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Today

® Project | discussion
® Summary of random network models
® Overview of the rest of the class

e Quiz

® | ecture material

® Project 2/homework
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Project |

® Nice job on projects!
® FEach of you has 3 marks on blackboard:

® participation: how many of the 4 sessions did you
submit eval form?

® (lass scores for presentation and apparent project
depth (out of 5)

® Will be posting a teammate assessment form - all
required to complete.

® Overall grade for project assigned when | can review
your reports.
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Project |

® “Best Presentation” as voted by students:
® Social Network Analysis using Gephi
® Nischal, Shobit, Sushanth
® Scored 4.63/5 averaged over all evals and two criteria!
® Win a prestigious grand prize from Prof. Chugg

® Why was this presentation effective!
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Project |

® All students did well in learning new material and
presenting it.

® Your effort was apparent

® Even if you were nervous speaking, this is very important
experience for you as it is a regular task in any job!

e Keep doing it because it gets easier.
® Some room for improvement
e Keep to time limits
® | will enforce this for next round

® Avoid speaking with back to audience
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Today

® Summary of random network models
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Summary of Random Networks Models

How well do these models capture social network properties!?

Giant Degree Small

Wodel Component Distribution World

Clustering

Poisson static

Configurtion Ese=lile Y Y/N Y N
Small World static Y N Y Y
Preferential Y
attachemnt growth v v e o

much?)

© Keith M. Chugg, 2014



Phase Transitions for Poisson Networks

b) (k) <1 Subcritical regime
o No giant component.
. Cluster size distribution:
P(s) ~e ¢
1 *  The size of the largest cluster:
Ng ~In N
a) 0s | *  Theclusters are trees.
Z 06 F
> c) (k) =1 Critical point
Z 04 . No giant component.
. Cluster size distribution:
02 } P(s) ~ s73/2
. Size of the largest cluster:
0 . Ng ~ N?/3
0 1 2 3 4 5 6 . The clusters may contain loops.

d) (k) > 1 Supercritical regime
L \ . Single giant component.
; ‘5"-2;‘7(7&‘(“§D: *  Cluster size distribution:
. I\ AT\
Evolution of a random network. s Wt P(s) ~ e
“’)’:"\“&:"5 . Size of the giant component:
el Ve ol & B '
(a) The relative size of the giant component in function of the average /&";“v“ ‘ Ng ~ (p = pe)N
degree o in the Erd8s-Rényi model. ; o . I;hcehsmf” Clusters are trees.
(b)-(e) The main network characteristics in the four regimes that charac- o R
. o
terize a random network.
Barabasi

(k) >In N Fully connected regime
o Single giant component.
. No isolated nodes or clusters.
. Size of the giant component:
Ng =N
. GC has many loops.
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Configuration Model

® Condition for the emergence of the Giant Component

9 THRESHOLD condition for giant
Ik {K } — 2K {K} >0 component to exist asymptotically

0

B k S = fraction of nodes in the GC
(1-25)= ;(1 = 5)"px (k) when above threshold is met
=0

Note that for Poisson distribution with mean alpha:
E{K?} —2E{K} >0

Mg — &
5 —>E{K2}:0%——|—m%{:o¢—l—a2 —> I
O —

a> 1

(This may have some issues since it allows for nodes to connect to themselves)
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Phase Transitions for Poisson Networks

Example realizations from Jackson

11 (n=50,p=0.078,5=0.98)
J— (n=50, P=0.05, S=0.94)

A
9 %)

Q
S B
O e e E  (n=50,p=0.03,5=0.62)
e
£ 0.5 %
= | > —aS

S=1-—ce¢
5

" meandegree z (alpha = mean degree)
FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component

size (dotted line), for the Poisson random graph, Eqgs. (20)
and (21).

® Emergence of the Giant Component: p(N)~I/N (alpha=1)
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® Also view as p, N fixed and varying TT — “herd immunity”

© Keith M. Chugg, 2014

Application: Contagion/Diffusion

Fraction of susceptible nodes in giant component

outbreak 1.0
limited to a
small
components 0.8
0.6 - outbreak spreads through
giant component of size S
0.4
0.2
OO | | | | | | | | |
00 05 10 15 20 25 30 35 40 45 50

p(l-m)n

FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson
random network as a function of the proportion of susceptible nodes 1 — 7 times the link
probability p times the population size n.  Barabasi



Today

® Overview of the rest of the class
o Quiz
® | ecture material

® Project 2/homework
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Overview

® Network robustness/resilience and percolation theory
® (Cascades

® |Information diffusion and epidemics
® Network search

® |earning and consensus formation
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Primary References

Resilience, Percolation, Cascades
Newman, The Structure and Function of Complex Networks, SIAM REVIEW,Vol.45, No.2, pp.167-256, 2003, Section VIII, A
Barabasi, Chapter 9
Easley & Kleinberg, Chapters 16 & 19
Information diffusion and epidemics
Newman, Section VIII, B
Jackson, Chapter 7.
Barabasi, Chapter 10

Easley & Kleinberg, Chapter 21.

