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Overview

• Continuation of graph theory for social 
networks	


• Typical social network properties	


• Graph measures to quantify	


• Examples
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Last Time: Basic Graph Defs/Props

• Paths, walks, cycles	


• Connectedness and components	


• Giant component	


• Node degree, Node degree statistics	


• Sparseness & heavy-tailed node degree distribution	


• Adjacency matrix	


• Distance and diameter 	


• Small World Phenomena
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References
• Easley & Kleinberg, Ch 3	


• Focus on relationship to social nets with 
little math	


• Barabasi, Ch 2	


• General networks with some math	


• Jackson, Ch 2-3	


• Social network focus with more formal 
math	


• Next time
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Motivation

• Not all nodes and edges are “equal”	


• A vs. B
5

Easley & Kleinberg

3.5. CLOSURE, STRUCTURAL HOLES, AND SOCIAL CAPITAL 65
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the di↵erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di↵erent nodes

play in this structure as well. In social networks, access to edges that span di↵erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e↵ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di↵erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe�cient. (Recall that the

clustering coe�cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in
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Motivation

• Our goal	


• Motivate this from a few social rules - 
simple, yet reasonable	


• Define qualitative terms and quantitative  
measures to capture these properties
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Easley & Kleinberg, pg. 64

64 CHAPTER 3. STRONG AND WEAK TIES

remains public for everyone to read, but it is marked with a notation indicating that it is

intended for a particular user.) Thus, the former kind of interaction defines a social network

based on more passive, weak ties — it is very easy for a user to follow many people’s messages

without ever directly communicating with any of them. The latter kind of interaction —

especially when we look at users directing multiple messages to others — corresponds to a

stronger kind of direct interaction.

In a style analogous to the work of Marlow et al., Huberman, Romero, and Wu analyzed

the relative abundance of these two kinds of links on Twitter [222]. Specifically, for each

user they considered the number of users whose messages she followed (her “followees”), and

then defined her strong ties to consist of the users to whom she had directed at least two

messages over the course of an observation period. Figure 3.10 shows how the number of

strong ties varies as a function of the number of followees. As we saw for Facebook, even

for users who maintain very large numbers of weak ties on-line, the number of strong ties

remains relatively modest, in this case stabilizing at a value below 50 even for users with

over 1000 followees.

There is another useful way to think about the contrast between the ease of forming

links and the relative scarcity of strong ties in environments like Facebook and Twitter. By

definition, each strong tie requires the continuous investment of time and e↵ort to maintain,

and so even people who devote a lot of their energy to building strong ties will eventually

reach a limit — imposed simply by the hours available in a day — on the number of ties

that they can maintain in this way. The formation of weak ties is governed by much milder

constraints — they need to be established at their outset but not necessarily maintained

continuously — and so it is easier for someone to accumulate them in large numbers. We

will encounter this distinction again in Chapter 13, when we consider how social networks

di↵er at a structural level from information networks such as the World Wide Web.

Understanding the e↵ect that on-line media have on the maintenance and use of social

networks is a complex problem for which the underlying research is only in its early stages.

But some of these preliminary studies already highlight the ways in which networks of strong

ties can still be relatively sparse even in on-line settings where weak ties abound, and how

the nature of the underlying on-line medium can a↵ect the ways in which di↵erent links are

used for conveying information.

3.5 Closure, Structural Holes, and Social Capital

Our discussion thus far suggests a general view of social networks in terms of tightly-knit

groups and the weak ties that link them. The analysis has focused primarily on the roles

that di↵erent kinds of edges of a network play in this structure — with a few edges spanning

di↵erent groups while most are surrounded by dense patterns of connections.
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Overview

