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Overview

• Last part of deterministic graph models for social 
networks	



• Finish partitioning	



• Segregation, polarization (Easley & Kleinberg, Ch. 4, 5)	



• Context for social networks	



• Homophily 	



• Positive/negative links 
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Network Partitioning Approaches
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• Multiple approaches [Jackson 13.2]	



• Edge removal - e.g., Girvan-Neman	



• Hierarchical Clustering	



• Group like nodes according to some similarity measure	



• Iterated correlation (CONCOR)	



• Iterate a correlation measure on rows of adjacency matrix	



• Maximum Likelihood approaches (EM algorithm)	



• Find partition that maximizes probability of observed graph given  
intra-community and inter-community edge probabilities
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Network Partitioning
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• When to stop?	



• Need a measure of how good a partition is…	



• One measure is modularity — compare how much larger intra-
community edge frequencies with those that would be 
expected under random connections	



• Example: Girvan-Newman	



• stop removing edges when modularity decreases	



• go through entire process and select partition with highest 
modularity 
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Modularity
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• Measures how much larger the fraction of intra-community edges 
is relative to the fraction expected under random placement	



• Positive modularity => captures community structure	



• Zero modularity => same as expected under random grouping	



• Negative modularity => worse than random grouping
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Modularity - Random Model
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Randomly select from the 2L edge stubs to connect with the L edges

i ki “edge stubs”

kj “edge stubs”j

Prob(selecting an edge stub connected to node i) = 

Prob(selecting an edge stub connected to node j) = 

Prob(randomly connecting i & j) = 

ki
2L

kj
2L

kikj
4L2

This model attempts to 
preserve edge degree 
while having random 

connections 

(This may have some issues since it allows for nodes to connect to themselves)
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Modularity
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sum over nodes in 
the same 

communities

Q =
MX

m=1:i,j2Cm

aij
2L

�
MX

m=1:i,j2Cm

kikj
2L

=
MX

m=1

emm � r2m rm =
1

2L

X

i2Cm

ki

sum over all 
communities

fraction of all 
edges connecting 

nodes in same 
community

fraction of edges 
connecting nodes 
in community m 

to other nodes in 
community m

fraction of all 
edges connecting 

nodes in same 
community under 

random model
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Network Partitioning - Modularity
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88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions
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I suspect that there may be some other reasonable (better?) ways to define the 
quality of a partition
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Network Partitioning & Betweenness
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• Community Detection/Partitioning	



• http://arxiv.org/abs/0908.1062 - comparison of partitioning algorithms http://arxiv.org/abs/0908.1062 	



• http://compbio.cs.uic.edu/~chayant/work/phd_thesis.pdf - thesis on community detection	



• Brandes Algorithm [77] in Easley & Kleinberg	



• http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf	



• Code available to compute many of these properties and algorithms	



• MatLabBGL (www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl)	



• MIT MatLab routines (http://strategic.mit.edu/downloads.php?page=matlab_networks)	



• Modularity & Girvan-Newman	



• Original: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113	



• More from Newman: http://www.pnas.org/content/103/23/8577.full.pdf+html

http://arxiv.org/abs/0908.1062
http://arxiv.org/abs/0908.1062
http://compbio.cs.uic.edu/~chayant/work/phd_thesis.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://strategic.mit.edu/downloads.php?page=matlab_networks
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026113
http://www.pnas.org/content/103/23/8577.full.pdf+html
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Overview

• Last part of deterministic graph models for social 
networks	



• Finish partitioning	



• Segregation, polarization (Easley & Kleinberg, Ch. 4, 5)	



• Context for social networks	



• Homophily 	



• Positive/negative links 
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Homophily
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• Homophily is the property of “like” nodes to 
connect in a social network	



• Like ~ race, interest, age, etc.	



• Two predominant mechanisms	



• Selection: people tend to befriend people 
similar to themselves	



• Social Influence (peer pressure): once in with a 
group, people tend to conform
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Homophily
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• Observed in real 
social network data

4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of di↵erent
races drawn as di↵erently colored circles), and the other based on friendships in the middle and high schools
respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social

Easley & Kleinberg
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Homophily Test
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• Observed frequency 
of inter-type links as 
compared to what 
would occur with 
random edge 
placement

Easley & Kleinberg

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

2pq = 4/9 = 8/18• Expected inter-type link frequency under random connections:	



• Observed inter-type links frequency:	

 5/18

“some evidence of homophily”
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Homophily Test
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• White nodes occur with freq: p=2/3	



• Pink nodes occur with freq: q=1-p=1/3

88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes di�cult to attribute any individual link to a single factor.

And ultimately, one expects most links to in fact arise from a combination of several factors

— partly due to the e↵ect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in

Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,

and not simply an artifact of how it is drawn. To make this question concrete, we need to

formulate it more precisely: given a particular characteristic of interest (like race, or age),

is there a simple test we can apply to a network in order to estimate whether it exhibits

homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question

on a smaller example where we can develop some intuition. Let’s suppose in particular that

we have the friendship network of an elementary-school classroom, and we suspect that it

exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends

with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)

hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes

are boys. If there were no cross-gender edges at all, then the question of homophily would

be easy to resolve: it would be present in an extreme sense. But we expect that homophily

should be a more subtle e↵ect that is visible mainly in aggregate — as it is, for example, in

the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions

p2

q2

pq

pq

• Expected frequencies for random 
connections:	



• white-pink/pink-white 2pq

Homophily Measure ~ 5/18 - 2(2/3)(1/3) = -0.17 < 0

p = 6/9 = 2/3
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Social Network Context
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• Affilition Network: what foci are people members of?

94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS
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Figure 4.4: One type of a�liation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an a�liation network, since it represents the a�liation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, a�liation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of a�liation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Easley & Kleinberg
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Social Network Context
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• Social network and can be combined with 
affiliations to provide context

Easley & Kleinberg

96 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

AnnaBob

Claire

Daniel
Karate

Club

Literacy

Volunteers

Figure 4.5: A social-a�liation network shows both the friendships between people and their
a�liation with di↵erent social foci.

people, and indicates friendship (or alternatively some other social relation, like professional

collaboration). The second kind of edge functions as an edge in an a�liation network: it

connects a person to a focus, and indicates the participation of the person in the focus. We

will call such a network a social-a�liation network, reflecting the fact that it simultaneously

contains a social network on the people and an a�liation network on the people and foci.

Figure 4.5 depicts a simple social-a�liation network.

Once we have social-a�liation networks as our representation, we can appreciate that

a range of di↵erent mechanisms for link formation can all be viewed as types of closure

processes, in that they involve “closing” the third edge of a triangle in the network. In

particular, suppose we have two nodes B and C with a common neighbor A in the network,

and suppose that an edge forms between B and C. There are several interpretations for

what this corresponds to, depending on whether A, B, and C are people or foci.

(i) If A, B, and C each represent a person, then the formation of the link between B and

C is triadic closure, just as in Chapter 3. (See Figure 4.6(a).)

(ii) If B and C represent people, but A represents a focus, then this is something di↵erent:

it is the tendency of two people to form a link when they have a focus in common. (See

Figure 4.6(b).) This is an aspect of the more general principle of selection, forming

links to others who share characteristics with you. To emphasize the analogy with

triadic closure, this process has been called focal closure [259].

(iii) If A and B are people, and C is a focus, then we have the formation of a new a�liation:

B takes part in a focus that her friend A is already involved in. (See Figure 4.6(c).)

This is a kind of social influence, in which B’s behavior comes into closer alignment
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Social Network Context
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Easley & Kleinberg
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(a) Triadic closure

C

B
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person

A

(b) Focal closure

A

B

person

person

focus

C

(c) Membership closure

Figure 4.6: Each of triadic closure, focal closure, and membership closure corresponds to the
closing of a triangle in a social-a�liation network.

with that of her friend A. Continuing the analogy with triadic closure, we will refer to

this kind of link formation as membership closure.

