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Today

• Project 1 discussion

• Summary of random network models

• Overview of the rest of the class

• Quiz

• Lecture material

• Project 2/homework
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Project 1

• Nice job on projects!

• Each of you has 3 marks on blackboard:

• participation: how many of the 4 sessions did you 
submit eval form?

• Class scores for presentation and apparent project 
depth (out of 5)

• Will be posting a teammate assessment form - all 
required to complete.

• Overall grade for project assigned when I can review 
your reports.
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Project 1

• “Best Presentation” as voted by students:

• Social Network Analysis using Gephi

• Nischal, Shobit, Sushanth

• Scored 4.63/5 averaged over all evals and two criteria!

• Win a prestigious grand prize from Prof. Chugg

• Why was this presentation effective?
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Project 1
• All students did well in learning new material and 

presenting it.  

• Your effort was apparent

• Even if you were nervous speaking, this is very important 
experience for you as it is a regular task in any job!

• Keep doing it because it gets easier.

• Some room for improvement

• Keep to time limits

• I will enforce this for next round

• Avoid speaking with back to audience
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Today

• Project 1 discussion

• Summary of random network models

• Overview of the rest of the class

• Quiz

• Lecture material

• Project 2/homework
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Summary of Random Networks Models

Model Type Giant 
Component

Degree 
Distribution

Small 
World Clustering

Poisson static Y N Y N

Configurtion static Y Y/N Y N

Small World static Y N Y Y

Preferential 
attachemnt growth Y Y

Y 
(too 

much?)
Y/N

How well do these models capture social network properties?
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Phase Transitions for Poisson Networks
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P (s) ∼ e−αs

NG ∼ (p− pc)N

NG = N

⟨k⟩ < 1

⟨k⟩ = 1

⟨k⟩ > 1

⟨k⟩ ≥ lnN

b)

c)

d)

e)

Image 3.6
Evolution of a random network.

(a) The relative size of the giant component in function of the average 
degree ‹k› in the Erdős-Rényi model. 
(b)-(e) The main network characteristics in the four regimes that charac-
terize a random network. 
Barabasi
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Configuration Model

9
(This may have some issues since it allows for nodes to connect to themselves)

• Condition for the emergence of the Giant Component

THRESHOLD condition for giant 
component to exist asymptotically

E
�
K2

 
� 2E {K} > 0

(1� S) =
1X

k=0

(1� S)kpK(k)
S = fraction of nodes in the GC 
when above threshold is met

Note that for Poisson distribution with mean alpha:

�2
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E
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Phase Transitions for Poisson Networks
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Newman

IV Random graphs 21

Erdős and Rényi in a series of papers in the 1960s [141,
142, 143]. Typically the limit of large n is taken holding
the mean degree z = p(n−1) constant, in which case the
model clearly has a Poisson degree distribution, since the
presence or absence of edges is independent, and hence
the probability of a vertex having degree k is

pk =

(

n

k

)

pk(1 − p)n−k ≃
zke−z

k!
, (18)

with the last approximate equality becoming exact in the
limit of large n and fixed k. This is the reason for the
name “Poisson random graph.”

The expected structure of the random graph varies
with the value of p. The edges join vertices together
to form components, i.e., (maximal) subsets of vertices
that are connected by paths through the network. Both
Solomonoff and Rapoport and also Erdős and Rényi
demonstrated what is for our purposes the most impor-
tant property of the random graph, that it possesses what
we would now call a phase transition, from a low-density,
low-p state in which there are few edges and all compo-
nents are small, having an exponential size distribution
and finite mean size, to a high-density, high-p state in
which an extensive (i.e., O(n)) fraction of all vertices are
joined together in a single giant component, the remain-
der of the vertices occupying smaller components with
again an exponential size distribution and finite mean
size.

We can calculate the expected size of the giant compo-
nent from the following simple heuristic argument. Let
u be the fraction of vertices on the graph that do not
belong to the giant component, which is also the proba-
bility that a vertex chosen uniformly at random from the
graph is not in the giant component. The probability
of a vertex not belonging to the giant component is also
equal to the probability that none of the vertex’s network
neighbors belong to the giant component, which is just
uk if the vertex has degree k. Averaging this expression
over the probability distribution of k, Eq. (18), we then
find the following self-consistency relation for u in the
limit of large graph size:

u =
∞
∑

k=0

pkuk = e−z
∞
∑

k=0

(zu)k

k!
= ez(u−1). (19)

The fraction S of the graph occupied by the giant com-
ponent is S = 1 − u and hence

S = 1 − e−zS . (20)

By an argument only slightly more complex, which we
give in the following section, we can show that the mean
size ⟨s⟩ of the component to which a randomly chosen
vertex belongs (for non-giant components) is

⟨s⟩ =
1

1 − z + zS
. (21)

The form of these two quantities is shown in Fig. 10.
Equation (20) is transcendental and has no closed-form
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FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component
size (dotted line), for the Poisson random graph, Eqs. (20)
and (21).

solution, but it is easy to see that for z < 1 its only non-
negative solution is S = 0, while for z > 1 there is also
a non-zero solution, which is the size of the giant com-
ponent. The phase transition occurs at z = 1. This is
also the point at which ⟨s⟩ diverges, a behavior that will
be recognized by those familiar with the theory of phase
transitions: S plays the role of the order parameter in
this transition and ⟨s⟩ the role of the order-parameter
fluctuations. The corresponding critical exponents, de-
fined by S ∼ (z−1)β and ⟨s⟩ ∼ |z−1|−γ , take the values
β = 1 and γ = 1. Precisely at the transition, z = 1, there
is a “double jump”—the mean size of the largest compo-
nent in the graph goes as O(n2/3) for z = 1, rather than
O(n) as it does above the transition. The components
at the transition have a power-law size distribution with
exponent τ = 5

2 (or 3
2 if one asks about the component

to which a randomly chosen vertex belongs). We look at
these results in more detail in the next section for the
more general “configuration model.”

