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Overview

• Network robustness/resilience and percolation theory

• Cascades

• Information diffusion and epidemics

• Network search

• Learning and consensus formation
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Cascades in Networks

• Thus far we have considered spread of information/diseases, 
etc. at the macro level

• Will a disease spread throughout a network or will it die 
out?

• What will be the eventual size of the outbreak?

• Cascade analysis considers these phenomena at the micro scale

• What stops an idea from propagating?  

• What makes or kills a meme?

3
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Information Diffusion
• Social scientists have studied the adoption of new ideas in communities for many 

years

• Example: hybrid corn adoption by farmers

• Adoption trends are lead by a small set of “early adopters” (recall Bass model)

• Early adopters tend to have higher social-economic status, travel frequently, 
have access to other communities

• What makes for a successful innovation?

• Significant relative advantage (vs. current)

• Low complexity of adoption

• Easy to observe that others are adopting (social pressure)

• Easy to try out

• Compatibility with other current technologies

4
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Simple Model of Adoption

• Consider two behaviors A and B (e.g., adopt new and keep old)

• A simple benefit model for adoption:

566 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

from informational e↵ects [2, 38, 186] or direct-benefit e↵ects [62, 147, 308, 420]. In this

chapter, we will focus on the latter, beginning with a natural model of direct-benefit e↵ects

in networks due to Stephen Morris [308].

Network models based on direct-benefit e↵ects involve the following underlying consid-

eration: you have certain social network neighbors — friends, acquaintances, or colleagues

— and the benefits to you of adopting a new behavior increase as more and more of these

neighbors adopt it. In such a case, simple self-interest will dictate that you should adopt the

new behavior once a su�cient proportion of your neighbors have done so. For example, you

may find it easier to collaborate with co-workers if you are using compatible technologies;

similarly, you may find it easier to engage in social interaction — all else being equal — with

people whose beliefs and opinions are similar to yours.

A Networked Coordination Game. These ideas can be captured very naturally using

a coordination game, a concept we first encountered in Section 6.5. In an underlying social

network, we will study a situation in which each node has a choice between two possible

behaviors, labeled A and B. If nodes v and w are linked by an edge, then there is an

incentive for them to have their behaviors match. We represent this using a game in which

v and w are the players and A and B are the possible strategies. The payo↵s are defined as

follows:

• if v and w both adopt behavior A, they each get a payo↵ of a > 0;

• if they both adopt B, they each get a payo↵ of b > 0; and

• if they adopt opposite behaviors, they each get a payo↵ of 0.

We can write this in terms of a payo↵ matrix, as in Figure 19.1. Of course, it is easy to

imagine many more general models for coordination, but for now we are trying to keep things

as simple as possible.

v

w
A B

A a, a 0, 0
B 0, 0 b, b

Figure 19.1: A-B Coordination Game

This describes what happens on a single edge of the network; but the point is that each

node v is playing a copy of this game with each of its neighbors, and its payo↵ is the sum of

its payo↵s in the games played on each edge. Hence v’s choice of strategy will be based on

the choices made by all of its neighbors, taken together.

Easley & Kleinberg

Captures the factors associated with new adoption 
discussed on previous slide
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Simple Model of Adoption

• What happens to a node involved in the trade-off (game) with 
all of its neighbors?

Easley & Kleinberg

19.2. MODELING DIFFUSION THROUGH A NETWORK 567

v

A

A

A

B

B

B

B
pd neighbors

use A

(1-p)d
neighbors

use B

Figure 19.2: v must choose between behavior A and behavior B, based on what its neighbors
are doing.

The basic question faced by v will be the following: suppose that some of its neighbors

adopt A, and some adopt B; what should v do in order to maximize its payo↵? This clearly

depends on the relative number of neighbors doing each, and on the relation between the

payo↵ values a and b. With a little bit of algebra, we can make up a decision rule for v quite

easily, as follows. Suppose that a p fraction of v’s neighbors have behavior A, and a (1� p)

fraction have behavior B; that is, if v has d neighbors, then pd adopt A and (1� p)d adopt

B, as shown in Figure 19.2. So if v chooses A, it gets a payo↵ of pda, and if it chooses B, it

gets a payo↵ of (1� p)db. Thus, A is the better choice if

pda � (1� p)db,

or, rearranging terms, if

p � b

a + b
.

We’ll use q to denote this expression on the right-hand side. This inequality describes a very

simple threshold rule: it says that if at least a q = b/(a+ b) fraction of your neighbors follow

behavior A, then you should too. And it makes sense intuitively: when q is small, then

A is the much more enticing behavior, and it only takes a small fraction of your neighbors

engaging in A for you to do so as well. On the other hand, if q is large, then the opposite

holds: B is the attractive behavior, and you need a lot of your friends to engage in A before

you switch to A. There is a tie-breaking question when exactly a q fraction of a node’s

Pay-off for v

Choose A:

Choose B:

pda

(1� p)db

Node v will choose A iff: pda � (1� p)db () p � b

a+ b
= q
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Simple Model of Adoption
• If the fraction of your neighbors who have adopted A (p) is 

greater than a threshold q, you will adopt…

Easley & Kleinberg
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(b) Two nodes are the initial adopters
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(c) After one step, two more nodes have
adopted
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(d) After a second step, everyone has adopted

Figure 19.3: Starting with v and w as the initial adopters, and payo↵s a = 3 and b = 2, the new behavior
A spreads to all nodes in two steps. Nodes adopting A in a given step are drawn with dark borders; nodes
adopting B are drawn with light borders.

neighbors follow A; in this case, we will adopt the convention that the node chooses A rather

than B.

Notice that this is in fact a very simple — and in particular, myopic — model of individual

decision-making. Each node is optimally updating its decision based on the immediate

consideration of what its neighbors are currently doing, but it is an interesting research

question to think about richer models, in which nodes try to incorporate more long-range

considerations into their decisions about switching from B to A.

Cascading Behavior. In any network, there are two obvious equilibria to this network-

wide coordination game: one in which everyone adopts A, and another in which everyone

adopts B. Guided by di↵usion questions, we want to understand how easy it is, in a given

a=3, b=2

q=2/5

all nodes adopt A 
after 2 steps with an 
initial seed of {v,w}
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What Can Result?
• Initial condition

• All nodes in the network are using B, except for a seed set of early adopters who 
use A

• Fact: if a node adopts A, it will not switch back to B

• Only two possible results:

• Everybody adopts A

• The spread of A is contained to a finite fraction of network

Easley & Kleinberg

570 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

7

5

8

109

6

4

2

1

3
14

13

12

11

15

16

17

Figure 19.4: A larger example.

• In the next step, however, nodes s and u each have 2/3 > 2/5 of their neighbors using

A, and so they switch. The process now comes to an end, with everyone in the network

using A.

Notice how the process really is a chain reaction: nodes v and w aren’t able to get s and u

to switch by themselves, but once they’ve converted r and t, this provides enough leverage.

