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Overview

• Probability Review	



• Static Random Models	



• Poisson random graphs (completely random)	



• The configuration model (specify the degree distribution)	



• Power-law degree distribution	



• The small world model (Watts-Strogatz)	



• Exponential and Markov models	



• Growth models for random graphs	



• Preferential-attachment & power-law degree distributions
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Start with purely 
random models 
and see what 

occurs.  	


!

Modify model to 
better represent 
real networks
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Primary References
• Static models 

• Newman, The Structure and Function of Complex Networks, SIAM REVIEW, Vol.45, No.
2, pp.167–256, 2003. (terse and mathematical).	



• Sections IV, V, VI	



• Jackson, Chapter 4.  Similar to Newman. 	



• Barabasi, Chapters 3 & 4.  Less mathematical, buggy.	



• Models for growth of random networks 

• Newman, The Structure and Function of Complex Networks, SIAM REVIEW, Vol.45, No.
2, pp.167–256, 2003.	



• Sections VII	



• Jackson, Chapter 5.  	



• Barabasi, Chapters 5 & 6.
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Why Growth Models?

4

• Unlike the static random graph models we considered, growth 
models allow us to incorporate temporal aspects of network 
formation	



• May model real effects of social network formation and 
evolution	



• “older” nodes have more connections	



• Hubs (popular nodes) emerge	



• Age-based homophily	



• Degree correlation (positive assortativity)
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Random Growth Models

• Typical growth model	



• Start with m nodes, typically completely connected	



• Add a node of degree m and connect it to m existing 
nodes	



• Randomly connect (Jackson 5.1)	



• Preferential attachment (Jackson 5.2, Newman VII, 
Barabasi Ch. 5)
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General Properties of Growth Models

• Older nodes tend to have larger degree since, when each 
additional node is added each existing node has some 
chance of getting a new connection	



• Node degree only grows with time	



• We can use difference and/or differential equations to 
model the growth of the expected degrees or the 
evolution of the degree distribution
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Properties of Growth Models

• Random growth yields an exponential distribution for the 
expected degree 	



• For large values of “time”, the fraction of nodes with 
expected degree above d is 

e�
d�m
m
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Preferential Attachment

• New nodes are more likely to connect with existing 
nodes of large degree	



• Motivated in the formation of many real world 
networks	



• Citation networks	



• Webpage links	



• Transportation networks	



• Wealth distribution	



• “rich get richer” and the “80/20 rule”	



• May be an “optimized” structure	
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Preferential Attachment

Figure 4.2
Art and Networks: Tomás Saraceno

(a) The evolution of the number of WWW 
hosts, docume

a

b

BOX 5.1
PREFERENTIAL ATTACHMENT: A BRIEF HISTORY

Preferential attachment has emerged repeatedly in mathematics and 
social sciences. Consequently today we can encounter it under differ-
ent names in the scientific literature:

•  It made its first appearance in 1923 in the celebrated urn model of the 
Hungarian mathematician György Pólya (1887-1985) [2], proposed to 
explain the nature of certain distributions. Hence, in mathematics 
preferential attachment is often called a Pólya process.

•  George Udmy Yule (1871-1951) in 1925 used preferential attachment 
to explain the power-law distribution of the number of species per 
genus of flowering plants [3]. Hence, in statistics preferential attach-
ment is often called a Yule process.

• Rober Gibrat (1904-1980) in 1931 proposed that the size and the 
growth rate of a firm are independent. Hence, larger firms grow 
faster [4]. Called proportional growth, this is a form of preferential 
attachment.

• George Kinsley Zipf (1902-1950) in 1941 used preferential attach-
ment to explain the fat tailed distribution of wealth in the society [5].

•  Modern analytical treatments of preferential attachment use of the 
master equation approach pioneered by the economist Herbert Al-
exander Simon (1916-2001). Simon used preferential attachment in 
1955 to explain the fat-tailed nature of the distributions describing 
city sizes, word frequencies in a text, or the number of papers pub-
lished by scientists [6].

•  Building on Simon’s work, Derek de Solla Price (1922-1983) used pref-
erential attachment to explain the citation statistics of scientific 
publications, referring to it as cumulative advantage [7].

