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Overview

® |ast part of deterministic graph models for social
networks

® Finish partitioning

® Segregation, polarization (Easley & Kleinberg, Ch. 4, 5)
® Context for social networks
® Homophily

® Positive/negative links
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Network Partitioning Approaches

® Multiple approaches [Jackson 13.2]
® Edge removal - e.g., Girvan-Neman

® Hierarchical Clustering

® Group like nodes according to some similarity measure

® |terated correlation (CONCOR)

® |[terate a correlation measure on rows of adjacency matrix

® Maximum Likelihood approaches (EM algorithm)

® Find partition that maximizes probability of observed graph given
intra-community and inter-community edge probabilities



Network Partitioning

® When to stop!?
® Need a measure of how good a partition is...

® One measure is modularity — compare how much larger intra-
community edge frequencies with those that would be
expected under random connections

® Example: Girvan-Newman
® stop removing edges when modularity decreases

® o through entire process and select partition with highest
modularity

© Keith M. Chugg, 2014



Modularity

® Measures how much larger the fraction of intra-community edges
is relative to the fraction expected under random placement

® Positive modularity => captures community structure
® /ero modularity => same as expected under random grouping

® Negative modularity => worse than random grouping

© Keith M. Chugg, 2014



Modularity - Random Model

k; “edge stubs”

k; “edge stubs”

Randomly select from the 2L edge stubs to connect with the L edges

This model attempts to
preserve edge degree
while having random

L. :
Prob(selecting an edge stub connected to node i) = ﬁ connections
kj
Prob(selecting an edge stub connected to node j) = 57
kik;

Prob(randomly connecting i & j) =

412

(This may have some issues since it allows for nodes to connect to themselves)
© Keith M. Chugg, 2014



Modularity

fraction of edges
connecting nodes

fraction of all in community m
edges connecting to other nodes in
nodes in same community m

community

m=1
sum over nodes in sum over all
the same communities

communities
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Network Partitioning - Modularity
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| suspect that there may be some other reasonable (better?) ways to define the
quality of a partition
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Network Partitioning & Betweenness

° Community Detection/Partitioning

° http://arxiv.org/abs/0908.1062 - comparison of partitioning algorithms http://arxiv.org/abs/0908.1062

° http://compbio.cs.uic.edu/~chayant/work/phd_thesis.pdf - thesis on community detection

° Brandes Algorithm [77] in Easley & Kleinberg

° http://www.inf.uni-konstanz.de/algo/publications/b-fabc-0 | .pdf

° Code available to compute many of these properties and algorithms
° MatLabBGL (www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl)

° MIT MatLab routines (http://strategic.mit.edu/downloads.php?page=matlab_networks)

° Modularity & Girvan-Newman

° Original: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.0261 13

° More from Newman: http://www.pnas.org/content/103/23/8577 full.pdf+html
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Overview

Easley & Kleinberg, Ch. 4
® (Context for social networks

® Homophily



Homophily

® Homophily is the property of “like” nodes to
connect in a social network

® |ike ~ race, interest, age, etc.
® [wo predominant mechanisms

® Selection: people tend to befriend people
similar to themselves

® Social Influence (peer pressure): once in with a
group, people tend to conform



Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of different
races drawn as differently colored circles), and the other based on friendships in the middle and high schools

respectively [304].

Easley & Kleinberg

© Keith M. Chugg, 2014

® Observed in real
social network data



Homophily Test

® Observed frequency
of inter-type links as
compared to what
would occur with

() () random edge

placement

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

Easley & Kleinberg

® Expected inter-type link frequency under random connections: 2pg = 4/9 = 8/18

® Observed inter-type links frequency: 5/18

“some evidence of homophily”

© Keith M. Chugg, 2014



Homophily Test

() p==6/9=2/3

® White nodes occur with freq: p=2/3

® Pink nodes occur with freq: q=1-p=1/3

j

® Expected frequencies for random
q connections:

pq ® white-pink/pink-white 2pq

() pa
Homophily Measure ~ 5/18 - 2(2/3)(1/3) =-0.17 <0

0000 C
000 §



Social Network Context

Amazon ]

Shirley
Tilghman
Arthur
Levinson
G e

Steve (
Jobs L Disney ]

Andrea
Jung
Susan
Hockfield

Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the

interactions among both the board members and the companies.
Easley & Kleinberg

® Affilition Network: what foci are people members of?