It’s also instructive to consider an example in which the adoption of A continues for a

while but then stops. Consider the social network in Figure 19.4, and again let’s suppose

that in the A-B coordination game, we have a = 3 and b = 2, leading to a threshold of

q = 2/5. If we start from nodes 7 and 8 as initial adopters (Figure 19.5(a)), then in the next

three steps we will first see (respectively) nodes 5 and 10 switch to A, then nodes 4 and 9,

and then node 6. At this point, no further nodes will be willing to switch, leading to the

outcome in Figure 19.5(b).

We’ll call this chain reaction of switches to A a cascade of adoptions of A, and we’d like

to distinguish between two fundamental possibilities: (i) that the cascade runs for a while

but stops while there are still nodes using B, or (ii) that there is a complete cascade, in

which every node in the network switches to A. We introduce the following terminology for

referring to the second possibility.

Consider a set of initial adopters who start with a new behavior A, while every

other node starts with behavior B. Nodes then repeatedly evaluate the decision to

switch from B to A using a threshold of q. If the resulting cascade of adoptions
572 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

of A eventually causes every node to switch from B to A, then we say that the

set of initial adopters causes a complete cascade at threshold q.

Cascading Behavior and “Viral Marketing.” There are a few general observations to

note about the larger example in Figure 19.5. First, it nicely illustrates a point from the

opening section, that tightly-knit communities in the network can work to hinder the spread

of an innovation. Summarizing the process informally, A was able to spread to a set of nodes

where there was su�ciently dense internal connectivity, but it was never able to leap across

the “shores” in the network that separate nodes 8-10 from nodes 11-14, or that separate node

6 from node 2. As a result, we get coexistence between A and B, with boundaries in the

network where the two meet. One can see reflections of this in many instances of di↵usion

— for example, in di↵erent dominant political views between adjacent communities. Or, in

a more technological setting, consider the ways in which di↵erent social-networking sites are

dominated by di↵erent age groups and lifestyles — people will have an incentive to be on the

sites their friends are using, even when large parts of the rest of the world are using something

else. Similarly, certain industries heavily use Apple Macintosh computers despite the general

prevalence of Windows: if most of the people you directly interact with use Apple software,

it’s in your interest to do so as well, despite the increased di�culty of interoperating with

the rest of the world.

This discussion also suggests some of the strategies that might be useful if A and B

in Figure 19.5 were competing technologies, and the firm producing A wanted to push its

adoption past the point at which it has become stuck in Figure 19.5(b). Perhaps the most

direct way, when possible, would be for the maker of A to raise the quality of its product

slightly. For example, if we change the payo↵ a in the underlying coordination game from

a = 3 to a = 4, then resulting threshold for adopting A drops from q = 2/5 down to q = 1/3.

With this threshold, we could check that all nodes would eventually switch to A starting

from the situation in Figure 19.5(b). In other words, at this lower threshold, A would be able

to break into the other parts of the network that are currently resisting it. This captures an

interesting sense in which making an existing innovation slightly more attractive can greatly

increase its reach. It also shows that our discussion about the coexistence between A and B

along a natural boundary in the network depended not just on the network structure, but

also on the relative payo↵s of coordinating on A versus B.

When it’s not possible to raise the quality of A — in other words, when the marketer

of A can’t change the threshold — a di↵erent strategy for increasing the spread of A would

be to convince a small number of key people in the part of the network using B to switch

to A, choosing these people carefully so as to get the cascade going again. For example, in

Figure 19.5(b), we can check that if the marketer of A were to focus its e↵orts on convincing

node 12 or 13 to switch to A, then the cascading adoption of A would start up again,
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A Meme that Dies Out

Easley & Kleinberg

a=3, b=2

q=2/5
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(a) Two nodes are the initial adopters

7

5

8

109

6

4

2

1

3
14

13

12

11

15

16

17

(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.
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(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

spread of A is 
contained to 7 nodes
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A Meme that Dies Out

Easley & Kleinberg
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(a) Two nodes are the initial adopters
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(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

Intuitively: tightly knight communities block the spred of 
new innovations!

Node 14 has too many 
friends in its community 

that are using B — 
prevents it from adopting A
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A Meme that Dies Out

Easley & Kleinberg
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(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

If a is increased to 4, then q=1/3 and all nodes would adopt A

One direct way to increase adoption is to increase the 
benefit of your innovation

e.g., with q=1/3, node 14 will adopt A
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A Meme that Dies Out

Easley & Kleinberg
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(a) Two nodes are the initial adopters
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(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

One could target specific nodes in a community to adopt

Another way to increase adoption is to target key nodes to 
adopt, thus allowing a cascade to continue into a community

convincing 11, 14 to adopt will not allow 
the diffusion to continue

convincing 12, 13 to adopt will result in 
all node 11-17 to adopt
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Cascades and Clusters

• Cluster of density p is a collection of nodes for which each 
member has at least a fraction p of its connections to other 
members of the cluster

Easley & Kleinberg
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Figure 19.6: A collection of four-node clusters, each of density 2/3.

eventually causing all of nodes 11–17 to switch. On the other hand, if the marketer of A

spent e↵ort getting node 11 or 14 to switch to A, then it would have no further consequences

on the rest of the network; all other nodes using B would still be below their threshold of

q = 2/5 for switching to A. This indicates that the question of how to choose the key nodes

to switch to a new product can be subtle, and based intrinsically on their position in the

underlying network. Such issues are important in discussions of “viral marketing” [230], and

have been analyzed in models of the type we are considering here [71, 132, 240, 309, 348].

Finally, it is useful to reflect on some of the contrasts between population-level network

e↵ects in technology adoption, as we formulated them in Chapter 17, and network-level cas-

cading adoption as illustrated here. In a population-level model, when everyone is evaluating

their adoption decisions based on the fraction of the entire population that is using a partic-

ular technology, it can be very hard for a new technology to get started, even when it is an

improvement on the status quo. In a network, however, where you only care about what your

immediate neighbors are doing, it’s possible for a small set of initial adopters to essentially

start a long fuse running that eventually spreads the innovation globally. This idea that a

new idea is initially propagated at a local level along social network links is something one

sees in many settings where an innovation gains eventual widespread acceptance.

19.3 Cascades and Clusters

We continue exploring some of the consequences of our simple model of cascading behavior

from the previous section: now that we’ve seen how cascades form, we look more deeply at

what makes them stop. Our specific goal will be to formalize something that is intuitively

apparent in Figure 19.5 — that the spread of a new behavior can stall when it tries to

break in to a tightly-knit community within the network. This will in fact provide a way

of formalizing a qualitative principle discussed earlier — that homophily can often serve

as a barrier to di↵usion, by making it hard for innovations to arrive from outside densely

connected communities.
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Cascades and Clusters

Easley & Kleinberg
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Figure 19.7: Two clusters of density 2/3 in the network from Figure 19.4.

As a first step, let’s think about how to make the idea of a “densely connected community”

precise, so that we can talk about it in the context of our model. A key property of such

communities is that when you belong to one, many of your friends also tend to belong. We

can take this as the basis of a concrete definition, as follows.

We say that a cluster of density p is a set of nodes such that each node in the set

has at least a p fraction of its network neighbors in the set.

For example, the set of nodes a, b, c, d forms a cluster of density 2/3 in the network in

Figure 19.6. The sets e, f, g, h and i, j, k, l each form clusters of density 2/3 as well.

