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Overview

• Continuation of graph theory for social 
networks	


• Community detection (partitioning)	


• Betweenness computation	


• Homophily (segregation, polarization)	


• Examples
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References

• Easley & Kleinberg, Ch 3-4	


• Focus on relationship to social nets with 
little math	


• Jackson, Ch 2-3, 13.2	


• Social network focus with more formal 
math
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Motivation

• Not all nodes and edges are “equal”	


• A vs. B
4
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the di↵erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di↵erent nodes

play in this structure as well. In social networks, access to edges that span di↵erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e↵ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di↵erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe�cient. (Recall that the

clustering coe�cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in
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(a) A sample network
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite

• How to identify tightly 
knight regions in a social 
network from the graph 
structure?	


• Assume we have a 
method of identifying 
the most “central” 
edges	


• Remove these edges to 
break the graph into 
components	


• Repeat this process on 
the components as 
they arise	


• Girvan-Newman Algorithm
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(c) Step 3

Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3 · 11 = 33. The same goes for

the edges 6-7, 8-9, and 8-12.

• The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its

betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

• Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.

This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most tra�c.

In fact, the idea of using betweenness to identify important edges draws on a long history

in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,

169]. Its use by sociologists has traditionally focused more on nodes than on edges, where

the definition the same: the betweenness of a node is the total amount of flow that it carries,

when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

We will refer to this as the problem of graph partitioning, and the constituent parts the

network is broken into as the regions arising from the partitioning method. Formulating a

method for graph partitioning will implicitly require working out a set of definitions for all

these notions that are both mathematically tractable and also useful on real datasets.

To give a sense for what we might hope to achieve from such a method, let’s consider

two examples. The first, shown in Figure 3.12, depicts the co-authorships among a set of

physicists and applied mathematicians working on networks [322]. Recall that we discussed

co-authorship networks in Chapter 2 as a way of encoding the collaborations within a profes-

sional community. It’s clear from the picture that there are tightly-knit groups within this

community, and some people who sit on the boundaries of their respective groups. Indeed it

resembles, at a somewhat larger scale, some of the pictures of tightly-knit groups and weak

ties that we drew in schematic form earlier, in examples such as Figure 3.11. Is there a

general way to pull these groups out of the data, beyond using just our visual intuition?



© Keith M. Chugg, 2014

Network Partitioning

8

Easley & Kleinberg

74 CHAPTER 3. STRONG AND WEAK TIES

2

3

5 7

9

10

8

6

41 11

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in di↵erent parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “tra�c” on the network, and look for the edges that carry the most of

this tra�c. Like crucial bridges and highway arteries, we might expect these edges to link

di↵erent densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of tra�c as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to di↵erent connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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(d) Step 4

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of tra�c along shortest paths. Based on the premise that these are the most “vital” edges

for connecting di↵erent regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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• Betweenness Centrality:	


• Fraction of shortest paths in the network that 
pass through node i

number of shortest paths between j & k

number of shortest paths between j & k, passing through i
B(i) =

X

(j,k),i 62{j,k}

Pi(j, k)

P (j, k)
=

Often normalized by: 
⇣

N � 1
2

⌘
(number of pairs excluding node i)
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38 Chapter 2 Representing and Measuring Networks 
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FIGURE 2.13 A central node with low degree centrality. 

3. betweenness—how important a node is in terms of connecting other nodes; 
and 

4. neighbors’ characteristics—how important, central, or influential a node’s 
neighbors are. 

Given how different these notions are, even without looking at formal definitions it 
is easy to see that they capture complementary aspects of a node’s position, and any 
particular measure will be better suited for some applications and less appropriate 
for others. Let me discuss some of the more standard definitions of each type. 

Degree Centrality Perhaps the simplest measure of the position of a given node 
in a network is simply to keep track of its degree. A node with degree n − 1 would 
be directly connected to all other nodes, and hence quite central to the network. 
A node connected to only two other nodes (for large n) would be, at least in one 
sense, less central. The degree centrality of a node is simply di(g)/(n − 1), so that 
it ranges from 0 to 1 and indicates how well a node is connected in terms of direct 
connections. 

Of course, degree centrality clearly misses many of the interesting aspects of a 
network. In particular, it does not measure how well located a node is in a network. 
It might be that a node has relatively few links, but lies in a critical location 
in the network. For many applications a centrality measure that is sensitive to a 
node’s influence or marginal contribution to the network is important. For example, 
consider the network in Figure 2.13. 