Thus, three very di↵erent underlying mechanisms — reflecting triadic closure and aspects

of selection and social influence — can be unified in this type of network as kinds of closure:

the formation of a link in cases where the two endpoints already have a neighbor in common.

Figure 4.7 shows all three kinds of closure processes at work: triadic closure leads to a new

link between Anna and Claire; focal closure leads to a new link between Anna and Daniel;

and membership closure leads to Bob’s a�liation with the karate club. Oversimplifying the

mechanisms at work, they can be summarized in the following succinct way:

(i) Bob introduces Anna to Claire.

(ii) Karate introduces Anna to Daniel.

(iii) Anna introduces Bob to Karate.

4.4 Tracking Link Formation in On-Line Data

In this chapter and the previous one, we have identified a set of di↵erent mechanisms that

lead to the formation of links in social networks. These mechansisms are good examples

98 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

AnnaBob

Claire

Daniel
Karate

Club

Literacy

Volunteers

Figure 4.7: In a social-a�liation network containing both people and foci, edges can form
under the e↵ect of several di↵erent kinds of closure processes: two people with a friend in
common, two people with a focus in common, or a person joining a focus that a friend is
already involved in.

of social phenomena which are clearly at work in small-group settings, but which have

traditionally been very hard to measure quantitatively. A natural research strategy is to

try tracking these mechanisms as they operate in large populations, where an accumulation

of many small e↵ects can produce something observable in the aggregate. However, given

that most of the forces responsible for link formation go largely unrecorded in everyday life,

it is a challenge to select a large, clearly delineated group of people (and social foci), and

accurately quantify the relative contributions that these di↵erent mechanisms make to the

formation of real network links.

The availability of data from large on-line settings with clear social structure has made

it possible to attempt some preliminary research along these lines. As we emphasized in

Chapter 2, any analysis of social processes based on such on-line datasets must come with

a number of caveats. In particular, it is never a priori clear how much one can extrapolate

from digital interactions to interactions that are not computer-mediated, or even from one

computer-mediated setting to another. Of course, this problem of extrapolation is present

whenever one studies phenomena in a model system, on-line or not, and the kinds of mea-

surements these large datasets enable represent interesting first steps toward a deeper quan-

titative understanding of how mechanisms of link formation operate in real life. Exploring

these questions in a broader range of large datasets is an important problem, and one that

will become easier as large-scale data becomes increasingly abundant.

Triadic closure. With this background in mind, let’s start with some questions about

triadic closure. Here’s a first, basic numerical question: how much more likely is a link to
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Easley & Kleinberg
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Figure 4.9: Quantifying the e↵ects of triadic closure in an e-mail dataset [259]. The curve
determined from the data is shown in the solid black line; the dotted curves show a compar-
ison to probabilities computed according to two simple baseline models in which common
friends provide independent probabilities of link formation.

of the second snapshot. This is our empirical estimate for the probability that a link

will form between two people with k friends in common.

(iv) We plot T (k) as a function of k to illustrate the e↵ect of common friends on the

formation of links.

Note that T (0) is the rate at which link formation happens when it does not close a triangle,

while the values of T (k) for larger k determine the rate at which link formation happens

when it does close a triangle. Thus, the comparison between T (0) and these other values

addresses the most basic question about the power of triadic closure.

Kossinets and Watts computed this function T (k) using a dataset encoding the full history

of e-mail communication among roughly 22,000 undergraduate and graduate students over

a one-year period at a large U.S. university [259]. This is a “who-talks-to-whom” type of

dataset, as we discussed in Chapter 2; from the communication traces, Kossinets and Watts

constructed a network that evolved over time, joining two people by a link at a given instant

if they had exchanged e-mail in each direction at some point in the past 60 days. They then

determined an “average” version of T (k) by taking multiple pairs of snapshots: they built

a curve for T (k) on each pair of snapshots using the procedure described above, and then

• Triadic closure as a 
function of number of 
common friends

1� (1� p)k

1� (1� p)k�1
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Easley & Kleinberg

• Foci closure as a function 
of number of common foci	



• Lesser effect of many 
shared foci as compared 
to many shared friends
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Figure 4.10: Quantifying the e↵ects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve
provides a comparison to a simple baseline.

Focal and Membership Closure. Using the same approach, we can compute probabil-

ities for the other kinds of closure discussed earlier — specifically,

• focal closure: what is the probability that two people form a link as a function of the

number of foci they are jointly a�liated with?

• membership closure: what is the probability that a person becomes involved with a

particular focus as a function of the number of friends who are already involved in it?

As an example of the first of these kinds of closure, using Figure 4.8, Anna and Grace have

one activity in common while Anna and Frank have two in common. As an example of the

second, Esther has one friend who belongs to the karate club while Claire has two. How do

these distinctions a↵ect the formation of new links?

For focal closure, Kossinets and Watts supplemented their university e-mail dataset with

information about the class schedules for each student. In this way, each class became a

focus, and two students shared a focus if they had taken a class together. They could then

compute the probability of focal closure by direct analogy with their computation for triadic

closure, determining the probability of link formation per day as a function of the number of

shared foci. Figure 4.10 shows a plot of this function. A single shared class turns out to have

roughly the same absolute e↵ect on link formation as a single shared friend, but after this the



© Keith M. Chugg, 2014

Examples from Data

20

Easley & Kleinberg

• Membership closure as a 
function of number of 
common memberships in 
online communities	



• Lesser effect of many 
shared foci as compared 
to many shared friends
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Figure 4.11: Quantifying the e↵ects of membership closure in a large online dataset: The
plot shows the probability of joining a LiveJournal community as a function of the number
of friends who are already members [32].

curve for focal closure behaves quite di↵erently from the curve for triadic closure: it turns

downward and appears to approximately level o↵, rather than turning slightly upward. Thus,

subsequent shared classes after the first produce a “diminishing returns” e↵ect. Comparing

to the same kind of baseline, in which the probability of link formation with k shared classes

is 1 � (1 � p)k (shown as the dotted curve in Figure 4.10), we see that the real data turns

downward more significantly than this independent model. Again, it is an interesting open

question to understand how this e↵ect generalizes to other types of shared foci, and to other

domains.

For membership closure, the analogous quantities have been measured in other on-line

domains that possess both person-to-person interactions and person-to-focus a�liations.

Figure 4.11 is based on the blogging site LiveJournal, where friendships are designated by

users in their profiles, and where foci correspond to membership in user-defined communities

[32]; thus the plot shows the probability of joining a community as a function of the number

of friends who have already done so. Figure 4.12 shows a similar analysis for Wikipedia [122].

Here, the social-a�liation network contains a node for each Wikipedia editor who maintains

a user account and user talk page on the system; and there is an edge joining two such editors

if they have communicated, with one editor writing on the user talk page of the other. Each
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• Membership closure as a 
function of number of 
common pages edited on 
Wikipedia	



• Lesser effect of many 
shared foci as compared 
to many shared friends
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Figure 4.12: Quantifying the e↵ects of membership closure in a large online dataset: The
plot shows the probability of editing a Wikipedia articles as a function of the number of
friends who have already done so [122].

Wikipedia article defines a focus — an editor is associated with a focus corresponding to a

particular article if he or she has edited the article. Thus, the plot in Figure 4.12 shows the

probability a person edits a Wikipedia article as a function of the number of prior editors

with whom he or she has communicated.

