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Overview

® Probability Review Start with purely

random models
and see what
OCCUTsS.

Modify model to
better represent
real networks

® Growth models for random graphs

® Preferential-attachment & power-law degree distributions
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Primary References

® Static models

® Newman, The Structure and Function of Complex Networks, SIAM REVIEWV,Vol.45, No.
2, pp.167-256,2003. (terse and mathematical).

® Sections IV,V,VI
® Jackson, Chapter 4. Similar to Newman.
® Barabasi, Chapters 3 & 4. Less mathematical, buggy.

® Models for growth of random networks

® Newman, The Structure and Function of Complex Networks, SIAM REVIEWV,Vol.45, No.
2, pp.167-256, 2003.

® Sections VIl
® Jackson, Chapter 5.

® Barabasi, Chapters 5 & 6.
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Why Growth Models!?

® Unlike the static random graph models we considered, growth
models allow us to incorporate temporal aspects of network
formation

® May model real effects of social network formation and
evolution

® “older” nodes have more connections
® Hubs (popular nodes) emerge
® Age-based homophily

® Degree correlation (positive assortativity)
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Random Growth Models

® TJypical growth model
® Start with m nodes, typically completely connected

® Add a node of degree m and connect it to m existing
nodes

® Randomly connect (Jackson 5.1)

® Preferential attachment (Jackson 5.2, Newman V|,
Barabasi Ch. 5)



General Properties of Growth Models

® Older nodes tend to have larger degree since, when each
additional node is added each existing nhode has some
chance of getting a new connection

® Node degree only grows with time

® W/e can use difference and/or differential equations to
model the growth of the expected degrees or the
evolution of the degree distribution
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Properties of Growth Models

® Random growth yields an exponential distribution for the
expected degree

® For large values of “time”, the fraction of nodes with
expected degree above d is

d—m

6 ™m
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Preferential Attachment

® New nodes are more likely to connect with existing
nodes of large degree

® Motivated in the formation of many real world
networks

e Citation networks
® Webpage links
® T[ransportation networks
® W/ealth distribution
® “rich get richer” and the “80/20 rule”

® May be an “optimized” structure
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Preferential Attachment

Preferential attachment has emerged repeatedly in mathematics and
social sciences. Consequently today we can encounter it under differ-
ent names in the scientific literature:

e It madeits first appearance in 1923 in the celebrated urn model of the
Hungarian mathematician Gyorgy Pélya (1887-1985) [2], proposed to
explain the nature of certain distributions. Hence, in mathematics
preferential attachment is often called g Polya process.

e George Udmy Yule (1871-1951) in 1925 used preferential attachment
to explain the power-law distribution of the number of species per
genus of flowering plants [3]. Hence, in statistics preferential attach-
ment is often called a Yule process.

e Rober Gibrat (1904-1980) in 1931 proposed that the size and the
growth rate of a firm are independent. Hence, larger firms grow
faster [4]. Called| proportional growth| this is a form of preferential
attachment.

e George Kinsley Zipf|(1902-1950) in 1941 used preferential attach-
ment to explain the fat tailed distribution of wealth in the society [5].

Barabasi

e Modern analytical treatments of preferential attachment use of the

master equation approach pioneered by the economist Herbert Al-
exander Simon (1916-2001). Simon used preferential attachment in
1955 to explain the|fat-tailed nature of the distributions describing
city sizes, word frequencies in a text, or the number of papers pub-
lished by scientists [6].

Building on Simon’s work, Derek de Solla|Price [1922-1983) used pref-
erential attachment to explain the| citation statistics| of scientific
publications, referring to it ag cumulative advantage [7].

In sociology preferential attachment is often called the Matthew ef-
fect,,named by Robert Merton (1910-2003) [8] after a passage in the
Gospel of Matthew: “For everyone who has will be given more, and
he will have an abundance. Whoever does not have, even what he has
will be taken from him.”

» The term|preferential attachment was introduced in the 1999 paper

by Barabasi and Albert [1] to explain the ubiquity of power laws in
networks.