The random graph reproduces well one of the prin-
cipal features of real-world networks discussed in Sec-
tion III, namely the small-world effect. The mean num-
ber of neighbors a distance ℓ away from a vertex in a
random graph is zd, and hence the value of d needed to
encompass the entire network is zℓ ≃ n. Thus a typical
distance through the network is ℓ = log n/ log z, which
satisfies the definition of the small-world effect given in
Sec. III.A. Rigorous results to this effect can be found
in, for instance, Refs. 61 and 63. However in almost all
other respects, the properties of the random graph do not
match those of networks in the real world. It has a low
clustering coefficient: the probability of connection of two
vertices is p regardless of whether they have a common
neighbor, and hence C = p, which tends to zero as n−1 in
the limit of large system size [416]. The model also has a
Poisson degree distribution, quite unlike the distributions
in Fig. 6. It has entirely random mixing patterns, no cor-
relation between degrees of adjacent vertices, no commu-

• Emergence of the Giant Component: p(N)~1/N (alpha=1)

S = 1� e�↵S

(alpha = mean degree)

•

• •

(n=50, p=0.03, S=0.62)

(n=50, p=0.05, S=0.94)
(n=50, p=0.078, S=0.98)

Example realizations from Jackson
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Application: Contagion/Diffusion

11

• Also view as p, N fixed and varying π — “herd immunity”

107 

4.4 

4.4 Distribution of Component Sizes 
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FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson 
random network as a function of the proportion of susceptible nodes 1 − π times the link 
probability p times the population size n. 

impact of informing a few agents in the population about the product, when they 
communicate by word of mouth with others and each individual is sure to learn 
about the product from any neighbor who buys it. 

This analysis is built on contagion taking place with certainty between any 
infected and susceptible neighbors. When the transmission is probabilistic, which 
is the case in some applications, then the analysis needs to account for that. Such 
diffusion is discussed in greater detail in Chapter 7. 

Distribution of Component Sizes* 
The derivations in Section 4.2.6 provide an idea of when a giant component will 
emerge, and its size, but we might be interested in more information about the 
distribution of component sizes that emerge in a network. Again, we will see 
how important this is when we examine network-based diffusion in more detail in 
Chapter 7. Following Newman, Strogatz, and Watts [510], we can use probability 
generating functions to examine the component structure in more detail. (For 
readers not familiar with generating functions, it will be useful to read Section 
4.5.9 before preceding with this section.) 

This analysis presumes that adjacent nodes have independent degrees, and so it 
is best to fix ideas by referring to the configuration model, in which approximate 
independence holds for large n. Let the degree distribution be described by P . 

Consider the following question. What is the size of the component of a node 
picked uniformly at random from the network? We answer this by starting at a 

Barabasi

outbreak 
limited to a 

small 
components 

outbreak spreads through 
giant component of size S 
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Today

• Project 1 discussion

• Summary of random network models

• Overview of the rest of the class

• Quiz

• Lecture material

• Project 2/homework
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Overview

• Network robustness/resilience and percolation theory

• Cascades

• Information diffusion and epidemics

• Network search

• Learning and consensus formation

13
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Primary References
• Resilience, Percolation, Cascades 

• Newman, The Structure and Function of Complex Networks, SIAM REVIEW, Vol.45, No.2, pp.167–256, 2003, Section VIII, A

• Barabasi, Chapter 9

• Easley & Kleinberg, Chapters 16 & 19

• Information diffusion and epidemics 

• Newman, Section VIII, B

• Jackson, Chapter 7.  

• Barabasi, Chapter 10

• Easley & Kleinberg, Chapter 21.

• Network Search 

• Easley & Kleinberg, Chapter 14

• Newman, Section VIII C

• Learning and Consensus Formation 

• Jackson, Chapter 8.  

14
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Network Resilience
III Properties of networks 15

where we have made the (fairly safe) assumption that
pk is sufficiently small for k ! kmax that npk ≪ 1 and
Pk ≪ 1.

For example, if pk ∼ k−α in its tail, then we find that

kmax ∼ n1/(α−1). (13)

As shown by Cohen et al. [93], a simple rule of thumb that
leads to the same result is that the maximum degree is
roughly the value of k that solves nPk = 1. Note however
that, as shown by Dorogovtsev and Samukhin [129], the
fluctuations in the tail of the degree distribution are very
large for the power-law case.

Dorogovtsev et al. [126] have also shown that Eq. (13)
holds for networks generated using the “preferential at-
tachment” procedure of Barabási and Albert [32] de-
scribed in Sec. VII.B, and a detailed numerical study
of this case has been carried out by Moreira et al. [295].

D. Network resilience

Related to degree distributions is the property of re-
silience of networks to the removal of their vertices, which
has been the subject of a good deal of attention in the
literature. Most of the networks we have been consider-
ing rely for their function on their connectivity, i.e., the
existence of paths leading between pairs of vertices. If
vertices are removed from a network, the typical length of
these paths will increase, and ultimately vertex pairs will
become disconnected and communication between them
through the network will become impossible. Networks
vary in their level of resilience to such vertex removal.

There are also a variety of different ways in which ver-
tices can be removed and different networks show vary-
ing degrees of resilience to these also. For example, one
could remove vertices at random from a network, or one
could target some specific class of vertices, such as those
with the highest degrees. Network resilience is of partic-
ular importance in epidemiology, where “removal” of ver-
tices in a contact network might correspond for example
to vaccination of individuals against a disease. Because
vaccination not only prevents the vaccinated individuals
from catching the disease but may also destroy paths be-
tween other individuals by which the disease might have
spread, it can have a wider reaching effect than one might
at first think, and careful consideration of the efficacy of
different vaccination strategies could lead to substantial
advantages for public health.

Recent interest in network resilience has been sparked
by the work of Albert et al. [15], who studied the ef-
fect of vertex deletion in two example networks, a 6000-
vertex network representing the topology of the Internet
at the level of autonomous systems (see Sec. II.C), and
a 326 000-page subset of the World Wide Web. Both of
the Internet and the Web have been observed to have de-
gree distributions that are approximately power-law in
form [14, 74, 86, 148, 401] (Sec. III.C.1). The authors
measured average vertex–vertex distances as a function
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FIG. 7 Mean vertex–vertex distance on a graph represen-
tation of the Internet at the autonomous system level, as
vertices are removed one by one. If vertices are removed in
random order (squares), distance increases only very slightly,
but if they are removed in order of their degrees, starting with
the highest degree vertices (circles), then distance increases
sharply. After Albert et al. [15].

of number of vertices removed, both for random removal
and for progressive removal of the vertices with the high-
est degrees.14 In Fig. 7 we show their results for the
Internet. They found for both networks that distance
was almost entirely unaffected by random vertex removal,
i.e., the networks studied were highly resilient to this type
of removal. This is intuitively reasonable, since most
of the vertices in these networks have low degree and
therefore lie on few paths between others; thus their re-
moval rarely affects communications substantially. On
the other hand, when removal is targeted at the high-
est degree vertices, it is found to have devastating effect.
Mean vertex–vertex distance increases very sharply with
the fraction of vertices removed, and typically only a few
percent of vertices need be removed before essentially all
communication through the network is destroyed. Al-
bert et al. expressed their results in terms of failure or
sabotage of network nodes. The Internet (and the Web)
they suggest, is highly resilient against the random fail-
ure of vertices in the network, but highly vulnerable to
deliberate attack on its highest-degree vertices.