As with triadic and focal closure, the probabilities in both Figure 4.11 and 4.12 increase

with the number k of common neighbors — representing friends associated with the foci. The

marginal e↵ect diminishes as the number of friends increases, but the e↵ect of subsequent

friends remains significant. Moreover, in both sources of data, there is an initial increasing

e↵ect similar to what we saw with triadic closure: in this case, the probability of joining a

LiveJournal community or editing a Wikipedia article is more than twice as great when you

have two connections into the focus rather than one. In other words, the connection to a

second person in the focus has a particularly pronounced e↵ect, and after this the diminishing

marginal e↵ect of connections to further people takes over.

Of course, multiple e↵ects can operate simultaneously on the formation of a single link.

For example, if we consider the example in Figure 4.8, triadic closure makes a link between

Bob and Daniel more likely due to their shared friendship with Anna; and focal closure also

makes this link more likely due to the shared membership of Bob and Daniel in the karate

club. If a link does form between them, it will not necessarily be a priori clear how to

attribute it to these two distinct e↵ects. This is also a reflection of an issue we discussed
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• Many shared friends is the strongest 
force for closure	



• In all cases, there is a significant jump in 
closure rates from having 1 entity in 
common to having 2 entities in common
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• Selection is a stronger cause 
for homophily in this 
experiment
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Selection: rapid 

increase in similarity 

before first contact

Social influence: 

continued slower 

increase in similarity 

after first contact

Figure 4.13: The average similarity of two editors on Wikipedia, relative to the time (0)
at which they first communicated [122]. Time, on the x-axis, is measured in discrete units,
where each unit corresponds to a single Wikipedia action taken by either of the two editors.
The curve increases both before and after the first contact at time 0, indicating that both
selection and social influence play a role; the increase in similarity is steepest just before
time 0.

Because every action on Wikipedia is recorded and time-stamped, it is not hard to get

an initial picture of this interplay, using the following method. For each pair of editors A

and B who have ever communicated, record their similarity over time, where “time” here

moves in discrete units, advancing by one “tick” whenever either A or B performs an action

on Wikipedia (editing an article or communicating with another editor). Next, declare time

0 for the pair A-B to be the point at which they first communicated. This results in many

curves showing similarity as a function of time — one for each pair of editors who ever

communicated, and each curve shifted so that time is measured for each one relative to

the moment of first communication. Averaging all these curves yields the single plot in

Figure 4.13 — it shows the average level of similarity relative to the time of first interaction,

over all pairs of editors who have ever interacted on Wikipedia [122].

There are a number of things to notice about this plot. First, similarity is clearly increas-

ing both before and after the moment of first interaction, indicating that both selection and

4.4. TRACKING LINK FORMATION IN ON-LINE DATA 105

in Section 4.1, when describing some of the mechanisms behind triadic closure: since the

principle of homophily suggests that friends tend to have many characteristics in common,

the existence of a shared friend between two people is often indicative of other, possibly

unobserved, sources of similarity (such as shared foci in this case) that by themselves may

also make link formation more likely.

Quantifying the Interplay Between Selection and Social Influence. As a final

illustration of how we can use large-scale on-line data to track processes of link formation,

let’s return to the question of how selection and social influence work together to produce

homophily, considered in Section 4.2. We’ll make use of the Wikipedia data discussed earlier

in this section, asking: how do similarities in behavior between two Wikipedia editors relate

to their pattern of social interaction over time? [122]

To make this question precise, we need to define both the social network and an underlying

measure of behavioral similarity. As before, the social network will consist of all Wikipedia

editors who maintain talk pages, and there is an edge connecting two editors if they have

communicated, with one writing on the talk page of the other. An editor’s behavior will

correspond to the set of articles she has edited. There are a number of natural ways to define

numerical measures of similarity between two editors based on their actions; a simple one is

to declare their similarity to be the value of the ratio

number of articles edited by both A and B

number of articles edited by at least one of A or B
, (4.1)

For example, if editor A has edited the Wikipedia articles on Ithaca NY and Cornell Uni-

versity, and editor B has edited the articles on Cornell University and Stanford University,

then their similarity under this measure is 1/3, since they have jointly edited one article

(Cornell) out of three that they have edited in total (Cornell, Ithaca, and Stanford). Note

the close similarity to the definition of neighborhood overlap used in Section 3.3; indeed,

the measure in Equation (4.1) is precisely the neighborhood overlap of two editors in the

bipartite a�liation network of editors and articles, consisting only of edges from editors to

the articles they’ve edited.3

Pairs of Wikipedia editors who have communicated are significantly more similar in their

behavior than pairs of Wikipedia editors who have not communicated, so we have a case

where homophily is clearly present. Therefore, we are set up to address the question of selec-

tion and social influence: is the homophily arising because editors are forming connections

with those who have edited the same articles they have (selection), or is it because editors

are led to the articles of those they talk to (social influence)?

3For technical reasons, a minor variation on this simple similarity measure is used for the results that
follow. However, since this variation is more complicated to describe, and the di↵erences are not significant
for our purposes, we can think of similarity as consisting of the numerical measure just defined.

Easley & Kleinberg
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• People require that t of their 8 neighbors 
are like them or else they move
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(a) Agents occupying cells on a grid.
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(b) Neighbor relations as a graph.

Figure 4.15: In Schelling’s segregation model, agents of two di↵erent types (X and O) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply
as a graph. Agents care about whether they have at least some neighbors of the same type.

The general formulation of the model is as follows. We assume that there is a population

of individuals, whom we’ll call agents; each agent is of type X or type O. We think of the

two types as representing some (immutable) characteristic that can serve as the basis for

homophily — for example, race, ethnicity, country of origin, or native language. The agents

reside in the cells of a grid, intended as a stylized model of the two-dimensional geography

of a city. As illustrated in Figure 4.15(a), we will assume that some cells of the grid contain

agents while others are unpopulated. A cell’s neighbors are the cells that touch it, including

diagonal contact; thus, a cell that is not on the boundary of the grid has eight neighbors.

We can equivalently think of the neighbor relationships as defining a graph: the cells are the

nodes, and we put an edge between two cells that are neighbors on the grid. In this view,

the agents thus occupy the nodes of a graph that are arranged in this grid-like pattern, as

shown in Figure 4.15(b). For ease of visualization, however, we will continue to draw things

using a geometric grid, rather than a graph.

The fundamental constraint driving the model is that each agent wants to have at least

some other agents of its own type as neighbors. We will assume that there is a threshold t

common to all agents: if an agent discovers that fewer than t of its neighbors are of the same

type as itself, then it has an interest in moving to a new cell. We will call such an agent

unsatisfied with its current location. For example, in Figure 4.16(a), we indicate with an

asterisk all the agents that are unsatisfied in the arrangement from Figure 4.15(a), when the

threshold t is equal to 3. (In Figure 4.16(a) we have also added a number after each agent.

This is simply to provide each with a unique name; the key distinction is still whether each

agent is of type X or type O.)

Easley & Kleinberg
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• If a node is not satisfied (<t like 
neighbors), then she moves to an 
empty spot

Easley & Kleinberg
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(a) An initial configuration.
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(b) After one round of movement.

Figure 4.16: After arranging agents in cells of the grid, we first determine which agents are
unsatisfied, with fewer than t other agents of the same type as neighbors. In one round, each
of these agents moves to a cell where they will be satisfied; this may cause other agents to
become unsatisfied, in which case a new round of movement begins.
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• t=3 condition can be satisfied, but these are not likely to be 
found by randomly moving when dissatisfied.

