
© Keith M. Chugg, 2014

Graph Theory and Social 
Networks - part 3 

!
EE599: Social Network Systems	


!
Keith M. Chugg	


Fall 2014

1



© Keith M. Chugg, 2014

Overview

• Continuation of graph theory for social 
networks	


• Typical social network properties	


• Graph measures to quantify	


• Examples
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References

• Easley & Kleinberg, Ch 3	


• Focus on relationship to social nets with 
little math	


• Jackson, Ch 2-3	


• Social network focus with more formal 
math
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Motivation

• Not all nodes and edges are “equal”	


• A vs. B
4
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the di↵erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di↵erent nodes

play in this structure as well. In social networks, access to edges that span di↵erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e↵ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di↵erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe�cient. (Recall that the

clustering coe�cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in
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Motivation

• Our goal	


• Motivate this from a few social rules - 
simple, yet reasonable	


• Define qualitative terms and quantitative  
measures to capture these properties
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64 CHAPTER 3. STRONG AND WEAK TIES

remains public for everyone to read, but it is marked with a notation indicating that it is

intended for a particular user.) Thus, the former kind of interaction defines a social network

based on more passive, weak ties — it is very easy for a user to follow many people’s messages

without ever directly communicating with any of them. The latter kind of interaction —

especially when we look at users directing multiple messages to others — corresponds to a

stronger kind of direct interaction.

In a style analogous to the work of Marlow et al., Huberman, Romero, and Wu analyzed

the relative abundance of these two kinds of links on Twitter [222]. Specifically, for each

user they considered the number of users whose messages she followed (her “followees”), and

then defined her strong ties to consist of the users to whom she had directed at least two

messages over the course of an observation period. Figure 3.10 shows how the number of

strong ties varies as a function of the number of followees. As we saw for Facebook, even

for users who maintain very large numbers of weak ties on-line, the number of strong ties

remains relatively modest, in this case stabilizing at a value below 50 even for users with

over 1000 followees.

There is another useful way to think about the contrast between the ease of forming

links and the relative scarcity of strong ties in environments like Facebook and Twitter. By

definition, each strong tie requires the continuous investment of time and e↵ort to maintain,

and so even people who devote a lot of their energy to building strong ties will eventually

reach a limit — imposed simply by the hours available in a day — on the number of ties

that they can maintain in this way. The formation of weak ties is governed by much milder

constraints — they need to be established at their outset but not necessarily maintained

continuously — and so it is easier for someone to accumulate them in large numbers. We

will encounter this distinction again in Chapter 13, when we consider how social networks

di↵er at a structural level from information networks such as the World Wide Web.

Understanding the e↵ect that on-line media have on the maintenance and use of social

networks is a complex problem for which the underlying research is only in its early stages.

But some of these preliminary studies already highlight the ways in which networks of strong

ties can still be relatively sparse even in on-line settings where weak ties abound, and how

the nature of the underlying on-line medium can a↵ect the ways in which di↵erent links are

used for conveying information.

3.5 Closure, Structural Holes, and Social Capital

Our discussion thus far suggests a general view of social networks in terms of tightly-knit

groups and the weak ties that link them. The analysis has focused primarily on the roles

that di↵erent kinds of edges of a network play in this structure — with a few edges spanning

di↵erent groups while most are surrounded by dense patterns of connections.
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Overview
• Triadic Closure & Cluster Coefficients	


• Our friends usually become friends	


• Strong & Weak Ties	


• Most people get jobs from acquaintances 
rather than close friends 	


• Centrality and Prestige Measures	


• Some people (or connections) are more 
critical than others 	


• Next time
6
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the di↵erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di↵erent nodes

play in this structure as well. In social networks, access to edges that span di↵erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e↵ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di↵erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe�cient. (Recall that the

clustering coe�cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in

• Embeddedness of edge connecting 
A and B	


• number of common neighbors of 
A,B	


• A, B connected by embedded 
edge implies high degree of trust	


• Structural Holes are filled by 
nodes with access to local brides	


• amplifies creativity	


• serves as a gatekeeper of 
information flow across sub-
organizations	


• Can create power struggles and 
trust issues

embedded 
edge

structural 
hole

Social Capital?
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Network Partitioning
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite

• How to identify tightly 
knight regions in a social 
network from the graph 
structure?	


