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Overview

® Network robustness/resilience and percolation theory
® C(Cascades

® |nformation diffusion and epidemics
® Network search

® |earning and consensus formation

Easley & Kleinberg Chapter |9
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Cascades in Networks

® Thus far we have considered spread of information/diseases,
etc. at the macro level

® Will a disease spread throughout a network or will it die
out!

® What will be the eventual size of the outbreak!?
® C(Cascade analysis considers these phenomena at the micro scale

® What stops an idea from propagating?

® What makes or kills a meme?

© Keith M. Chugg, 2014



Information Diffusion

® Social scientists have studied the adoption of new ideas in communities for many
years

® Example: hybrid corn adoption by farmers
® Adoption trends are lead by a small set of “early adopters” (recall Bass model)

® Early adopters tend to have higher social-economic status, travel frequently,
have access to other communities

® What makes for a successful innovation?
® Significant relative advantage (vs. current)
® | ow complexity of adoption
® [Easy to observe that others are adopting (social pressure)
® Easy to try out

® Compatibility with other current technologies

© Keith M. Chugg, 2014



Simple Model of Adoption

® Consider two behaviors A and B (e.g., adopt new and keep old)

® A simple benefit model for adoption:

w
A B

UA a,a | 0,0
B 10,0 | b0

Figure 19.1: A-B Coordination Game

Easley & Kleinberg

Captures the factors associated with new adoption
discussed on previous slide

© Keith M. Chugg, 2014



Simple Model of Adoption

® What happens to a node involved in the trade-off (game) with

all of its neighbors!?
Pay-off for v

Choose A: pda

Choose B: (1 —p)db

Figure 19.2: v must choose between behavior A and behavior B, based on what its neighbors
are doing.

Easley & Kleinberg

Node v will choose A iff: pda > (1 —p)db << p>

© Keith M. Chugg, 2014



Simple Model of Adoption

® |f the fraction of your neighbors who have adopted A (p) is
greater than a threshold g, you will adopt...

a=3,b=2
q=2/5

all nodes adopt A

after 2 steps with an
initial seed of {v,w}

(c) After one step, two more nodes have (d) After a second step, everyone has adopted

adopted

Figure 19.3: Starting with v and w as the initial adopters, and payoffs a = 3 and b = 2, the new behavior
A spreads to all nodes in two steps. Nodes adopting A in a given step are drawn with dark borders; nodes

adopting B are drawn with light borders.

© Keith M. Chugg, 2014 Easley & Kleinberg



What Can Result!?

® |nitial condition

® All nodes in the network are using B, except for a seed set of early adopters who

use A

® Fact:if a node adopts A, it will not switch back to B
® Only two possible results:

® Everybody adopts A

® The spread of A is contained to a finite fraction of network

Consider a set of initial adopters who start with a new behavior A, while every
other node starts with behavior B. Nodes then repeatedly evaluate the decision to
switch from B to A using a threshold of q. If the resulting cascade of adoptions
of A eventually causes every node to switch from B to A, then we say that the

set of initial adopters causes a complete cascade at threshold q.

Easley & Kleinberg
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A Meme that Dies Out

(a) Two nodes are the initial adopters

spread of A is

contained to 7 nodes

(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

Easley & Kleinberg

© Keith M. Chugg, 2014



A Meme that Dies Out

Node |4 has too many
friends in its community
that are using B —
prevents it from adopting A

(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

Easley & Kleinberg

Intuitively: tightly knight communities block the spred of
new innovations!

© Keith M. Chugg, 2014



A Meme that Dies Out

e.g., with g=1/3, node 14 will adopt A

(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

Easley & Kleinberg

If a is increased to 4, then gq=1/3 and all nodes would adopt A

One direct way to increase adoption is to increase the
benefit of your innovation

© Keith M. Chugg, 2014



A Meme that Dies Out

convincing | I, 14 to adopt will not allow
the diffusion to continue

convincing 12, 13 to adopt will result in
all node | |-17 to adopt

(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.