Similar results to those of Albert et al. were found in-
dependently by Broder et al. [74] for a much larger subset
of the Web graph. Interestingly, however, Broder et al.

14 In removing the vertices with the highest degrees, Albert et al.
recalculated degrees following the removal of each vertex. Most
other authors who have studied this issue have adopted a slightly
different strategy of removing vertices in order of their initial
degree in the network before any removal.

Newman
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Network Resilience

Barabasi

Critical threshold under attacks

As Figure 8.11 indicates, an attack on a scale-free network has two 
consequences: 

• The critical threshold, fc, is smaller than fc = 1, indicating that 

under attacks a scale-free network can be fragmented by the 
removal of a finite fraction of its hubs.

• The observed fc is remarkably low, indicating that we need to 

remove only a tiny fraction of the hubs to cripple the network. 

To quantify this process we need to analytically calculate fc for a 

network under attack. To do this we rely on the fact that hub 
removal changes the underlying network in two different ways [9]:

• It changes the maximum degree of the network from kmax to k′�max, 

as all nodes with degree higher than k′�max have been removed.

• The degree distribution of the network changes from pk to p′�k′�, as 

all nodes connected to the removed hubs will loose links, altering 
the degrees of the remaining nodes.

In Advanced Topics 8.E we combine these two changes and map the 
attack problem into the robustness problem discussed in the 
previous section. In other words, we can view an attack as random 
node removal from a network with adjusted k′�max and p′�k′�.  The 

calculations predict that the critical threshold fc for attacks on a 

scale-free network with degree exponent γ is the solution of the 
equation [9, 10]. 

! ! ! f
2 − γ
1 − γ
c = 2 + 2 − γ

3 − γ
kmin( f

3 − γ
1 − γ
c − 1) .  !!   (8.12)

Figure 8.12 shows the numerical solution of (8.12) in function of γ, 
leading to several conclusions: 

23

The probability that a node belongs to the largest connected component 
in a scale-free network under attack (red) and under random failures 
(green). In the case of an attack the nodes are removed in a decreasing 
order of their degree: we first remove the biggest hub, followed by the 
next biggest and so on. In the case of failures, the order in which the 
nodes are chosen is random, independent of the node’s degree. The plot 
illustrates the network’s extreme fragility to attacks: fc is rather small, 
implying that the removal of only a few hubs can disintegrate the network. 
The initial network has a degree exponent γ = 2.5, kmin = 2 and 
N = 10, 000.

Figure 8.11 Scale-free networks under attack.
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• While fc for failures decreases monotonically with γ, fc for attacks 

has a complex non-monotonic behavior. 

• fc for attacks is always smaller than fc for random failures. 

• For large γ a scale-free network behaves like a random network. 
As a random network lacks hubs, an attack on a random network 
will follow a scenario similar to random node removal. Numerical 
simulations support this expectation: Figure 8.13 shows that a 
random network has a finite percolation threshold under both 

random failures and attack. The main difference is that fc for 

attacks is lower than fc for random failures.

• The failure and the attack thresholds converge to each other for 
large γ. Indeed, if γ → ∞ then pk → δ(k − kmin), meaning that all 

nodes have the same degree kmin. Therefore random failures and 

targeted attacks become indistinguishable in the γ → ∞ limit, 
when fc → 1 − 1/(kmin − 1). 

24

Figure 8.12 Critical threshold under attack
The dependence of the critical probability, fc, on the degree exponent γ, 
for scale-free networks with kmin = 2, 3, as predicted by (8.12), for an 
attack (red curves) and by (8.7) for random failures (green curves). Note 
that (8.12) predicts that the attack threshold  fc → 0 for kmin = 2 and 
fc → 1/2 for kmin = 3, in line with the behavior observed in the figure.

��

����

����

����

����

��

�� �	 �� �
 �� �� ��

f c

�

kmin = 3

kmin = 2

kmin = 2

kmin = 3

Random'Failures'
Targeted'A3acks'

Figure 8.13 Attack and failures in random networks.
The fraction of nodes that belong to the giant component in a random 
(i.e. Erdős-Rényi) network if an f fraction of nodes are removed 
randomly (random failure, green) and in decreasing order of their 
degree (attacks, red).  Both curves indicate the existence of a finite 
threshold, in contrast with scale-free networks, for which fc → 1 under 
random failures. The simulations were performed for random networks 
with N = 10, 000 and ⟨k⟩ = 3.
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Overview of Epidemic Analysis

• Fully-Mixed or Homogeneous Mixing 

• All nodes (people) can contact all other nodes

• Epidemics on Networks 

• Account for degree distribution using configuration model

• More difficult to analyze

• Note that “epidemic” is a catch-all phrase and the analysis also 
applies to trends, memes, ideas, marketing, etc.

17
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Overview of Epidemic Analysis

• Fully-Mixed or Homogeneous Mixing

• All nodes (people) can contact all other nodes

• Sometimes modify to include an factor to account for 
typical number of contacts (~ave. degree)

• Results in differential equations or difference equations

• SI & Bass Model

• SIS

• SIR

18
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Epidemic Spread - Bass Model

fraction infected
“innovation rate”

“spontaneous infection rate”

“infection rate”

Jackson

i ~ fraction infected
s ~ fraction susceptible 

di(t)

dt
= ↵s(t) + �i(t)s(t) = (↵+ �i(t))(1� i(t))
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Epidemic Spread - SI Model

Barabasi

a typical individual has ⟨k⟩ contacts and that the likelihood that the 
disease will be transmitted from an infected to a susceptible 
individual in a unit time is β.  We wish to ask the following question: 
if a single individual becomes infected at time t = 0 (i.e. I(0) = 1), 
how many individuals will be infected at some later time t?

Within the homogenous mixing hypothesis the probability that the 
infected person encounters a susceptible individual is S(t)/N. 

Therefore the infected person comes into contact with ⟨k⟩ S(t)
N

 

susceptible individuals per unit time. Since I(t) infected individuals 
are transmitting the pathogen, each at rate β, the average number of 

new infections dI(t) during a timeframe dt is β⟨k⟩ S(t)I(t)
N

dt. 