• Triadic Closure & Cluster Coefficients	


• Our friends usually become friends	


• Strong & Weak Ties	


• Most people get jobs from acquaintances 
rather than close friends 	


• Centrality and Prestige Measures	


• Some people (or connections) are more 
critical than others 

7



© Keith M. Chugg, 2014

Triadic Closure

• Our friends tend to be (or become) friends 	


• Opportunity - likely to meet	


• Trust - implicitly trust a friend-of-friend 	


• Incentive - latent stress if triangle is not closed

8
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the e↵ects of triadic
closure, since they have a common neighbor A.

seeking, and o↵ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o↵ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from
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Cluster Coefficient

9

• Measures the degree of triadic closure in a 
network	


• High cluster coefficient = dense local 
connectivity (many friends are friends)	


• Two variations	


• Local or individual cluster coefficient	


• Global or overall cluster coefficient
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Local Cluster Coefficient

10

• Cluster coefficient of node i	


• The fraction of node i’s neighbors that are 
neighbors of each other

Li = Number of links between the ki neighbors of node i

C_i = 0 if 
degree is 0 or 

1

Ci =

P
j,k:(i,j,k) distinct aijaikajkP
j,k:(i,j,k) distinct aijaik

=
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ki
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Ci = Average cluster coe�cient
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Global Cluster Coefficient

11

• Property of entire network	


• Average triadic closure over all (possible) 
triangles

• Average cluster coefficient more heavily weights 
low degree nodes (relative to global cluster 
coefficient)

C
global

=

P
(i,j,k) distinct
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aijaik
=

PN
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Local Cluster Coefficient

12

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41
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Clustering Patterns

13

• Many social networks exhibit:	


• Less triadic closure as the node degree increases 	


• This is captured by:

Cluster!
Coeff.

Biology 
Collaboration 

Network

Math 
Collaboration 

Network

Physics 
Collaboration 

Network

Global 0.09 0.15 0.45

Average 0.60 0.34 0.56

Jackson, 3.2.5

C
global

< C
ave
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Overview

• Triadic Closure & Cluster Coefficients	


• Our friends usually become friends	


• Strong & Weak Ties	


• Most people get jobs from acquaintances 
rather than close friends 	


• Centrality and Prestige Measures	


• Some people (or connections) are more 
critical than others 
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Getting a Job

• Many studies in the social sciences indicate 
that people often get new jobs through 
acquaintances rather than close friends	


• Why?	


• Triadic closure & weak/strong tie properties

15
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Strong vs. Weak Ties

• Strong Tie: connection between friends	


• Generally requires some degree of regular 
interaction and active participation in the 
relationship	


• WeakTie: connection between acquaintances	


• Infrequent and/or passive interaction	


• Note: this is a 2-value weighting of the graph

16
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Bridges

• Bridge: edge that, if removed, break the 
network into two or more connected 
components

50 CHAPTER 3. STRONG AND WEAK TIES

BA

ED

C

Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in
distinct connected components. Bridges provide nodes with access to parts of the network
that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coe�cient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coe�cient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.

Easley & Kleinberg

Bridges like this 
are rare in real 
social networks, 

why?

17

Bridges connect 
people to new 

opportunities and 
information



© Keith M. Chugg, 2014

Local Bridges

• Local Bridge: edge connecting two nodes with 
no common friends

Easley & Kleinberg

• Span of a local 
bridge is the 
distance between 
its connected 
nodes when the 
edge is removed	

!

• This is always >2	

!

• Exception of triadic 
closure: bridges are 
not in triangles

3.2. THE STRENGTH OF WEAK TIES 51
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively di↵erent

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a di↵erent part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

di↵erences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B o↵ers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two di↵erent components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very di↵erent background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will
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Local Bridges & Weak Ties

• Local bridges are (typically) weak ties

Easley & Kleinberg
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the
figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties
to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same

19
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Local Bridges are Weak Ties

Easley & Kleinberg

• Only need two assume two properties to prove 
this	


• Node has 2 or more strong ties	


• Strong Triadic Closure Property	


• If A has a strong tie with B and a strong tie 
with C 	


• then C and B must have a tie

20
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Local Bridges are Weak Ties

Easley & Kleinberg

21
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strong ties than when they are weak ties. This suggests the following qualitative assumption:

If a node A has edges to nodes B and C, then the B-C edge is especially likely

to form if A’s edges to B and C are both strong ties.

