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Overview

• My motivation and background	


• Big picture overview in this context	


• Class format	


• Discussion
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My Background
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My Firsts:	

• x-domain email (1990)	

• Personal computer (1990)	

• Non-tech email (~1993)	

• Web browser (~1994)	

• Web purchase (~2004)
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Biggest Changes I’ve Lived

• Availability	


• Connected 24/7	


• Instant information on everything	


• Technology changes who we are	


• Bombardment - attention/
competition	


• Advertising	


• Propaganda 
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This is becoming a 
science
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Arbitrary Example

https://www.youtube.com/watch?v=yJoocpy7UBc

“1985 Coke Commercial”

https://www.youtube.com/watch?v=XTfVsAs4Ybs

“2014 Coke Commercial”

https://www.youtube.com/watch?v=yJoocpy7UBc
https://www.youtube.com/watch?v=XTfVsAs4Ybs
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BS General Engineering

• Electrical, Mechanical, Chemical
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black 
box

input signal ouput signal

mathematical 
abstraction

analysis & 
design tools

measurement 
& experiment

e.g., differential equations

e.g., transform domain, 
feedback design

e.g., volt meters, 
spectrum analyzer, 

strain gauges

valid for 
many 

specific 
systems
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My Background

• Core Expertise (Digital Communications)	


• Probability, decision theory, estimation, 
graphical models, algorithms, 
implementation architectures	


• Weak Areas (wrt EE599)	


• Programming tools	


• Computer Architecture
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+

Example: 3 Kayak Trips & 6 People

+ +Kayak Trip 2

=

Kayak Trip 3Kayak Trip 1

= =

-1+3 +2
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Overview

• My motivation and background	


• Big picture overview in this context	


• Class format	


• Discussion
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Emerging SysEng View

• Complex systems, networks, data science
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Example: 6-degrees of Separation
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Box 3.6a

The first description of small world phenomena goes back to a 

1929 story collection entitled Minden másképpen van (Everything 

is Different) by the Hungarian writer Frigyes Karinthy [21]. In 

Láncszemek (Chains), a short story in the volume, Karinthy sug-

gests that one could name any person among earth’s one and a 

half billion inhabitants (estimated population in 1929) and through 

at most five acquaintances, one of which he knew personally, he 

could link to him. To demonstrate his thesis Karinthy links a Nobel 

Prize winner to himself, noting that the Nobelist must know King 

Gustav, the Swedish monarch who hands out the Nobel Prize, who 

in turn is a consummate tennis player and occasionally plays with a 

tennis champion who is one of Karinthy’s good friends. Remarking 

that finding a chain of acquaintances to celebrities, like a Nobelist, 

is easy, he next links a worker in Ford’s factory to himself: 

“The worker knows the manager in the shop, who knows Ford; Ford 
is on friendly terms with the general director of Hearst Publications, 
who last year became good friends with Árpád Pásztor, someone I 
not only know, but to the best of my knowledge a good friend of 
mine.”

Bo
x 

3.
6b

The first experimental study of small world phenomena took place 

four decades after Karinthy, in 1967, when Stanley Milgram turned 

the idea into an experiment probing the structure of social net-

works [23]. Milgram chose a stock broker in Boston and a divinity 

student in Sharon, Massachusetts as “targets”. Randomly select-

ed residents of  Wichita, Kansas and Omaha, Nebraska received 

a letter containing a short summary of the study’s purpose, a 

photograph, the name, address and information about the target 

person. They were asked to forward the letter to a friend, relative 

or acquaintance, who is more likely to know the target person.

Milgram wrote in 1969: “I asked a person of intelligence how 
many steps he thought it would take, and he said that it would 
require 100 intermediate persons, or more, to move from Nebraska 
to Sharon.”  Yet, within a few days the first letter arrived, passing 

through only two links. Eventually 42 of the 160 letters made 

it back, some requiring close to a dozen intermediates. These 

completed chains allowed Milgram to determine the number of 

individuals required to get the letter to the target. He found that 

the median number of intermediates was 5.5, a relatively small 

number and remarkably close to Karinthy’s 1929 insight. 

THE SMALL WORLD PROPERTY | 65

Image 3.12

Frigyes Karinthy (1887-1938)

Hungarian writer, journalist and playwright, the first to describe 

the small world property. He remains one of the most popular 

writers in Hungary. English translation of Chains, the 1929 short 

story describing the small world phenomena, is available in [25].

Image 3.13

Stanley Milgram (1933-1984)

American social psychologist known for his experiments on obe-

dience and authority. He designed and carried out the small world 

experiment in 1967 as part of his Harvard dissertation.