Easley & Kleinberg
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Figure 4.18: With a threshold of 3, it is possible to arrange agents in an integrated pattern:
all agents are satisfied, and everyone who is not on the boundary on the grid has an equal
number of neighbors of each type.

individual agent is actively seeking it. Sticking to our focus on a threshold t of 3, we see that

although agents want to be near others like them, their requirements are not particularly

draconian. For example, an agent would be perfectly happy to be in the minority among

its neighbors, with five neighbors of the opposite type and three of its own type. Nor are

the requirements globally incompatible with complete integration of the population. By

arranging agents in a checkerboard pattern as shown in Figure 4.18, we can make each agent

satisfied, and all agents not on the boundary of the grid have exactly four neighbors of each

type. This is a pattern that we can continue on as large a grid as we want.

Thus, segregation is not happening because we have subtly built it into the model —

agents are willing to be in the minority, and they could all be satisfied if we were only able

to carefully arrange them in an integrated pattern. The problem is that from a random

start, it is very hard for the collection of agents to find such integrated patterns. Much

more typically, agents will attach themselves to clusters of others like themselves, and these

clusters will grow as other agents follow suit. Moreover, there is a compounding e↵ect

as the rounds of movement unfold, in which agents who fall below their threshold depart

for more homogeneous parts of the grid, causing previously satisfied agents to fall below

their thresholds and move as well — an e↵ect that Schelling describes as the progressive

“unraveling” of more integrated regions [366]. In the long run, this process will tend to

cause segregated regions to grow at the expense of more integrated ones. The overall e↵ect

is one in which the local preferences of individual agents have produced a global pattern that

none of them necessarily intended.
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• t=3 is “tolerant” at the level of the individual, but still results in 
segregation with very high probability!

Easley & Kleinberg
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(a) A simulation with threshold 3. (b) Another simulation with threshold 3.

Figure 4.17: Two runs of a simulation of the Schelling model with a threshold t of 3, on a
150-by-150 grid with 10, 000 agents of each type. Each cell of the grid is colored red if it is
occupied by an agent of the first type, blue if it is occupied by an agent of the second type,
and black if it is empty (not occupied by any agent).

150 columns, 10, 000 agents of each type, and 2500 empty cells. The threshold t is equal to

3, as in our earlier examples. The two images depict the results of two di↵erent runs of the

simulation, with di↵erent random starting patterns of agents. In each case, the simulation

reached a point (shown in the figures) at which all agents were satisfied, after roughly 50

rounds of movement.

Because of the di↵erent random starts, the final arrangement of agents is di↵erent in

the two cases, but the qualitative similarities reflect the fundamental consequences of the

model. By seeking out locations near other agents of the same type, the model produces

large homogeneous regions, interlocking with each other as they stretch across the grid. In

the midst of these regions are large numbers of agents who are surrounded on all sides by

other agents of the same type — and in fact at some distance from the nearest agent of

the opposite type. The geometric pattern has become segregated, much as in the maps of

Chicago from Figure 4.14 with which we began the section.

Interpretations of the Model. We’ve now seen how the model works, what it looks

like at relatively large scales, and how it produces spatially segregated outcomes. But what

broader insights into homophily and segregation does it suggest?

The first and most basic one is that spatial segregation is taking place even though no
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• t=4 is even more pronounced
Easley & Kleinberg
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(a) After 20 steps (b) After 150 steps

(c) After 350 steps (d) After 800 steps

Figure 4.19: Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10, 000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower
regions.
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• Many on-line simulators for this and related models	



• e.g., http://nifty.stanford.edu/2014/mccown-schelling-model-
segregation/

http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/
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• Last part of deterministic graph models for social 
networks	



• Finish partitioning	



• Segregation, polarization (Easley & Kleinberg, Ch. 4, 5)	



• Context for social networks	



• Homophily 	



• Positive/negative links 
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• Not all connections are positive 
friendships	



• What can we learn from modeling 
interactions as either positive (friends) 
or negative (enemies)?
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A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Easley & Kleinberg

balanced

unbalanced
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Figure 5.2: The labeled four-node complete graph on the left is balanced; the one on the
right is not.

balanced triangles.

Defining Structural Balance for Networks. So far we have been talking about struc-

tural balance for groups of three nodes. But it is easy to create a definition that naturally

generalizes this to complete graphs on an arbitrary number of nodes, with edges labeled by

+’s and �’s.

Specifically, we say that a labeled complete graph is balanced if every one of its triangles

is balanced — that is, if it obeys the following:

Structural Balance Property: For every set of three nodes, if we consider the three

edges connecting them, either all three of these edges are labeled +, or else exactly

one of them is labeled +.

For example, consider the two labeled four-node networks in Figure 5.2. The one on

the left is balanced, since we can check that each set of three nodes satisfies the Structural

Balance Property above. On the other hand, the one on the right is not balanced, since among

the three nodes A, B, C, there are exactly two edges labeled +, in violation of Structural

Balance. (The triangle on B, C,D also violates the condition.)

Our definition of balanced networks here represents the limit of a social system that has

eliminated all unbalanced triangles. As such, it is a fairly extreme definition — for example,

one could instead propose a definition which only required that at least some large percentage

of all triangles were balanced, allowing a few triangles to be unbalanced. But the version

with all triangles balanced is a fundamental first step in thinking about this concept; and

• Balanced network = all triangles have 3 or 1 +’s
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• Balance Theorem: any complete balanced network has the 
above structure — pure two-party polarization.  Other option 
is that everybody is friends (Y is empty set)

5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 123

mutual friends 

inside X

mutual friends 

inside Y

set X set Y

mutual

antagonism

between

sets

Figure 5.3: If a complete graph can be divided into two sets of mutual friends, with complete
mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only
way for a complete graph to be balanced.

as we will see next, it turns out to have very interesting mathematical structure that in fact

helps to inform the conclusions of more complicated models as well.

5.2 Characterizing the Structure of Balanced Networks

At a general level, what does a balanced network (i.e. a balanced labeled complete graph)

look like? Given any specific example, we can check all triangles to make sure that they

each obey the balance conditions; but it would be much better to have a simple conceptual

description of what a balanced network looks like in general.

One way for a network to be balanced is if everyone likes each other; in this case, all

triangles have three + labels. On the other hand, the left-hand side of Figure 5.2 suggests

a slightly more complicated way for a network to be balanced: it consists of two groups of

friends (A, B and C, D), with negative relations between people in di↵erent groups. This is

actually true in general: suppose we have a labeled complete graph in which the nodes can

be divided into two groups, X and Y , such that every pair of nodes in X like each other,

every pair of nodes in Y like each other, and everyone in X is the enemy of everyone in

Y . (See the schematic illustration in Figure 5.3.) You can check that such a network is

balanced: a triangle contained entirely in one group or the other has three + labels, and a

triangle with two people in one group and one in the other has exactly one + label.

So this describes two basic ways to achieve structural balance: either everyone likes

each other; or the world consists of two groups of mutual friends with complete antagonism

Easley & Kleinberg
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B. Approximately Balanced Networks

We now return to the case in which the graph is complete, so that every node has a positive

or negative relation with every other node, and we think about a di↵erent way of generalizing

the characterization of structural balance.

First let’s write down the original Balance Theorem again, with some additional format-

ting to make its logical structure clear.

Claim: If all triangles in a labeled complete graph are balanced, then either

(a) all pairs of nodes are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) every pair of nodes in X like each other,

(ii) every pair of nodes in Y like each other, and

(iii) everyone in X is the enemy of everyone in Y .

The conditions of this theorem are fairly extreme, in that we require every single triangle

to be balanced. What if we only know that most triangles are balanced? It turns out that

the conditions of the theorem can be relaxed in a very natural way, allowing us to prove

statements like the following one. We phrase it so that the wording remains completely

parallel to that of the Balance Theorem.

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced,

then either

(a) there is a set consisting of at least 90% of the nodes in which at least 90%

of all pairs are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) at least 90% of the pairs in X like each other,

(ii) at least 90% of the pairs in Y like each other, and

(iii) at least 90% of the pairs with one end in X and the other end in Y are

enemies.