Easley & Kleinberg

One could target specific nodes in a community to adopt

Another way to increase adoption is to target key nodes to
adopt, thus allowing a cascade to continue into a community

© Keith M. Chugg, 2014



Cascades and Clusters

® C(Cluster of density p is a collection of nodes for which each
member has at least a fraction p of its connections to other
members of the cluster

Figure 19.6: A collection of four-node clusters, each of density 2/3.

Easley & Kleinberg

© Keith M. Chugg, 2014



Cascades and Clusters

Figure 19.7: Two clusters of density 2/3 in the network from Figure 19.4.

Easley & Kleinberg

These two clusters blocked the cascade

© Keith M. Chugg, 2014



Cascades and Clusters

® (lusters block cascades....

Given an initial set of adopters of A, the behavior A
will be adapted by the entire network

The network, excluding initial adopters, does not
contain a cluster of density |-q or greater

© Keith M. Chugg, 2014



Cascades and Clusters

® (lusters block cascades....
To adopt A, v requires at

least q of its neighbors
&3 O< uster to have adopted A

A B

Figure 19.8: The spread of a new behavior, when nodes have threshold ¢, stops when it
reaches a cluster of density greater than (1 — q).
Easley & Kleinberg

© Keith M. Chugg, 2014



Cascades and Clusters

® (lusters block cascades....

To adopt A, v requires at
B least q of its neighbors

\?V nodes that.don't to have adopted A
eventually switch to A

nodes that eventually switch to A

initial adopters

Figure 19.9: If the spread of A stops before filling out the whole network, the set of nodes
that remain with B form a cluster of density greater than 1 — gq.

Easley & Kleinberg

© Keith M. Chugg, 2014



Cascades and Weak Ties

® Recall that weak ties are local bridges to new communities

® Play a key role in introducing those with access to new ideas

Figure 19.11: The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.

Easley & Kleinberg

© Keith M. Chugg, 2014

q=1/2 — what will
happen?



Cascades and Weak Ties

® Recall that weak ties are local bridges to new communities

® Play a key role in introducing those with access to new ideas

Figure 19.11: The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.

Easley & Kleinberg

© Keith M. Chugg, 2014

q=1/2 — what will
happen?

Note that now, u and v have an

advantage over others in their

community because they have
knowledge of A



© Keith M. Chugg, 2014

Cascades in Networks

Many variations on this simple model

® node-varying threshold for adoption
® “bilingual” model with cost

Cascade capacity

® J|argest adoption threshold that will still allow a complete
cascade

Other models for “tipping”

Finding seed sets for staring a meme (or how to block a meme)

20



Cascades with Heterogeneous Thresholds

w

A B
A | ay,ay 0,0
B 0,0 by, by,

Figure 19.12: A-B Coordination Game

Easley & Kleinberg

U

bo
a, +b,

Node v adopts iff: Py = duv

® FEach node has its own adoption threshold g[v|

© Keith M. Chugg, 2014
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Cascades with Heterogeneous Thresholds

Cluster of some form still stops
the cascade

(a) One node is the initial adopter

cascade only begins because there is an
easily influenced near node |

(access to both influential people and easily influenced
people is important in creating a meme!)

Figure 19.13: Starting with node 1 as the unique initial adopter, the new behavior A spreads
to some but not all of the remaining nodes. (b) The process ends after four steps

Easley & Kleinberg
all members v have at least |-q[v] neighbors also in

blocking cluster
© Keith M. Chugg, 2014 22



Cascade Capacity

® What is the maximum adoption threshold that can be
overcome by a small number of early adopters to create a

com

o T

dlete cascade!?

nis is the cascade capacity of a network — function of the

network topology

® More formally, consider an infinite network and consider the
max. threshold for which some finite set of early adopters can
cause a complete cascade

© Keith M. Chugg, 2014
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Cascade Capacity

00O (W

Figure 19.15: An infinite path with a set of early adopters of behavior A (shaded).

Easley & Kleinberg

® (Cascade capacity is |/2 — why?