As with any formal definition, it’s important to notice the ways in which it captures

our motivation as well as some of the ways in which it might not. Each node in a cluster

does have a prescribed fraction of its friends residing in the cluster as well, implying some

level of internal “cohesion.” On the other hand, our definition does not imply that any two

particular nodes in the same cluster necessarily have much in common. For example, in any

network, the set of all nodes is always a cluster of density 1 — after all, by definition, all

your network neighbors reside in the network. Also, if you have two clusters of density p,

then the union of these two clusters (i.e. the set of nodes that lie in at least one of them) is

also a cluster of density p. These observations are consistent with the notion that clusters

These two clusters blocked the cascade
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Cascades and Clusters

• Clusters block cascades….

Given an initial set of adopters of A, the behavior A 
will be adapted by the entire network 

The network, excluding initial adopters, does not 
contain a cluster of density 1-q or greater
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Cascades and Clusters

• Clusters block cascades….
To adopt A, v requires at 
least q of its neighbors 

to have adopted A

576 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

v

cluster

Figure 19.8: The spread of a new behavior, when nodes have threshold q, stops when it
reaches a cluster of density greater than (1� q).

v be the name of a node in the cluster that adopts A at time t. The situation is depicted

schematically in Figure 19.8 — essentially, we want to argue that, at the time v adopted,

it could not possibly have had enough neighbors using A to trigger its threshold rule. This

contradiction will show that v in fact could not have adopted.

Here is how we do this. At the time that v adopted A, its decision was based on the set

of nodes who had adopted A by the end of the previous time step, t � 1. Since no node in

the cluster adopted before v did (that’s how we chose v), the only neighbors of v that were

using A at the time it decided to switch were outside the cluster. But since the cluster has

density greater than 1� q, more than a 1� q fraction of v’s neighbors are inside the cluster,

and hence less than a q fraction of v’s neighbors are outside the cluster. Since these are the

only neighbors who could have been using A, and since the threshold rule requires at least a

q fraction of neighbors using v, this is a contradiction. Hence our original assumption, that

some node in the cluster adopted A at some point in time, must be false.

Having established that no node in the cluster ever adopts A, we are done, since this

shows that the set of initial adopters does not cause a complete cascade.

Part (ii): Clusters are the Only Obstacles to Cascades. We now establish part

(ii) of our claim, which says in e↵ect that not only are clusters a natural kind of obstacle

to cascades — they are in fact the only kind of obstacle. From a methodological point

of view (although all the details are di↵erent), this is reminiscent of a question we asked

with matching markets: having found that constricted sets are natural obstacles to perfect

matchings, we went on to find that they are in fact the only obstacle.

Easley & Kleinberg

A B
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w

initial adopters

nodes that eventually switch to A

nodes that don't 

eventually switch to A

Figure 19.9: If the spread of A stops before filling out the whole network, the set of nodes
that remain with B form a cluster of density greater than 1� q.

To prove part (ii) we show that whenever a set of initial adopters fails to cause a complete

cascade with threshold q, there is a cluster in the remaining network of density greater than

(1�q). In fact, this is not di�cult: consider running the process by which A spreads, starting

from the initial adopters, until it stops. It stops because there are still nodes using B, but

none of the nodes in this set want to switch, as illustrated in Figure 19.9.

Let S denote the set of nodes using B at the end of the process. We want to claim that

S is a cluster of density greater than 1 � q, which will finish the proof of part (ii). To see

why this is true, consider any node w in this set S. Since w doesn’t want to switch to A,

it must be that the fraction of its neighbors using A is less than q — and hence that the

fraction of its neighbors using B is greater than 1 � q. But the only nodes using B in the

whole network belong to the set S, so the fraction of w’s neighbors belonging to S is greater

than 1� q. Since this holds for all nodes in S, it follows that S is a cluster of density greater

than 1� q.

This wraps up our analysis of cascades and clusters; the punch-line is that in this model, a

set of initial adopters can cause a complete cascade at threshold q if and only if the remaining

network contains no cluster of density greater than (1 � q). So in this sense, cascades and

clusters truly are natural opposites: clusters block the spread of cascades, and whenever a

cascade comes to a stop, there’s a cluster that can be used to explain why.

Cascades and Clusters

• Clusters block cascades….
To adopt A, v requires at 
least q of its neighbors 

to have adopted A

Easley & Kleinberg
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19.4. DIFFUSION, THRESHOLDS, AND THE ROLE OF WEAK TIES 579

w

x

v

u

Figure 19.11: The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.

thus we expect v, for example, to receive information from his edge to w that he wouldn’t

get from his other edges.

But things look very di↵erent if we consider the spread of a new behavior that requires

not just awareness, but an actual threshold for adoption. Suppose, for example, w and x in

Figure 19.11 are the initial adopters of a new behavior that is spreading with a threshold

of 1/2. Then we can check that everyone else in their tightly-knit six-node community will

adopt this behavior, but u and v will not. (Nor, therefore, will anyone else lying beyond

them in the network.)

This illustrates a natural double-edged aspect to bridges and local bridges in a social

network: they are powerful ways to convey awareness of new things, but they are weak at

transmitting behaviors that are in some way risky or costly to adopt — behaviors where you

need to see a higher threshold of neighbors doing it before you do it as well. In this sense,

nodes u and v in Figure 19.11 have strong informational advantages over other members of

their respective tightly-knit communities — they can learn from node w about a new behavior

currently spreading in w’s community — but for behaviors with higher thresholds they will

still want to align themselves with others in their own community. If we think about it, this

is actually remarkably consistent with the picture from Chapter 3, in which local bridges and

positions near structural holes can provide access to information that you’re not otherwise

Cascades and Weak Ties

• Recall that weak ties are local bridges to new communities

• Play a key role in introducing those with access to new ideas

q=1/2 — what will 
happen?

Easley & Kleinberg

A

A



© Keith M. Chugg, 2014

19.4. DIFFUSION, THRESHOLDS, AND THE ROLE OF WEAK TIES 579

w

x

v

u

Figure 19.11: The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.

thus we expect v, for example, to receive information from his edge to w that he wouldn’t
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Figure 19.11 are the initial adopters of a new behavior that is spreading with a threshold

of 1/2. Then we can check that everyone else in their tightly-knit six-node community will

adopt this behavior, but u and v will not. (Nor, therefore, will anyone else lying beyond

them in the network.)

This illustrates a natural double-edged aspect to bridges and local bridges in a social

network: they are powerful ways to convey awareness of new things, but they are weak at

transmitting behaviors that are in some way risky or costly to adopt — behaviors where you

need to see a higher threshold of neighbors doing it before you do it as well. In this sense,

nodes u and v in Figure 19.11 have strong informational advantages over other members of

their respective tightly-knit communities — they can learn from node w about a new behavior

currently spreading in w’s community — but for behaviors with higher thresholds they will

still want to align themselves with others in their own community. If we think about it, this

is actually remarkably consistent with the picture from Chapter 3, in which local bridges and

positions near structural holes can provide access to information that you’re not otherwise

Cascades and Weak Ties

• Recall that weak ties are local bridges to new communities

• Play a key role in introducing those with access to new ideas

q=1/2 — what will 
happen?

