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Overview

® Network search  Easley & Kleinberg Ch 14 & others

® | earning and consensus formation
Jackson Ch. 8
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Opinion Diffusion & Consensus

® DeGroot Model for influence
® FEach person (node) starts with a belief on a subject
® Represented by a probability (opinion)
® p i(k) = p(agree with a specific idea @ time k)

® Update opinion by a weighted sum of the opinion of others
(e.g., neighbors)

DeGroot, Morris H. 1974. “Reaching a Consensus.” Journal of the American Statistical
Association, Vol. 69, No. 345, pp. 118-121.
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DeGroot Model - Example

p(k) = Tp(k — 1)

- pi(k) ] 1/3 1/3 1/3 ] | pi(k—1)
p2(k) | =] 1/2 1/2 0 p2(k — 1)
i p3(7€) | i 0 1/4 3/4 1 L p3(/€—1) |

tij = weight node i places on node j’s opinion



DeGroot Model - Example
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Opinion Diffusion & Consensus

® Will people come to a consensus!?
® Do some people hold more influence in shaping group opinion
e Opinion leaders, social influence, PageRank

® How quickly does “learning” occur?

® How does the network topology affect this process!?

Understanding of the DeGroot model for opinion

dynamics can be obtained from discrete time Markov
chain (DTMC) results
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Probability Review ltems

Linear MMSE estimation

Markov Chains

Reference:

A. Leon-Garcia, Probability,
Statistics, and Random Processes

for Electrical Engineer- ing, 3rd
Edition, Addison Wesley, 2012.



DTMC Summary/Review

Process evolution depends on only one step in the past (state)
m;i(k) = Z mi(k — 1)p;;

w(k)=7n(k - 1)P = 7w (0)P”

Probability mass function for state occupancy and state
transition probability matrix
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DTMC Model - Example
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DTMC Summary/Review

(k) =n(k—-1)P

When will this have a fixed point?

" — N P

When will it have a fixed point that is unique!?

Doesn’t matter what the initial distribution is....



DTMC Summary/Review

Figure 19: Two irreducible subchains exist in this DTMC.

for any 7 with m; = m3 = 0 we have a unique solution for 7 = wP and it is

7(0)=(0 p 0 1-p)) = liman)=(0 & 0 &) (66)

n—oo

If the process starts in state 3, it just stays there so we have

7(0)=(0 0 1 0) = lma(n)=(0 0 1 0) (67)

n—oo

If the process starts in state 1, then let A be the event it enters the 2-state subchain
(i.e., P(A) =1/2). It follows that

w(n) = P(A)wa(n) + P(AS)m 4c(n) (68)

where 7 4(n) is the state probability vector given that the state at time n = 2 is state 2
and 7 4¢(n) has all of its mass at state 3 (not a function of n). It follows that for =(0) =
( 1 0 00 ),Wehave

nh_)rrgo w(n) = nh_)n(}o (P(A)ma(n) + P(A®)m gc(n)) (69)
= P(A) nh—>rrolo wa(n) + P(A°) nh_)lrolo T Ac(n) (70)
= P(A)w A+ P(A°)T 4c (71)

Necessary: the DTMC must be irreducible (strongly connected)
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DTMC Summary/Review
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DTMC Review

® An ergodic DTMC is one that is aperiodic and irreducible
® An ergodic DTMC has a unique stationary distribution

® All rows of Pk (or TAk) converge to this stationary distribution

® TT_i~ fraction of time spent in state i ~ inverse of mean return
time

® Conclusion for DeGroot model

® Consensus emerges for aperiodic, strongly connected models

® 1T _iis the “social influence” of node i

p(oo) = wp(0)
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DeGroot Model - Example
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DeGroot Model - Example
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Relation to PageRank

Basic PageRank is TT — random web-surfer model
(Katz Prestige on directed graph)

Example worked in class

Solving for Tt

repeated multiplication
(eigen-vector amplification; numerical)

cut-set equations
(analytical)



Relation to PageRank

Dynamics — Eigen-decomposition of P/T matrix
P* = (EAE"1)* = EA*E™! A = diag(A1, A2, ... \n)
P(ozlel + o€y + anen) — ()\104161 -+ )\20&262 -+ )\30&nen)

Pk(ozlel + ases + ape,) = ()\lfozlel + )\gozgeg + )\Igoznen)

1 repeated multiplication by P will pull
P" ~
F X —7 (1€eq out the e-vector corresponding to
1 the largest e-value

for row-stochastic P the max lambda is one...
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Extensions of DeGroot

® Non-linear and/or time-varying updates of opinions

® | eads to Belief Propagation and related message-passing
algorithms