In this network the degree of nodes 3 and 5 are three, and the degree of node 4 
is only two. Arguably, node 4 is at least as central as nodes 3 and 5, and far more 
central than the other nodes that each have two links (nodes 1, 2, 6, and 7). There are 
several senses in which we see a powerful or central role for node 4. If one deletes 
node 4, the component structure of the network changes. This change might be 
very important for applications involving information transmission, where node 
4 is critical to path-connecting nodes 1 and 7. This aspect would be picked up 
by a measure such as betweenness. We also see that node 4 is relatively close to 
all other nodes in that it is at most two links away from any other node, whereas 

43 

2.3 

2.3 Appendix: Basic Graph Theory 

TABLE 2.1 
Centrality comparisons for Figure 2.13 

Measure of centrality Nodes 1, 2, 6, and 7 Nodes 3 and 5 Node 4 

Degree (and Katz prestige P K) .33 .50 .33 
Closeness .40 .55 .60 
Decay centrality (δ = .5) 1.5 2.0 2.0 
Decay centrality (δ = .75) 3.1 3.7 3.8 
Decay centrality (δ = .25) .59 .84 .75 
Betweenness .0 .53 .60 
Eigenvector centrality .47 .63 .54 
Katz prestige-2 P K2, a = 1/3 3.1 4.3 3.5 
Bonacich centrality b = 1/3, a = 1 9.4 13.0 11.0 
Bonacich centrality b = 1/4, a = 1 4.9 6.8 5.4 

and 7 for any δ, but the relative rankings of 3 and 5 relative to 4 depend on δ. With a 
lower δ the results resemble those for like-degree centrality and favor nodes 3 and 
5, while for higher δ they resemble those for closeness or betweenness and favor 
node 4. The eigenvector centralities and self-referential definitions of Bonacich 
and Katz prestige-2 all favor nodes 3 and 5, to varying extents. As b decreases the 
Bonacich favors closer connections and higher-degree nodes, while for higher b, 
longer paths become more important. 

These measures are certainly not the only measures of centrality, and it is clear 
from the above that the measures capture different aspects of the positioning of 
the nodes. Given how complex networks can be, it is not surprising that there are 
many different ways of viewing position, centrality, or power in a network. 

Appendix: Basic Graph Theory 
Here I present some basic results in graph theory that will be useful in subsequent 
chapters.30 

2.3.1 Hall’s Theorem and Bipartite Graphs 
A bipartite network (N, g) is one for which N can be partitioned into two sets A 

and B such that if a link ij is in g, then one of the nodes comes from A and the 
other comes from B. A bipartite network is pictured in Figure 2.14. Settings with 
two classes of nodes are often referred to as matching settings (and in some cases 
marriage markets), where one group is referred to as “women” and the other as 

30. Excellent texts on graph theory are Bollobás [85] and Diestel [200]. 

Jackson
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite

49
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Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3 · 11 = 33. The same goes for

the edges 6-7, 8-9, and 8-12.

• The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its

betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

• Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.

This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most tra�c.

In fact, the idea of using betweenness to identify important edges draws on a long history

in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,

169]. Its use by sociologists has traditionally focused more on nodes than on edges, where

the definition the same: the betweenness of a node is the total amount of flow that it carries,

when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network
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Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in di↵erent parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “tra�c” on the network, and look for the edges that carry the most of

this tra�c. Like crucial bridges and highway arteries, we might expect these edges to link

di↵erent densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of tra�c as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to di↵erent connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each

Easley & Kleinberg
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Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of tra�c along shortest paths. Based on the premise that these are the most “vital” edges

for connecting di↵erent regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17

30 30
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• What fraction of geodesics from A to J go thru each edge?
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• What fraction of geodesics from A to J go thru each edge?

A

B C D E F G

H I

J

1/3 2/3
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• What fraction of geodesics from A to J go thru each edge?

A

B C D E F G

H I

J

1/3 2/3

1/6 1/6 1/6 1/6 1/6 1/6
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• What fraction of geodesics from A to J go thru each edge?

A

B C D E F G

H I

J

1/3 2/3

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/61/6 1/6 1/6
can be viewed as 

splitting a unit of “flow” 
from J back to A
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• What fraction of geodesics from A to H go thru each edge?

A

B C D E F G

H I

J
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• What fraction of geodesics from A to H go thru each edge?

A

B C D E F G

H I

J

0 0

0 0 0 0

0 0 0 0
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• What fraction of geodesics from A to H go thru each edge?

A

B C D E F G

H I

J

0 0

1/2 1/2 0 0 0 0

0 0 0 0
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• What fraction of geodesics from A to J go thru each edge?

A

B C D E F G

H I

J

0 0

1/2 1/2 0 0 0 0

1/2 1/2 0 0 0 0
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• Can we combine the computation for A-to-J and and A-to-H 
flow computations?

A

B C D E F G

H I

J

0 0

1/2 1/2 0 0 0 0

1/2 1/2 0 0 0 0

A

B C D E F G

H I

J

1/3 2/3

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/61/6 1/6 1/6

A~H betweenness contribution A~J betweenness contribution
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• Yes, we can combine the computation for A-to-J and and A-
to-H flow computations?