Easley & Kleinberg

A

A

AA

A

A

Note that now, u and v have an 
advantage over others in their 
community because they have 

knowledge of A
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Cascades in Networks

• Many variations on this simple model

• node-varying threshold for adoption

• “bilingual” model with cost

• Cascade capacity

• largest adoption threshold that will still allow a complete 
cascade

• Other models for “tipping”

• Finding seed sets for staring a meme (or how to block a meme)

20
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Cascades with Heterogeneous Thresholds

• Each node has its own adoption threshold q[v]

21
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Figure 19.12: A-B Coordination Game

choose its behavior based on what its neighbors are doing. A similar question applies here,

leading to a similar calculation. If v has d neighbors, of whom a p fraction have behavior A

and a (1 � p) fraction have behavior B, then the payo↵ from choosing A is pda
v

while the

payo↵ from choosing B is (1� p)db
v

. Thus A is the better choice if

p � b
v

a
v

+ b
v

.

Using q
v

to denote the right-hand side of this, we again have a very simple decision rule —

now, each node v has its own personal threshold q
v

, and it chooses A if at least a q
v

fraction

of its neighbors have done so. Moreover the variation in this set of heterogeneous node

thresholds has an intuitive meaning in terms of the variation in payo↵s: if a node values A

more highly relative to B, its threshold q
v

is correspondingly lower.

The process now runs as before, starting from a set of initial adopters, with each node

evaluating its decision according to its own threshold rule in each time step, and switching

to A if its threshold is reached. Figure 19.13 shows an example of this process (where each

node’s threshold is drawn to the upper-right of the node itself).

A number of interesting general observations are suggested by what happens in Fig-

ure 19.13. First, the diversity in node thresholds clearly plays an important role that in-

teracts in complex ways with the structure of the network. For example, despite node 1’s

“central” position, it would not have succeeded in converting anyone at all to A were it not

for the extremely low threshold on node 3. This relates closely to a point made in work by

Watts and Dodds [409], who argue that for understanding the spread of behaviors in social

networks, we need to take into account not just the power of influential nodes, but also the

extent to which these influential nodes have access to easily influenceable people.

It is also instructive to look at how the spread of A comes to a stop in Figure 19.13, and

to ask whether the notion of clusters as obstacles to cascades can be extended to hold even

in the case when thresholds are heterogeneous. In fact, this is possible, by formulating the

notion of a cluster in this setting as follows. Given a set of node thresholds, let’s say that a

blocking cluster in the network is a set of nodes for which each node v has more than a 1� q
v

fraction of its friends also in the set. (Notice how the notion of cluster density — like the

notion of thresholds — becomes heterogeneous as well: each node has a di↵erent requirement

for the fraction of friends it needs to have in the cluster.) By a fairly direct adaptation of the

analysis from Section 19.3, one can show that a set of initial adopters will cause a complete

pv � bv
av + bv

= qvNode v adopts iff: 

Easley & Kleinberg
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Cascades with Heterogeneous Thresholds
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(b) The process ends after four steps

Figure 19.13: Starting with node 1 as the unique initial adopter, the new behavior A spreads
to some but not all of the remaining nodes.
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Easley & Kleinberg

Cluster of some form still stops 
the cascade

cascade only begins because there is an 
easily influenced near node 1

(access to both influential people and easily influenced 
people is important in creating a meme!)

blocking cluster

all members v have at least 1-q[v] neighbors also in 
blocking cluster
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Cascade Capacity

• What is the maximum adoption threshold that can be 
overcome by a small number of early adopters to create a 
complete cascade?

• This is the cascade capacity of a network — function of the 
network topology

• More formally, consider an infinite network and consider the 
max. threshold for which some finite set of early adopters can 
cause a complete cascade

23
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Cascade Capacity

• Cascade capacity is 1/2 — why?
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u wvx

Figure 19.15: An infinite path with a set of early adopters of behavior A (shaded).

decide whether to adopt behavior A or B. (As before, we assume that the nodes in S are

committed to A, and never re-evaluate this decision.) Finally, we say that the set S causes

a complete cascade if, starting from S as the early adopters of A, every node in the network

eventually switches permanently to A. (Given the fact that the node set is infinite, we must

be careful to be clear on what this means: for every node v, there is some time t after which

v is always using behavior A.)

The Cascade Capacity. The key definition is now the following. We say that the cascade

capacity of the network is the largest value of the threshold q for which some finite set of

early adopters can cause a complete cascade. To illustrate this definition, let’s consider two

simple examples. First, in Figure 19.15, we have a network consisting of a path that extends

infinitely in both directions. Suppose that the two shaded nodes are early adopters of A, and

that all other nodes start out adopting B. What will happen? It’s not hard to check that if

q  1

2

, then nodes u and v will switch to A, after which nodes w and x will switch, and the

switches will simply propagate all the way down the path: for each node, there will come

some time at which it chooses to switch permanently to A. So the cascade capacity of the

infinite path is at least 1

2

, since we have just seen a finite set of initial adopters that causes

a complete cascade at threshold 1

2

. In fact, 1

2

is the exact value of the cascade capacity of

the infinite path: with q > 1

2

, no finite set of initial adopters can get any node to their right

to switch to A, and so A clearly cannot spread to all nodes.

Figure 19.16 shows a second simple example, a network consisting of an infinite grid in

which each node is connected to its eight nearest neighbors. Suppose that the nine shaded

nodes are early adopters of A, and that all other nodes start out adopting B. You can check

that if the threshold q is at most 3

8

, then behavior A gradually pushes its way out to the

neighbors of the shaded nodes: first to the nodes labeled c, h, i, and n; then to the nodes b,

d, f , g, j, k, m, and o; and then to other nodes from there, until every node in the grid is

eventually converted to A. (With a smaller threshold — when q  2

8

for example — behavior

A spreads even faster.) We can check that in fact 3

8

is the cascade capacity of the infinite

grid: given any finite set of initial adopters, they are contained in some rectangle of the grid,

and if q > 3

8

, no node outside this rectangle will ever choose to adopt A.

Note that the cascade capacity is an intrinsic property of the network itself. A network

with a large cascade capacity is one in which cascades happen more “easily” — in other words,

Easley & Kleinberg
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Cascade Capacity

• Cascade capacity is 3/8 — why?
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Easley & Kleinberg
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Figure 19.16: An infinite grid with a set of early adopters of behavior A (shaded).

they happen even for behaviors A that don’t o↵er much payo↵ advantage over the default

behavior B. As we discussed in Section 19.2, the fact that a small set of initial adopters

can eventually cause the whole population to switch illustrates how a better technology (A,

when q < 1

2

) can displace an existing, inferior one (B). Viewed in this sense, the example

of the grid in Figure 19.16 can be viewed as a kind of failure of social optimality. The fact

that the cascade capacity on the grid is 3

8

means that when q is strictly between 3

8

and 1

2

,

A is the better technology, but the structure of the network makes B so heavily entrenched

that no finite set of initial adopters of A can cause A to win.