•  In sociology preferential attachment is often called the Matthew ef-
fect, named by Robert Merton (1910-2003) [8] after a passage in the 
Gospel of Matthew: “For everyone who has will be given more, and 
he will have an abundance. Whoever does not have, even what he has 
will be taken from him.”

• The term preferential attachment was introduced in the 1999 paper 
by Barabási and Albert [1] to explain the ubiquity of power laws in 
networks.

7THE BARABÁSI-ALBERT MODEL GROWTH AND PREFERENTIAL ATTACHMENT

Note that the distributions character-
ized from Pólya to Merton describe scalar 
quantities, like the number of individuals 
with the same income or the size of cit-
ies. In contrast the Barabási-Albert model 
aims to describe networks. Networks have 
a wide array of topological characteristics 
that are absent from scalar distributions, 
but which are deeply affected by the pow-
er-law nature of the degree distribution.
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Barabasi

Barabasi-Albert essentially rediscovered Price’s work	



Price considered directed graphs, B-A undirected (simpler)
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Preferential Attachment

• New nodes are more likely to connect with existing 
nodes of large degree	



• Consider a network with 4 nodes with

(1,1,1,2,3,4,4,4)

k1=3, k2=2, k3=1, k4=4

• Add a new node, and select target for connection by 
randomly selecting from the above list	



• Example: node 5 is added and connects to 2 nodes

(1,1,1,2,3,4,4,4,5,5,1,4)
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Preferential Attachment

• The previous process can be captured in two ways

Expected number of new connections existing node i gets at time n:

m
ki(n)P
i ki(n)

=
ki(n)

2n �ki(n) =
ki(n)

2n

Yields the “mean field approximation” (used by Jackson in Ch. 5)

Probability of connecting to any node with degree k

Yields the “master equation” (used by Newman VII) - following slides

kpn(k)P
k kpn(k)

=
kpn(k)

2m
difference equation on pn(k)
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Preferential Attachment

kpn(k)P
k kpn(k)

=
kpn(k)

2m

pn(k)Degree distribution at time n:

Probability of attaching to node of degree k: 

Expected number of nodes with degree k that gain an edge:

(m edges for each node)

m
kpn(k)

2m
=

1

2
kpn(k)

Expected number of nodes with degree k at time n: Npn(k) = npn(k)

(one node added at each time: N=n)

This yields to the so-called master equation — difference equation for degree distribution 
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Preferential Attachment

Master equation (k>m):

Difference in expected 
number of degree k nodes 
from time n to time (n+1)

Expected number of 
degree k-1 nodes moving 

to degree k at time n

(n+ 1)pn+1(k)� npn(k) =
1

2
(k � 1)pn(k � 1)� 1

2
kpn(k)

Expected number of 
degree k nodes moving to 

degree k+1 at time n

Master equation (k=m):

New node has degree m

(n+ 1)pn+1(m)� npn(m) = 1� 1

2
mpn(m)
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Preferential Attachment

Search for a steady-state solution to the master equation:

(n+ 1)p(k)� np(k) =
1

2
(k � 1)p(k � 1)� 1

2
kp(k) (k>m)

(n+ 1)p(m)� np(m) = 1� 1

2
mp(m) (k=m)

p(k) =


(k � 1)

(k � 2)

�
p(k � 1)Yields: p(m) =

2

(m+ 2)&
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Preferential Attachment

The steady-state solution to the master equation:

p(k) =
(k � 1)(k � 2) · · ·m

(k + 2)(k + 1) · · · (m+ 3)
p(m) =

2m(m+ 1)

(k + 2)(k + 1)k
⇠ k�3

• Preferential attachment leads to power-law degree 
distribution!	



• recall this means “hubs” in the network, heavy tails in 
the degree distribution, etc.
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Preferential Attachment Summary

32THE BARABÁSI-ALBERT MODEL SUMMARY

• The model does not allow to distinguish between nodes based on some 
intrinsic characteristics, like the novelty of a research paper or the util-
ity of a webpage. While the Barabási-Albert model is occasionally used 
as a model of the Internet or the cell, in reality is not designed to cap-
ture the details of any particular real network systems. It is a minimal, 
proof of principle model whose main purpose is to capture the basic 
mechanisms responsible for the emergence of the scale-free property. 