© Keith M. Chugg, 2014

24



Cascade Capacity
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Figure 19.16: An infinite grid with a set of early adopters of behavior A (shaded).

Easley & Kleinberg

® C(Cascade capacity is 3/8 — why!?

25



Maximum Cascade Capacity

® The maximum cascade capacity of any network is 1/2

® Makes sense intuitively since g>1/2 means that B is favorable
to A or that the old way of doing business is better

® Cannot expect an inferior technology to displace a
superior, entrenched technology (in this simple model)

© Keith M. Chugg, 2014
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Maximum Cascade Capacity

(a) Before v and w adopt A (b) After v and w adopt A

Figure 19.17: Let the nodes inside the dark oval be the adopters of A. One step of the
process is shown, in which v and w adopt A: after they adopt, the size of the interface has
strictly decreased. In general, the size of the interface strictly decreases with each step of
the process when g > %

Easley & Kleinberg

® | ook at the boundary of edges with A-B connections

® Does this contract? [f so, the meme will die out — g>1/2
always dies out

© Keith M. Chugg, 2014
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“Bilingual” Model of Adoption

® In many cases, instead of abandoning B for A in a wholesale
manner, people will use both A and B — becoming “bilingual”

® Windows and OS X (virtual machines, multiple machines)
® Being bilingual should incur an extra cost — ¢

® This new state “AB” can be transient or stable...

® How does this change cascades and cascade capacity

® Makes things much more complicated!

© Keith M. Chugg, 2014
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“Bilingual” Model of Adoption

w
A B AB
A
v B g:g 2:2 cg:Z AB costs the adopting node ¢
AB a,a b, b (a,b)", (a,b)"

Figure 19.18: A Coordination Game with a bilingual option. Here the notation (a,b)™
denotes the larger of a and b.

e N o W o N o N o N o N o
() —W—()—

Figure 19.19: An infinite path, with nodes r and s as initial adopters of A.

Easley & Kleinberg

Consider only the |-d line network for this more complex
adoption rule model...

29



“Bilingual” Model of Adoption

e | @

Start B B B A A B B B
Step1 B B AB A A AB B B
Step2 B AB AB A A AB AB B
Step3 AB AB A A A A AB AB
Step4 AB A A A A A A AB

Figure 19.20: With payoffs a = 5 and b = 3 for interaction using A and B respectively, and
a cost ¢ = 1 for being bilingual, the strategy A spreads outward from the initial adopters r
and s through a two-phase structure. First, the strategy AB spreads, and then behind it,
nodes switch permanently from AB to A.

Easley & Kleinberg

What happens if a=2, b=3, c=1?

© Keith M. Chugg, 2014
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“Bilingual” Model of Adoption

A ? B

O—wW——=0

b is normalized to |

payoff from choosing A: a
payoff from choosing B: 1
payoff from choosingAB:a +1-cC

Figure 19.21: The payoffs to a node on the infinite path with two neighbors using A and B.
Easley & Kleinberg

c 4 Avs. B ABvs. B C ?
A
B
1 Avs. AB 1
AB
- >
1 a 1 a
(a) Lines showing break-even points between strategies. (b) Regions defining the best choice of strategy.

Figure 19.22: Given a node with neighbors using A and B, the values of a and ¢ determine
which of the strategies A, B, or AB it will choose. (Here, by re-scaling, we can assume

b =1.) We can represent the choice of strategy as a function of a and ¢ by dividing up the
(a, ¢)-plane into regions corresponding to different choices.

© Keith M. Chugg, 2014



“Bilingual” Model of Adoption

AB B

O—@&—0O

payoff from choosing A: a
payoff from choosing B: 2
payoff from choosing AB: a + 1 - ¢ (if Ais better)

b is normalized to |

Figure 19.23: The payoffs to a node on the infinite path with two neighbors using AB and

B.
Easley & Kleinberg

c 4

c 4 Avs.B ABvs. B

A

B
1 Avs. AB 1
AB
> >
1 2 a 1 2 a

(a) Lines showing break-even points between strategies. (b) Regions defining the best choice of strategy.