We now consider the following fundamental question: how large can a network’s cascade

capacity be? The infinite path shows that there are networks in which the cascade capacity

can be as large as 1

2

: this means that a new behavior A can displace an existing behavior

B even when the two confer essentially equivalent benefits (with A having only the “tie-

breaking” advantage that when a node has an equal number of neighbors using A and B, it

chooses A). Does there exist any network with a higher cascade capacity? This would be

a bit surprising, since such a network would have the property that an inferior technology
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Maximum Cascade Capacity

• The maximum cascade capacity of any network is 1/2

• Makes sense intuitively since q>1/2 means that B is favorable 
to A or that the old way of doing business is better

• Cannot expect an inferior technology to displace a 
superior, entrenched technology (in this simple model)

26
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Maximum Cascade Capacity

• Look at the boundary of edges with A-B connections

• Does this contract?  If so, the meme will die out — q>1/2 
always dies out

27
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(a) Before v and w adopt A

u

v

w

x

(b) After v and w adopt A

Figure 19.17: Let the nodes inside the dark oval be the adopters of A. One step of the
process is shown, in which v and w adopt A: after they adopt, the size of the interface has
strictly decreased. In general, the size of the interface strictly decreases with each step of
the process when q > 1

2

.

always a non-negative whole number, so if it strictly decreases in each step, the spread of

A can run for at most I
0

steps before terminating. Since each step only results in a finite

number of nodes converting to A, the process will terminate with only a finite set of nodes

having adopted A. (So in fact we’ll get something stronger than we needed: not only does

A not spread everywhere, it only reaches a finite set starting from S.)

The Size of the Interface Decreases in Each Step. So the crux of this is to consider

one step of the process, and show that the size of the interface strictly decreases. What

happens in one step of the process? Figure 19.17 illustrates a way to think about this.

Certain nodes that are currently adopters of B discover, for the first time, that at least a q

fraction of their neighbors are now adopters of A, and so they too switch to A.

This causes the interface to change in the following way. When a node w switches from

B to A, its edges to nodes that remain with B change from being B-B edges to being A-B

edges — so this causes them to join the interface. (An example is the edge linking w and x

in Figure 19.17.) On the other hand, the edges from w to nodes that were already with A

change from being A-B edges to being A-A edges; in other words, they leave the interface.

(See for example the edge linking u and w.) Each edge that joins or leaves the interface in

this step can be accounted for in this way by exactly one node that switches from B to A.

So to analyze the change in the size of the interface, we can separately consider the

contribution from those edges accounted for by each individual node that switches. Thus,

Easley & Kleinberg
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“Bilingual” Model of Adoption

• In many cases, instead of abandoning B for A in a wholesale 
manner, people will use both A and B — becoming “bilingual”

• Windows and OS X (virtual machines, multiple machines)

• Being bilingual should incur an extra cost — c

• This new state “AB” can be transient or stable…

• How does this change cascades and cascade capacity 

• Makes things much more complicated!

28
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“Bilingual” Model of Adoption
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v

w
A B AB

A a, a 0, 0 a, a
B 0, 0 b, b b, b

AB a, a b, b (a, b)+, (a, b)+

Figure 19.18: A Coordination Game with a bilingual option. Here the notation (a, b)+

denotes the larger of a and b.

r s u w yvxz

Figure 19.19: An infinite path, with nodes r and s as initial adopters of A.

It’s easy to see that AB is a dominant strategy in this game: why not be bilingual when

it gives you the best of both worlds? However, to model the trade-o↵ discussed earlier, we

need to also incorporate the notion that bilinguality comes with a cost — the meaning of

the cost varies with the context, but the cost in general corresponds to the additional e↵ort

and resource expenditure needed to maintain two di↵erent behaviors. Thus, we assume that

each node v will play a copy of this three-strategy Bilingual Coordination Game with each

of its neighbors; as in our models earlier in the chapter, v must use the same strategy in

each copy of the game it plays. Its payo↵ will be equal to the sum of its payo↵s in its game

with each neighbor, minus a single cost of c if v chooses to play the strategy AB. It is this

cost that creates incentives not to play AB, balancing the incentives that exist in the payo↵

matrix to play it.

The remainder of the model works as before. We assume that every node in an infinite

network starts with the default behavior B, and then (for non-strategic reasons) a finite set S

of initial adopters begins using A. We now run time forward in steps t = 1, 2, 3, . . .; in each of

these steps, each node outside S chooses the strategy that will provide it the highest payo↵,

given what its neighbors were doing in the previous step. We are interested in how nodes

will choose strategies as time progresses, and particularly which nodes eventually decide to

switch permanently from B to A or AB.

An Example. To get some practice with the model, let’s try it on the infinite path shown

in Figure 19.19. Let’s suppose that nodes r and s are the initial adopters of A, and that the

payo↵s are defined by the quantities a = 2, b = 3, and c = 1.

Here is how nodes behave as time progresses. In the first time step, the only interesting

decisions are the ones faced by nodes u and v, since all other nodes are either initial adopters

(who are hard-wired to play A) or nodes that have all neighbors using B. The decisions faced

Easley & Kleinberg

• Consider only the 1-d line network for this more complex 
adoption rule model…

AB costs the adopting node c
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“Bilingual” Model of Adoption
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What happens if a=2, b=3, c=1?
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r s u w yvxz

Start B B B A A B B B

Step 1 B B AB A A AB B B

Step 2 B AB AB A A AB AB B

Step 3 AB AB A A A A AB AB

Step 4 AB A A A A A A AB

Figure 19.20: With payo↵s a = 5 and b = 3 for interaction using A and B respectively, and
a cost c = 1 for being bilingual, the strategy A spreads outward from the initial adopters r
and s through a two-phase structure. First, the strategy AB spreads, and then behind it,
nodes switch permanently from AB to A.

by u and v are symmetric; for each of them, we can check that the strategy AB provides

the highest payo↵. (It yields a payo↵ of 2 + 3� 1 = 4 from being able to interact with both

neighbors, but having to pay a cost of 1 to be bilingual.) In the second time step, nodes w

and x have a fresh decision to make, since they now have neighbors using AB, but we can

check that B still yields the highest payo↵ for each of them. From here on, no node will

change its behavior in any future time steps. So with these payo↵s, the new behavior A does

not spread very far: the decision by the initial adopters to use A caused their neighbors to

become bilingual, but after that further progress stopped.

We can further experiment with this example by keeping the network the same, but

changing the payo↵s so that A becomes much more desirable: specifically, let’s set a = 5,

and keep b = 3 and c = 1. What happens in this case is more complex, and is depicted in

Figure 19.20. (For the discussion below, we will only talk about what happens to the right

of the initial adopters, since what’s going on to the left is symmetric.)

• In the first step, node u will switch to AB, since it receives a payo↵ of 5 + 3 � 1 = 7

from doing this. As a result, in the second step, node w also switches to AB.

• From the third step onward, the strategy AB continues to move to the right, one node

at a time. However, something additional happens starting in the third step. Because

node w switched to AB in the second step, node u faces a new decision: it has one

neighbor using A and the other using AB, and so now u’s best choice is to switch from
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b is normalized to 1
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w

A ? B

payoff from choosing A: a

payoff from choosing B: 1

payoff from choosing AB: a + 1 - c

Figure 19.21: The payo↵s to a node on the infinite path with two neighbors using A and B.