Consequently the rate of change of I(t) follows

! ! !
dI(t)

dt
= β⟨k⟩ S(t)I(t)

N
.! ! ! ! ! (10.1)

Throughout this chapter we will use the variables 

! ! ! s(t) = S(t)/N,        i(t) = I(t)/N,! ! ! (10.2)

to capture the fraction of the susceptible and the infected 
population at time t, and for simplicity drop the (t) variable from i(t) 
and s(t). With this notation we can re-write (10.1) as (Advanced 
Topics 10.A) 

 ! ! !
di
dt

= β⟨k⟩si = β⟨k⟩i(1 − i),!! ! (10.3)

where the product β⟨k⟩ is called the transmission rate (or 
transmissibility). We solve (10.3) by writing

16

Figure 10.5 The Susceptible-Infected (SI) Model.
(a) In the SI model an individual can be in one of two states: susceptible 

(healthy) or infected (sick). The arrow indicates that once an 
individual becomes infected, it will stay infected (i.e. it cannot 
recover).

(b) The SI model assumes that if a susceptible individual comes into 
contact with an infected individual, it becomes infected at rate β. 
Hence at early times the fraction of infected individuals grows 
exponentially (left box). As eventually everyone becomes infected, at 
large times we have i(∞) = 1 (right box). The plot in the middle shows 
the time evolution of the number of infected individuals, as predicted 
by (10.4). Image courtesy of Yong-Yeol Ahn.
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Epidemic Spread - SIS Model

Barabasi

• Endemic state: (μ < β⟨k⟩): For low recovery rate the fraction of 
infected individuals, i, follows a logistic curve similar to the one 
observed for the SI model (Figure 10.5). Yet, i does not saturate 
when everyone becomes infected (i(∞) ≡ i(t → ∞) ≠ 1), but  
reaches a constant i(∞) < 1 (Figure 10.6b). This means that at any 
moment only a finite fraction of the population is infected. In this 
stationary or endemic state the number of newly infected 
individuals equals the number of individuals who recover from the 
disease, hence the infected fraction of the population does not 
change with time.  We can calculate i(∞) by setting di /dt = 0 in 
(10.6), obtaining 

! ! ! i(∞) = 1 − μ
β⟨k⟩ . ! ! ! ! ! (10.8)

• Disease-free state (μ > β⟨k⟩): For a sufficiently high recovery rate 
the term in the exponent in (10.7) becomes negative. Therefore, i
decreases exponentially with time, indicating that the infection will 
gradually die out. The reason is that the number of individuals 
cured per unit time exceeds the number of newly infected 
individuals. Therefore with time everyone recovers and the 
pathogen disappears from the population. 

The existence of these two outcomes suggests that some 
pathogens will spread while others die out shortly. To understand 
what governs the difference between these two outcomes we write 
the characteristic time of a pathogen as

! ! ! τ = 1
μ(R0 − 1) , ! ! ! ! ! (10.9)
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(a) The SIS model has the same two states as the SI model: 
susceptible and infected. It differs from the SI model in that it allows 
recovery, i.e. infected individuals can become susceptible again at rate 
μ.

(b) The time evolution of the fraction of infected individuals in the SIS 
model, as predicted by (10.6). As recovery is possible, the system 
reaches an endemic state, in which the fraction of infected 
individuals is constant, i(∞), given by (10.8). Hence in the endemic 
state only a finite fraction of individuals are infected. Note, however, 
that for small μ the disease can also die out. 

Images courtesy of Yong-Yeol Ahn.

Figure 10.6 The Susceptible-Infected-Susceptible 
(SIS) Model
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properties are discussed in Figure 10.7, captures the dynamics of 
this process.

In summary, depending on the characteristics of the pathogen of 
interest, we need to use different quantitative models to capture 
the dynamics of an epidemic outbreak.  As shown in Figure 10.8, the 
predictions of the SI, SIS and SIR models agree with each other in 
the early stages of an epidemic: when the number of infected 
individuals is very small, the disease spreads freely and the number 
of infected individuals increases exponentially. The three models 
predict different outcomes for large times: in the SI model everyone 
becomes infected; the SIS model either reaches an endemic state, in 
which a finite fraction of individuals are always infected, or the 
infection dies out; in the SIR model everyone recovers at the end. 
The reproductive number helps us predict the long-term fate of an 
epidemic: for R0 > 1 the pathogen will spread, while for R0 < 1 it 

dies out naturally.

The models discussed so far have ignored the fact that that an 
individual comes into contact only with its network-based 
neighbors in the pertinent contact network. We assumed 
homogenous mixing instead, which means that an infected individual 
can infect any other individual. To accurately predict the dynamics of 
an epidemic, we need to account for the precise role the contact 
network plays in epidemic phenomena. This is the goal of the next 
section.

20

Figure 10.7 The Susceptible-Infected-Recovered 
(SIR) Model.
(a) In contrast with the SIS model, in the SIR model recovered 

individuals enter a “recovered” state, meaning that they develop 
immunity rather than becoming susceptible again. Flu, SARS and 
Plague are diseases with this property, hence we must use the SIR 
model to describe their spread. Image courtesy of Yong-Yeol Ahn.

(b) The differential equations governing the time evolution of the 
fraction of individuals in the susceptible s(t), infected i(t) and the 
removed r (t) state.

(c) The time dependent behavior of s, i and r as predicted by the 
equations shown in (b). The model predicts that with time all 
individuals transition from a susceptible (healthy) state to the 
infected (sick) state and then to the recovered (immune) state. 

ds(t)

dt
= ��hkii(t) [1� r(t)� i(t)]
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become infected, s(t) = 1−i(t), where s(t) = S(t)/N , and the number of infected
individuals in contact with any susceptible individual.

The susceptible–infected–susceptible (SIS) model is mainly used as a paradig-
matic model for the study of infectious diseases leading to an endemic state with
a stationary and constant value for the prevalence of infected individuals, i.e.
the degree to which the infection is widespread in the population as measured
by the density of infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt , where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible → infected → susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − i(t)] . (9.6)

The usual normalization condition s(t) = 1 − i(t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r(t) = R(t)/N . The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= β⟨k⟩i(t) [1 − r(t) − i(t)]

