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Overview

® Continuation of graph theory for social
networks

® Community detection (partitioning)
® Betweenness computation
® Homophily (segregation, polarization)

® Examples



References

® Easley & Kleinberg, Ch 3-4

® Focus on relationship to social nets with
ittle math

® Jackson, Ch 2-3,13.2

® Social network focus with more formal
math



Motivation

Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-

flected in the different positions of nodes A and B in the underyling social network.
Easley & Kleinberg
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® Not all nodes and edges are “equa

e Avs.B
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Network Partitioning

(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can

How to identify tightly
knight regions in a social
network from the graph
structure!

Assume we have a
method of identifying
the most “central”
edges

Remove these edges to
break the graph into
components

Repeat this process on
the components as
they arise

even display a nested structure, with smaller regions nesting inside larger ones. ® G | rvan-Newman AIgO rlth m

Easley & Kleinberg
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Easley & Kleinberg
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Network Partitioning
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Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).



Network Partitioning
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident

from the network structure.
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Network Partitioning

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

Easley & Kleinberg

© Keith M. Chugg, 2014



Network Partitioning
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Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.
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Centrality Measures (nodes)

® Betweenness Centrality:

® Fraction of shortest paths in the network that
pass through node i

number of shortest paths between j & k, passing through i

G g} P(j,k) number of shortest paths between j & k

Often normalized by: ( N 2_ 1 ) (number of pairs excluding node i)

© Keith M. Chugg, 2014



Centrality Example

2

6

FIGURE 2.13 A central node with low degree centrality.
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TABLE 2.1
Centrality comparisons for Figure 2.13
Measure of centrality Nodes 1,2,6,and7 Nodes3and5 Node4
Degree (and Katz prestige PX) 33 50 33
Closeness 40 S5 .60
Decay centrality (6 = .5) 1.5 2.0 2.0
Decay centrality (§ = .75) 3.1 3.7 3.8
Decay centrality (§ = .25) .59 .84 75
*Betweenness .0 53 .60
Eigenvector centrality A7 .63 54
Katz prestige-2 PX2 a =1/3 3.1 4.3 3.5
Bonacich centrality b =1/3,a =1 94 13.0 11.0
Bonacich centrality b = 1/4,a =1 4.9 6.8 5.4

Jackson



Computing Betweenness (edge)

Easley & Kleinberg



Easley & Kleinberg
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Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).



Computing Betweenness (edge)

Easley & Kleinberg



Network Partitioning
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Flgure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.
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Computing Betweenness

® What fraction of geodesics from A to | go thru each edge?



Computing Betweenness

® What fraction of geodesics from A to | go thru each edge?



Computing Betweenness

® What fraction of geodesics from A to | go thru each edge?



Computing Betweenness

can be viewed as
splitting a unit of “flow”
from | back to A

® What fraction of geodesics from A to | go thru each edge?
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Computing Betweenness

® What fraction of geodesics from A to H go thru each edge?
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Computing Betweenness

® What fraction of geodesics from A to H go thru each edge?
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Computing Betweenness

® What fraction of geodesics from A to H go thru each edge?
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Computing Betweenness

® What fraction of geodesics from A to | go thru each edge?
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Computing Betweenness

A~H betweenness contribution A~] betweenness contribution

® Can we combine the computation for A-to-) and and A-to-H
flow computations!?

24



Computing Betweenness

A~] & A~H betweenness contribution

Add one unit of
flow to account for
flow between A~H

® Yes, we can combine the computation for A-to-] and and A-
to-H flow computations!?

© Keith M. Chugg, 2014
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Computing Betweenness

A~ all betweenness contribution

® We can combine (sum) all flows through edges — i.e.,, A~m
flows for m=B,C,...]
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Computing Betweenness
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Computing Betweenness

A~ all betweenness contribution

® We can combine (sum) all flows through edges — i.e.,, A~m
flows for m=B,C,...]
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Computing Betweenness

A~ all betweenness contribution

® How does another node at the deepest level affect this!?
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Computing Betweenness

A~ all betweenness contribution

® How does another node at the deepest level affect this!?
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Computing Betweenness

A~ all betweenness contribution

® How does another node at the deepest level affect this!?
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Computing Betweenness

A~ all betweenness contribution

® How does another node at the deepest level affect this!?
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Computing Betweenness

A~ all betweenness contribution

® How does another node at the deepest level affect this!?
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Computing Betweenness

® We split the flow
proportional to the
number of shortest
paths as we
progressed up the
graph from the
bottom

e (Can we compute
the number of
shortest paths

such that v+2v=| from A to each

node efficiently?

34



Computing Betweenness

Number of shortest paths from A to each node

® Recursively computing the number of shortest paths from A
to each node
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Computing Betweenness

Number of shortest paths from A to each node

® Recursively computing the number of shortest paths from A
to each node
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Computing Betweenness

Number of shortest paths from A to each node

® Recursively computing the number of shortest paths from A
to each node
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Computing Betweenness

® Efficient algorithm for computing betweenness
(Brandes algorithm, 2001)

® For each nodei

® Outward recursion: compute number of geodesics
(shortest paths) from i to every other node

® |nward recursion: go back towards node i splitting the
“flow” (fraction of geodesics) proportionally according to
number of shortest paths

® Sum the flow on each edge over all of these N BFSes and
divide by 2 (Divide by (N-1) choose 2 optional)

38
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Computing Betweenness

(a) A sample network (b) Breadth-first search starting at node A

Figure 3.18: The first step in the efficient method for computing betweenness values is to
perform a breadth-first search of the network. Here the results of breadth-first from node A
are shown; over the course of the method, breadth-first search is performed from each node
in turn.

Easley & Kleinberg
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Computing Betweenness

# shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-|l paths =
# shortest A-F paths +
# shortest A-G paths

# shortest A-K paths
= # shortest A-l paths
+ # shortest A-J paths

Figure 3.19: The second step in computing betweenness values is to count the number of
shortest paths from a starting node A to all other nodes in the network. This can be done
by adding up counts of shortest paths, moving downward through the breadth-first search
structure.

Easley & Kleinberg
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outward
recursion
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Computing Betweenness
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from
the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

Easley & Kleinberg
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inward
recursion
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Computing Betweenness
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from
the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

Easley & Kleinberg
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Same method
for node
betweenness
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Network Partitioning

® How to identify tightly
knight regions in a social
network from the graph
structure!

® Use a metod for
determining edge
centrality (e.g.,
betweenness)

® Remove these edges to
break the graph into
components

® Repeat this process on
the components as

(b) Tightly-knit regions and their nested structure th e)’ arise

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones. ® G | rvan-Newman AIgO rlth m

Easley & Kleinberg

© Keith M. Chugg, 2014 43



© Keith M. Chugg, 2014

Network Partitioning

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

Easley & Kleinberg
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Network Partitioning
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Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.
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Network Partitioning
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident

from the network structure.
Easley & Kleinberg
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