To enable some more concrete analysis, Granovetter suggested a more formal (and somewhat

more extreme version) of this, as follows.

We say that a node A violates the Strong Triadic Closure Property if it has strong

ties to two other nodes B and C, and there is no edge at all (either a strong or

weak tie) between B and C. We say that a node A satisfies the Strong Triadic

Closure Property if it does not violate it.

You can check that no node in Figure 3.5 violates the Strong Triadic Closure Property, and

hence all nodes satisfy the Property. On the other hand, if the A-F edge were to be a strong

tie rather than a weak tie, then nodes A and F would both violate the Strong Triadic Closure

Property: Node A would now have strong ties to nodes E and F without there being an

E-F edge, and node F would have strong ties to both A and G without there being an

A-G edge. As a further check on the definition, notice that with the labeling of edges as

in Figure 3.5, node H satisfies the Strong Triadic Closure Property: H couldn’t possibly

violate the Property since it only has a strong tie to one other node.

Clearly the Strong Triadic Closure Property is too extreme for us to expect it hold across

all nodes of a large social network. But it is a useful step as an abstraction to reality,

making it possible to reason further about the structural consequences of strong and weak

ties. In the same way that an introductory physics course might assume away the e↵ects of

air resistance in analyzing the flight of a ball, proposing a slightly too-powerful assumption

in a network context can also lead to cleaner and conceptually more informative analysis.

For now, then, let’s continue figuring out where it leads us in this case; later, we’ll return to

the question of its role as a modeling assumption.

Local Bridges and Weak Ties. We now have a purely local, interpersonal distinction

between kinds of links — whether they are weak ties or strong ties — as well as a global,

structural notion — whether they are local bridges or not. On the surface, there is no direct

connection between the two notions, but in fact using triadic closure we can establish a

connection, in the following claim.

Claim: If a node A in a network satifies the Strong Triadic Closure Property and

is involved in at least two strong ties, then any local bridge it is involved in must

be a weak tie.

In other words, assuming the Strong Triadic Closure Property and a su�cient number of

strong ties, the local bridges in a network are necessarily weak ties.
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S

Strong Triadic Closure says 
the B-C edge must exist, but 
the definition of a local bridge 

says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a di↵erent kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and

proof by 
contradiction
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“Soft” Measure of Bridges

22

• Neighborhood overlap of edge 
connecting A and B	


• (number of common neighbors)/
(number of total neighbors !=A,B)

|N (A)
T

N (B)|
|[N (A)

S
N (B)]/{A,B}|

• Local bridge has overlap 0, small 
overlap means ~ almost a bridge

3.2. THE STRENGTH OF WEAK TIES 51

BA

ED

C

F H

GJ K

Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively di↵erent

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a di↵erent part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

di↵erences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B o↵ers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two di↵erent components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very di↵erent background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

1/6
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Local Bridges in Real Data

58 CHAPTER 3. STRONG AND WEAK TIES

Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
[334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of

B and B is a neighbor of A). As an example of how this definition works, consider the edge

A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F is determined by

the nodes B, C, D, E, G, and J , since these are the ones that are a neighbor of at least one

of A or F . Of these, only C is a neighbor of both A and F , so the neighborhood overlap is

1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the

numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge

is contained within this definition — local bridges are the edges of neighborhood overlap 0

— and hence we can think of edges with very small neighborhood overlap as being “almost”

local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes

that travel in “social circles” having almost no one in common.) For example, this definition

views the A-F edge as much closer to being a local bridge than the A-E edge is, which

accords with intuition.