Google ]

General
Electric
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Social Network Context

Literacy
Volunteers

Figure 4.5: A social-affiliation network shows both the friendships between people and their

affiliation with different social foci.
Easley & Kleinberg

® Social network and can be combined with
affiliations to provide context

© Keith M. Chugg, 2014



Social Network

person

person

person

(a) Triadic closure

person

person

person

focus

(b) Focal closure

(¢) Membership closure

Figure 4.6: Each of triadic closure, focal closure, and membership closure corresponds to the

closing of a triangle in a social-affiliation network.

Easley & Kleinberg

© Keith M. Chugg, 2014

ontext

Literacy
Volunteers

Karate
Club

Figure 4.7: In a social-affiliation network containing both people and foci, edges can form
under the effect of several different kinds of closure processes: two people with a friend in
common, two people with a focus in common, or a person joining a focus that a friend is

already involved in.
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Figure 4.9: Quantifying the effects of triadic closure in an e-mail dataset [259]. The curve
determined from the data is shown in the solid black line; the dotted curves show a compar-
ison to probabilities computed according to two simple baseline models in which common
friends provide independent probabilities of link formation.

Easley & Kleinberg
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/1—(1—p)k

k—1
___1-(1-p)

Triadic closure as a
function of number of
common friends



Examples from Data
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Figure 4.10: Quantifying the effects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve

provides a comparison to a simple baseline.

Easley & Kleinberg
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Foci closure as a function
of number of common foci

Lesser effect of many
shared foci as compared
to many shared friends



Examples from Data

Probability of joining a community when k friends are already members
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Figure 4.11: Quantifying the effects of membership closure in a large online dataset: The
plot shows the probability of joining a LiveJournal community as a function of the number
of friends who are already members [32].

Easley & Kleinberg

© Keith M. Chugg, 2014

Membership closure as a
function of number of
common memberships in
online communities

Lesser effect of many
shared foci as compared
to many shared friends

20



Examples from Data
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Figure 4.12: Quantifying the effects of membership closure in a large online dataset: The
plot shows the probability of editing a Wikipedia articles as a function of the number of
friends who have already done so [122].

Easley & Kleinberg

© Keith M. Chugg, 2014

Membership closure as a
function of number of
common pages edited on

Wikipedia

Lesser effect of many
shared foci as compared
to many shared friends

21



Examples from Data

® Many shared friends is the strongest
force for closure

® |n all cases, there is a significant jump in
closure rates from having | entity in
common to having 2 entities in common

22



Relative Cause of Homophily

number of articles edited by both A and B

number of articles edited by at least one of A or B

A

Similarity

0.03
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- interacting users
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Selection: rapid
increase in similarity
before first contact

Social influence:

continued slower
increase in similarity
after first contact

100  -50 0 50 100 150 200
Number of edits after first communication

Figure 4.13: The average similarity of two editors on Wikipedia, relative to the time (0)
at which they first communicated [122]. Time, on the x-axis, is measured in discrete units,
where each unit corresponds to a single Wikipedia action taken by either of the two editors.
The curve increases both before and after the first contact at time 0, indicating that both
selection and social influence play a role; the increase in similarity is steepest just before

time 0.

Easley & Kleinberg

© Keith M. Chugg, 2014

Selection is a stronger cause
for homophily in this
experiment

23



Shelling’s Model for Segregation

X X
X O O
X X O @) O
X 0] X X
0] O X X X
(@) @] (@)
(a) Agents occupying cells on a grid. (b) Neighbor relations as a graph.

Figure 4.15: In Schelling’s segregation model, agents of two different types (X and 0) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply

as a graph. Agents care about whether they have at least some neighbors of the same type.
eeeeeeeeeeeeeeee

® People require that t of their 8 neighbors
are like them or else they move

24



Shelling’s Model for Segregation

X1* X2*
X3 o1* 02
X4 X5 03 04 O5*
X6* 06 X7 X8
o7 08 X9* X10 X1
09 010 o111~
(a) An initial configuration.
X3 X6 O1 02
X4 X5 (0K 04
06 X2 X1 X7 X8
O11 o7 08 X9 X10 X11
05 09 o100~

Figure 4.16: After arranging agents in cells of the grid, we first determine which agents are
unsatisfied, with fewer than ¢ other agents of the same type as neighbors. In one round, each
of these agents moves to a cell where they will be satisfied; this may cause other agents to
become unsatisfied, in which case a new round of movement begins.

Easley & Kleinberg

© Keith M. Chugg, 2014

(b) After one round of movement.