Therefore, if we want to understand the evolution of systems like the 
Internet, the cell or the WWW, we need to incorporate the important de-
tails that contribute to the time evolution of these systems, like the direct-
ed nature of the WWW, the possibility of internal links and node and link 
removal. As we show in CHAPTER 6, these limitations can be systematically 
resolved. Finally, the results discussed in this chapter allow us to formulate 
the next law:

The Third Law of Networks: Growth and Preferential Attachment.

Hubs and power laws are a joint consequence 
of growth and preferential attachment.

Let us revisit the three criteria we used earlier to establish the validity 
of a network law:

(a) Quantitative formulation of the third law is provided by the Barabá-
si-Albert model, together with its documented ability to generate 
scale-free networks based on growth and preferential attachment.

(b) Universality: SECTION 5.7 offers direct empirical evidence that real 
networks that exhibit the scale-free property are characterized by 
preferential attachment; SECTION 5.2 offers evidence of growth.

(c) Non-random origin: Preferential attachment is obviously absent 
from random networks, which is the main reason why random net-
works do not develop hubs and power laws.

BOX 5.6 
AT A GLANCE:
BARABÁSI-ALBERT MODEL

Number of nodes

N = t

Number of links

N = mt

Average Degree

2m = ࢮkࢭ

Degree dynamics

ki(t) = m (t/ti)
ȕ

Dynamical exponent

ȕ�= 1/2

Degree distribution

pk Ȯ�k-ڜ

Degree exponent

3 =�ڜ

Average distance

�Ȯ�logN/log logNࢮdࢭ

Clustering coefficient

�Ȯ (lnN)2/NࢮCࢭ
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Preferential Attachment Variations

• A hybrid model (Jackson 5.3)	



• A new node connects fraction ß of its m edges 
randomly to existing nodes and fraction (1-ß) of its 
edges to existing nodes via preferential attachment 	



• Yields a power-law distribution with exponent:

p(k) ⇠ k�� � = 1 +
2

1� �

• An exponent of less than 3 is possible with this model
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Hybrid Model Motivation

18

Barabasi

Image 3.5
Degree distribution of real networks.

The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring ‹k› for the real network and then plotting Eq. (8). The significant deviation between the data and 
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs. 

56 | NETWORK SCIENCE

The spread in the degrees of real networks is much 
wider than expected in a random network. This differ-
ence is captured by the dispersion σ k (Image 3.4a). For 
example, if the Internet were to be random, we would 
expect σ k = 2.52, while the measurements indicate      

         σ internet = 14.14, significantly higher than predicted.

These differences are not limited to the networks shown 
in Image 3.5, but all networks listed in Table 2.1 share this 
property. Hence the comparison with the real data indi-
cates that the random network model does not capture the 
degree distribution of real networks. While in a random 
network most nodes have comparable degrees, forbidding 
hubs, in real networks we observe a significant number of 
highly connected nodes and large differences in node de-
grees. We will resolve these differences in Chapter 4.
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Preferential Attachment Variations

• Preferential attachment implies older nodes have, on 
average, more edges and are more likely to connect to 
older nodes	



• This may not always model reality as trends may fade 
with time	



• Biaconi and Barabasi added a “fitness” term to the 
preferential attachment law which measures a nodes 
inherent “attractiveness” or fitness	



• Allows newer nodes to become hubs through high 
fitness scores
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Preferential Attachment Variations

• Note that the probability of attaching to a degree k node 
is the same as the “discovered degree” distribution	



• Meetings-Based models are based on forming new 
connections through navigating the network (getting 
meetings through friends)	



• This is usually modeled for directed graphs, but 
yields similar results as the hybrid model	



• Adds high level of degree correlation
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Scale-free Degree Distribution

• The preferential attachment model and 
variations yield power-law degree 
distributions with exponents ~ 2-3	



• Explore these degree distributions in 
more detail (Barabasi Ch. 4)
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Power Law Degree Distribution

22

• Heavy-tailed degree distribution that matches many real-world 
network observed degree distributions

THE SCALE-FREE PROPERTY 9

Poisson vs. power-law distributions
Figure 4.4

a

c

b

d

SECTION 4.3

HUBS

The main difference between a random and a scale-free network comes 
in the tail of the degree distribution, representing the high-k region of pk. 