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − r(t) − i(t)] (9.7)

dr(t)
dt

= µi(t). (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/β, then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ ≫ 1/β,
i.e. a spreading time scale much smaller than the recovery time scale. In this
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Figure 10.8  Comparing the SI, SIS and SIR Models. 
The typical behavior of the fraction of infected individuals, i, in the SI, SIS 
and SIR models. Two different regimes stand out: 
Exponential growth: All three models predict an exponential growth in the 
number of infected individuals for the early stages of the epidemic. For the 
same β the SI model predicts the fastest growth (smallest τ, see (10.5)), 
as for the SIS and SIR models the growth is slowed by recovery, resulting 
in a larger τ, as predicted by (10.8).
Final Regime: Asymptotically the three models predict rather different 
outcomes: in the SI model everyone becomes infected, i(∞) = 1; in the 
SIS model a finite fraction of individuals are infected; in the SIR model 
everyone recovers, hence the number of infected individuals goes to zero.  
The table under the figure summarizes the properties of the three models.
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Epidemic Spread - Networks

• Static Models

• Removal of some fraction of the nodes in a network

• Does the GC survive?  GC predicts extent of outbreak

• Typical a threshold on fraction of susceptible nodes in terms 
of network degree distribution moments

• SIR on Networks

• Results of static analysis apply

• SIS on Network

• Mean field approximations
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Recall Configuration Model

25
(This may have some issues since it allows for nodes to connect to themselves)

• Condition for the emergence of the Giant Component

THRESHOLD condition for giant 
component to exist asymptotically

(Reed-Molloy condition)

E
�
K2

 
� 2E {K} > 0

(1� S) =
1X

k=0

(1� S)kpK(k) S = fraction of nodes in the GC 
when above threshold is met

Note that for Poisson distribution with mean alpha:

�2
K = ↵

mK = ↵
E
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Recall: Application: Contagion/Diffusion

26

• Also view as p, N fixed and varying π — “herd immunity”

107 

4.4 

4.4 Distribution of Component Sizes 
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Fraction of susceptible nodes in giant component 

p(1–!)n 

FIGURE 4.8 Fraction of the susceptible population in the largest component of a Poisson 
random network as a function of the proportion of susceptible nodes 1 − π times the link 
probability p times the population size n. 

impact of informing a few agents in the population about the product, when they 
communicate by word of mouth with others and each individual is sure to learn 
about the product from any neighbor who buys it. 

This analysis is built on contagion taking place with certainty between any 
infected and susceptible neighbors. When the transmission is probabilistic, which 
is the case in some applications, then the analysis needs to account for that. Such 
diffusion is discussed in greater detail in Chapter 7. 

Distribution of Component Sizes* 
The derivations in Section 4.2.6 provide an idea of when a giant component will 
emerge, and its size, but we might be interested in more information about the 
distribution of component sizes that emerge in a network. Again, we will see 
how important this is when we examine network-based diffusion in more detail in 
Chapter 7. Following Newman, Strogatz, and Watts [510], we can use probability 
generating functions to examine the component structure in more detail. (For 
readers not familiar with generating functions, it will be useful to read Section 
4.5.9 before preceding with this section.) 

This analysis presumes that adjacent nodes have independent degrees, and so it 
is best to fix ideas by referring to the configuration model, in which approximate 
independence holds for large n. Let the degree distribution be described by P . 

Consider the following question. What is the size of the component of a node 
picked uniformly at random from the network? We answer this by starting at a 

Barabasi

outbreak 
limited to a 

small 
components 

outbreak spreads through 
giant component of size S 



© Keith M. Chugg, 2014

Epidemic Spread - Networks

• The previous example was based on the degree distribution of 
the network after all immunized (R) nodes were removed.  

• Different than the degree distribution of the original 
network

• Need to compute degree distribution of the network after 
nodes are removed and apply Reed-Molloy condition
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Epidemic Spread - Networks

• K = random variable modeling degree of randomly selected 
node in original network

• D = random variable modeling the degree of a “discovered” 
node (randomly select edge and randomly select node at edge)

• M = random variable modeling degree for network after a 
fraction π of nodes are removed at random

• Recall:

pD(d) =
dpK(d)

E {K} (your friends are more popular than you)
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Intuition of Reed-Molloy
pD(d) =

dpK(d)

E {K}

Expected value of a discovered node should be >2 to be able to 
keep exploring — i.e., it was discovered along 1 edge and should 

have another to keep exploring

E {D} =
1X

d=0

dpD(d) =

P1
d=0 d

2pK(d)

E {K} =
E
�
K2
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Epidemic Spread - Networks

• K = random variable modeling degree of randomly selected 
node in original network

• M = random variable modeling degree for network after a 
fraction π of nodes are removed at random

Pr {M = m|K = k} =

⇣
k
m

⌘
(1� ⇡)m⇡k�m
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Epidemic Spread - Networks
• K = random variable modeling degree of randomly selected 

node in original network

• M = random variable modeling degree for network after a 
fraction π of nodes are removed at random

E {M} = E {K(1� ⇡)} = E {K} (1� ⇡)

E
�
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Examples

• Constant degree

• k=2: no giant component for any nodes removed

• k=3: no GC if more than half nodes removed (immunized)

• Poisson degree distribution

same as toy example⇡̄c =
1

kave
() p(N � 1)(1� ⇡) = 1
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Examples

• Power law with alpha in (1,3)

• Giant component always persists (network percolates)

• No matter how many nodes are immunized, the epidemic  
will spread through entire remaining population!!!
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These are network models that take into 
account connectivity in the population

spreading dynamics is similar to the behavior predicted for a 
random network but with an altered τ. 

• Scale-free networks with γ ≤ 3. For γ < 3 we encounter a 
qualitatively different behavior. Indeed, in the N → ∞ limit 
⟨k2⟩ → ∞ and (10.18) predicts τ → 0.  In other words, the spread 

of a pathogen on a scale-free network is instantaneous. This is 
perhaps the most unexpected prediction of network epidemics. 
The vanishing characteristic time reflects the important role hubs 
play in epidemic phenomena. Indeed, as indicated by (10.16), in a 
scale-free network the hubs are the first to be infected, as 
through the many links they have, they are very likely to be in 
contact with an infected node. Once a hub becomes infected, it 
“broadcasts” the disease to the rest of the network, turning into 
the super-spreaders encountered in Section 10.1.

• Inhomogenous networks:  A network does not need to be strictly 
scale-free for the impact of the degree heterogeneity to be 
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The fraction of infected individuals i(λ) = i(t → ∞) in the endemic state of the 
SIS model. The two curves are for a random (red curve) and a scale-free 
contact network (blue curve). The random network has a finite epidemic 
threshold, implying that a pathogen with a small spreading rate (λ < λc) must 
die out, i.e. i(λc) = 0. If, however, the spreading rate of the pathogen 
exceeds λc, a finite fraction of the population is infected at any time. For a 
scale-free network we have λc = 0, hence even viruses with a very small 
spreading rate λ can spread and persist in the population. 