If a node is not satisfied (<t like
neighbors), then she moves to an
empty spot

25
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Shelling’s Model for Segregation

X X O O X X
X X O O X X
O O X X O O
O O X X O O
X X O O X X
X X O @) X X

Figure 4.18: With a threshold of 3, it is possible to arrange agents in an integrated pattern:
all agents are satisfied, and everyone who is not on the boundary on the grid has an equal
number of neighbors of each type.

Easley & Kleinberg

® t=3 condition can be satisfied, but these are not likely to be
found by randomly moving when dissatisfied.

26
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Shelling’s Model for Segregation

(a) A simulation with threshold 3. (b) Another simulation with threshold 3.

Figure 4.17: Two runs of a simulation of the Schelling model with a threshold ¢ of 3, on a
150-by-150 grid with 10,000 agents of each type. Each cell of the grid is colored red if it is
occupied by an agent of the first type, blue if it is occupied by an agent of the second type,

and black if it is empty (not occupied by any agent).
Easley & Kleinberg

e t=3is“tolerant’ at the level of the individual, but still results in
segregation with very high probability!

27
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Shelling’s Model for Segregation

a) After 20 steps b) After 150 steps
c) After 350 steps d) After 800 steps

Figure 4.19: Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10,000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower

regions. Easley & Kleinberg

® t=4is even more pronounced

28



Shelling’s Model for Segregation

® Many on-line simulators for this and related models

® e.g., http://nifty.stanford.edu/2014/mccown-schelling-model-

segregation/

29
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Overview

Easley & Kleinberg,

® Positive/negative links

5

30



Positive & Negative Relationships

® Not all connections are positive
friendships

® What can we learn from modeling
interactions as either positive (friends)
or negative (enemies)?

31
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(a) A, B, and C' are mutual friends: balanced. A is friends with B and C, but they don’t get

along with each other: not balanced.

(c) A and B are friends with C' as a mutual en- (d) A, B, and C' are mutual enemies: not bal-
emy: balanced. anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.
Easley & Kleinberg

Positive & Negative Relationships

* balanced
. unbalanced

32



© Keith M. Chugg, 2014

Structural Balance

balanced not balanced

Figure 5.2: The labeled four-node complete graph on the left is balanced; the one on the
right is not.
Easley & Kleinberg

Balanced network = all triangles have 3 or | +’s

33



Balanced Complete Networks

Claim: If all triangles in a labeled complete graph are balanced, then either

(a) all pairs of nodes are friends, or else

(b) the nodes can be divided into two groups, X and Y, such that

(i) every pair of nodes in X like each other,
(i1) every pair of nodes in'Y like each other, and

(11i) everyone in X is the enemy of everyone in'Y .

mutual
mutual friends antagonism mutual friends
inside X between inside Y
sets
set X setY

Figure 5.3: If a complete graph can be divided into two sets of mutual friends, with complete
mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only
way for a complete graph to be balanced.

Easley & Kleinberg

® Balance Theorem:any complete balanced network has the
above structure — pure two-party polarization. Other option
is that everybody is friends (Y is empty set)

© Keith M. Chugg, 2014 34
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Proof of Balance Theorem

friends of A

all
2 enemies

of A

enemies of A

Figure 5.4: A schematic illustration of our aialysis of balanced networks. (There may be

other nodes not illustrated here.)

Easley & Kleinberg

node A selected arbitrarily

35



© Keith M. Chugg, 2014

Proof of Balance Theorem

|
| all

+ :? enemies
- ofA

friends of A enemies of A

Figure 5.4: A schematic illustration of our aialysis of balanced networks. (There may be
other nodes not illustrated here.)

Easley & Kleinberg

node A selected arbitrarily

Other option is all

36



Example: Alliance Evolution Leading to VWWWVI

oo

(a) Three Emperors’ League 1872- (b) Triple Alliance 1882 (¢) German-Russian Lapse 1890

(d) French-Russian Alliance 1891- (e) Entente Cordiale 190 (f) British Russian Alliance 1907
94

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-

tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War I. This figure and

example are from Antal, Krapivsky, and Redner [20].

Easley & Kleinberg

© Keith M. Chugg, 2014



Generalizations of Structural Balance

® Approximately balanced (complete) networks
® Structural balance for incomplete graphs

® Definition and algorithmic test
® Weak balance (complete networks)

® Only prohibit 2 + per triangle

® Yields multiparty, mutually antagonistic structure

38



Approximately Balanced Complete Networks

general statement

Easley & Kleinberg

® Almost all triangles are
balanced implies almost
completely segregated

© Keith M. Chugg, 2014

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced,
then either

(a) there is a set consisting of at least 90% of the nodes in which at least 90%
of all pairs are friends, or else

(b) the nodes can be divided into two groups, X and Y, such that

(i) at least 90% of the pairs in X like each other,
(ii) at least 90% of the pairs in Y like each other, and

(17i) at least 90% of the pairs with one end in X and the other end in'Y are
enemies.