Barabasi-Albert essentially rediscovered Price’s work

Price considered directed graphs, B-A undirected (simpler)
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Preferential Attachment

® New nodes are more likely to connect with existing
nodes of large degree

® (Consider a network with 4 nodes with

kl=3,k2=2,k3=1, k4=4
( I ) I ) I ’2’3’4,4,4)

® Add a new node, and select target for connection by
randomly selecting from the above list

® Example:node 5 is added and connects to 2 nodes

(1,1,1,2,3,4,4,4,5,5,1,4)



Preferential Attachment

® The previous process can be captured in two ways

Expected number of new connections existing node i gets at time n:

m
2. ki(n)  2n 2n

Yields the “mean field approximation™ (used by Jackson in Ch. 5)

Probability of connecting to any node with degree k

kpn(k) —_ kpn(k) difference equation on pn (k)
> 1 kpn (k) 2m

Yields the “master equation” (used by Newman Vll) - following slides




Preferential Attachment

Degree distribution at time n: pn (k)

kpn(k) _ kpn(k)

Probability of attaching to node of degree k: S kpn(k) o (m edges for each node)
: : kpn(k) 1
Expected number of nodes with degree k that gain an edge: m— == Qkp"(k)
Expected number of nodes with degree k at time n: Npn (k) = npn(k)

(one node added at each time: N=n)

This yields to the so-called master equation — difference equation for degree distribution
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Preferential Attachment

Master equation (k>m):

(1 Dpi (K) — npa(k) = 5 (k= Dpa(k — 1) = ~hpa(h

/ / \

Difference in expected Expected number of Expected number of
number of degree k nodes degree k-1 nodes moving  degree k nodes moving to
from time n to time (n+1) to degree k at time n degree k+/ at time n

Master equation (k=m):

1

(n + 1)pnt1(m) —npp(m) =1 — §mpn (m)

New node has degree m
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Preferential Attachment

Search for a steady-state solution to the master equation:

Yields:

(k>m)

(k=m)



Preferential Attachment

The steady-state solution to the master equation:

(k=D(k—2)---m
(k+2)(k+ 1) (m+3)

2m(m + 1) 4

p(m) = ~ K

p(k) = (k +2)(k + 1)k

® Preferential attachment leads to power-law degree
distribution!

® recall this means “hubs” in the network, heavy tails in
the degree distribution, etc.
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Preferential Attachment Summary

B=1/2
N=t P - kY
N =mt y=3
(k) =2m (d) ~ logN/log logN

C) ~ (InN)*/N
k(t) = m (t/t ) (C) ~ (InN)

Barabasi
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Preferential Attachment Variations

® A hybrid model (Jackson 5.3)

® A new node connects fraction 3 of its m edges
randomly to existing nodes and fraction (1-B) of its
edges to existing nodes via preferential attachment

® Yields a power-law distribution with exponent:

pk) ~k=7  y=1-

® An exponent of less than 3 is possible with this model
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Rybrid Model Motivation
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The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring « for the real network and then plotting Eq. (8). The significant deviation between the data and
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs.

Barabasi



Preferential Attachment Variations

® Preferential attachment implies older nodes have, on
average, more edges and are more likely to connect to
older nodes

® This may not always model reality as trends may fade
with time

® Biaconi and Barabasi added a “fithess’ term to the
preferential attachment law which measures a nodes
inherent “attractiveness’ or fithess

® Allows newer nodes to become hubs through high
fitness scores
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Preferential Attachment Variations

® Note that the probability of attaching to a degree k node
is the same as the “discovered degree” distribution

® Meetings-Based models are based on forming new
connections through navigating the network (getting
meetings through friends)

® This is usually modeled for directed graphs, but
yields similar results as the hybrid model

® Adds high level of degree correlation

© Keith M. Chugg, 2014



Scale-free Degree Distribution

® The preferential attachment model and
variations yield power-law degree
distributions with exponents ~ 2-3

® Explore these degree distributions in
more detail (Barabasi Ch. 4)



Power Law Degree Distribution

® Heavy-tailed degree distribution that matches many real-world

network observed degree distributions
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Poisson vs. power-law distributions

(a) A Poisson function and a power-law
function with y=2.1. Both distributions have
(k)= 10.