[ Network Search
L Easley & Kleinberg, Chapter 4
° Newman, Section VIl C

Learning and Consensus Formation

Jackson, Chapter 8.



Network Resilience
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FIG. 7 Mean vertex—vertex distance on a graph represen-
tation of the Internet at the autonomous system level, as
vertices are removed one by one. If vertices are removed in
random order (squares), distance increases only very slightly,
but if they are removed in order of their degrees, starting with
the highest degree vertices (circles), then distance increases
sharply. After Albert et al. [15].

Newman
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Network Resilience

14 Attacks - )
Random failures = 14, A‘thaC S e
o, Random failures -
= 075 e,
ey ~~ [ ] 0.
Q? o 0.75 |- o
N——" [ ]
= 0.5 8 * .'.
= | & * ‘e
QEB /L': 0.5 ° '.
0.25 \é . o.'
R °.
0.25 ° o.
0 [ ]
0 0.25 0.5 0.75 1 %
[ ] [ ]
f 0 “W«MW'
0 0.25 0.5 0.75 1

Figure 8.11 Scale-free networks under attack. Figure 8.13 Attack and failures in random networks.

The probability that a node belongs to the largest connected component  The fraction of nodes that belong to the giant component in a random
(Groony. In the 0ase of an atiack té nodes are removed in  decreasing (- E14GS-Rényi) network if an f fraction of nodes are removed

ogrder of their degree: we first remove the biggest hub, followed by the ° randomly (random failure, green) ar.]d |.n decreaSIn-g order of th?”’.

next biggest and so on. In the case of failures, the order in which the degree (att.acks, red). E_BOth curves indicate the eX|Ste_nce of a finite
nodes are chosen is random, independent of the node’s degree. The plot threshold, in contrast with scale-free networks, for which f. — 1 under
illustrates the network’s extreme fragility to attacks: f. is rather small, random failures. The simulations were performed for random networks
implying that the removal of only a few hubs can disintegrate the network. with N = 10,000 and (k) = 3.

The initial network has a degree exponent y = 2.5, k.,, = 2 and

N =10, 000.

min

Barabasi
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Overview of Epidemic Analysis

® Fully-Mixed or Homogeneous Mixing
® All nodes (people) can contact all other nodes

® Epidemics on Networks
® Account for degree distribution using configuration model
® More difficult to analyze

® Note that “epidemic” is a catch-all phrase and the analysis also
applies to trends, memes, ideas, marketing, etc.
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Overview of Epidemic Analysis

® Fully-Mixed or Homogeneous Mixing
® All nodes (people) can contact all other nodes

® Sometimes modify to include an factor to account for
typical number of contacts (~ave. degree)

® Results in differential equations or difference equations
® S| & Bass Model
® SIS
e SIR
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Epidemic Spread - Bass Model

di(t)

= as(t) + Ji(t)s(t) = (a + Bi(t))(1 —i(?))

fraction infected
° ° . L4 ,’
“innovation rate” “infection rate

“spontaneous infection rate” Fu
l[

i ~ fraction infected /

s ~ fraction susceptible L

© Keith M. Chugg, 2014



Epidemic Spread - S| Model

(a)

(b)

If i(¢) is small,

dit)

i(t) ~ ige R

exponential
outbreak

© Keith M. Chugg, 2014

Susceptible
(healthy)

|
)
&S

RN

Same as Bass with no
spontaneous infection

Infected
(sick)

b— B<k>

—

Fraction Infected i(t)

o

As i(t) — 1

o account for number of
(T
a contacts

saturation

Barabasi




Epidemic Spread -

(a) |
Infection M
—_—D>
[Z
Recovery (,C?F/
Co (3?43‘7 ™
Susceptible Infected
(healthy) (sick)
(b)

Fraction Infected ()

W
e T S S !