39



Approximately Balanced Complete Networks

® OQutline of proof
® Find a“good” node A

® Find average number of unbalanced
triangles in which nodes are
involved (combinatorics)

® Pigeon-hole principle implies that
there is at least one node involved
in at most this average number

® Split network into friends/enemies of
this good node A

® Bound number of unbalanced
conditions inside friend group,
enemy group, and between these

groups

© Keith M. Chugg, 2014

mainly negative

positive positive

friends of A a good node A enemies of A

Figure 5.17: The characterization of approximately balanced complete graphs follows from
an analysis similar to the proof of the original Balance Theorem. However, we have to be
more careful in dividing the graph by first finding a “good” node that isn’t involved in too

many unbalanced triangles.

Easley & Kleinberg

40



Generalizations of Structural Balance

® Structural balance for incomplete graphs

® Definition and algorithmic test

41



Is this network balanced? /Q

® Th

© Keith M. Chugg, 2014

Structural Balance in Incomplete Networks

T ' ' AR Yes: can fill in missing
Q/ E QE edges consistent with a
R complete, balanced

@@ @@ network

(a) A graph with signed edges. (b) Filling in the missing edges to
achieve balance.

Y

X

G4 Yes: can partition nodes in two
0 mutually agnostic groups of friends

(¢) Dividing the graph into two sets.

Figure 5.9: There are two equivalent ways to define structural balance for general (non-complete) graphs.
One definition asks whether it is possible to fill in the remaining edges so as to produce a signed complete
graph that is balanced. The other definition asks whether it is possible to divide the nodes into two sets X

and Y so that all edges inside X and inside Y are positive, and all edges between X and Y are negative.

Easley & Kleinberg

ese two “‘definitions” are equivalent — this is structural balance in incomplete networks

42



Structural Balance in Incomplete Networks

Is this network balanced? Q

Figure 5.8: In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy

relations.
Easley & Kleinberg

® Difficult to ascertain as networks becomes nontrivial

© Keith M. Chugg, 2014
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Structural Balance in Incomplete Networks

Balanced if this sign is changed to + /Ci b\

Figure 5.8: In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy

relations.
Easley & Kleinberg

® Difficult to ascertain as networks becomes nontrivial

© Keith M. Chugg, 2014
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Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—O—O0——0C—=0

O

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 45



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—O—O0——0C—=0

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 46



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—O0O— L —0C——=0

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 47



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—0O0— L —0C——=0

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 48



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—@— —0O——=0

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 49



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—0O

O—@

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 50



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—=0O

O—@

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 5 I



Structural Balance in Incomplete Networks

positive (+)

negative (-)

O—@

O—@

® (Can we just start labeling a node in one group and change group label when we encounter a
negative connection!?

© Keith M. Chugg, 2014 52



Structural Balance in Incomplete Networks

® Consider a test for balance in a single-cycle graph

label as X of Y

@

confllct

label as
XorY

@ (2

Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend /enemy relations around the cycle will produce a conflict by the time we get

to the starting node.
Easley & Kleinberg

© Keith M. Chugg, 2014

problem: odd number of
negative (-) edges on this
cycle

This graph is not
bipartite

53



Structural Balance in Incomplete Networks

® A signed graph (possibly incomplete) is structurally balanced if and only if it
contains no cycles with an odd number of negative edges

® Proof outline:

® Create a reduced graph with components containing only positive
nodes reduced to a “super node”

® This reduced graph has only negative edges
® Original graph is balanced iff reduced graph is bipartite

® Use BFS to test if the reduced graph is bipartite

54



Proof: Balance in Incomplete Networks

® Try to obtain a “balanced division” — i.e., a partition of nodes into
groups X &Y such that all are friends inside X and inside Y, but all
edges between X andY are negative

® First, find the connected components if only positive edges are
considered

® These are candidates for groups of X andY labels (i.e., groups of
friends) — “positive blobs”

® If there is a negative edge in any of these positive blobs, the
network is not balanced (see next slide)

55



Proof: Balance in Incomplete Networks

- ——

[ + + \
| \
\ + \
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- \ + L —
\ / // \\\
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N P \\\_’/