• Assume we have a 
method of identifying 
the most “central” 
edges	


• Remove these edges to 
break the graph into 
components	


• Repeat this process on 
the components as 
they arise	


• Girvan-Newman Algorithm
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Network Partitioning
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(c) Step 3

Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3 · 11 = 33. The same goes for

the edges 6-7, 8-9, and 8-12.

• The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its

betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

• Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.

This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most tra�c.

In fact, the idea of using betweenness to identify important edges draws on a long history

in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,

169]. Its use by sociologists has traditionally focused more on nodes than on edges, where

the definition the same: the betweenness of a node is the total amount of flow that it carries,

when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network
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Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Network Partitioning
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

We will refer to this as the problem of graph partitioning, and the constituent parts the

network is broken into as the regions arising from the partitioning method. Formulating a

method for graph partitioning will implicitly require working out a set of definitions for all

these notions that are both mathematically tractable and also useful on real datasets.

To give a sense for what we might hope to achieve from such a method, let’s consider

two examples. The first, shown in Figure 3.12, depicts the co-authorships among a set of

physicists and applied mathematicians working on networks [322]. Recall that we discussed

co-authorship networks in Chapter 2 as a way of encoding the collaborations within a profes-

sional community. It’s clear from the picture that there are tightly-knit groups within this

community, and some people who sit on the boundaries of their respective groups. Indeed it

resembles, at a somewhat larger scale, some of the pictures of tightly-knit groups and weak

ties that we drew in schematic form earlier, in examples such as Figure 3.11. Is there a

general way to pull these groups out of the data, beyond using just our visual intuition?
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Network Partitioning
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in di↵erent parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “tra�c” on the network, and look for the edges that carry the most of

this tra�c. Like crucial bridges and highway arteries, we might expect these edges to link

di↵erent densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of tra�c as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to di↵erent connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of tra�c along shortest paths. Based on the premise that these are the most “vital” edges

for connecting di↵erent regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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Centrality Measures
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• How to measure the “centrality” of a given node 
or edge?	


• Obvious in some cases (e.g., star graph)	


• Many measures have been proposed for 
measuring the importance, centrality, or prestige 
of a node based only on the network topology
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Centrality Measures (nodes)
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• Degree Centrality: ki
N � 1

• Closeness Centrality: 1

dave(i)
= (N � 1)

2

4
X

j 6=i

d(i, j)

3

5
�1

• Decay Centrality:	


• delta~0: ~degree centrality	


• delta~1: ~size of largest 
component containing i

X

j 6=i

�d(i,j), � 2 (0, 1)
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Centrality Measures (nodes)
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• Betweenness Centrality:	


• Fraction of shortest paths in the network that 
pass through node i

number of shortest paths between j & k

number of shortest paths between j & k, passing through i
B(i) =

X

(j,k),i 62{j,k}

Pi(j, k)

P (j, k)
=

Often normalized by: 
⇣

N � 1
2

⌘
(number of pairs excluding node i)
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Centrality Measures (nodes)
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• Eigen Centrality:	


• Based on the idea that importance is 
determined by how many important friends 
you have

• Vector of node centralities is the eigenvector 
of the adjacency matrix with largest eigenvalue

�pi =
NX

j=1

aijpj

Ap = �p
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Centrality Measures (nodes)
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• Katz Prestige:	


• normalize impact of friendships by node degree

• Vector of node centralities is the eigenvector of a weighted 
adjacency matrix with eigenvalue 1 (exists by stationary theorem 
of Markov Chains)

pi =
nX

j=1

aij
pj
kj

=
nX

j=1

aij
kj

pj =
nX

j=1

hijpj

p = Hp

Google’s 
page-rank is based on 

an eigen centrality 
measure



© Keith M. Chugg, 2014

Centrality Example

18

38 Chapter 2 Representing and Measuring Networks 
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FIGURE 2.13 A central node with low degree centrality. 

3. betweenness—how important a node is in terms of connecting other nodes; 
and 

4. neighbors’ characteristics—how important, central, or influential a node’s 
neighbors are. 

Given how different these notions are, even without looking at formal definitions it 
is easy to see that they capture complementary aspects of a node’s position, and any 
particular measure will be better suited for some applications and less appropriate 
for others. Let me discuss some of the more standard definitions of each type. 

