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Overview

• Network robustness/resilience and percolation theory

• Cascades

• Information diffusion and epidemics

• Network search

• Learning and consensus formation
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Jackson Ch. 8

Easley & Kleinberg Ch 14 & others
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Opinion Diffusion & Consensus

• DeGroot Model for influence

• Each person (node) starts with a belief on a subject

• Represented by a probability (opinion)

• p_i(k) = p(agree with a specific idea @ time k)

• Update opinion by a weighted sum of the opinion of others 
(e.g., neighbors)
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DeGroot Model - Example
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p(k) = Tp(k � 1)
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tij = weight node i places on node j’s opinion
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DeGroot Model - Example
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Opinion Diffusion & Consensus

• Will people come to a consensus?

• Do some people hold more influence in shaping group opinion

• Opinion leaders, social influence, PageRank

• How quickly does “learning” occur? 

• How does the network topology affect this process?
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Understanding of the DeGroot model for opinion 
dynamics can be obtained from discrete time Markov 

chain (DTMC) results
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Probability Review Items
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• Some important random variables

• Bernoulli, Binomial, Poisson, Gaussian

• Bayes Law & Theorem of Total Probability

• Moments and (Moment) Generating Functions

• Linear MMSE estimation

• Statistics

• Law of Large Numbers

• Central Limit Theorem

• Confidence Intervals

• Linear Regression

• Markov Chains

Reference:

A. Leon-Garcia, Probability, 
Statistics, and Random Processes 
for Electrical Engineer- ing, 3rd 
Edition, Addison Wesley, 2012. 
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DTMC Summary/Review
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p(Xk = j|Xk�1 = i,Xk�2 = ik�2, . . . X0 = i0) = p(Xk = j|Xk�1 = i) = pij

Process evolution depends on only one step in the past (state)

⇡j(k) = p(Xk = j) =
X

i

⇡i(k � 1)pij

Probability mass function for state occupancy and state 
transition probability matrix

⇡(k) = ⇡(k � 1)P = ⇡(0)Pk
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DTMC Model - Example
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DTMC Summary/Review
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When will this have a fixed point?

⇡ = ⇡P

⇡(k) = ⇡(k � 1)P

When will it have a fixed point that is unique?

Doesn’t matter what the initial distribution is….
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DTMC Summary/Review
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Necessary: the DTMC must be irreducible (strongly connected)

EE 503 Homework 9 Solution – c�K.M. Chugg - April 26, 2014 25
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Figure 19: Two irreducible subchains exist in this DTMC.

for any ⇡ with ⇡1 = ⇡3 = 0 we have a unique solution for ⇡ = ⇡P and it is
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If the process starts in state 3, it just stays there so we have
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�
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⇡(n) =
�
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�
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If the process starts in state 1, then let A be the event it enters the 2-state subchain
(i.e., P (A) = 1/2). It follows that

⇡(n) = P (A)⇡A(n) + P (Ac)⇡Ac(n) (68)

where ⇡A(n) is the state probability vector given that the state at time n = 2 is state 2
and ⇡Ac(n) has all of its mass at state 3 (not a function of n). It follows that for ⇡(0) =�
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�
, we have
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where ⇡A and ⇡Ac the limiting distributions for the two irreducible subchains. This illustrates
why this chain is not ergodic – i.e., ergodic may be viewed as the statement ensemble averaging
yields the same result as time averaging. The above result is averaging over ensembles since
it is a statement about probability. However, we cannot conclude that this is the relative
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DTMC Summary/Review
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Necessary: the DTMC must be aperiodic
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DTMC Review
• An ergodic DTMC is one that is aperiodic and irreducible

• An ergodic DTMC has a unique stationary distribution

• All rows of P^k (or T^k) converge to this stationary distribution

• π_i ~ fraction of time spent in state i ~ inverse of mean return 
time

• Conclusion for DeGroot model

• Consensus emerges for aperiodic, strongly connected models

• π_i is the “social influence” of node i

13

p(1) = ⇡p(0)
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DeGroot Model - Example
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DeGroot Model - Example
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Relation to PageRank
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Basic PageRank is π — random web-surfer model 
(Katz Prestige on directed graph)

Example worked in class

Solving for π

repeated multiplication 
(eigen-vector amplification; numerical)

cut-set equations 
(analytical)
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Relation to PageRank
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Dynamics — Eigen-decomposition of P/T matrix

Pk = (E⇤E�1)k = E⇤kE�1 ⇤ = diag(�1,�2, . . .�n)

P(↵1e1 + ↵2e2 + ↵nen) = (�1↵1e1 + �2↵2e2 + �3↵nen)

Pk(↵1e1 + ↵2e2 + ↵nen) = (�k
1↵1e1 + �k

2↵2e2 + �k
3↵nen)

1

�k
1

Pkx ! ↵1e1
repeated multiplication by P will pull 
out the e-vector corresponding to 

the largest e-value

for row-stochastic P, the max lambda is one…
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Extensions of DeGroot
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• Non-linear and/or time-varying updates of opinions

• Leads to Belief Propagation and related message-passing 
algorithms