Figure 10.14 Epidemic Threshold

Scale-free 

Random 

i(
�
)

The endemic state of the SIS model on a network captures the stationary 
properties of an epidemic. The fraction of individuals who are infected in the 
endemic state, i(λ) = i(t → ∞), depends on the structure of the underlying 
network and the disease parameters β and μ. The figure summarizes the key 
properties of the predicted epidemic threshold λc, the density function Θ(λ) 
and i(λ) for a scale-free network with degree exponent γ. The results indicate 
that only for γ > 4 does the epidemics on a scale-free network converge to 
the properties derived for a random network by the traditional epidemic 
models. The results are derived for a network with degree distribution (4.12). 
After [10].

Figure 10.13 The Asymptotic Behavior of the SIS Model.
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Examples

• Power law with alpha in (1,3) for finite network size

 go to 1 as network/
max-degree increases
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Dual Interpretation

• Power law with alpha in (1,3)

• Randomly disabling any fraction of nodes in a scale-free 
network will not destroy the giant component

• Scale-free networks are completely robust against random 
attacks!
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Targeted Immunization/Attack

• What if we target those nodes with highest degree?  

• This changes the previous analysis because eliminating 
highest degree nodes, removes more neighbors of surviving 
nodes than random removal.

• Analysis is very similar though (Jackson 7.2.2)

• Result for scale-free networks

• Targeting changes results dramatically

• e.g., taking out ~3% of nodes in order of degree will 
destroy the GC of scale-free network with alpha=2.5
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VIII Processes taking place on networks 39

vertex having degree k is occupied. One defines generat-
ing functions

F0(x) =
∞
∑

k=0

pkqkxk, F1(x) =

∑

k kpkqkxk−1

∑

k kpk
, (78)

and it can then be shown that the probability distribution
of the size of the component of occupied vertices to which
a randomly chosen vertex belongs is generated by H0(x)
where

H0(x) = 1 − F0(1) + xF0(H1(x)), (79a)

H1(x) = 1 − F1(1) + xF1(H1(x)). (79b)

(Note that F0 is not a properly normalized generating
function in the sense that F0(1) ̸= 1.) From this one can
derive an expression for the mean component size:

⟨s⟩ = F0(1) +
F ′

0(1)F1(1)

1 − F ′
1(1)

, (80)

which immediately tells us that the phase transition at
which a giant component forms takes place at F ′

1(1) = 1.
The size of the giant component is given by

S = F0(1) − F0(u), u = 1 − F1(1) + F1(u). (81)

For instance, in the case studied by Cohen et al. [93]
of uniform occupation probability qk = q, this gives a
critical occupation probability of qc = 1/G′

1(1), where
G1(x) is the generating function for the degree distribu-
tion itself, as defined in Eq. (23). Taking the example of
a power-law degree distribution pk = k−α/ζ(α), Eq. (32),
we find

qc =
ζ(α − 1)

ζ(α − 2) − ζ(α − 1)
. (82)

This is negative (and hence unphysical) for α < 3, con-
firming the finding that the system always percolates in
this regime. Note that qc > 1 for sufficiently large α,
which is also unphysical. One finds that the system
never percolates for α > αc, where αc is the solution
of ζ(α−2) = 2ζ(α−1), which gives αc = 3.4788 . . . This
corresponds to the point at which the underlying net-
work itself ceases to have a giant component, as shown
by Aiello et al. [8] and discussed in Sec. IV.B.1.

The main advantage of the approach of Callaway et al.
is that it allows us to remove vertices from the network
in an order that depends on their degree. If, for instance,
we set qk = θ(k−kmax), where θ(x) is the Heaviside step
function, then we remove all vertices with degrees greater
than kmax. This corresponds precisely to the experiment
of Broder et al. [74] who looked at the behavior of the
World Wide Web graph as vertices were removed in order
of decreasing degree. (Similar but not identical calcula-
tions were also performed by Albert et al. [15].) In agree-
ment with the numerical calculations (see Sec. III.D),
Callaway et al. find that networks with power-law de-
gree distributions are highly susceptible to this type of
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FIG. 14 The fraction of vertices that must be removed from
a network to destroy the giant component, if the network has
the form of a configuration model with a power-law degree
distribution of exponent α, and vertices are removed in de-
creasing order of their degrees.

targeted attack; one need only remove a small percent-
age of vertices to destroy the giant component entirely.
Similar results were also found independently by Co-
hen et al. [94], using a closely similar method, and in
a later paper [362] some of the same authors extended
their calculations to directed networks also, which show
a considerably richer component structure, as described
in Sec. IV.B.3.

As an example, consider Fig. 14, which shows the frac-
tion of the highest degree vertices that must be removed
from a network with a power-law degree distribution to
destroy the giant component, as a function of the expo-
nent α of the power law [117, 319]. As the figure shows,
the maximum fraction is less than three percent, and for
most values of α the fraction is significantly less than this.
This appears to imply that networks like the Internet
and the Web that have power-law degree distributions
are highly susceptible to such attacks [15, 74, 94].

These results are for the configuration model. Other
models offer some further insights. The finding by Co-
hen et al. [93] that the threshold value qc at which per-
colation sets in for the configuration model is zero for
degree distributions with a divergent second moment has
attracted particular interest. Vazquez and Moreno [400],
for example, have shown that the threshold may be zero
even for finite second moment if the degrees of adja-
cent vertices in the network are positively correlated
(see Secs. III.F and IV.B.5). Conversely, if the sec-
ond moment does diverge there may still be a non-zero
threshold if there are negative degree correlations. War-
ren et al. [408] have shown that there can also be a non-
zero threshold for a network incorporating geographical
effects, in which each vertex occupies a position in a low-
dimensional space (typically two-dimensional) and prob-
ability of connection is higher for vertex pairs that are
close together in that space. A similar spatial model has
been studied by Rozenfeld et al. [359], and both models
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Critical threshold under attacks

As Figure 8.11 indicates, an attack on a scale-free network has two 
consequences: 

• The critical threshold, fc, is smaller than fc = 1, indicating that 

under attacks a scale-free network can be fragmented by the 
removal of a finite fraction of its hubs.

• The observed fc is remarkably low, indicating that we need to 

remove only a tiny fraction of the hubs to cripple the network. 

To quantify this process we need to analytically calculate fc for a 

network under attack. To do this we rely on the fact that hub 
removal changes the underlying network in two different ways [9]:

• It changes the maximum degree of the network from kmax to k′�max, 

as all nodes with degree higher than k′�max have been removed.