When do Cascades Happen on an Infinite Path? The infinite path is an extremely

simple graph, and we saw earlier in this section that in the model with only the strategies

A and B, the condition for A to cascade is correspondingly very simple: a cascade of A’s

can occur precisely when the threshold q is at most 1/2 — or, equivalently, when a � b. In

other words, a better technology will always spread on the path.

Once we add the strategy AB as an option, however, the situation becomes more subtle.

Since we are only concerned with whether some finite set of initial adopters can cause a

complete cascade of A’s, we can assume that this set of initial adopters forms a contiguous

interval of nodes on the path. (If not, we can take the leftmost and rightmost initial adopter,

and study the situation in which every node in between is also an initial adopter — this set

is still finite, and it will have just as good a chance of causing a complete cascade.) So

changes in nodes’ strategies will spread outward symmetrically to the left and right of the

initial adopters, and we simply need to account for the possible decisions that nodes make

in evaluating their strategies as this happens. Because of the symmetry, we will only think

about how strategy changes occur to the right of the initial adopters, since what is going on

to the left is the same.

There are two kinds of node-level decisions that are particularly useful for our analysis.

• First, we’ll have to think about nodes like w in Figure 19.21, with a left neighbor

using A and a right neighbor using B. (For example, this happens in the first step of

the cascade with the node immediately to the right of the initial adopters.) In this

situation, node w receives a payo↵ of a from choosing A (because it can interact with

its left neighbor), a payo↵ of 1 from choosing B (because it can interact with its right

neighbor), and a payo↵ of a + 1 � c from choosing AB (because it can interact with

both neighbors, but pays a cost of c to be bilingual).

Node w will choose the strategy that provides the highest payo↵, and that’s determined

by the relationship between a and c. In other words, we should be asking: for which
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AB vs. B

A vs. AB1
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(a) Lines showing break-even points between strategies.

c

a

1

1
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A

AB

(b) Regions defining the best choice of strategy.

Figure 19.22: Given a node with neighbors using A and B, the values of a and c determine
which of the strategies A, B, or AB it will choose. (Here, by re-scaling, we can assume
b = 1.) We can represent the choice of strategy as a function of a and c by dividing up the
(a, c)-plane into regions corresponding to di↵erent choices.

values of a and c will node w choose A, for which will it choose B, and for which will it

choose AB? This can be answered easily if we plot the comparisons among the payo↵s

in the (a, c)-plane as shown in Figure 19.22(a), with the value of a on the x-axis and

the value of c on the y-axis. The break-even point between strategies AB and B, for

example, is given by the line defined by setting the two payo↵s equal: a+1� c = 1, or

equivalently a� c = 0. This is the diagonal line in the figure. Similarly, we draw lines

for the break-even point between strategies A and B (a = 1) and between strategies A

and AB (a = a + 1� c, or equivalently c = 1).

These three lines all meet at the point (1, 1), and so we see that they divide the (a, c)-

plane into six regions. As shown in Figure 19.22(b), A is the best strategy in two of

these regions, B is the best strategy in two of them, and AB is the best strategy in

two of them.

• If AB begins to spread, then we’ll also have to think about the situation pictured in

Figure 19.23: a node whose left neighbor is using AB and whose right neighbor is using

B.

Now, if a < 1, then B will provide w with the highest payo↵ regardless of the value of

the cost c (as long as it is positive). So let’s consider the more interesting alternative,

when a � 1. This is very similar to the previous case, when w’s left-hand neighbor

was using A; the one change is that the payo↵ to w for using B has now gone up to 2,

since now w can use B to interact with both neighbors rather than just one.
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b is normalized to 1
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w

AB ? B

payoff from choosing A: a

payoff from choosing B: 2

payoff from choosing AB: a + 1 - c (if A is better)

Figure 19.23: The payo↵s to a node on the infinite path with two neighbors using AB and
B.

As a result of this, the lines in the (a, c)-plane defining the break-even points between

B and the other strategies shift to the right (they are now a = 2 and a + 1 � c = 2).

This in turn shifts the three regions of the (a, c)-plane that define which strategy will

be chosen by w. We show this in Figure 19.24.

We are now in a position to determine the values of a and c for which a cascade of A’s

can occur. We start with a contiguous interval of initial adopters of A, and we consider the

node u immediately to the right of the initial adopters. (Again, everything here also applies

to the left of the initial adopters by symmetry.)

• If we are in the B region of Figure 19.22(b), then node u will favor B as its strategy,

so it will stick with this and the new strategy A will not spread at all.

• If we are in the A region of Figure 19.22(b), then node u will favor A as its strategy,

and it will switch to A. So in the next time step we will have exactly the same situation

shifted one node to the right, and as a result the new strategy A will spread all the

way down the path: a cascade will occur.

• Most interestingly, suppose we are in the AB region of Figure 19.22(b). Then, in the

next time step, the situation will look di↵erent: the crucial decision will now be faced

by the next node w to the right of u, who will have its left neighbor (u) now using AB,

and its right neighbor still using B.

To understand what w will do, based on values of a and c, the we consult the regions in

Figure 19.24(b). But crucially, since we know that AB was the best choice in the first

step, we know that the values of a and c lie in the AB region from Figure 19.22(b) — so

when we consider Figure 19.24(b), we are concerned not with how its regions carve up

the full (a, c)-plane, but only how they carve up the AB region from Figure 19.22(b).
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(b) Regions defining the best choice of strategy.

Figure 19.24: Given a node with neighbors using AB and B, the values of a and c determine
which of the strategies A, B, or AB it will choose, as shown by this division of the (a, c)-plane
into regions.

In fact, they divide the AB region from Figure 19.22(b) by a diagonal line segment

from the point (1, 0) to the point (2, 1), as shown in Figure 19.25. To the left of this

line segment, B wins and the cascade stops. To the left of this line segment, AB wins

— so AB continues spreading to the right, and behind this wave of AB’s, nodes will

steadily drop B and use only A. This is the scenario that we saw in our example,

where B fails to persist because it becomes vestigial in a bilingual world.

Figure 19.25 in fact summarizes the four possible cascade outcomes, based on the values

of a and c (i.e. where they lie in the (a, c)-plane). Either (i) B is favored by all nodes outside

the initial adopter set, (ii) A spreads directly without help from AB, (iii) AB spreads for

one step beyond the initial adopter set, but then B is favored by all nodes after that, or (iv)

AB spreads indefinitely to the right, with nodes subsequently switching to A.

So a cascade of A’s can occur if the pair of values (a, c) lies in one of the two regions

described by (ii) and (iv). This means that the portion of the (a, c) plane where a cascade

can occur looks as depicted in Figure 19.26: it lies to the right of a vertical line with a

strange triangular “cut-out.” The vertical line makes a lot of sense: it corresponds to a � 1,

or in other words, the requirement that interaction using A produces a higher payo↵ than

interaction using B. But what does the triangular cut-out mean? Formally, it says that when

the cost of bilinguality is neither too high nor too low, the new strategy A has to be “extra

good” — i.e. produce a payo↵ a significantly higher than 1 — in order to spread. Moreover,

although we won’t consider more complex graphs here, the region of the (a, c)-plane where a

cascade of A’s can occur in any graph turns out to have some kind of indentation analogous

to the triangular cut-out — though the particular boundary of the indentation depends on
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neither A nor

AB spreads

A spreads directly (no adoption of AB)

AB spreads

but then

stops

AB spreads indefinitely,

followed by A

(B becomes vestigial)

Figure 19.25: There are four possible outcomes for how A spreads or fails to spread on the
infinite path, indicated by this division of the (a, c)-plane into four regions.

the structure of the graph [225].