(b) The curves in (a) shown on a log-log plot,
offering a better view of the difference be-
tween the two functions in the high-k regime.
(c) A random network with {k)=3 and N =50,
illustrating that most nodes have comparable
degree k =<{k).

(d) A scale-free network with {k)= 3, illustrat-
ing that numerous small-degree nodes coexist
with a few highly connected hubs.

Barabasi
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Power Law Degree Distribution

Bell Curve

Number of nodes with % links

Most nodes have
the same number of links

No highly
connected nodes

Number of nodes with % links

Power Law Distribution

Very many nodes
with only a few links

J

J\\ A few hubs with

TJ \ large number of links
R
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Number of links (k)

Random versus scale-free networks

Left column: the degrees of a random network
follow a Poisson distribution, which is rather
similar to the Bell curve shown in the figure.
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number
of links are absent (top panel). Consequently
a random network looks a bit like a national
highway network in which nodes are cities
and links are the major highways connecting
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no
city is disconnected from the highway system.

Right column: In a network with a power-law
degree distribution most nodes have only a
few links. These numerous small nodes are
held together by a few highly connected hubs
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network,
whose nodes are airports and links are direct
flights between them. Most airports are tiny,
with only a few flights linking them to other
airports. Yet, we can also have few very large
airports, like Chicago or Atlanta, that hold
hundreds of airports together, acting as major
hubs (bottom panel).

Once hubs are present, they change the way
we navigate the network. For example, if we
travel from Boston to Los Angeles by car, we
must drive through many cities (nodes). On
the airplane network, however, we can reach
most destinations via a single hub, like Chica-

go.

After [4].

Barabasi

o AKA “scale-free”

networks
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Power Law Degree Distribution

® Special case of configuration network
® Discussed in detail in Barabasi, chapter 4

® Networks can be grown with the Barabasi-Albert model for
preferential attachment

® Yields the power law degree distribution
® No longer has independent degrees for different nodes

® Model incorporates degree correlation explicitly

Cover power-law and preferential attachment later (soon)

© Keith M. Chugg, 2014
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Scale-free Degree Distribution

NETWORK NL g?) - (k) 0, O o o Vin Y out 4
Internet 192,244 | 609,066 6.34 - - 14.14 - - 3.42%
WWW 325,729 | 1,497,134 4.60 39.05 21.48 - 2.31 2.00 -
Power Grid 4,941 6,594 2.67 - - 1.79 - - Exp.
Mobile Phone Calls 36,595 91,826 2.51 2.39 2.32 - 4.69% 5.01% -
Email 57,194 103,731 1.81 9.56 34.07 - 3.43* 2.03 -
Science Collaboration 23,133 93,439 8.08 - - 10.63 - - 3.35
Actor Network 702,388 | 29,397,008 | 83.71 - - 200.86 - - 2.12
Citation Network 449,673 | 4,689,479 10.43 29.37 9.49 - 3.03%* 4.00 -
E. Coli Metabolism 1,039 5,802 5.58 22.46 19.12 - 2.43 2.90 -
Yeast Protein Interactions 2,018 2,930 2.90 - - 4.88 - - 2.89%

Barabasi
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Best power-law fit to real data sets




Scale-free Degree Distribution

No large network
can exist here

(k> DIVERGES

<k2> DIVERGES

(d) ~ const

Barabasi
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Most real networks
are in this regime

(k) FINITE

<k2> DIVERGES

Indistinguishable
from a random network

(k) FINITE

<k2> FINITE

At a glance
Scale-free networks

Discrete form:

k—}’
CE@y)
Continuous form:
p(k)=(y =k~ k.

Py

k ax kminNF'

m

2< vy < 3: <k) finite, (k?»)
diverges when N — oo,

y > 3: <k) and {k?) finite.




Scale-free Degree Distribution
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another way to see that real
networks have degree distributions
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Barabasi

with heavier tails than Poisson

Standard deviation is large in real networks

For a random network the standard deviation
follows g, = 4/(k),shown as a dashed line on the
figure. The symbols show o for ten reference
networks Table 4.1, indicating that for each o
is larger than expected for a random network
with similar (k). The only exception is the
power grid, which is not scale-free. While the
phone call network is scale-free, it has a large
Y, hence it behaves like a random network.