If i(¢) is small, | (Endemic state:
| . D
i(t) ~ dgelPRI—Ht _ i(o0) =1 5
L s L ; L L L s 1|0 s L L
u Time t

Figure 10.6 The Susceptible-Infected-Susceptible
(SIS) Model

Barabasi

o
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SIS Model

[ = recovery rate

A=
14
A\ epidemic spreads to
fraction of population
<1 infection dies out



Epidemic Spread - SIR Model

(a)
Infection
Susceptible Infected Removed Epldemlc dles OUt
(healthy) (sick) (immune / dead)
(b) (c)
1
5 s(t) —
ds(t ‘ . E 0.75 |- i(t) — o
W) sy [ - r(t) — (o) - (t) —
. joF
YO i+ pmio 0 —ro -] 3 0%
dt =
dr() . =
dr = pi (). é 025 -
O |
0 20 40 60

Figure 10.7 The Susceptible-Infected-Recovered
(SIR) Model.

Barabasi
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Epidemic Spread - Fully Mixed

Exponential Growth

1 SI
|
SIS
0.75 - ]
Final Regime
X
+ 0.5 - i
N——~
S
0.25 - i
SIR
0
0 5 10 15
S SIS SIR
xponential grow 1—i, +i,exp(Br) K= B 1+ CePr solution

of infected individuals

Late behavior: . _ . 1 _
Saturation at t>o° Z(OO) =1 Z(OO) =1

Barabasi
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Epidemic Spread - Networks

® Static Models
® Removal of some fraction of the nodes in a network
® Does the GC survive! GC predicts extent of outbreak

® TJypical a threshold on fraction of susceptible nodes in terms
of network degree distribution moments

® SIR on Networks
® Results of static analysis apply
® SIS on Network

® Mean field approximations



Recall Configuration Model

® Condition for the emergence of the Giant Component

THRESHOLD condition for giant
1D {Kz} — 9F {K} >0 component to exist asymptotically

(Reed-Molloy condition)

©.@)
1 —8) = 1 — e (K S = fraction of nodes in the GC
( ) kz:;)( ) pK( ) when above threshold is met

Note that for Poisson distribution with mean alpha:
E{K?} —2E{K} >0

Mg — &
5 —>E{K2}:0%——|—m%{:o¢—l—a2 —> I
O —

a> 1

(This may have some issues since it allows for nodes to connect to themselves)
© Keith M. Chugg, 2014
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Recall: Application: Contagion/Diffusion

Fraction of susceptible nodes in giant component

outbreak 1.0
limited to a
small
components 0.8
0.6 - outbreak spreads through
giant component of size S
0.4
0.2
OO | | | | | | | | |
00 05 10 15 20 25 30 35 40 45 50

p(l-m)n

FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson
random network as a function of the proportion of susceptible nodes 1 — 7 times the link
probability p times the population size n.  Barabasi

® Also view as p, N fixed and varying TT — “herd immunity”
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Epidemic Spread - Networks

® The previous example was based on the degree distribution of
the network after all immunized (R) nodes were removed.

® Different than the degree distribution of the original
network

® Need to compute degree distribution of the network after
nodes are removed and apply Reed-Molloy condition



© Keith M. Chugg, 2014

Epidemic Spread - Networks

K = random variable modeling degree of randomly selected
node in original network

D = random variable modeling the degree of a “discovered”
node (randomly select edge and randomly select node at edge)

M = random variable modeling degree for network after a
fraction TT of nodes are removed at random

Recall:

dpk (d)
E{K}

pp(d) =

(your friends are more popular than you)



Intuition of Reed-Molloy

dpr (d)

£ (D) = Y dpp(a) = S0 2D _ B
d=0

Expected value of a discovered node should be >2 to be able to
keep exploring — i.e., it was discovered along | edge and should
have another to keep exploring

E{K*} —2E{K} >0

© Keith M. Chugg, 2014



Epidemic Spread - Networks

® K = random variable modeling degree of randomly selected
node in original network

® M = random variable modeling degree for network after a
fraction TT of nodes are removed at random

PrR{M =m|K =k} = ( 7]7% )(1 — 7)™ ™™ = Binomial(k, 1 — )

pu(m) =PR{M =m} = PrR{M =m|K = k}pk (k)
k>m

]E{Ml} = ipK(k) {zk: m! ( 75,% )(1 W)mwkm}
k=0

m=0

I-th moment of binomial



Epidemic Spread - Networks

® K = random variable modeling degree of randomly selected
node in original network

® M = random variable modeling degree for network after a
fraction TT of nodes are removed at random

E{M}=E{K(1—-—n)}=E{K} (1 —m)
E{M?*} =E{K(1-m)r+K*(1-7)*} =E{K}(1-m)r+E{K*} (1 -7)?