A BRIEF HISTORY OF SIX DEGREES
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Figure 2.10: A histogram from Travers and Milgram’s paper on their small-world experiment
[391]. For each possible length (labeled “number of intermediaries” on the x-axis), the plot
shows the number of successfully completed chains of that length. In total, 64 chains reached
the target person, with a median length of six.

such short paths, was a striking fact when it was first discovered, and it remains so today.

Of course, it is worth noting a few caveats about the experiment. First, it clearly doesn’t

establish a statement quite as bold as “six degrees of separation between us and everyone

else on this planet” — the paths were just to a single, fairly a✏uent target; many letters

never got there; and attempts to recreate the experiment have been problematic due to lack

of participation [255]. Second, one can ask how useful these short paths really are to people

in society: even if you can reach someone through a short chain of friends, is this useful to

you? Does it mean you’re truly socially “close” to them? Milgram himself mused about this

in his original paper [297]; his observation, paraphrased slightly, was that if we think of each

person as the center of their own social “world,” then “six short steps” becomes “six worlds

apart” — a change in perspective that makes six sound like a much larger number.

Despite these caveats, the experiment and the phenomena that it hints at have formed

a crucial aspect in our understanding of social networks. In the years since the initial

experiment, the overall conclusion has been accepted in a broad sense: social networks tend

to have very short paths between essentially arbitrary pairs of people. And even if your six-
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Example: 6-degrees of Separation
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Image 3.10
Why are small worlds surprising?
Much of our intuition about distance is based on our experience with reg-

ular lattices, which do not display the small world phenomenon. Indeed, 

s� For a one-dimensional lattice (a line of length N) the diameter and 

the average path length scale linearly with N: dmax~‹d› ~N. 

s� For a square lattice dmax~‹d› ~ N1/2.  

s� For a cubic lattice dmax~‹d› ~ N1/3. 

s� In general, for a d-dimensional lattice we have dmax ~ ‹d› ~ N1/d.

Such polynomial dependence predicts a much faster increase with N than 

Eq. (19), indicating that in regular lattices the path lengths are signifi-

cantly longer than in a random network. The figure shows the predicted 

N-dependence of ‹d›  for regular and random networks on a linear (left) 

and on a log-log (right) scale. If the social network would form a regular 

2d lattice, where each individual knows only its nearest neighbors, the 

average distance between two individuals would be roughly (7 ×10 9)1/2 = 
83,666. Even if we correct for the fact that a person has about 1,000 ac-

quaintances, not four, the average separation will be orders of magnitude 

larger than predicted by Eq. (19).

Image 3.11
Six degrees? Facebook finds only four.
Milgram’s experiment could not detect the true distance between his 

study’s participants, as he lacked an accurate map of the full social 

network. Today Facebook has the most extensive social network map ever 

assembled. Using Facebook’s social graph of May 2011, consisting of 721 

million active users and 68 billion symmetric friendship links, the average 

distance between the users was 4.74. The figure shows the distance 

distribution, pd , for all pairs of Facebook users worldwide (full dataset) and 

within the US only. Therefore, instead of ‘six degrees’ researchers detected 

only ‘four degrees of separation’ [4], closer to the prediction of Eq. (20) 

than to Milgram’s six degrees [23]. Using Facebook’s N and L Eq. (19) 

predicts the average degree to be approximately 3.90, not far from the 

reported four degrees.

Let us illustrate the implications of Eq. (19) for social net-
works. Using N109× 7 ݍ and ‹k›103ݍ, we obtain   
         
      (20)

Therefore, all individuals on Earth should be within three 
to four handshakes of each other, about a half of “six de-
grees”. The estimate (20) is probably closer to the real val-
ue given by Eq. (7) than the frequently quoted six degrees 
(Image 3.11).

While discovered in the context of social systems, the 
small world property applies beyond social networks. In 
Table 3.2 we compare the prediction of Eq. (19) with the 
average path length ‹d› for several real networks, finding 
that despite the diversity of these systems and the signif-
icant differences between them in terms of N and ‹k›, Eq. 
(19) offers a reasonable approximation to the empirically 
observed ‹d›.

The small world property has not only ignited the public’s 

imagination, but plays an important role in network sci-
ence as well. It affects most network characteristics, from 
the spread of ideas in social networks to search on net-
works. The small world phenomena can be reasonably well 
understood in the context of the random network model: 
it is rooted in the fact that the number of nodes at distance 
d from a node increases exponentially with d. While in 
the coming chapters we will see that in real networks we 
encounter systematic deviations from Eq. (19), forcing us 
to replace it with more accurate predictions, the intuition 
offered by the random network model on the origin of the 
phenomenon remains valid.
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Example: Giant Component
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32 CHAPTER 2. GRAPHS

Figure 2.7: A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period
in which the study was conducted [49].

the subject of even the most intense gossip and scrutiny. Nevertheless, they are real: like

social facts, they are invisible yet consequential macrostructures that arise as the product of

individual agency.”