• The degree distribution of the network changes from pk to p′�k′�, as 

all nodes connected to the removed hubs will loose links, altering 
the degrees of the remaining nodes.

In Advanced Topics 8.E we combine these two changes and map the 
attack problem into the robustness problem discussed in the 
previous section. In other words, we can view an attack as random 
node removal from a network with adjusted k′�max and p′�k′�.  The 

calculations predict that the critical threshold fc for attacks on a 

scale-free network with degree exponent γ is the solution of the 
equation [9, 10]. 

! ! ! f
2 − γ
1 − γ
c = 2 + 2 − γ

3 − γ
kmin( f

3 − γ
1 − γ
c − 1) .  !!   (8.12)

Figure 8.12 shows the numerical solution of (8.12) in function of γ, 
leading to several conclusions: 
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The probability that a node belongs to the largest connected component 
in a scale-free network under attack (red) and under random failures 
(green). In the case of an attack the nodes are removed in a decreasing 
order of their degree: we first remove the biggest hub, followed by the 
next biggest and so on. In the case of failures, the order in which the 
nodes are chosen is random, independent of the node’s degree. The plot 
illustrates the network’s extreme fragility to attacks: fc is rather small, 
implying that the removal of only a few hubs can disintegrate the network. 
The initial network has a degree exponent γ = 2.5, kmin = 2 and 
N = 10, 000.

Figure 8.11 Scale-free networks under attack.
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• While fc for failures decreases monotonically with γ, fc for attacks 

has a complex non-monotonic behavior. 

• fc for attacks is always smaller than fc for random failures. 

• For large γ a scale-free network behaves like a random network. 
As a random network lacks hubs, an attack on a random network 
will follow a scenario similar to random node removal. Numerical 
simulations support this expectation: Figure 8.13 shows that a 
random network has a finite percolation threshold under both 

random failures and attack. The main difference is that fc for 

attacks is lower than fc for random failures.

• The failure and the attack thresholds converge to each other for 
large γ. Indeed, if γ → ∞ then pk → δ(k − kmin), meaning that all 

nodes have the same degree kmin. Therefore random failures and 

targeted attacks become indistinguishable in the γ → ∞ limit, 
when fc → 1 − 1/(kmin − 1). 
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Figure 8.12 Critical threshold under attack
The dependence of the critical probability, fc, on the degree exponent γ, 
for scale-free networks with kmin = 2, 3, as predicted by (8.12), for an 
attack (red curves) and by (8.7) for random failures (green curves). Note 
that (8.12) predicts that the attack threshold  fc → 0 for kmin = 2 and 
fc → 1/2 for kmin = 3, in line with the behavior observed in the figure.
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Figure 8.13 Attack and failures in random networks.
The fraction of nodes that belong to the giant component in a random 
(i.e. Erdős-Rényi) network if an f fraction of nodes are removed 
randomly (random failure, green) and in decreasing order of their 
degree (attacks, red).  Both curves indicate the existence of a finite 
threshold, in contrast with scale-free networks, for which fc → 1 under 
random failures. The simulations were performed for random networks 
with N = 10, 000 and ⟨k⟩ = 3.
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Network Epidemic Analysis

• SIR Model

• Adapt previous Reed-Molloy condition for prediction of 
giant component (reach of epidemic)

• SIS Model

• Reed-Molloy analysis not tractable

• Use “degree-based meeting model” with mean-field analysis

• Jackson 7.2.5 and Barabasi uses this method for SI, SIS, SIR 
models in Chapter 10, Section 3

• In between the fully-mixed and network model of (R-M) 
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Network Epidemic Analysis - SIR

• Consider the probability that an infected node infects a 
susceptible neighbor before being removed — call this v.

• It can be shown that the previous analysis considering π 
fraction of the nodes removed can be applied with π = 1-v.  

() (1� ⇡) = ⇡̄ >
E {K}

E {K2}� E {K} = ⇡̄c

v v-critical

If v>v-critical, then the epidemic will spread

Size of outbreak determined by GC size equation
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Network Epidemic Analysis - SIS

• Degree-based meeting model

• Basically, solve the SIS differential equation for each degree

• Can see epidemic dynamics as a function of degree

• Average over degree distribution to make conclusions about 
epidemic spread
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Network Epidemic Analysis - SIS

pD(d) =
dpK(d)

E {K}Probability of meeting a degree d person:

ikFraction of degree k nodes infected:

i =
X

k

ikpK(k)Average infection rate:

Probability of meeting an infected person: ✓ =
X

pD(d)id

0 = (1� id)�d✓ � idµ steady state
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Network Epidemic Analysis - SIS

If a steady state exists, it satisfies:

✓ =
X

k

pK(k)�✓k2

E {K} (�✓k + 1)

Infection is epidemic if: � > �c =
E {K}
E {K2}

Always satisfied for power-law networks

For Poisson network: � >
1

1 + E {K}
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Epidemic Analysis (SI)

Integrating (10.15) we obtain the fraction of infected nodes with 
degree k

! ! ! ik = i0(1 + k⟨k⟩ − 1
⟨k2⟩ − ⟨k⟩ (et/τ − 1)).! ! (10.16)

A key prediction of (10.16) is that the higher the degree of a node, 
the more likely to be infected. Indeed, for any time t we can rewrite 

(10.16) as ik = g(t) + k f (t), indicating that the group of nodes with 

higher degree has a higher fraction of infected nodes (Figure 10.11 
and 10.12). 

According to (10.12) the total fraction of infected nodes is

! i =
0

∫
kmax

ikP(k)dk = i0(1 + ⟨k⟩2 − ⟨k⟩
⟨k2⟩ − ⟨k⟩ (et/τ − 1)).! (10.17)

Equations (10.16) and (10.17) provide the characteristic time for 
the spread of the pathogen on a network as

! ! τ = ⟨k⟩
β(⟨k2⟩ − ⟨k⟩)

. ! ! ! ! ! (10.18)

Therefore τ depends not only on ⟨k⟩, but also on the network’s 
degree distribution through ⟨k2⟩. To understand the significance of 
this prediction, let us derive τ  for different networks:

• Random network. For a random network ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1), 
obtaining

! ! τER = 1
β⟨k⟩ ,! ! ! ! ! ! (10.19)

recovering the result (10.5) for homogenous networks. 