This is a true statement, though the choice of numbers is very specific. Here is a more general

statement that includes both the Balance Theorem and the preceding claim as special cases.

Claim: Let " be any number such that 0  " < 1

8

, and define � = 3
p

". If at least

1� " of all triangles in a labeled complete graph are balanced, then either

(a) there is a set consisting of at least 1� � of the nodes in which at least 1� �

of all pairs are friends, or else
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Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and

node A selected arbitrarily 

all 
friends 
of A

all 
enemies 

of A
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• Other option is all
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Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
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(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and

node A selected arbitrarily 

all 
friends 
of A

all 
enemies 

of A
+ +

-
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(b) Triple Alliance 1882
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(c) German-Russian Lapse 1890
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(e) Entente Cordiale 1904

GB

Fr

Ru

AH

Ge

It

(f) British Russian Alliance 1907

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and
example are from Antal, Krapivsky, and Redner [20].

was China’s enemy, China was India’s foe, and India had traditionally bad relations with

Pakistan. Since the U.S. was at that time improving its relations with China, it supported

the enemies of China’s enemies. Further reverberations of this strange political constellation

became inevitable: North Vietnam made friendly gestures toward India, Pakistan severed

diplomatic relations with those countries of the Eastern Bloc which recognized Bangladesh,

and China vetoed the acceptance of Bangladesh into the U.N.”

Antal, Krapivsky, and Redner use the shifting alliances preceding World War I as another

example of structural balance in international relations — see Figure 5.5. This also reinforces

the fact that structural balance is not necessarily a good thing: since its global outcome is

often two implacably opposed alliances, the search for balance in a system can sometimes

be seen as a slide into a hard-to-resolve opposition between two sides.
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• Approximately balanced (complete) networks	



• Structural balance for incomplete graphs	



• Definition and algorithmic test	



• Weak balance (complete networks)	



• Only prohibit 2 + per triangle	



• Yields multiparty, mutually antagonistic structure
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• Almost all triangles are 
balanced implies almost 
completely segregated 
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B. Approximately Balanced Networks

We now return to the case in which the graph is complete, so that every node has a positive

or negative relation with every other node, and we think about a di↵erent way of generalizing

the characterization of structural balance.

First let’s write down the original Balance Theorem again, with some additional format-

ting to make its logical structure clear.

Claim: If all triangles in a labeled complete graph are balanced, then either

(a) all pairs of nodes are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) every pair of nodes in X like each other,

(ii) every pair of nodes in Y like each other, and

(iii) everyone in X is the enemy of everyone in Y .

The conditions of this theorem are fairly extreme, in that we require every single triangle

to be balanced. What if we only know that most triangles are balanced? It turns out that

the conditions of the theorem can be relaxed in a very natural way, allowing us to prove

statements like the following one. We phrase it so that the wording remains completely

parallel to that of the Balance Theorem.

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced,

then either

(a) there is a set consisting of at least 90% of the nodes in which at least 90%

of all pairs are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) at least 90% of the pairs in X like each other,

(ii) at least 90% of the pairs in Y like each other, and

(iii) at least 90% of the pairs with one end in X and the other end in Y are

enemies.

This is a true statement, though the choice of numbers is very specific. Here is a more general

statement that includes both the Balance Theorem and the preceding claim as special cases.

Claim: Let " be any number such that 0  " < 1

8

, and define � = 3
p

". If at least

1� " of all triangles in a labeled complete graph are balanced, then either

(a) there is a set consisting of at least 1� � of the nodes in which at least 1� �

of all pairs are friends, or else5.5. ADVANCED MATERIAL: GENERALIZING THE DEFINITION OF STRUCTURAL BALANCE145

(b) the nodes can be divided into two groups, X and Y , such that

(i) at least 1� � of the pairs in X like each other,

(ii) at least 1� � of the pairs in Y like each other, and

(iii) at least 1� � of the pairs with one end in X and the other end in Y are

enemies.

Notice that the Balance Theorem is the case in which " = 0, and the other claim above is

the case in which " = .001 (since in this latter case, � = 3
p

" = .1).

We now prove this last claim. The proof is self-contained, but it is most easily read

with some prior experience in what is sometimes called the analysis of “permutations and

combinations” — counting the number of ways to choose particular subsets of larger sets.

The proof loosely follows the style of the proof we used for the Balance Theorem: we

will define the two sets X and Y to be the friends and enemies, respectively, of a designated

node A. Things are trickier here, however, because not all choices of A will give us the

structure we need — in particular, if a node is personally involved in too many unbalanced

triangles, then splitting the graph into its friends and enemies may give a very disordered

structure. Consequently, the proof consists of two steps. We first find a “good” node that

is not involved in too many unbalanced triangles. We then show that if we divide the graph

into the friends and enemies of this good node, we have the desired properties.

Warm-Up: Counting Edges and Triangles. Before launching into the proof itself,

let’s consider some basic counting questions that will show up as ingredients in the proof.

Recall that we have a complete graph, with an (undirected) edge joining each pair of nodes.

If N is the number of nodes in the graph, how many edges are there? We can count this

quantity as follows. There are N possible ways to choose one of the two endpoints, and then

N �1 possible ways to choose a di↵erent node as the other endpoint, for a total of N(N �1)

possible ways to choose the two endpoints in succession. If we write down a list of all these

possible pairs of endpoints, then an edge with endpoints A and B will appear twice on the

list: once as AB and once as BA. In general, each edge will appear twice on the list, and so

the total number of edges is N(N � 1)/2.

A very similar argument lets us count the total number of triangles in the graph. Specif-

ically, there are N ways to pick the first corner, then N � 1 ways to pick a di↵erent node as

the second corner, and then N � 2 ways to pick a third corner di↵erent from the first two.

This yields a total of N(N � 1)(N � 2) sequences of three corners. If we write down this

list of N(N � 1)(N � 2) sequences, then a triangle with corners A, B, and C will appear six

times: as ABC, ACB,BAC, BCA, CAB, and CBA. In general, each triangle will appear

six times in this list, and so the total number of triangles is

N(N � 1)(N � 2)

6
.
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B. Approximately Balanced Networks

We now return to the case in which the graph is complete, so that every node has a positive

or negative relation with every other node, and we think about a di↵erent way of generalizing

the characterization of structural balance.

First let’s write down the original Balance Theorem again, with some additional format-

ting to make its logical structure clear.

Claim: If all triangles in a labeled complete graph are balanced, then either

(a) all pairs of nodes are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) every pair of nodes in X like each other,

(ii) every pair of nodes in Y like each other, and

(iii) everyone in X is the enemy of everyone in Y .

The conditions of this theorem are fairly extreme, in that we require every single triangle

to be balanced. What if we only know that most triangles are balanced? It turns out that

the conditions of the theorem can be relaxed in a very natural way, allowing us to prove

statements like the following one. We phrase it so that the wording remains completely

parallel to that of the Balance Theorem.

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced,

then either

(a) there is a set consisting of at least 90% of the nodes in which at least 90%

of all pairs are friends, or else

(b) the nodes can be divided into two groups, X and Y , such that

(i) at least 90% of the pairs in X like each other,

(ii) at least 90% of the pairs in Y like each other, and

(iii) at least 90% of the pairs with one end in X and the other end in Y are

enemies.

This is a true statement, though the choice of numbers is very specific. Here is a more general

statement that includes both the Balance Theorem and the preceding claim as special cases.