E{K?} -2E{K}
E{K?} —E{K}

Reed-Molloy on 9
reduced network k {M } > 2E{ M} <~ T <

E{K}
E{K?} —E{K}

= T

(1—m)=7>



Examples

® Constant degree
® k=2:no giant component for any nodes removed
® k=3:no GC if more than half nodes removed (immunized)

® Poisson degree distribution

Te = — p(N-1)(1-m)=1 same as toy example

© Keith M. Chugg, 2014



Fractio
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FIGURE 7.3
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© Keith M. Chugg, 2014

Examples

n of suscep
eptible nod

tible nodes in the giant component
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. ®
&
€
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6@ @ 1.5-mean network
06 .' ¢ - 2-mean network
0.*0 @ —A— 5-mean network
: @ —=#— |0-mean network
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| -7

Fraction in the largest componentof the susceptible population as a function

at 1s susceptible in a Poisson network. A
- :r_‘/{
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Examples

® Power law with alpha in (I,3)
® Giant component always persists (network percolates)

® No matter how many nodes are immunized, the epidemic
will spread through entire remaining population!!!

© Keith M. Chugg, 2014



Epidemic Spread

04 | high degree hubs make scale-

free networks more susceptible
to epidemic spread

Scale-free

1 1 ! 1 1 1
0.00 0.20 0.40 0.60 O.8BO

Figure 10.14 Epidemic Threshold

The fraction of infected individuals i(1) = i(t — oo) in the endemic state of the
SIS model. The two curves are for a random (red curve) and a scale-free
contact network (blue curve). The random network has a finite epidemic
threshold, implying that a pathogen with a small spreading rate (1 < 4.) must
die out, i.e. i(4.) = 0. If, however, the spreading rate of the pathogen
exceeds /_, a finite fraction of the population is infected at any time. For a
scale-free network we have 1. = 0, hence even viruses with a very small
spreading rate 1 can spread and persist in the population.

Barabasi

These are network models that take into
account connectivity in the population
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Examples

Fraction of immune nodes
1.0 e —— — ; >
0.8 3 go to | as network/
———————————————— ? max-degree increases
0.6 N
ta ! — v =20
f} i WY B 25 ~
ek e Ll
0.0 L— ' L L I ! 1 ;
0 200 400 600 800 1000 1200
Maximal degree 4

FIGURE 7.2 Threshold fraction of nodes that need to be immune in 3 scale-free network
to stop diffusion amon g susceptible nodes as a function of the maximal degree amon g nodes
in the network.

s n
UYL JERLATL IR Y

® Power law with alpha in (1,3) for finite network size
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Dual Interpretation

® Power law with alpha in (I,3)

® Randomly disabling any fraction of nodes in a scale-free
network will not destroy the giant component

® Scale-free networks are completely robust against random
attacks!
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Targeted Immunization/Attack

® What if we target those nodes with highest degree?

® This changes the previous analysis because eliminating

highest degree nodes, removes more neighbors of surviving
nodes than random removal.

® Analysis is very similar though (Jackson 7.2.2)

® Result for scale-free networks
® Targeting changes results dramatically

® e.g., taking out ~3% of nodes in order of degree will
destroy the GC of scale-free network with alpha=2.5



Network Resilience

0.03

0.02

critical fraction

0.01

exponent o

FIG. 14 The fraction of vertices that must be removed from
a network to destroy the giant component, if the network has
the form of a configuration model with a power-law degree
distribution of exponent «, and vertices are removed in de-
creasing order of their degrees.

Newman
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Network Resilience

14 Attacks - )
Random failures = 14, A‘thaC S e
o, Random failures -
= 075 e,
ey ~~ [ ] 0.
Q? o 0.75 |- o
N——" [ ]
= 0.5 8 * .'.
= | & * ‘e
QEB /L': 0.5 ° '.
0.25 \é . o.'
R °.
0.25 ° o.
0 [ ]
0 0.25 0.5 0.75 1 %
[ ] [ ]
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Figure 8.11 Scale-free networks under attack. Figure 8.13 Attack and failures in random networks.

