is high
and mean vertex–vertex distance is simultaneously low.

of the model has the desirable property that no vertices
ever become disconnected from the rest of the network,
and hence the mean vertex–vertex distance is always for-
mally finite. Both this version and the original have been
studied at some length in the mathematical and physical
literature [309].

A. Clustering coefficient

The clustering coefficient for both versions of the small-
world model can be calculated relatively easily. For the
original version, Barrat and Weigt [40] showed that

C =
3(k − 1)

2(2k − 1)
(1 − p)3, (50)

while for the version without rewiring, Newman [316]
showed that

C =
3(k − 1)

2(2k − 1) + 4kp(p + 2)
. (51)

B. Degree distribution

The degree distribution of the small-world model does
not match most real-world networks very well, although
this is not surprising, since this was not a goal of the
model in the first place. For the version without rewiring,
each vertex has degree at least 2k, for the edges of the
underlying regular lattice, plus a binomially distributed
number of shortcuts. Hence the probability pj of having
degree j is

pj =

(

L

j − 2k

)[

2kp

L

]j−2k[

1 −
2kp

L

]L−j+2k

(52)

for k ≥ 2k, and pj = 0 for j < 2k. For the rewired
version of the model, the distribution has a lower cutoff
at k rather than 2k, and is rather more complicated. The
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