Fig. 4.4 compares a power law with a Poisson function, indicating that:

• For small k the power law is above the Poisson function, hence a scale-
free network has a large number of small degree nodes that are virtually 
absent in a random network.

• For k the vicinity of ຊk຋ the Poisson distribution is above the power law, 
indicating that in a random network most nodes have degree k ݍ�ຊk຋.

• For large k the power law is again above the Poisson curve. The differ-
ence is particularly visible if we show pk on a log-log plot Fig. 4.4b, indicating 
that the probability of observing a high-degree node, or hub, is several or-
ders of magnitudes higher in a scale-free than in a random network.

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k �100ݍ is about p100 30−�10ݍ in a Pois-
son distribution while it is about p100 4−�10ݍ if pk follows a power law. Con-
sequently, if the WWW were to be a random network with

                                

and N �1012ݍ Table 4.1, we would expect nodes with more than 100 links, or 
effectively none. In contrast, given the WWW’s power law degree distribu-
tion, with�ਠin = 2.1, we have Nk > 100 = 109 nodes with degree k >100.

HUBS

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: the genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 

(a) A Poisson function and a power-law 
function with ਠ= 2.1. Both distributions have 
.10  =ࢮkࢭ
(b) The curves in (a) shown on a log-log plot, 
offering a better view of the difference be-
tween the two functions in the high-k regime. 
(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have comparable 
degree k ࢭݍkࢮ. 
(d) A scale-free network with ࢭk3 =ࢮ, illustrat-
ing that numerous small-degree nodes coexist 
with a few highly connected hubs.
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illustrating that most nodes have comparable 
degree k ࢭݍkࢮ. 
(d) A scale-free network with ࢭk3 =ࢮ, illustrat-
ing that numerous small-degree nodes coexist 
with a few highly connected hubs.
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• AKA “scale-free” 
networks

Barabasi

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks
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• Special case of configuration network	



• Discussed in detail in Barabasi, chapter 4	



• Networks can be grown with the Barabasi-Albert model for 
preferential attachment	



• Yields the power law degree distribution	



• No longer has independent degrees for different nodes 	



• Model incorporates degree correlation explicitly

Cover power-law and preferential attachment later (soon)
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For a random network the standard deviation 
follows         shown as a dashed line on the 
figure. The symbols show ਯ�for ten reference 
networks Table 4.1, indicating that for each ਯ�
is larger than expected for a random network 
with similar ࢭkࢮ. The only exception is the 
power grid, which is not scale-free. While the 
phone call network is scale-free, it has a large 
ਠ, hence it behaves like a random network.

The table shows the standard deviation of the degree distribution                                       (ਯin and ਯout for directed networks) for our ten ref-
erence networks. It indicates that for most networks ਯ is much larger than ࢭkࢮ, consequence of their scale-free nature. It also lists the 
estimated degree exponent, ਠ, for each network, determined using the procedure discussed in ADVANCED TOPICS 4.A. The stars next to 
the reported values indicate the statistical confidence for a particular fit to the degree distribution. That is, * means that the fit shows 
statistical confidence for a power-law k−ਠ fit; while ** marks datasets that display statistical confidence for a                               fit. Those 
with no stars do not show statistical confidence for any of the two forms; the reasons for this are discussed later in the next chapter 
and in ADVANCED TOPICS 4.C. Note that the power grid is not considered scale-free. For this network a degree distribution of the 
form e−ਨk offers a statically significant fit.

Figure 4.8

Table 4.1

Standard deviation is large in real networks

The characteristics of several real network

k k2 2σ = −

NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Yeast Protein Interactions

192,244

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802
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-
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19.12

-

14.14
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-
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10.63
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-

-

4.88

-

2.31

-

4.69*

3.43*

-

-

3.03**

2.43

-

-

2.00

-

5.01*

2.03

-

-

4.00

2.90

-

3.42*

-

Exp.

