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Graph Definition

: ; ; o

* G= (V)

® V=set of vertices

® E=set of edges

(a) A graph on 4 nodes. (b) A directed graph on 4 nodes.
Figure 2.1: Two graphs: (a) an undirected graph, and (b) a directed graph.
° Easley & Kleinberg
® Modeling of networks

® Vertex is a person (or entity)

® Edge represents a relationship

© Keith M. Chugg, 2014



Network Science

network

Baraba’si, Ch 2
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Image 2.3
Real systems of quite different nature can have the same
network representation.

c)

In the figure we show a small subset of (a) the Internet, where routers
(specialized computers) are connected to each other; (b) the Hollywood
actor network, where two actors are connected if they played in the same
movie; (c) a protein-protein interaction network, where two proteins are
connected if there is experimental evidence that they can bind to each
other in the cell. While the nature of the nodes and the links differs wide-
ly, each network has the same graph representation, consisting of N =4
nodes and L= 4 links, shown in (d).

Baraba’si, Ch 2



Basic Graph Defs/Props

Paths, walks, cycles

Connectedness and components

® Giant component

Node degree, Node degree statistics
® Sparseness

Adjacency matrix

Distance and diameter

® Small World Phenomena



Complete Graph

® All nodes
onhnect to all
other nodes

® Maximum
number of
edges

max

N — N(N _ 1) Image 2.5

2 2 Complete graph.
The figure shows a complete graph with N = 16 nodes and [ = 120 links,
as predicted by Eq. (11). The adjacency matrix of a complete graph is Aij =

1foralljj=1,..Nand A = 0. The average degree of a complete graph is
o= N-1.

Baraba’si, Ch 2
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Example Networks

DIRECTED/

NETWORK NAME NODES LINKS UNDIRECTED N L <K>
Internet routers Internet Connections Undirected 192,244 609,066 2.67

WWW webpages links Directed 325,729 1,497,134 4.60

Power Grid power plants, transformers cables Undirected 4,941 6,594 2.67
Mobile-Phone Calls subscribers calls Directed 36,595 91,826 2.51
Email email addresses emails Directed 57,194 103,731 1.81

Science Collaboration scientists co-authorships Undirected 23,133 186,936 16.16
Actor Network actors co-acting Undirected 212,250 3,054,278 28.78
Citation Network papers citations Directed 449,673 4,707,958 10.47

E. coli Metabolism metabolites chemical reactions Directed 1,039 5,802 5.84
Yeast Protein Interactions proteins binding interactions Undirected 2,018 2,930 2.90

Table 2.1

Network maps and their basic properties.
Baraba’si, Ch 2

® Real networks are sparse - far from fully-connected

© Keith M. Chugg, 2014



Paths & Connectivity

® Path:sequence of links from node i to node j !=i
® Repeat vertices
® Walk: can repeat vertices
® SocNet: often called path
® Path: no repeat vertices (graph theory)
® SocNet:“simple path”,“self-avoiding path”

® Jwo nodes are connected iff there is a path between
them



Paths & Connectivity

(b)

Image 2.11
The adjacency matrix is typically sparse.

(a) A path between nodes i and i is an ordered list of n links P, = {(i, i),
(i.i) (i,i) ...(i -1,i)}.The length of this path is d. The path shown in (a)
follows the route 1—»2—5—4—2—5—7, hence its length is n = 6.

(b) The shortest paths between nodes 1 and 7, representing the distance

d ., is the path with the fewest number of links that connect nodes 1 and
7. There can be multiple paths of the same length, as illustrated by the
two paths shown in different colors. The network diameter is the largest

distance in the network, being d__ = 3 here.
Baraba’si, Ch 2
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® Cycle:a path where
start and finish nodes
are the same

® no repeat edges

® Path or Cycle length is
number of edges



Connected Components

® Connected graph: every node is connected to every
other node

® Subgraph: subset of vertices and edges from a given graph

® (Connected) Components: maximal (size) connected
subgraphs

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Easley & Kleinberg Figure 2.5: A graph with three connected components.
Easley & Kleinberg

© Keith M. Chugg, 2014
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Figure 2.6: The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [134], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine
research centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate
case between centers whose collaboration graph was connected and those for which it was
fragmented into many small components.