23

Easley & Kleinberg

tie strength

neighborhood overlap

weaker ties ~ more like bridges
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Tie Strength in Real Data
3.4. TIE STRENGTH, SOCIAL MEDIA, AND PASSIVE ENGAGEMENT 61

All Friends

One-way Communication Mutual Communication

Maintained Relationships

Figure 3.8: Four di↵erent views of a Facebook user’s network neighborhood, showing the
structure of links coresponding respectively to all declared friendships, maintained relation-
ships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from
[286].)

Notice that these three categories are not mutually exclusive — indeed, the links classified

as reciprocal communication always belong to the set of links classified as one-way commu-

nication.

This stratification of links by their use lets us understand how a large set of declared

friendships on a site like Facebook translates into an actual pattern of more active social

interaction, corresponding approximately to the use of stronger ties. To get a sense of the

relative volumes of these di↵erent kinds of interaction through an example, Figure 3.8 shows

the network neighborhood of a sample Facebook user — consisting of all his friends, and all

links among his friends. The picture in the upper-left shows the set of all declared friendships

in this user’s profile; the other three pictures show how the set of links becomes sparser once

we consider only maintained relationships, one-way communication, or reciprocal communi-

24

Easley & Kleinberg

community from past?
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Figure 3.9: The number of links corresponding to maintained relationships, one-way com-
munication, and reciprocal communication as a function of the total neighborhood size for
users on Facebook. (Image from [286].)

cation. Moreover, as we restrict to stronger ties, certain parts of the network neighborhood

thin out much faster than others. For example, in the neighborhood of the sample user in

Figure 3.8, we see two distinct regions where there has been a particularly large amount of

triadic closure: one in the upper part of the drawing, and one on the right-hand side of the

drawing. However, when we restrict to links representing communication or a maintained

relationship, we see that a lot of the links in the upper region survive, while many fewer of

the links in the right-hand region do. One could conjecture that the right-hand region rep-

resents a set of friends from some earlier phase of the user’s life (perhaps from high school)

who declare each other as friends, but do not actively remain in contact; the upper region,

on the other hand, consists of more recent friends (perhaps co-workers) for whom there is

more frequent contact.

We can make the relative abundance of these di↵erent types of links quantitative through

the plot in Figure 3.9. On the x-axis is the total number of friends a user declares, and the

curves then show the (smaller) numbers of other link types as a function of this total. There

are several interesting conclusions to be drawn from this. First, it confirms that even for

users who report very large numbers of friends on their profile pages (on the order of 500),
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Figure 3.10: The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [222].)

the number with whom they actually communicate is generally between 10 and 20, and the

number they follow even passively (e.g. by reading about them) is under 50. But beyond this

observation, Marlow and his colleagues draw a further conclusion about the power of media

like Facebook to enable this kind of passive engagement, in which one keeps up with friends

by reading news about them even in the absence of communication. They argue that this

passive network occupies an interesting middle ground between the strongest ties maintained

by regular communication and the weakest ties from one’s distant past, preserved only in

lists on social-networking profile pages. They write, “The stark contrast between reciprocal

and passive networks shows the e↵ect of technologies such as News Feed. If these people

were required to talk on the phone to each other, we might see something like the reciprocal

network, where everyone is connected to a small number of individuals. Moving to an

environment where everyone is passively engaged with each other, some event, such as a new

baby or engagement can propagate very quickly through this highly connected network.”

Tie Strength on Twitter. Similar lines of investigation have been carried out recently on

the social media site Twitter, where individual users engage in a form of micro-blogging by

posting very short, 140-character public messages known as “tweets.” Twitter also includes

social-network features, and these enable one to distinguish between stronger and weaker

ties: each user can specify a set of other users whose messages he or she will follow, and each

user can also direct messages specifically to another user. (In the latter case, the message

limited number 
of strong ties are 

maintained 
regardless of 

total number of 
ties
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Overview
• Triadic Closure & Cluster Coefficients	


• Our friends usually become friends	


• Strong & Weak Ties	


• Most people get jobs from acquaintances 
rather than close friends 	


• Centrality and Prestige Measures	


• Some people (or connections) are more 
critical than others 	


• Next time
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