Degree Centrality Perhaps the simplest measure of the position of a given node 
in a network is simply to keep track of its degree. A node with degree n − 1 would 
be directly connected to all other nodes, and hence quite central to the network. 
A node connected to only two other nodes (for large n) would be, at least in one 
sense, less central. The degree centrality of a node is simply di(g)/(n − 1), so that 
it ranges from 0 to 1 and indicates how well a node is connected in terms of direct 
connections. 

Of course, degree centrality clearly misses many of the interesting aspects of a 
network. In particular, it does not measure how well located a node is in a network. 
It might be that a node has relatively few links, but lies in a critical location 
in the network. For many applications a centrality measure that is sensitive to a 
node’s influence or marginal contribution to the network is important. For example, 
consider the network in Figure 2.13. 

In this network the degree of nodes 3 and 5 are three, and the degree of node 4 
is only two. Arguably, node 4 is at least as central as nodes 3 and 5, and far more 
central than the other nodes that each have two links (nodes 1, 2, 6, and 7). There are 
several senses in which we see a powerful or central role for node 4. If one deletes 
node 4, the component structure of the network changes. This change might be 
very important for applications involving information transmission, where node 
4 is critical to path-connecting nodes 1 and 7. This aspect would be picked up 
by a measure such as betweenness. We also see that node 4 is relatively close to 
all other nodes in that it is at most two links away from any other node, whereas 

43 

2.3 

2.3 Appendix: Basic Graph Theory 

TABLE 2.1 
Centrality comparisons for Figure 2.13 

Measure of centrality Nodes 1, 2, 6, and 7 Nodes 3 and 5 Node 4 

Degree (and Katz prestige P K) .33 .50 .33 
Closeness .40 .55 .60 
Decay centrality (δ = .5) 1.5 2.0 2.0 
Decay centrality (δ = .75) 3.1 3.7 3.8 
Decay centrality (δ = .25) .59 .84 .75 
Betweenness .0 .53 .60 
Eigenvector centrality .47 .63 .54 
Katz prestige-2 P K2, a = 1/3 3.1 4.3 3.5 
Bonacich centrality b = 1/3, a = 1 9.4 13.0 11.0 
Bonacich centrality b = 1/4, a = 1 4.9 6.8 5.4 

and 7 for any δ, but the relative rankings of 3 and 5 relative to 4 depend on δ. With a 
lower δ the results resemble those for like-degree centrality and favor nodes 3 and 
5, while for higher δ they resemble those for closeness or betweenness and favor 
node 4. The eigenvector centralities and self-referential definitions of Bonacich 
and Katz prestige-2 all favor nodes 3 and 5, to varying extents. As b decreases the 
Bonacich favors closer connections and higher-degree nodes, while for higher b, 
longer paths become more important. 

These measures are certainly not the only measures of centrality, and it is clear 
from the above that the measures capture different aspects of the positioning of 
the nodes. Given how complex networks can be, it is not surprising that there are 
many different ways of viewing position, centrality, or power in a network. 

Appendix: Basic Graph Theory 
Here I present some basic results in graph theory that will be useful in subsequent 
chapters.30 

2.3.1 Hall’s Theorem and Bipartite Graphs 
A bipartite network (N, g) is one for which N can be partitioned into two sets A 

and B such that if a link ij is in g, then one of the nodes comes from A and the 
other comes from B. A bipartite network is pictured in Figure 2.14. Settings with 
two classes of nodes are often referred to as matching settings (and in some cases 
marriage markets), where one group is referred to as “women” and the other as 

30. Excellent texts on graph theory are Bollobás [85] and Diestel [200]. 

Jackson
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Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3 · 11 = 33. The same goes for

the edges 6-7, 8-9, and 8-12.

• The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its

betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

• Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.

This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most tra�c.

In fact, the idea of using betweenness to identify important edges draws on a long history

in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,

169]. Its use by sociologists has traditionally focused more on nodes than on edges, where

the definition the same: the betweenness of a node is the total amount of flow that it carries,

when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network

3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING73

1

2

3

6
4

5

7 8

9

10

11

12
13

14

(a) A sample network

1

2

3

6
4

5

7 8

9

10

11

12
13

14

(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in di↵erent parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “tra�c” on the network, and look for the edges that carry the most of

this tra�c. Like crucial bridges and highway arteries, we might expect these edges to link

di↵erent densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of tra�c as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to di↵erent connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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(d) Step 4

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of tra�c along shortest paths. Based on the premise that these are the most “vital” edges

for connecting di↵erent regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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