Claim: Let " be any number such that 0  " < 1

8

, and define � = 3
p

". If at least

1� " of all triangles in a labeled complete graph are balanced, then either

(a) there is a set consisting of at least 1� � of the nodes in which at least 1� �

of all pairs are friends, or else

general statement

example
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• Outline of proof	



• Find a “good” node A	



• Find average number of unbalanced 
triangles in which nodes are 
involved (combinatorics)	



• Pigeon-hole principle implies that 
there is at least one node involved 
in at most this average number 	



• Split network into friends/enemies of 
this good node A	



• Bound number of unbalanced 
conditions inside friend group, 
enemy group, and between these 
groups

Easley & Kleinberg
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Figure 5.17: The characterization of approximately balanced complete graphs follows from
an analysis similar to the proof of the original Balance Theorem. However, we have to be
more careful in dividing the graph by first finding a “good” node that isn’t involved in too
many unbalanced triangles.

• And finally, an analogous argument applies to edges with one end in X and the other

end in Y . Each such edge that is positive creates a distinct unbalanced triangle in-

volving A, and so there are at most "N2/2 positive edges with one end in X and the

other end in Y .

We now consider several possible cases, depending on the sizes of the sets X and Y . Essen-

tially, if either of X or Y consists of almost the entire graph, then we show that alternative

(a) in the claim holds. Otherwise, if each of X and Y contain a non-negligible number of

nodes, then we show that alternative (b) in the claim holds. We’re also going to assume, to

make the calculations simpler, that N is even and that the quantity �N is a whole number,

although this is not in fact necessary for the proof.

To start, let x be the number of nodes in X and y be the number of nodes in Y . Suppose

first that x � (1��)N . Since " < 1

8

and � = 3
p

", it follows that � < 1

2

, and so x > 1

2

N . Now,

recall our earlier counting argument that gave a formula for the number of edges in a complete

graph, in terms of its number of nodes. In this case, X has x nodes, so it has x(x � 1)/2

edges. Since x > 1

2

N , this number of edges is at least (1

2

N + 1)(1

2

N)/2 � (1

2

N)2/2 = N2/8.

There are at most "N2/2 negative edges inside X, and so the fraction of negative edges

inside X is at most
"N2/2

N2/8
= 4" = 4�3 < �,
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• Approximately balanced (complete) networks	



• Structural balance for incomplete graphs	



• Definition and algorithmic test	



• Weak balance (complete networks)	



• Only prohibit 2 + per triangle	



• Yields multiparty, mutually antagonistic structure
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• These two “definitions” are equivalent — this is structural balance in incomplete networks

Easley & Kleinberg
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(a) A graph with signed edges.
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(b) Filling in the missing edges to
achieve balance.
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(c) Dividing the graph into two sets.

Figure 5.9: There are two equivalent ways to define structural balance for general (non-complete) graphs.
One definition asks whether it is possible to fill in the remaining edges so as to produce a signed complete
graph that is balanced. The other definition asks whether it is possible to divide the nodes into two sets X

and Y so that all edges inside X and inside Y are positive, and all edges between X and Y are negative.

A. Structural Balance in Arbitrary (Non-Complete) Networks

First, let’s consider the case of a social network that is not necessarily complete — that is,

there are only edges between certain pairs of nodes, but each of these edges is still labeled

with + or �. So now there are three possible relations between each pair of nodes: a positive

edge, indicating friendship; a negative edge, indicating enmity; or the absence of an edge,

indicating that the two endpoints do not know each other. Figure 5.8 depicts an example of

such a signed network.

Defining Balance for General Networks. Drawing on what we’ve learned from the

special case of complete graphs, what would be a good definition of balance for this more

general kind of structure? The Balance Theorem suggests that we can view structural balance

Is this network balanced?
Yes: can fill in missing 

edges consistent with a 
complete, balanced 

network

Yes: can partition nodes in two 
mutually agnostic groups of friends
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• Difficult to ascertain as networks becomes nontrivial

Easley & Kleinberg

Is this network balanced?
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Figure 5.8: In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy
relations.

1. It applies only to complete graphs: we require that each person know and have an

opinion (positive or negative) on everyone else. What if only some pairs of people

know each other?

2. The Balance Theorem, showing that structural balance implies a global division of the

world into two factions [97, 204], only applies to the case in which every triangle is

balanced. Can we relax this to say that if most triangles are balanced, then the world

can be approximately divided into two factions?

In the two parts of this section, we discuss a pair of results that address these questions. The

first is based on a graph-theoretic analysis involving the notion of breadth-first search from

Chapter 2, while the second is typical of a style of proof known as a “counting argument.”

Throughout this section, we will focus on the original definition of structural balance from

Sections 5.1 and 5.2, rather than the weaker version from Section 5.4.
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• Difficult to ascertain as networks becomes nontrivial

Easley & Kleinberg
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Figure 5.8: In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy
relations.

1. It applies only to complete graphs: we require that each person know and have an

opinion (positive or negative) on everyone else. What if only some pairs of people

know each other?

2. The Balance Theorem, showing that structural balance implies a global division of the

world into two factions [97, 204], only applies to the case in which every triangle is

balanced. Can we relax this to say that if most triangles are balanced, then the world

can be approximately divided into two factions?

In the two parts of this section, we discuss a pair of results that address these questions. The

first is based on a graph-theoretic analysis involving the notion of breadth-first search from

Chapter 2, while the second is typical of a style of proof known as a “counting argument.”

Throughout this section, we will focus on the original definition of structural balance from

Sections 5.1 and 5.2, rather than the weaker version from Section 5.4.

Balanced if this sign is changed to +

+
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Can we just start labeling a node in one group and change group label when we encounter a 
negative connection?

positive (+)

negative (-)
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• Consider a test for balance in a single-cycle graph

Easley & Kleinberg
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Y

X

label as

X or Y

Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend/enemy relations around the cycle will produce a conflict by the time we get
to the starting node.

negative edges between X and Y , and then we can check that all triangles will be balanced.

So this gives a “filling-in” that satisfies the first definition.

The fact that the two definitions are equivalent suggests a certain “naturalness” to the

definition, since there are fundamentally di↵erent ways to arrive at it. It also lets us use

either definition, depending on which is more convenient in a given situation. As the example

in Figure 5.9 suggests, the second definition is generally more useful to work with — it tends

to be much easier to think about dividing the nodes into two sets than to reason about filling

in edges and checking triangles.

Characterizing Balance for General Networks. Conceptually, however, there is some-

thing not fully satisfying about either definition: the definitions themselves do not provide

much insight into how to easily check that a graph is balanced. There are, after all, lots of

ways to choose signs for the missing edges, or to choose ways of splitting the nodes into sets

X and Y . And if a graph is not balanced, so that there is no way to do these things suc-

cessfully, what could you show someone to convince them of this fact? To take just a small

example to suggest some of the di�culties, it may not be obvious from a quick inspection

of Figure 5.8 that this is not a balanced graph — or that if we change the edge connecting

nodes 2 and 4 to be positive instead of negative, it becomes a balanced graph.

In fact, however, all these problems can be remedied if we explore the consequences of

label as X of Y

conflict
problem: odd number of 
negative (-) edges on this 

cycle	


!

This graph is not 
bipartite
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• A signed graph (possibly incomplete) is structurally balanced if and only if it 
contains no cycles with an odd number of negative edges

• Proof outline:	



• Create a reduced graph with components containing only positive 
nodes reduced to a “super node”	



• This reduced graph has only negative edges	



• Original graph is balanced iff reduced graph is bipartite	



• Use BFS to test if the reduced graph is bipartite
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• Try to obtain a “balanced division” — i.e., a partition of nodes into 
groups X & Y such that all are friends inside X and inside Y, but all 
edges between X and Y are negative	



• First, find the connected components if only positive edges are 
considered	



• These are candidates for groups of X and Y labels (i.e., groups of 
friends) — “positive blobs”	



• If there is a negative edge in any of these positive blobs, the 
network is not balanced (see next slide)
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• Creating positive blobs by considering connected components when 
negative edges are removed	



Easley & Kleinberg
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Figure 5.11: To determine if a signed graph is balanced, the first step is to consider only the
positive edges, find the connected components using just these edges, and declare each of
these components to be a supernode. In any balanced division of the graph into X and Y ,
all nodes in the same supernode will have to go into the same set.

number of negative edges.