The probability that a node belongs to the largest connected component  The fraction of nodes that belong to the giant component in a random
(Groony. In the 0ase of an atiack té nodes are removed in  decreasing (- E14GS-Rényi) network if an f fraction of nodes are removed

ogrder of their degree: we first remove the biggest hub, followed by the ° randomly (random failure, green) ar.]d |.n decreaSIn-g order of th?”’.

next biggest and so on. In the case of failures, the order in which the degree (att.acks, red). E_BOth curves indicate the eX|Ste_nce of a finite
nodes are chosen is random, independent of the node’s degree. The plot threshold, in contrast with scale-free networks, for which f. — 1 under
illustrates the network’s extreme fragility to attacks: f. is rather small, random failures. The simulations were performed for random networks
implying that the removal of only a few hubs can disintegrate the network. with N = 10,000 and (k) = 3.

The initial network has a degree exponent y = 2.5, k.,, = 2 and

N =10, 000.

min

Barabasi
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Network Epidemic Analysis

e SIR Model

® Adapt previous Reed-Molloy condition for prediction of
giant component (reach of epidemic)

e SIS Model
® Reed-Molloy analysis not tractable
® Use “degree-based meeting model” with mean-field analysis

® Jackson 7.2.5 and Barabasi uses this method for SI, SIS, SIR
models in Chapter |0, Section 3

® |n between the fully-mixed and network model of (R-M)



Network Epidemic Analysis - SIR

Consider the probability that an infected node infects a
susceptible neighbor before being removed — call this v.

It can be shown that the previous analysis considering Tt
fraction of the nodes removed can be applied with 71 = |-v.

E{K)
E{K?} —E{K}

= 7.

(1—m)=7>

Y, v-critical

If v>v-critical, then the epidemic will spread

Size of outbreak determined by GC size equation



Network Epidemic Analysis - SIS

® Degree-based meeting model
® Basically, solve the SIS differential equation for each degree
® (Can see epidemic dynamics as a function of degree

® Average over degree distribution to make conclusions about
epidemic spread
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Network Epidemic Analysis - SIS

Probability of meeting a degree d person: pn(d)

Fraction of degree k nodes infected:

Average infection rate: =) i.px(k)

Probability of meeting an infected person: 6 =Y pp(d)iq

0= (1—1i4)Bdl —iqu steady state



Network Epidemic Analysis - SIS

If a steady state exists, it satisfies:

B pic (K)MNOE?
0= Z E{K} (MK + 1)

k

E{K
Infection is epidemic if: A>Ac= E{{Kz}}

Always satisfied for power-law networks

1

For Poisson network: \ >
|+ E{K)




Epidemic Analysis (SI)

0.75 T

0.5 - _

Epidemic spreads
025 | | faster across high-
degree nodes

ix(t)

t

Figure 10.12 Fraction of Infected Nodes in the SI Model

Equation (10.17) predicts that the a pathogen spreads with different speed
on nodes with different degrees. To be specific, we can write

i, = g(t) + kf(¢), indicating that at any time the fraction of high degree
nodes that are infected is higher than the fraction of low degree nodes.
This is illustrated in the figure above, that shows the fraction of infected
nodes with degrees k = 1, 10, and 100 in an Erdés-Rényi network with
average degree (k) = 2 for a spreading rate f = 0.1 and initial condition

i, = 0.01. As the figure indicates at + = 5 less than 1% of the k = 1 degree
nodes are infected, but close to 10% of the k = 10 nodes and over 75% of
the k = 100 nodes.

Barabasi
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Epidemic Analysis

M(iDE MODEL T A,
di (1) . (k)
SI — = B (Ok6,(1) B — (k) 0 Summary from
Barabasi — all from
di, (1) . . (k) (k) degree-based
SIS kX — B - _
ar - PUTROREO-O | g iy | W) s"
meeting model
di (1) | 1
G| e = BS,(100, ()i 1 _w G
Sk(l‘)=1—ll(t)—rk(t) ﬁ(k >_(:u+ﬁ)<k> <k>

Table 10.3 Epidemic Models on Networks

The table shows the rate equation for the three basic epidemic models
(SI, SIS, SIR) on a network with arbitrary (k) and (k?), the
corresponding characteristic = and the epidemic threshold 4. For the
Sl model 4. = 0, as in the absence of recovery (¢ = 0) a pathogen
spreads until it reaches all susceptible individuals. The listed z and A,
are derived in Advanced Topics 10.B.

Barabasi
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Summary of Epidemics

® Spread of epidemic is a function of
® Spreading model (SI, SIS, SIR, etc.)
® Network topology
® first and second moment of degree distribution
® threshold effect for large networks
® Scale free networks

® Always support epidemics, even with random immunization

® Targeted immunization effective with small fraction of nodes

® Network resilience as the dual interpretation
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