Figure 19.24: Given a node with neighbors using AB and B, the values of a and ¢ determine
which of the strategies A, B, or AB it will choose, as shown by this division of the (a, ¢)-plane
into regions.

© Keith M. Chugg, 2014
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“Bilingual” Model of Adoption

C A
“direct cascade”
_ A spreads directly (no adoption of AB)
neither A nor
AB spreads
1
“bilingual-led cascade”
AB spreads AB spreads indefinitely,
but then followed by A
stops (B becomes vestigial)
>
1 2 a

Figure 19.25: There are four possible outcomes for how A spreads or fails to spread on the
infinite path, indicated by this division of the (a, ¢)-plane into four regions.

Easley & Kleinberg

33



“Bilingual” Model of Adoption

C A
. “direct cascade”
“too difficult to
do both A & B, so The region
switch to A where a moderate
1 cascade compatibility
O.I: AIS ° . .
easy enough to do o o inhibits full
both A & B, so bilingual adoption
buffer zone forms’
4 “bilingual-led cascade”
/ >

1 2 a

Figure 19.26: The set of values for which a cascade of A’s can occur defines a region in the
(a, c)-plane consisting of a vertical ling with a triangular “cut-out.”

Easley & Kleinberg
A is still superior to B here

© Keith M. Chugg, 2014
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Thresholds for Collective Action

pluralistic ignorance

Nodes know
neighbors
threshold

(a) An uprising will not occur (b) An uprising will not occur (¢) An uprising can occur

Figure 19.14: Each node in the network has a threshold for participation, but only knows
the threshold of itself and its neighbors.

Easley & Kleinberg

® In order to join the “rebellion” a node needs to exceed its
threshold of required participants AND know that others
others exceed theirs as well

Need tightly coupled/informed communities for risky initiatives

http://www.youtube.com/watch?v=axSnW-ygUb5g

© Keith M. Chugg, 2014 35



Thresholds for Collective Action

® Apple Macintosh commercial during 1984 Super Bowl
® “Best commercial of all time”

® Mac was a high risk adoption — requiring collective action
® Mac was expensive and incompatible
® Fewer applications

® Big part of advertisment’s effectiveness was ensuring collective
knowledge

® Potential adopters now know that other potential adopters
know!

http://www.youtube.com/watch?v=axSnVV-ygU>5g

36
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Maximum Influence Problem

® VWhat is the smallest size set of nodes in a
network that if initialized as early adopters will
cause a cascade!?

® NP-hard (need to find heuristics for large
networks)

West Point Network Science Center
(Pre-Print Manuscript)

A Scalable Heuristic for Viral Marketing Under the recent aPProaCh that
Hpine Hodd seems simple and effective

Paulo Shakarian - Sean Eyre - Damon
Paulo

http://arxiv.org/abs/1309.2963

© Keith M. Chugg, 2014 37
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MIP Heuristic (TIP_DECOMP)

® Consider a specific example

can we find a seed set!

Easley & Kleinberg

38



MIP Heuristic (TIP_DECOMP)

0.1 0.7 @GS\GD

start with thresholds — q[i]




MIP Heuristic (TIP_DECOMP)

() O—E—

replace thresholds by “edge threshold” m; = [q@kﬂ




MIP Heuristic (TIP_DECOMP)

O OO0

label nodes by “free edges” AN, =k; —m; =k; — [qzkﬂ




MIP Heuristic (TIP_DECOMP)

O &)

|. Remove node with smallest delta
2. Decrement the delta of all nodes connected to removed node
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MIP Heuristic (TIP_DECOMP)

|. Remove node with smallest delta
2. Decrement the delta of all nodes connected to removed node
3. Label nodes decremented from delta=0 by infinity
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MIP Heuristic (TIP_DECOMP)
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MIP Heuristic (TIP_DECOMP)

|. Remove node with smallest delta

2. Decrement the delta of all nodes connected to removed node
3. Label nodes decremented from delta=0 by infinity

4. Stop when only “inf” nodes left — these are the seed set



MIP Heuristic (TIP_DECOMP)
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MIP Heuristic (TIP_DECOMP)
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The previous seed set was not minimal
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MIP Heuristic (TIP_DECOMP)
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The previous seed set was not minimal