2.3 Distance and Breadth-First Search

In addition to simply asking whether two nodes are connected by a path, it is also interesting

in most settings to ask how long such a path is — in transportation, Internet communication,

or the spread of news and diseases, it is often important whether something flowing through

a network has to travel just a few hops or many.

To be able to talk about this notion precisely, we define the length of a path to be the

number of steps it contains from beginning to end — in other words, the number of edges

in the sequence that comprises it. Thus, for example, the path mit, bbn, rand, ucla in

Figure 2.3 has length three, while the path mit, utah has length one. Using the notion of

Easley & Kleinberg
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Example Informal Org-Chart

Image 1.10b

Understanding the inner workings of an organization.

Having the list of the workers and their role in the company, together with the official hierarchy is not sufficient to understand how an organization 
works. For that we need to know who listens to whom, who is asking for advice from whom, eventually uncovering the paths through which knowledge 
and information travels within the organization. Hence Maven 7 developed an online platform to ask each employee whom do they turn to for advice 
when it comes to decisions impacting the company, from restructuring to advancement. This allowed them to build the map shown above, where two 
individuals are connected if one nominated the other as his/her source of information on organizational and professional issues.
The map identifies several highly influential individuals that are the hubs of the organization. The problem was that none of the hubs were part of the 
leadership.

Image 1.10c

Understanding the inner workings of an organization.

The position of the leadership within the company’s informal network is illustrated on this map, where we colored the nodes based on their company 
rank within the company. None of the company directors, including the CEO, shown in red, are hubs. Nor are the top managers, shown in blue. The hubs 
are managers, group leaders and associates, or workers. The biggest hub, hence the most influential individual, is an associate, shown as a gray node in 
the center.

THE IMPACT OF NETWORK SCIENCE | 15Baraba’si, Ch1
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Example: Political Polarization
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1.1. ASPECTS OF NETWORKS 5

Figure 1.4: The links among Web pages can reveal densely-knit communities and prominent
sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presiden-
tial election reveals two natural and well-separated clusters [5]. (Image from http://www-
personal.umich.edu/ ladamic/img/politicalblogs.jpg)

then not only will they appreciate that their outcomes depend on how others behave, but they

will take this into account in planning their own actions. As a result, models of networked

behavior must take strategic behavior and strategic reasoning into account.

A fundamental point here is that in a network setting, you should evaluate your actions

not in isolation, but with the expectation that the world will react to what you do. This

means that cause-e↵ect relationships can become quite subtle. Changes in a product, a Web

site, or a government program can seem like good ideas when evaluated on the assumption

that everything else will remain static, but in reality such changes can easily create incentives

that shift behavior across the network in ways that were initially unintended.

Moreover, such e↵ects are at work whether we are able to see the network or not. When

a large group of people is tightly interconnected, they will often respond in complex ways

that are only apparent at the population level, even though these e↵ects may come from

implicit networks that we do not directly observe. Consider, for example, the way in which

new products, Web sites, or celebrities rise to prominence — as illustrated, for example, by

Figures 1.5 and 1.6, which show the growth in popularity of the social media sites YouTube

Easley & Kleinberg
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Computational Social Science

• Social scientists research into social network 
phenomena has a long impressive history	


• Field was disrupted in early 2000s when 
massive online data sets became possible	


• This is ongoing - multidisciplinary	


• Many early models have been verified, 
refined, extended

16
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The Measurement Machinery

17

• Data centers	


• massively expensive	


• Methods for distributed, regenerative storage	


• Methods for distributed computation
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Data Centers

18

http://www.abb.com/product/ap/db0003db004052/e950c90f13518ffbc125788f0030bda0.aspx

http://www.abb.com/product/ap/db0003db004052/e950c90f13518ffbc125788f0030bda0.aspx
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Data Centers

19

http://www.emersonnetworkpower.com/documentation/en-us/latest-thinking/edc/documents/white%20paper/
energylogicreducingdatacenterenergyconsumption.pdf

Power and Cooling 48% Computing Equipment 52%

Lighting 1%

Cooling 
38%

PDU 1%

UPS 5% Communication
Equipment 4%

Storage 4%

Processor 
15%

Server Power 
Supply 14%

Other Server 
15%

Building Switchgear / 
MV Transformer 3%

3

The distinction between 

demand and supply 

power consumption is 

valuable because reduc-

tions in demand-side 

energy use cascade 

through the supply side. 

Data Center Energy Consumption

The first step in prioritizing energy saving 
opportunities was to gain a solid under-
standing of data center energy consump-
tion.

Emerson Network Power modeled energy 
consumption for a typical 5,000-square-
foot data center (Figure 1) and analyzed 
how energy is used within the facility. 
Energy use was categorized as either 
“demand side” or “supply side.” 