This triangular cut-out region has a natural qualitative interpretation that provides po-

tential insight into how compatibility and bilinguality a↵ect the process of di↵usion in a

network. We discuss this interpretation now.

Interpretations of the Cascade Region. One way to appreciate what’s going on in the

triangular cut-out region is to consider the following question, phrased in terms of technology

adoption. Suppose that you’re the firm manufacturing the default technology B, and the

payo↵ from interacting via B is equal to 1. Now a new technology A with payo↵ a = 1.5

begins to appear. For which values of the bilinguality cost c should you expect B to survive?

Even without performing any concrete calculations, you could reason as follows. If it’s

extremely easy to maintain both technologies simultaneously, then adoption of AB will

become widespread — and once it is su�ciently widespread, people will begin dropping B

altogether, since A is better and it’s possible to interact with everyone using A. Essentially, A

will have won through “infiltration,” working its way into the population via coexistence with

B. On the other hand, if it’s extremely hard to maintain both technologies simultaneously,

then people on the boundary between the two user populations — those who have friends

“Bilingual” Model of Adoption

33

Easley & Kleinberg

“direct cascade”

“bilingual-led cascade”



© Keith M. Chugg, 2014

602 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

c
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1

1 2

The region

where a

cascade

of A's

can occur

Figure 19.26: The set of values for which a cascade of A’s can occur defines a region in the
(a, c)-plane consisting of a vertical line with a triangular “cut-out.”

using both technologies — will have to simply choose one or the other. And in this case,

you could expect that they may well choose A, since it’s in fact better. In this case, A will

win through a kind of “direct conquest,” simply eliminating B as it goes.

But in between — when it’s neither extremely easy nor extremely hard to maintain both

technologies — something more favorable to B can happen. Specifically, a bilingual “bu↵er

zone” may form between people who adopt only A and those who adopt only B. On the

B-side of this bu↵er zone, no one will have an incentive to change what they’re doing, since

by using B they can interact with all their neighbors — the bilingual ones and the ones using

only B — rather than interacting with only a fraction of their neighbors by switching to

the marginally better technology A. In other words, the inferior technology B has survived

because it was neither too compatible nor too incompatible with A — rather, by partially

accommodating A, it prevented A from spreading too far.2

2On the infinite path, the bilingual bu↵er zones that form are very simple — just one node thick. But
in general graphs, the bu↵er zones can have a more complex structure. In fact, it is possible to prove an
analogue of the result from Section 19.3, where we showed that clusters are the only obstacle to cascades in
the two-strategy model. The more general result is that with an additional bilingual option AB, a structure
consisting of a cluster and a bilingual bu↵er zone accompanying it is the only obstacle to a cascade of A’s
[225].

“Bilingual” Model of Adoption
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Easley & Kleinberg

“direct cascade”

“bilingual-led cascade”

“too difficult to 
do both A & B, so 

switch to A”

“easy enough to do 
both A & B, so bilingual 

buffer zone forms”

A is still superior to B here

moderate 
compatibility 
inhibits full 
adoption
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Thresholds for Collective Action

• In order to join the “rebellion” a node needs to exceed its 
threshold of required participants AND know that others 
others exceed theirs as well

35
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w
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(a) An uprising will not occur

w x

u v

3 3

3 3

(b) An uprising will not occur

w x

u v

3 3

3 3

(c) An uprising can occur

Figure 19.14: Each node in the network has a threshold for participation, but only knows
the threshold of itself and its neighbors.

is a principle that applies widely, not just in settings where a central authority is actively

working to restrict information. For example, a survey conducted in the U.S. in 1970 (and

replicated several times in the surrounding years with similar results) showed that while

only a minority of white Americans at that point personally favored racial segregation,

significantly more than 50% believed that it was favored by a majority of white Americans

in their region of the country [331].

A Model for the E↵ect of Knowledge on Collective Action. Let’s consider how the

structure of the underlying social network can a↵ect the way people make decisions about

collective action, following a model and a set of illustrative examples proposed by Michael

Chwe [109, 110]. Suppose that each person in a social network knows about a potential

upcoming protest against the government, and she has a personal threshold which encodes

her willingness to participate. A threshold of k means, “I will show up for the protest if I

am sure that at least k people in total (including myself) will show up.”

The links in the social network encode strong ties, where the two endpoints of each link

trust each other. Thus, we assume that each person in the network knows the thresholds

of all her neighbors in the network, but — due to the risky nature of communication about

dissent in this society — does not know the thresholds of anyone else. Now, given a network

with a set of thresholds, how should we reason about what is likely to happen?

Let’s consider the examples in Figure 19.14, which show some of the subtleties that arise

here. Scaling down our notion of “uprising” to a size commensurate with these 3-4 person

examples, suppose that each node represents one of the senior vice-presidents at a company,

each of whom must decide whether to actively confront the unpopular CEO at the next day’s

board meeting. It would be disastrous to do so without reasonable support from the others,

so each is willing to confront the CEO provided that at least a certain number of them do

Easley & Kleinberg

pluralistic ignorance

Nodes know 
neighbors 
threshold

Need tightly coupled/informed communities for risky initiatives

http://www.youtube.com/watch?v=axSnW-ygU5g
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http://www.youtube.com/watch?v=axSnW-ygU5g

• Apple Macintosh commercial during 1984 Super Bowl

• “Best commercial of all time”

• Mac was a high risk adoption — requiring collective action

• Mac was expensive and incompatible

• Fewer applications

• Big part of advertisment’s effectiveness was ensuring collective 
knowledge

• Potential adopters now know that other potential adopters 
know!

http://www.youtube.com/watch?v=axSnW-ygU5g
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Maximum Influence Problem
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• What is the smallest size set of nodes in a 
network that if initialized as early adopters will 
cause a cascade?

• NP-hard (need to find heuristics for large 
networks)
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MIP Heuristic (TIP_DECOMP)

38

• Consider a specific example

can we find a seed set?
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(b) The process ends after four steps

Figure 19.13: Starting with node 1 as the unique initial adopter, the new behavior A spreads
to some but not all of the remaining nodes.
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replace thresholds by “edge threshold”
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label nodes by “free edges”
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1. Remove node with smallest delta
2. Decrement the delta of all nodes connected to removed node
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MIP Heuristic (TIP_DECOMP)

1. Remove node with smallest delta
2. Decrement the delta of all nodes connected to removed node
3. Label nodes decremented from delta=0 by infinity
4. Stop when only “inf” nodes left — these are the seed set
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Run time is O(L*log(N))

10 Paulo Shakarian et al.

Fig. 2 m lnn vs. runtime in seconds (log scale, m is number of edges, n is number of nodes).
The relationship is linear with R2 = 0.9015, p = 2.2 · 10�16.