MIP Heuristic (TIP_DECOMP)

50000 3
f .
5000 E ..
i ¢
T 50 | o P Run time is O(L*log(N))
Q r L ]
E : %
2 : o °
£ ‘ o
£ _
& 5 r
i & o ®
0.5 0
5 g
0'05 ﬁ 1 1 1111l 1 1 111l 1 1 11111l 1 1 [ |
1.20E+04 1.20E+05 1.20E+06 1.20E+07

m In (n) (m = # of edges, n=# of nodes, log scale)

Fig. 2 mlnn vs. runtime in seconds (log scale, m is number of edges, n is number of nodes).
The relationship is linear with R? = 0.9015, p = 2.2 - 10~16,

Shakarian, Eyre, Damon
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MIP Heuristic (TIP_DECOMP)

Seed size is <4% for fixed threshold up to |0

3.5 i
3 [ =¢==BlogCatalogl
i == BlogCatalog?2
- i
§ 25 [ == BlogCatalog3
"<25 C == Buzznet
% 2 B ==ie= Douban
§ [ w=@= Flickr
é 1.5 5 e F|ixster
S i e FourSquare
n i
T ] - Friendster
A [
. === 35t.FM
0.5 [ == LiveJournal
- Livemocha
0= WikiTalk

1 2 3 4 5 6 7 8 9 10
Threshold Value

Shakarian, Eyre, Damon
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MIP Heuristic (TIP_DECOMP)

Seed size vs. q[i]

12

== BlogCatalogl
== BlogCatalog2

m)

3 —=f—BlogCatalog3

o

..z_ === Buzznet

o

Ep ==ie=Douban

-

§ =@ Flickr

8 e Flixster

_&’ = FOUrSquare

v

§ Friendster

(7]
=== ast.Fm
== LiveJournal

Livemocha
WikiTalk

0.05 0.15 0.25 0.35 0.45 0.55
Threshold Value

Shakarian, Eyre, Damon
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MIP Heuristic (TIP. DECOMP)

Shakarian, Eyre, Damon

© Keith M. Chugg, 2014

Significantly larger seed sets for citation networks
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MIP Heuristic (TIP_DECOMP)

Shakarian, Eyre, Damon

© Keith M. Chugg, 2014

Significantly larger seed sets for citation networks
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MIP Heuristic (TIP_DECOMP)

Example Adoption Rate Dynamics
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Shakarian, Eyre, Damon
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MIP Heuristic (TIP_DECOMP)
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Shakarian, Eyre, Damon
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MIP Heuristic (TIP_DECOMP)
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Again, community structure hinders cascades
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Fig. 14 (A) Louvain modularity (M) and average clustering coefficient (C) vs. the average
seed size (S). The planar fit depicted is S = 43.374-M +33.794-C —24.940 with R? = 0.8666,
p = 5.666 - 10713, (B) Same plot at (A) except the averages are over the 12 percentage-
based threshold values. The planar fit depicted is S = 18.105- M + 17.257 - C' — 10.388 with
R? =0.816, p=5.117- 10— 11,
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Questions...

Is there a “centrality” measure inherent in this algorithm for finding seed sets!?
Can you be more greedy — i.e., remove all nodes that tie for minimum delta?

® (check example given to see that you cannot simply remove all “tie” nodes in
parallel)

Can this algorithm be adopted to a message-passing algorithm to find the seed set in
a distributed fashion

High speed implementation

Is the seed set size more correlated to the number of communities rather the the
modularity?

How to estimate the threshold or diffusion model from temporal social network
data?

66
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Probability Review ltems

Linear MMSE estimation

Markov Chains

Reference:

A. Leon-Garcia, Probability,
Statistics, and Random Processes

for Electrical Engineer- ing, 3rd
Edition, Addison Wesley, 2012.
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