A

B C D E F G

H I

J

1/3 2/3

2/3 1/6 1/6 1/6 1/6

1/61/6 1/6 1/6

A~J & A~H betweenness contribution

2/3

2/3 2/3

Add one unit of 
flow to account for 
flow between A~H
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• We can combine (sum) all flows through edges — i.e., A~m 
flows for m=B,C,…J

A

B C D E F G

H I

J

1/3 2/3

A~ all betweenness contribution
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• We can combine (sum) all flows through edges — i.e., A~m 
flows for m=B,C,…J

A

B C D E F G

H I

J

1/3 2/3

2/3 5/12 5/12 5/12 5/12

A~ all betweenness contribution

2/3
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• We can combine (sum) all flows through edges — i.e., A~m 
flows for m=B,C,…J

A

B C D E F G

H I

J

1/3 2/3

2/3 5/12 5/12 5/12 5/12

17/12

A~ all betweenness contribution

2/3

5/3 5/3
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• How does another node at the deepest level affect this?

1/3 2/3

2/3 2/3 2/3 2/3 2/3

5/3

A~ all betweenness contribution

2/3

5/3 5/3

A

B C D E F G

H I

J
K

1
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• How does another node at the deepest level affect this?

A~ all betweenness contribution

A

B C D E F G

H I

J
K
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• How does another node at the deepest level affect this?

1/3 2/3

A~ all betweenness contribution

A

B C D E F G

H I

J
K

1
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• How does another node at the deepest level affect this?

1/3 2/3

2/3 2/3 2/3 2/3 2/3

A~ all betweenness contribution

2/3

A

B C D E F G

H I

J
K

1



© Keith M. Chugg, 2014

Computing Betweenness

33

• How does another node at the deepest level affect this?

1/3 2/3

2/3 2/3 2/3 2/3 2/3

5/3

A~ all betweenness contribution

2/3

5/3 5/3

A

B C D E F G

H I

J
K

1
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• We split the flow 
proportional to the 
number of shortest 
paths as we 
progressed up the 
graph from the 
bottom	


• Can we compute 
the number of 
shortest paths 
from A to each 
node efficiently?

A

B C D E F G

H I

J

1 1 1 1 1 1

2 4

v 2v

such that v+2v=1
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• Recursively computing the number of shortest paths from A 
to each node

Number of shortest paths from A to each node

A

B C D E F G

H I

J
K

1 1 1 1 1 1
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• Recursively computing the number of shortest paths from A 
to each node

Number of shortest paths from A to each node

A

B C D E F G

H I

J
K

1 1 1 1 1 1

2 4
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• Recursively computing the number of shortest paths from A 
to each node

Number of shortest paths from A to each node

A

B C D E F G

H I

J
K

1 1 1 1 1 1

2 4

6 4
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• Efficient algorithm for computing betweenness 
(Brandes algorithm, 2001)	


• For each node i	


• Outward recursion: compute number of geodesics 
(shortest paths) from i to every other node	


• Inward recursion: go back towards node i splitting the 
“flow”(fraction of geodesics) proportionally according to 
number of shortest paths	


• Sum the flow on each edge over all of these N BFSes and 
divide by 2 (Divide by (N-1) choose 2 optional)
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(a) A sample network

B ED
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A
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(b) Breadth-first search starting at node A

Figure 3.18: The first step in the e�cient method for computing betweenness values is to
perform a breadth-first search of the network. Here the results of breadth-first from node A
are shown; over the course of the method, breadth-first search is performed from each node
in turn.

Among the other examples discussed by Girvan and Newman, they provide a partition

of the co-authorship network from Figure 3.12, with the top level of regions suggested by

the di↵erent shadings of the nodes in that figure.

Ultimately, it is a challenge to rigorously evaluate graph partitioning methods and to

formulate ways of asserting that one is better than another — both because the goal is hard

to formalize, and because di↵erent methods may be more or less e↵ective on di↵erent kinds

of networks. Moreover, a line of recent work by Leskovec et al. has argued that in real social-

network data, it is much easier to separate a tightly-knit region from the rest of the network

when it is relatively small, on the order of at most a few hundred nodes [275]. Studies on

a range of di↵erent social and information networks suggest that beyond this size, sets of

nodes become much more “inextricable” from the rest of the network, suggesting that graph

partitioning approaches on this type of data may produce qualitatively di↵erent kinds of

results for small networks and small regions than for large ones. This is an area of ongoing

investigation.

In the remainder of this section, we address a final important issue: how to actually

compute the betweenness quantities that are needed in order to make the Girvan-Newman

method work.