\‘———

Figure 5.11: To determine if a signed graph is balanced, the first step is to consider only the
positive edges, find the connected components using just these edges, and declare each of
these components to be a supernode. In any balanced division of the graph into X and Y,

all nodes in the same supernode will have to go into the same set.
Easley & Kleinberg

® Creating positive blobs by considering connected components when
negative edges are removed

© Keith M. Chugg, 2014



Structural Balance in Incomplete Networks

7
Vs \\\
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Figure 5.12: Suppose a negative edge connects two nodes A and B that belong to the same
supernode. Since there is also a path consisting entirely of positive edges that connects A
and B through the inside of the supernode, putting this negative edge together with the
all-positive path produces a cycle with an odd number of negative edges.

Easley & Kleinberg

® Positive blob cannot have a negative edge. A negative edge makes it impossible to label all
nodes in the blob the same. It creates a cycle with odd humber of negative edges.

® [f negative edge in positive blob, then network is unbalanced

© Keith M. Chugg, 2014
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Proof: Balance in Incomplete Networks

® [f no negative edges in positive blobs, create a reduced graph with
® Positive blobs become “super nodes” (all mutual friends, so all labeled the same)
® All edges are negative
// Q \\\ [/ \\
| + + \ | \
| \ \ \
/\Q%+ @\ 1 /@
| /\ \,\ -
\ + + <7 \ PN T S~
= \ / -~ / \ , / ~
/ N ! o \ ! S o - N
g ? R AN \/\ / A ARl -

reduced graph

Easley & Kleinberg

© Keith M. Chugg, 2014
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Proof: Balance in Incomplete Networks

® Problem now is whether super nodes can be labeled X andY so that neighbors differ. This is
possible:

® iff no odd length cycles in reduced graph
® iff no cycles in original graph with odd number of negative edges

® iff reduced graph has a bipartite labeling

BONEP
x -A\@/problem
Y@-@g

reduced graph

Easley & Kleinberg

© Keith M. Chugg, 2014

59



Proof: Balance in Incomplete Networks

® Test for bipartite labeling via BFS in the reduced graph

JONN
(@ f‘@
O

reduced graph

An odd cycle is
formed from two
equal-length paths
leading to an edge
inside a single layer.

|in|( between same nodes at same i .16 When we perform a breadth-first search of the reduced graph, there is either

depth in BFS implies:
: here is such an edge (such as the edge joining A and B in the figure), then we can take two
) g ge ) g gure),
Odd Iength CYCIe In reduced graph paths of the same length leading to the two ends of the edge, which together with the edge

® odd number of negative edges in itself forms an odd cycle.
o o Easley & Kleinberg
original graph
® unbalanced original graph

produce the desired division into X and Y by putting alternate layers in different sets. If

© Keith M. Chugg, 2014



Generalizations of Structural Balance

® Weak balance (complete networks)
® Only prohibit 2 + per triangle

® Yields multiparty, mutually antagonistic structure

61
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Weakly Balanced Networks

* balanced
. unbalanced

Weakly balanced
i network allows this
' condition

: (d) A, B, and C are mutual enemies: not bal- .:
%, anced. -

* *
®

(c) A and B are friends with C' as a mutual en-
emy: balanced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.
Easley & Kleinberg

Weakly balanced: only disallow triangles with 2 +’s and | -

62
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Weakly Balanced Complete Networks

setV

mutual

friends

set X
inside V

mutual friends

mutual friends inside X
inside W
mutual
antagonism
between
all sets

mutual
friends
mutual inside Z

friends
inside Y

set Z

set Y

Figure 5.6: A complete graph is weakly balanced precisely when it can be divided into multiple sets of

mutual friends, with complete mutual antagonism between each pair of sets. Easley & Kleinberg

Balance Theorem: any complete weakly balanced network has
the above structure — pure multi-party polarization. Other
option is that everybody is friends
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Proof of Balance Theorem

all
friends

enemies
of A

friends of A enemies of A

Figure 5.7: A schematic illustration of our gnalysis of weakly balanced networks. (There
may be other nodes not illustrated here.)

Easley & Kleinberg

node A selected arbitrarily
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Proof of Balance Theorem

friends . 7 enemies

of A | : of A

friends of A enemies of A

Figure 5.7: A schematic illustration of our gnalysis of weakly balanced networks. (There
may be other nodes not illustrated here.)

Easley & Kleinberg

node A selected arbitrarily

® Apply the same reasoning to the enemies of A to get the result
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