• Scale-free networks with γ ≥ 3. If the contract network on which 
the disease spreads is scale-free with a degree exponent γ ≥ 3, 
both ⟨k⟩ and ⟨k2⟩ are finite. Consequently τ is also finite and the 
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Figure 10.12 Fraction of Infected Nodes in the SI Model
Equation (10.17) predicts that the a pathogen spreads with different speed 
on nodes with different degrees. To be specific, we can write 
ik = g(t) + k f (t), indicating that at any time the fraction of high degree 
nodes that are infected is higher than the fraction of low degree nodes. 
This is illustrated in the figure above, that shows the fraction of infected 
nodes with degrees k = 1,  10,  and 100 in an Erdős-Rényi network with 
average degree ⟨k⟩ = 2 for a spreading rate β = 0.1 and initial condition 
i0 = 0.01. As the figure indicates at t = 5 less than 1% of the k = 1 degree 
nodes are infected, but close to 10% of the k = 10 nodes and over 75% of 
the k = 100 nodes.
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Epidemic Analysis

• If λ < λc, the pathogen dies out, i.e. i(λ) = 0. 

Hence the epidemic threshold allows us to decide if a pathogen can 
or cannot persist in a population. This transition from the absence 
to the presence of an epidemic by increasing the spreading rate λ is 
at the basis of most campaigns to stop a pathogen, as we discuss in 
Section 10.6. 

Scale-free network: For a network with an arbitrary degree 
distribution we set τSIS ≥ 0 in (10.21), obtaining the epidemic 
threshold as

! ! λc = ⟨k⟩
⟨k2⟩ . !! ! ! ! ! ! (10.26)

As for a scale-free network ⟨k2⟩ diverges in the N → ∞ limit, for 
large networks the epidemic threshold is expected to vanish 
(Figure 10.14). This means that even viruses that are hard to pass from 

individual to individual can spread successfully, representing the second 
fundamental prediction of network epidemics. 

The vanishing epidemic threshold is a direct consequence of the 
hubs. Indeed, a pathogen that fails to infect other nodes before the 
infected individual recovers, will slowly disappear from the 
population. In a random network all nodes have comparable degree, 
k ≃ ⟨k⟩, hence if the spreading rate is under the epidemic threshold, 
the pathogen fails to spread. In a scale-free network, however, even 
if a pathogen is only weakly infectious, once it infects a hub, the hub 
can pass it on to a large number of other nodes, allowing it to 
persist in the population.

Taken together, the results of this section show that accounting for 
the network topology greatly alters the predictive power of the 
epidemic models. We derived two fundamental results:

• In a scale-free network τ ≃ 0, which means that a virus can 
instantaneously reach most nodes. 
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The table shows the rate equation for the three basic epidemic models 
(SI, SIS, SIR) on a network with arbitrary ⟨k⟩ and ⟨k2⟩, the 
corresponding characteristic τ and the epidemic threshold λc. For the 
SI model λc = 0, as in the absence of recovery (μ = 0) a pathogen 
spreads until it reaches all susceptible individuals. The listed τ and λc 
are derived in Advanced Topics 10.B.

Table 10.3 Epidemic Models on Networks

MODE
L MODEL

SI 0

SIS

SIR

λc

〈k〉
β(〈k2 〉 − 〈k〉)

〈k〉
〈k2 〉

1
〈k2 〉
〈k〉

−1
〈k〉

β 〈k2 〉 − (µ + β )〈k〉

dik (t)
dt

= βSk (t)θk (t)− µik (t)

sk (t) = 1− il (t)− rk (t)

τ

dik (t)
dt

= β[1− ik (t)]kθk (t)

dik (t)
dt

= β[1− ik (t)]kθk (t)− µik (t)
〈k〉

β 〈k2 〉 − µ〈k〉

• If λ < λc, the pathogen dies out, i.e. i(λ) = 0. 

Hence the epidemic threshold allows us to decide if a pathogen can 
or cannot persist in a population. This transition from the absence 
to the presence of an epidemic by increasing the spreading rate λ is 
at the basis of most campaigns to stop a pathogen, as we discuss in 
Section 10.6. 

Scale-free network: For a network with an arbitrary degree 
distribution we set τSIS ≥ 0 in (10.21), obtaining the epidemic 
threshold as

! ! λc = ⟨k⟩
⟨k2⟩ . !! ! ! ! ! ! (10.26)

As for a scale-free network ⟨k2⟩ diverges in the N → ∞ limit, for 
large networks the epidemic threshold is expected to vanish 
(Figure 10.14). This means that even viruses that are hard to pass from 

individual to individual can spread successfully, representing the second 
fundamental prediction of network epidemics. 

The vanishing epidemic threshold is a direct consequence of the 
hubs. Indeed, a pathogen that fails to infect other nodes before the 
infected individual recovers, will slowly disappear from the 
population. In a random network all nodes have comparable degree, 
k ≃ ⟨k⟩, hence if the spreading rate is under the epidemic threshold, 
the pathogen fails to spread. In a scale-free network, however, even 
if a pathogen is only weakly infectious, once it infects a hub, the hub 
can pass it on to a large number of other nodes, allowing it to 
persist in the population.

Taken together, the results of this section show that accounting for 
the network topology greatly alters the predictive power of the 
epidemic models. We derived two fundamental results:

• In a scale-free network τ ≃ 0, which means that a virus can 
instantaneously reach most nodes. 
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The table shows the rate equation for the three basic epidemic models 
(SI, SIS, SIR) on a network with arbitrary ⟨k⟩ and ⟨k2⟩, the 
corresponding characteristic τ and the epidemic threshold λc. For the 
SI model λc = 0, as in the absence of recovery (μ = 0) a pathogen 
spreads until it reaches all susceptible individuals. The listed τ and λc 
are derived in Advanced Topics 10.B.

Table 10.3 Epidemic Models on Networks

MODE
L MODEL

SI 0

SIS

SIR

λc

〈k〉
β(〈k2 〉 − 〈k〉)

〈k〉
〈k2 〉

1
〈k2 〉
〈k〉

−1
〈k〉

β 〈k2 〉 − (µ + β )〈k〉

dik (t)
dt

= βSk (t)θk (t)− µik (t)

sk (t) = 1− il (t)− rk (t)

τ

dik (t)
dt

= β[1− ik (t)]kθk (t)

dik (t)
dt

= β[1− ik (t)]kθk (t)− µik (t)
〈k〉

β 〈k2 〉 − µ〈k〉

Barabasi

Summary from 
Barabasi — all from 

degree-based 
meeting model
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Summary of Epidemics
• Spread of epidemic is a function of

• Spreading model (SI, SIS, SIR, etc.)

• Network topology

• first and second moment of degree distribution

• threshold effect for large networks

• Scale free networks

• Always support epidemics, even with random immunization

• Targeted immunization effective with small fraction of nodes

• Network resilience as the dual interpretation