4.1.6 Seed Size

For each network, we performed 10 “integer” trials. In these trials, we set
✓(v

i

) = min(din
i

, k) where k was kept constant among all vertices for each
trial and set at an integer in the interval [1, 10]. We evaluated the ability of a
network to promote spreading under the tipping model based on the size of the
set of nodes returned by our algorithm (as a percentage of total nodes). For
purposes of discussion, we have grouped our networks into three categories
based on results (Figure 3 and Table 4). We have also included results for
symmetric networks (Figure 4 and Table 5). In general, online social networks
had the smallest seed sets - 13 networks of this type had an average seed set
size less than 2% of the population (these networks were all in Category A).
We also noticed, that for most networks, there was a linear realtion between
threshold value and seed size.

Category A can be thought of as social networks highly susceptible to
influence - as a very small fraction of initially activated individuals can lead
to activation of the entire population. All were extracted from social media

Shakarian, Eyre, Damon
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Seed size is <4% for fixed threshold up to 10

Shakarian, Eyre, Damon

A Scalable Heuristic for Viral Marketing Under the Tipping Model 11

Fig. 3 Threshold value (assigned as an integer in the interval [1, 10]) vs. size of initial seed
set as returned by our algorithm in our three identified categories of networks (categories A-
C are depicted in panels A-C respectively). Average seed sizes were under 2% for Categorty
A, 2� 10% for Category B and over 10% for Category C. The relationship, in general, was
linear for categories A and B and lograthimic for C. CA-NetSci had the largest Louvain
Modularity and clustering coe�cient of all the networks. This likely explains why that
particular network seems to inhibit spreading.
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Seed size vs. q[i]

Shakarian, Eyre, Damon

14 Paulo Shakarian et al.

Fig. 5 Threshold value (assigned as a fraction of node in-degree as a multiple of 0.05 in
the interval [0.05, 0.60]) vs. size of initial seed set as returned by our algorithm in our three
identified categories of networks (categories A-C are depicted in panels A-C respectively,
categories are the same as in Figure 1). Average seed sizes were under 5% for Categorty A,
1 � 7% for Category B and over 3% for Category C. In general, the relationship between
threshold and initial seed size for networks in all categories was exponential.
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Significantly larger seed sets for citation networks

Shakarian, Eyre, Damon

A Scalable Heuristic for Viral Marketing Under the Tipping Model 11

Fig. 3 Threshold value (assigned as an integer in the interval [1, 10]) vs. size of initial seed
set as returned by our algorithm in our three identified categories of networks (categories A-
C are depicted in panels A-C respectively). Average seed sizes were under 2% for Categorty
A, 2� 10% for Category B and over 10% for Category C. The relationship, in general, was
linear for categories A and B and lograthimic for C. CA-NetSci had the largest Louvain
Modularity and clustering coe�cient of all the networks. This likely explains why that
particular network seems to inhibit spreading.
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Fig. 5 Threshold value (assigned as a fraction of node in-degree as a multiple of 0.05 in
the interval [0.05, 0.60]) vs. size of initial seed set as returned by our algorithm in our three
identified categories of networks (categories A-C are depicted in panels A-C respectively,
categories are the same as in Figure 1). Average seed sizes were under 5% for Categorty A,
1 � 7% for Category B and over 3% for Category C. In general, the relationship between
threshold and initial seed size for networks in all categories was exponential.



© Keith M. Chugg, 2014

MIP Heuristic (TIP_DECOMP)

Example Adoption Rate Dynamics

Shakarian, Eyre, Damon

A Scalable Heuristic for Viral Marketing Under the Tipping Model 21
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Fig. 10 An examination of several of speed of activation initiated from the seed set using
a threshold of two (panel 1) and a majority threshold (panel 2).

Finding a subset of the population of “critical mass” may be an important
problem in its own right. Though the critical mass point will often be larger
than the seed set found by an algorithm in this paper, we can be assured
that in one time step of the model, the number of individuals reached (with
a certain number of signals from their neighbors) is substantially larger than
the investment. In practice, this could lead to quicker spreading of information
in an advertising campaign, for example. Further, our experiments indicate
that order-of-magnitude critical mass sets exist in several networks. We are
currently conducting further research on this topic.
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Seed set size 
when seeded 
by centrality 

measures

Shakarian, Eyre, Damon

A Scalable Heuristic for Viral Marketing Under the Tipping Model 19
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Fig. 8 The use of degree, betweenness and closeness to find seed-sets on select networks
when the threshold is set to an fraction in the interval [0.05, 0.60] (multiples of 0.05).

20 Paulo Shakarian et al.

Fig. 9 The use of shell number, Eigenvector, and PageRank to find seed-sets on select
networks when the threshold is set to an fraction in the interval [0.05, 0.60] (multiples of
0.05).
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Again, community structure hinders cascades

Shakarian, Eyre, Damon

A Scalable Heuristic for Viral Marketing Under the Tipping Model 27

Fig. 14 (A) Louvain modularity (M) and average clustering coe�cient (C) vs. the average
seed size (S). The planar fit depicted is S = 43.374·M+33.794·C�24.940 with R2 = 0.8666,
p = 5.666 · 10�13. (B) Same plot at (A) except the averages are over the 12 percentage-
based threshold values. The planar fit depicted is S = 18.105 ·M +17.257 ·C � 10.388 with
R2 = 0.816, p = 5.117 · 10�11.

A Scalable Heuristic for Viral Marketing Under the Tipping Model 27

Fig. 14 (A) Louvain modularity (M) and average clustering coe�cient (C) vs. the average
seed size (S). The planar fit depicted is S = 43.374·M+33.794·C�24.940 with R2 = 0.8666,
p = 5.666 · 10�13. (B) Same plot at (A) except the averages are over the 12 percentage-
based threshold values. The planar fit depicted is S = 18.105 ·M +17.257 ·C � 10.388 with
R2 = 0.816, p = 5.117 · 10�11.

A Scalable Heuristic for Viral Marketing Under the Tipping Model 27

Fig. 14 (A) Louvain modularity (M) and average clustering coe�cient (C) vs. the average
seed size (S). The planar fit depicted is S = 43.374·M+33.794·C�24.940 with R2 = 0.8666,
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R2 = 0.816, p = 5.117 · 10�11.
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Questions…

66

• Is there a “centrality” measure inherent in this algorithm for finding seed sets?

• Can you be more greedy — i.e., remove all nodes that tie for minimum delta? 

• (check example given to see that you cannot simply remove all “tie” nodes in 
parallel)

• Can this algorithm be adopted to a message-passing algorithm to find the seed set in 
a distributed fashion

• High speed implementation

• Is the seed set size more correlated to the number of communities rather the the 
modularity?

• How to estimate the threshold or diffusion model from temporal social network 
data?
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Probability Review Items

67

• Some important random variables

• Bernoulli, Binomial, Poisson, Gaussian

• Bayes Law & Theorem of Total Probability

• Moments and (Moment) Generating Functions

• Linear MMSE estimation

• Statistics

• Law of Large Numbers

• Central Limit Theorem

• Confidence Intervals

• Linear Regression

• Markov Chains

Reference:

A. Leon-Garcia, Probability, 
Statistics, and Random Processes 
for Electrical Engineer- ing, 3rd 
Edition, Addison Wesley, 2012. 