Demand-side systems are the servers, stor-
age, communications and other IT systems 
that support the business. Supply-side  
systems exist to support the demand side. 

In this analysis, demand-side systems—
which include processors, server power 
supplies, other server components, storage 

and communication equipment—account 
for 52 percent of total consumption. 
Supply-side systems include the UPS, power 
distribution, cooling, lighting and building 
switchgear, and account for 48 percent of 
consumption. 

Information on data center and infrastruc-
ture equipment and operating param-
eters on which the analysis was based are 
presented in Appendix A. Note that all 
data centers are different and the savings 
potential will vary by facility. However, at 
minimum, this analysis provides an order-
of-magnitude comparison for data center 
energy reduction strategies. 

The distinction between demand and sup-
ply power consumption is valuable because 
reductions in demand-side energy use cas-
cade through the supply side. For example, 

Figure 1. Analysis of a typical 5,000-square-foot data center shows that demand-side computing equipment accounts 
for 52 percent of energy usage and supply-side systems account for 48 percent.

 
Category Power Draw*

Computing 588 kW

Lighting 10 kW

UPS and distribution 
losses 72 kW

Cooling power draw for  
computing and UPS losses 429 kW

Building switchgear/MV 
transformer/other losses 28 kW

TOTAL 1,127 kW

Computing Equipment 52% 
(Demand)

Support  
Systems 48%

(Supply)

* This represents the average power draw (kW). Daily energy consumption (kWh) can be captured by multiplying the power draw by 24. 

http://www.emersonnetworkpower.com/documentation/en-us/latest-thinking/edc/documents/white%20paper/energylogicreducingdatacenterenergyconsumption.pdf
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Trends in Data Centers

• Becoming specialized to services, core 
competitive advantage	


• Architectures, chipsets, interconnects, etc.	


• Optimization goals	


• Max processor utilization, min energy 
consumption, min interconnect delay

20
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Return: Emerging SysEng View

21

mathematical 
abstraction

analysis & 
design tools

measurement 
& experiment

network science

machine learning, game 
theory, modern 

optimization

data centers, 
distributed data 

storage processing
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What’s Our Future?

• Data, data, data	


• More tuning, stabilization, destabilization, 
optimization of social networks	


• Closing the feedback loop — more than 
targeted advertising

22
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Who’s Interested
• Organizational leadership (management consulting)	


• Employee engagement, flexible org-charts, team 
formation, leadership decision aids	


• Advertisers	


• Sell before you want	


• Political organizations	


• Polarize you, anger you, inspire you…	


• Government Intelligence/Military	


• Anticipate crises, manipulate, detect manipulation

23



© Keith M. Chugg, 2014

Return: Emerging SysEng View
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degree of social influence/collaboration

return on 
investment

Figure 3

Data trend from eToro Financial trading social net

lone 
wolves

herd 
followers
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Return: Emerging SysEng View
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8/25/14, 11:11 AMResearchers Draw Romantic Insights From Maps of Facebook Networks - NYTimes.com

Page 1 of 3http://bits.blogs.nytimes.com/2013/10/28/spotting-romantic-relationships-on-facebook/?_php=true&_type=blogs&_r=2

Researchers Draw Romantic Insights From Maps of

Facebook Networks

By STEVE LOHR

October 28, 2013 8:00 am

It’s not in the stars after all. Instead, it seems, the shape of a person’s social
network is a powerful signal that can identify one’s spouse or romantic partner —
and even if a relationship is likely to break up.

So says a new research paper written by Jon Kleinberg, a computer scientist
at Cornell University, and Lars Backstrom, a senior engineer at Facebook. The
paper, posted online on Sunday, will be presented at a conference on social
computing in February.

The pair used a hefty data set from Facebook as their lab: 1.3 million
Facebook users, selected randomly from among all users who are at least 20
years old, with from 50 to 2,000 friends, who list a spouse or relationship
partner in their profile. That makes for a lot of social connections to analyze,
roughly 379 million nodes and 8.6 billion links. The data was used anonymously.

Their key finding was that the total number of mutual friends two people
share — embeddedness, in social networking terms — is actually a fairly weak
indicator of romantic relationships. Far better, they found, was a network
measure that they call dispersion.

This yardstick measures mutual friends, but also friends from the further-
flung reaches of a person’s network neighborhood. High dispersion occurs when
a couple’s mutual friends are not well connected to one another.

how do friend 
suggestion 

algorithms affect 
you individually and 

society more 
generally?
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Why This Class Experiment?

• Emerging area that is here to stay	


• Expect it to be taught at BS, MS levels	


• Expect many opportunities in industry and 
academic research	


• Is it advantageous to consider a systems 
engineering view?  	


• Future offerings?

26
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Overview

• My motivation and background	


• Big picture overview in this context	


• Class format	


• Discussion
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