Graph Theory and Social Networks - part 4

EE599: Social Network Systems

Keith M. Chugg Fall 2014

Overview

- Continuation of graph theory for social networks
 - Community detection (partitioning)
 - Betweenness computation
 - Homophily (segregation, polarization)
 - Examples

References

- Easley & Kleinberg, Ch 3-4
 - Focus on relationship to social nets with little math
- Jackson, Ch 2-3, 13.2
 - Social network focus with more formal math

Motivation

Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is reflected in the different positions of nodes A and B in the underyling social network. Easley & Kleinberg

- Not all nodes and edges are "equal"
 - A vs. B

(a) A sample network

(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can even display a *nested* structure, with smaller regions nesting inside larger ones.

- How to identify tightly knight regions in a social network from the graph structure?
 - Assume we have a method of identifying the most "central" edges
 - Remove these edges to break the graph into components
 - Repeat this process on the components as they arise
 - Girvan-Newman Algorithm

Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

Figure 3.12: A co-authorship network of physicists and applied mathematicians working on networks [322]. Within this professional community, more tightly-knit subgroups are evident from the network structure. Easley & Kleinberg

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or local bridges along which to separate it.

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15. Easley & Kleinberg

Centrality Measures (nodes)

- Betweenness Centrality:
 - Fraction of shortest paths in the network that pass through node i

$$B(i) = \sum_{(j,k), i \notin \{j,k\}} \frac{P_i(j,k)}{P(j,k)} = \frac{\text{number of shortest paths between j \& k, passing through i}}{\text{number of shortest paths between j \& k}}$$

Often normalized by:
$$\begin{pmatrix} N-1\\ 2 \end{pmatrix}$$
 (number of pairs excluding node i)

Centrality Example

FIGURE 2.13 A central node with low degree centrality.

TABLE 2.1Centrality comparisons for Figure 2.13

	Measure of centrality	Nodes 1, 2, 6, and 7	Nodes 3 and 5	Node 4
	Degree (and Katz prestige P^K)	.33	.50	.33
	Closeness	.40	.55	.60
	Decay centrality ($\delta = .5$)	1.5	2.0	2.0
	Decay centrality ($\delta = .75$)	3.1	3.7	3.8
	Decay centrality ($\delta = .25$)	.59	.84	.75
	Betweenness	.0	.53	.60
	Eigenvector centrality	.47	.63	.54
	Katz prestige-2 P^{K2} , $a = 1/3$	3.1	4.3	3.5
	Bonacich centrality $b = 1/3, a = 1$	9.4	13.0	11.0
	Bonacich centrality $b = 1/4, a = 1$	4.9	6.8	5.4

11

Computing Betweenness (edge)

Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

Computing Betweenness (edge)

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15. Easley & Kleinberg

can be viewed as splitting a unit of "flow" from J back to A

 Can we combine the computation for A-to-J and and A-to-H flow computations?

A~J & A~H betweenness contribution

 Yes, we can combine the computation for A-to-J and and Ato-H flow computations?

A~ all betweenness contribution

 We can combine (sum) all flows through edges — i.e., A~m flows for m=B,C,...J

A~ all betweenness contribution

 We can combine (sum) all flows through edges — i.e., A~m flows for m=B,C,...J

A~ all betweenness contribution

 We can combine (sum) all flows through edges — i.e., A~m flows for m=B,C,...J

A~ all betweenness contribution

such that v+2v=1

- We split the flow proportional to the number of shortest
 paths as we
 progressed up the graph from the bottom
- Can we compute the number of shortest paths from A to each node efficiently?

Number of shortest paths from A to each node

Recursively computing the number of shortest paths from A to each node

Number of shortest paths from A to each node

Recursively computing the number of shortest paths from A to each node

Number of shortest paths from A to each node

Recursively computing the number of shortest paths from A to each node

- Efficient algorithm for computing betweenness (Brandes algorithm, 2001)
 - For each node i
 - Outward recursion: compute number of geodesics (shortest paths) from i to every other node
 - Inward recursion: go back towards node i splitting the "flow" (fraction of geodesics) proportionally according to number of shortest paths
 - Sum the flow on each edge over all of these N BFSes and divide by 2 (Divide by (N-I) choose 2 optional)

(b) Breadth-first search starting at node A

Figure 3.18: The first step in the efficient method for computing betweenness values is to perform a breadth-first search of the network. Here the results of breadth-first from node A are shown; over the course of the method, breadth-first search is performed from each node in turn.

outward recursion

Figure 3.19: The second step in computing betweenness values is to count the number of shortest paths from a starting node A to all other nodes in the network. This can be done by adding up counts of shortest paths, moving downward through the breadth-first search structure.

inward recursion

Figure 3.20: The final step in computing betweenness values is to determine the flow values from a starting node A to all other nodes in the network. This is done by working up from the lowest layers of the breadth-first search, dividing up the flow above a node in proportion to the number of shortest paths coming into it on each edge.

Same method for node betweenness

Figure 3.20: The final step in computing betweenness values is to determine the flow values from a starting node A to all other nodes in the network. This is done by working up from the lowest layers of the breadth-first search, dividing up the flow above a node in proportion to the number of shortest paths coming into it on each edge.

(a) A sample network

(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can even display a *nested* structure, with smaller regions nesting inside larger ones.

- How to identify tightly knight regions in a social network from the graph structure?
 - Use a metod for determining edge centrality (e.g., betweenness)
 - Remove these edges to break the graph into components
 - Repeat this process on the components as they arise
- Girvan-Newman Algorithm

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or local bridges along which to separate it.

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15. Easley & Kleinberg

Figure 3.12: A co-authorship network of physicists and applied mathematicians working on networks [322]. Within this professional community, more tightly-knit subgroups are evident from the network structure. Easley & Kleinberg