We now show how to prove this claim; this is done by designing a method that analyzes the

graph and either finds a division into the desired sets X and Y , or else finds a cycle with an

odd number of negative edges.

Proving the Characterization: Identifying Supernodes. Let’s recall what we’re try-

ing to do: find a division of the nodes into sets X and Y so that all edges inside X and Y are

positive, and all edges crossing between X and Y are negative. We will call a partitioning

into sets X and Y with these properties a balanced division. We now describe a procedure

that searches for a balanced division of the nodes into sets X and Y ; either it succeeds, or

it stops with a cycle containing an odd number of negative edges. Since these are the only

two possible outcomes for the procedure, this will give a proof of the claim.

The procedure works in two main steps: the first step is to convert the graph to a reduced

one in which there are only negative edges, and the second step is to solve the problem on

this reduced graph. The first step works as follows. Notice that whenever two nodes are
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• Positive blob cannot have a negative edge.  A negative edge makes it impossible to label all 
nodes in the blob the same.  It creates a cycle with odd number of negative edges. 	



• If negative edge in positive blob, then network is unbalanced
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Figure 5.12: Suppose a negative edge connects two nodes A and B that belong to the same
supernode. Since there is also a path consisting entirely of positive edges that connects A
and B through the inside of the supernode, putting this negative edge together with the
all-positive path produces a cycle with an odd number of negative edges.

connected by a positive edge, they must belong to the same one of the sets X or Y in a

balanced division. So we begin by considering what the connected components of the graph

would be if we were to only consider positive edges. These components can be viewed as a

set of contiguous “blobs” in the overall graph, as shown in Figure 5.11. We will refer to each

of these blobs as a supernode: each supernode is connected internally via positive edges, and

the only edges going between two di↵erent supernodes are negative. (If there were a positive

edge linking two di↵erent supernodes, we should have combined them together into a single

supernode.)

Now, if any supernode contains a negative edge between some pair of nodes A and B,

then we already have a cycle with an odd number of negative edges, as illustrated in the

example of Figure 5.12. Consider the path of positive edges that connects A and B inside

the supernode, and then close o↵ a cycle by including the negative edge joining A and B.

This cycle has only a single negative edge, linking A and B, and so it shows that the graph

is not balanced.

If there are no negative edges inside any of the supernodes, then there is no “internal”

problem with declaring each supernode to belong entirely to one of X or Y . So the problem

is now how to assign a single label “X” or “Y ” to each supernode, in such a way that

these choices are all consistent with each other Since the decision-making is now at the

level of supernodes, we create a new version of the problem in which there is a node for each

Easley & Kleinberg
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• If no negative edges in positive blobs, create a reduced graph with	



• Positive blobs become “super nodes” (all mutual friends, so all labeled the same)	



• All edges are negative

Easley & Kleinberg
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Figure 5.11: To determine if a signed graph is balanced, the first step is to consider only the
positive edges, find the connected components using just these edges, and declare each of
these components to be a supernode. In any balanced division of the graph into X and Y ,
all nodes in the same supernode will have to go into the same set.

number of negative edges.

We now show how to prove this claim; this is done by designing a method that analyzes the

graph and either finds a division into the desired sets X and Y , or else finds a cycle with an

odd number of negative edges.

Proving the Characterization: Identifying Supernodes. Let’s recall what we’re try-

ing to do: find a division of the nodes into sets X and Y so that all edges inside X and Y are

positive, and all edges crossing between X and Y are negative. We will call a partitioning

into sets X and Y with these properties a balanced division. We now describe a procedure

that searches for a balanced division of the nodes into sets X and Y ; either it succeeds, or

it stops with a cycle containing an odd number of negative edges. Since these are the only

two possible outcomes for the procedure, this will give a proof of the claim.

The procedure works in two main steps: the first step is to convert the graph to a reduced

one in which there are only negative edges, and the second step is to solve the problem on

this reduced graph. The first step works as follows. Notice that whenever two nodes are
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Figure 5.13: The second step in determining whether a signed graph is balanced is to look for
a labeling of the supernodes so that adjacent supernodes (which necessarily contain mutual
enemies) get opposite labels. For this purpose, we can ignore the original nodes of the graph
and consider a reduced graph whose nodes are the supernodes of the original graph.

supernode, and an edge joining two supernodes if there is an edge in the original that connects

the two supernodes. Figure 5.13 shows how this works for the example of Figure 5.11: we

essentially forget about the individual nodes inside the supernodes, and build a new graph

at the level of the large “blobs.” Of course, having done so, we can draw the graph in a less

blob-like way, as in Figure 5.14.

We now enter the second step of the procedure, using this reduced graph whose nodes are

the supernodes of the original graph.

Proving the Characterization: Breadth-First Search of the Reduced Graph. Re-

call that only negative edges go between supernodes (since a positive edge between two su-

pernodes would have merged them together into a single one). As a result, our reduced graph

has only negative edges. The remainder of the procedure will produce one of two possible

outcomes.

1. The first possible outcome is to label each node in the reduced graph as either X or

Y , in such a way that every edge has endpoints with opposite labels. From this we
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Figure 5.14: A more standard drawing of the reduced graph from the previous figure. A
negative cycle is visually apparent in this drawing.

can create a balanced division of the original graph, by labeling each node the way its

supernode is labeled in the reduced graph.

2. The second possible outcome will be to find a cycle in the reduced graph that has an

odd number of edges. We can then convert this to a (potentially longer) cycle in the

original graph with an odd number of negative edges: the cycle in the reduced graph

connects supernodes, and corresponds to a set of negative edges in the original graph.

We can simply “stitch together” these negative edges using paths consisting entirely

of positive edges that go through the insides of the supernodes. This will be a path

containing an odd number of negative edges in the original graph.

For example, the odd-length cycle in Figure 5.14 through nodes A through E can be

realized in the original graph as the darkened negative edges shown in Figure 5.15.

This can then be turned into a cycle in the original graph by including paths through

the supernodes – in this example using the additional nods 3 and 12.

In fact, this version of the problem when there are only negative edges is known in graph

theory as the problem of determining whether a graph is bipartite: whether its nodes can be

divided into two groups (in this case X and Y ) so that each edge goes from one group to the

other. We saw bipartite graphs when we considered a�liation networks in Chapter 4, but

there the fact that the graphs were bipartite was apparent from the ready-made division of

the nodes into people and social foci. Here, on the other hand, we are handed a graph “in

reduced graph
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• Problem now is whether super nodes can be labeled X and Y so that neighbors differ.  This is 
possible:	



• iff no odd length cycles in reduced graph	



• iff no cycles in original graph with odd number of negative edges	



• iff reduced graph has a bipartite labeling

Easley & Kleinberg
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Figure 5.14: A more standard drawing of the reduced graph from the previous figure. A
negative cycle is visually apparent in this drawing.

can create a balanced division of the original graph, by labeling each node the way its

supernode is labeled in the reduced graph.

2. The second possible outcome will be to find a cycle in the reduced graph that has an

odd number of edges. We can then convert this to a (potentially longer) cycle in the

original graph with an odd number of negative edges: the cycle in the reduced graph

connects supernodes, and corresponds to a set of negative edges in the original graph.

We can simply “stitch together” these negative edges using paths consisting entirely

of positive edges that go through the insides of the supernodes. This will be a path

containing an odd number of negative edges in the original graph.