Easley & Kleinberg
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B ED

F

K

G

I

H

C

A

J

1 1 1 1

2 1 2

3 3

6

# shortest A-K paths 
= # shortest A-I paths 
+ # shortest A-J paths

# shortest A-J paths = 
# shortest A-G paths + 
# shortest A-H paths

# shortest A-I paths = 
# shortest A-F paths + 
# shortest A-G paths

Figure 3.19: The second step in computing betweenness values is to count the number of
shortest paths from a starting node A to all other nodes in the network. This can be done
by adding up counts of shortest paths, moving downward through the breadth-first search
structure.

To motivate this, consider a node like I in Figure 3.18(b). All shortest-paths from A to

I must take their last step through either F or G, since these are the two nodes above it

in the breadth-first search. (For terminological convenience, we will say that a node X is

above a node Y in the breadth-first search if X is in the layer immediately preceding Y , and

X has an edge to Y .) Moreover, in order to be a shortest path to I, a path must first be a

shortest path to one of F or G, and then take this last step to I. It follows that the number

of shortest paths from A to I is precisely the number of shortest paths from A to F , plus

the number of shortest paths from A to G.

We can use this as a general method to count the number of shortest paths from A to

all other nodes, as depicted in Figure 3.19. Each node in the first layer is a neighbor of A,

and so it has only one shortest path from A: the edge leading straight from A to it. So

we give each of these nodes a count of 1. Now, as we move down through the BFS layers,

we apply the reasoning discussed above to conclude that the number of shortest paths to

outward 
recursion
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3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING81
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1/2 1/2 1
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from
the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

each node should be the sum of the number of shortest paths to all nodes directly above it

in the breadth-first search. Working downward through the layers, we thus get the number

of shortest paths to each node, as shown in Figure 3.19. Note that by the time we get to

deeper layers, it may not be so easy to determine these number by visual inspection — for

example, to immediately list the six di↵erent shortest paths from A to K — but it is quite

easy when they are built up layer-by-layer in this way.

Determining Flow Values. Finally, we come to the third step, computing how the flow

from A to all other nodes spreads out across the edges. Here too we use the breadth-first

search structure, but this time working up from the lowest layers. We first show the idea in

Figure 3.20 on our running example, and then describe the general procedure.

• Let’s start at the bottom with node K. A single unit of flow arrives at K, and an equal

number of the shortest paths from A to K come through nodes I and J , so this unit
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Same method 
for node 

betweenness

3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING81
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from
the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

each node should be the sum of the number of shortest paths to all nodes directly above it

in the breadth-first search. Working downward through the layers, we thus get the number

of shortest paths to each node, as shown in Figure 3.19. Note that by the time we get to

deeper layers, it may not be so easy to determine these number by visual inspection — for

example, to immediately list the six di↵erent shortest paths from A to K — but it is quite

easy when they are built up layer-by-layer in this way.

Determining Flow Values. Finally, we come to the third step, computing how the flow

from A to all other nodes spreads out across the edges. Here too we use the breadth-first

search structure, but this time working up from the lowest layers. We first show the idea in

Figure 3.20 on our running example, and then describe the general procedure.

• Let’s start at the bottom with node K. A single unit of flow arrives at K, and an equal

number of the shortest paths from A to K come through nodes I and J , so this unit

3

1

1/2
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(a) A sample network
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite

• How to identify tightly 
knight regions in a social 
network from the graph 
structure?	


• Use a metod for 
determining edge 
centrality (e.g., 
betweenness)	


• Remove these edges to 
break the graph into 
components	


• Repeat this process on 
the components as 
they arise	


• Girvan-Newman Algorithm
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in di↵erent parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “tra�c” on the network, and look for the edges that carry the most of

this tra�c. Like crucial bridges and highway arteries, we might expect these edges to link

di↵erent densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of tra�c as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to di↵erent connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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(a) Step 1
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(d) Step 4

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of tra�c along shortest paths. Based on the premise that these are the most “vital” edges

for connecting di↵erent regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

We will refer to this as the problem of graph partitioning, and the constituent parts the

network is broken into as the regions arising from the partitioning method. Formulating a

method for graph partitioning will implicitly require working out a set of definitions for all

these notions that are both mathematically tractable and also useful on real datasets.

To give a sense for what we might hope to achieve from such a method, let’s consider

two examples. The first, shown in Figure 3.12, depicts the co-authorships among a set of

physicists and applied mathematicians working on networks [322]. Recall that we discussed

co-authorship networks in Chapter 2 as a way of encoding the collaborations within a profes-

sional community. It’s clear from the picture that there are tightly-knit groups within this

community, and some people who sit on the boundaries of their respective groups. Indeed it

resembles, at a somewhat larger scale, some of the pictures of tightly-knit groups and weak

ties that we drew in schematic form earlier, in examples such as Figure 3.11. Is there a

general way to pull these groups out of the data, beyond using just our visual intuition?