-

-

3.35

2.12

-

-

2.89*
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Best power-law fit to real data sets
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DEPENDENT PROPERTIES
A summary of the γ dependent properties
of scale-free networks

FIG. 4.14

The degree exponents shown in the figure were taken 
from Table 4.1. Note that not all listed γ values show 
statistical significance, as we lack the proper fitting 
function. Case in point are the Internet and the email 
datasets, for which earlier studies reported γ < 3.  To 
determine the precise value of γ, we need proper 
models, a topic discussed in Chapter 6.
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BOX 4.7
At a glance
Scale-free networks

DEGREE DISTRIBUTION

Discrete form:

SUMMARY

of magnitude, differences that are difficult to explain using a bound-
ed distribution. Outliers, or exceptionally high-degree nodes, are not 
only allowed but expected in these networks. Networks in this class 
include the WWW, the Internet, the protein interaction networks, and 
many social and online networks. While it would be desirable to fit 
and statistically validate the precise form of the degree distribution, 
often it is sufficient to decide the class to which a given network be-
longs: bounded or unbounded (see ADVANCED TOPICS 4.A). If the degree 
distribution is bounded, the random network model offers a reason-
able starting point to understand its topology. If the degree distribu-
tion is unbounded, a scale-free network offers a better approximation.

In summary, to understand the properties of real networks, it is often 
sufficient to remember that in scale-free networks a few highly connected 
hubs coexist with a large number of small nodes. In contrast in random 
networks most nodes have comparable degrees and hubs are absent. The 
presence or absence of the hubs plays an important role in the system’s be-
havior. The purpose of this chapter was to explore the basic characteristics 
of scale-free networks. We are left, therefore, with an important question: 
why are networks scale-free? The next chapter will provide the answer. 
Keeping up with the framework established in the previous chapter, the re-
sults discussed in this chapter allow us to formulate our next network law:

Let us recap the validity of this law in the context of the three criteria 
established in CHAPTER 3:

A. Quantitative formulation: Eq. 4.1 offers the quantitative formulation 
of the Second Law, indicating that the degree distribution of such networks 
can be approximated by a power law.

B. Universality: as discussed in SECTION 4.5, the scale-free property is 
a common feature of many real networks, from the WWW to the protein 
interaction network in the cell.

C. Non-random origins: the scale-free property represents a dramat-
ic deviation from the Poisson degree distribution characterizing random 
networks, hence it can not be explained in the context of the random net-
work model.

The Second Law: scale-free property

Many real networks are characterized by
a fat-tailed degree distribution. This means
that many small-degree nodes are held 
together by a few hubs.

Continuous form: 
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For a random network the standard deviation 
follows         shown as a dashed line on the 
figure. The symbols show ਯ�for ten reference 
networks Table 4.1, indicating that for each ਯ�
is larger than expected for a random network 
with similar ࢭkࢮ. The only exception is the 
power grid, which is not scale-free. While the 
phone call network is scale-free, it has a large 
ਠ, hence it behaves like a random network.

The table shows the standard deviation of the degree distribution                                       (ਯin and ਯout for directed networks) for our ten ref-
erence networks. It indicates that for most networks ਯ is much larger than ࢭkࢮ, consequence of their scale-free nature. It also lists the 
estimated degree exponent, ਠ, for each network, determined using the procedure discussed in ADVANCED TOPICS 4.A. The stars next to 
the reported values indicate the statistical confidence for a particular fit to the degree distribution. That is, * means that the fit shows 
statistical confidence for a power-law k−ਠ fit; while ** marks datasets that display statistical confidence for a                               fit. Those 
with no stars do not show statistical confidence for any of the two forms; the reasons for this are discussed later in the next chapter 
and in ADVANCED TOPICS 4.C. Note that the power grid is not considered scale-free. For this network a degree distribution of the 
form e−ਨk offers a statically significant fit.

Figure 4.8

Table 4.1

Standard deviation is large in real networks

The characteristics of several real network

k k2 2σ = −

NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Yeast Protein Interactions

192,244

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066
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another way to see that real 
networks have degree distributions 

with heavier tails than Poisson