For example, the odd-length cycle in Figure 5.14 through nodes A through E can be

realized in the original graph as the darkened negative edges shown in Figure 5.15.

This can then be turned into a cycle in the original graph by including paths through

the supernodes – in this example using the additional nods 3 and 12.

In fact, this version of the problem when there are only negative edges is known in graph

theory as the problem of determining whether a graph is bipartite: whether its nodes can be

divided into two groups (in this case X and Y ) so that each edge goes from one group to the

other. We saw bipartite graphs when we considered a�liation networks in Chapter 4, but

there the fact that the graphs were bipartite was apparent from the ready-made division of

the nodes into people and social foci. Here, on the other hand, we are handed a graph “in

reduced graph

Y

X

Y
X

X
problem
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• Test for bipartite labeling via BFS in the reduced graph
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can create a balanced division of the original graph, by labeling each node the way its

supernode is labeled in the reduced graph.

2. The second possible outcome will be to find a cycle in the reduced graph that has an

odd number of edges. We can then convert this to a (potentially longer) cycle in the

original graph with an odd number of negative edges: the cycle in the reduced graph

connects supernodes, and corresponds to a set of negative edges in the original graph.

We can simply “stitch together” these negative edges using paths consisting entirely

of positive edges that go through the insides of the supernodes. This will be a path

containing an odd number of negative edges in the original graph.

For example, the odd-length cycle in Figure 5.14 through nodes A through E can be

realized in the original graph as the darkened negative edges shown in Figure 5.15.

This can then be turned into a cycle in the original graph by including paths through

the supernodes – in this example using the additional nods 3 and 12.

In fact, this version of the problem when there are only negative edges is known in graph

theory as the problem of determining whether a graph is bipartite: whether its nodes can be

divided into two groups (in this case X and Y ) so that each edge goes from one group to the

other. We saw bipartite graphs when we considered a�liation networks in Chapter 4, but

there the fact that the graphs were bipartite was apparent from the ready-made division of

the nodes into people and social foci. Here, on the other hand, we are handed a graph “in

reduced graph
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An odd cycle is 

formed from two 

equal-length paths 

leading to an edge 

inside a single layer.

Figure 5.16: When we perform a breadth-first search of the reduced graph, there is either
an edge connecting two nodes in the same layer or there isn’t. If there isn’t, then we can
produce the desired division into X and Y by putting alternate layers in di↵erent sets. If
there is such an edge (such as the edge joining A and B in the figure), then we can take two
paths of the same length leading to the two ends of the edge, which together with the edge
itself forms an odd cycle.

D-B path have the same length k, so a cycle created from the two of these plus the A-B

edge must have length 2k + 1: an odd number. This is the odd cycle we seek.

And this completes the proof. To recap: if all edges in the reduced graph connect nodes

in adjacent layers of the breadth-first search, then we have a way to label the nodes in the

reduced graph as into X and Y , which in turn provides a balanced division of the nodes in

the original graph into X and Y . In this case, we’ve established that the graph is balanced.

Otherwise, there is an edge connecting two nodes in the same layer of the breadth-first

search, in which case we produce an odd cycle in the reduced graph as in Figure 5.16. In

this case, we can convert into this to a cycle in the original graph containing an odd number

of negative edges, as in Figure 5.15. Since these are the only two possibilities, this proves

the claim.

X

Y

Y

X X

• link between same nodes at same 
depth in BFS implies: 	


• odd length cycle in reduced graph	


• odd number of negative edges in 

original graph	


• unbalanced original graph



© Keith M. Chugg, 2014

Generalizations of Structural Balance

61

• Approximately balanced (complete) networks	



• Structural balance for incomplete graphs	



• Definition and algorithmic test	



• Weak balance (complete networks)	



• Only prohibit 2 + per triangle	



• Yields multiparty, mutually antagonistic structure
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A

B C

+ +

+

(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Easley & Kleinberg

balanced

unbalanced

Weakly balanced 
network allows this 

condition

Weakly balanced: only disallow triangles with 2 +’s and 1 -
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• Balance Theorem: any complete weakly balanced network has 
the above structure — pure multi-party polarization.  Other 
option is that everybody is friends

Easley & Kleinberg
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mutual friends 

inside W

mutual friends 

inside X

set W set X

mutual

antagonism

between

all sets

mutual 

friends 

inside Y

set Y

mutual 

friends 

inside Z

set Z

mutual 

friends 

inside V

set V

Figure 5.6: A complete graph is weakly balanced precisely when it can be divided into multiple sets of
mutual friends, with complete mutual antagonism between each pair of sets.

far more expert than C, and so should distrust C as well.

Ultimately, understanding how these positive and negative relationships work is impor-

tant for understanding the role they play on social Web sites where users register subjective

evaluations of each other. Research is only beginning to explore these fundamental questions,

including the ways in which theories of balance — as well as related theories — can be used

to shed light on these issues in large-scale datasets [274].

5.4 A Weaker Form of Structural Balance

In studying models of positive and negative relationships on networks, researchers have also

formulated alternate notions of structural balance, by revisiting the original assumptions we
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A
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C E

D

+

+

-

-

?

?

friends of A enemies of A

Figure 5.7: A schematic illustration of our analysis of weakly balanced networks. (There
may be other nodes not illustrated here.)

every two nodes belonging to the same group are friends, and every two nodes

belonging to di↵erent groups are enemies.

The fact that this characterization is true in fact provided another early motivation for

studying weak structural balance. The Cartwright-Harary notion of balance predicted only

dichotomies (or mutual consensus) as its basic social structure, and thus did not provide

a model for reasoning about situations in which a network is divided into more than two

factions. Weak structural balance makes this possible, since weakly balanced complete graphs

can contain any number of opposed groups of mutual friends [127].

Proving the Characterization. It is not hard to give a proof for this characteriza-

tion, following the structure of our proof for the Balance Theorem, and making appropriate

changes where necessary. Starting with a weakly balanced complete graph, the characteriza-

tion requires that we produce a division of its nodes into groups of mutual friends, such that

all relations between nodes in di↵erent groups are negative. Here is how we will construct

this division.

First, we pick any node A, and we consider the set consisting of A and all its friends.

Let’s call this set of nodes X. We’d like to make X our first group, and for this to work, we

need to establish two things:

(i) All of A’s friends are friends with each other. (This way, we have indeed produced a

group of mutual friends).

all 
friends 
of A

all 
enemies 

of A
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Figure 5.7: A schematic illustration of our analysis of weakly balanced networks. (There
may be other nodes not illustrated here.)

every two nodes belonging to the same group are friends, and every two nodes

belonging to di↵erent groups are enemies.

The fact that this characterization is true in fact provided another early motivation for

studying weak structural balance. The Cartwright-Harary notion of balance predicted only

dichotomies (or mutual consensus) as its basic social structure, and thus did not provide

a model for reasoning about situations in which a network is divided into more than two

factions. Weak structural balance makes this possible, since weakly balanced complete graphs

can contain any number of opposed groups of mutual friends [127].

Proving the Characterization. It is not hard to give a proof for this characteriza-

tion, following the structure of our proof for the Balance Theorem, and making appropriate

changes where necessary. Starting with a weakly balanced complete graph, the characteriza-

tion requires that we produce a division of its nodes into groups of mutual friends, such that

all relations between nodes in di↵erent groups are negative. Here is how we will construct

this division.

First, we pick any node A, and we consider the set consisting of A and all its friends.

Let’s call this set of nodes X. We’d like to make X our first group, and for this to work, we

need to establish two things:

(i) All of A’s friends are friends with each other. (This way, we have indeed produced a

group of mutual friends).

all 
friends 
of A

all 
enemies 

of A
+ ?

-

• Apply the same reasoning to the enemies of A to get the result