Easley & Kleinberg



Giant Component
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Figure 2.7: A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period

in which the study was conducted [49].

Easley & Kleinberg
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Giant Component

® Purposely vague term: means that there is a single,
connected component with a large fraction of the
vertices

® Why does it exist!?
® Why is there only one?

® Examples of social networks with 2 giant
components?

© Keith M. Chugg, 2014



Node Degree

® Node Degree: number of edges connected to that node
® Statistical measure of node degree

® “Complete” - degree distribution

® “|Incomplete” - mean, variance

® These can be empirical or based on a random model

© Keith M. Chugg, 2014



Node Degree
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FIGURE 2.8 Comparing a scale-free distribution to a Poisson distribution.

Jackson
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Example Networks

DIRECTED/

NETWORK NAME NODES LINKS UNDIRECTED N L <K>
Internet routers Internet Connections Undirected 192,244 609,066 2.67

WWW webpages links Directed 325,729 1,497,134 4.60

Power Grid power plants, transformers cables Undirected 4,941 6,594 2.67
Mobile-Phone Calls subscribers calls Directed 36,595 91,826 2.51
Email email addresses emails Directed 57,194 103,731 1.81

Science Collaboration scientists co-authorships Undirected 23,133 186,936 16.16
Actor Network actors co-acting Undirected 212,250 3,054,278 28.78
Citation Network papers citations Directed 449,673 4,707,958 10.47

E. coli Metabolism metabolites chemical reactions Directed 1,039 5,802 5.84
Yeast Protein Interactions proteins binding interactions Undirected 2,018 2,930 2.90

Table 2.1

Network maps and their basic properties.
Baraba’si, Ch 2

® Real networks are sparse - far from fully-connected

© Keith M. Chugg, 2014



degree
distribution
often plotted

on log-log
plot for real,
sparse
networks
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FIGURE 2.9 Comparing a scale-free distribution to a Poisson distribution: log-log plot.

Jackson



degree
distribution
often plotted

on log-log
plot for real,
sparse
networks

© Keith M. Chugg, 2014

Node Degree
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Degree distribution of real networks.

The degree distribution of the Internet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring o for the real network and then plotting Eq. (8). The significant deviation between the data and
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs.

Baraba’si, Ch 3
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Node Degree
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Degree distribution.

The degree distribution is defined as the p, = Nk/N ratio, where N, _denotes
the number of k-degree nodes in a network. For the network in (a) we
have N =4 and p, = 1/4 (one of the four nodes has degree k, = 1), p, =
1/2 (two nodes have k, =k, = 2), and p, = 1/4 (as k, = 3). As we lack nodes
with degree k > 3, p, = 0 for any k > 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k =
2, the degree distribution is a Kronecker's delta function p, = & (k - 2).

Baraba’si
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In many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in
the protein interaction network shown in (b) vary between k=0 (isolated
nodes) and k=92, which is the degree of the largest node, called a hub.
There are also wide differences in the number of nodes with different
degrees: as (a) shows, almost half of the nodes have degree one (i.e.
p,=0.48), while there is only one copy of the biggest node, hence p,, =1/
N=0.0005. (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log p, in function of /og k, or, as we did in
(c), we use logarithmic axes.



Distance & Diameter

® Distance between two nodes: length of the shortest path
between i,

® Diameter:largest distance between two distinct nodes
® Girth:length of the shortest cycle

® Circumference: length longest cycle oo

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Easley & Kleinberg Figure 2.5: A graph with three connected components.
Easley & Kleinberg

© Keith M. Chugg, 2014



Distance & Diameter

ave degree ~ 2

© Keith M. Chugg, 2014

D~ N/2 D ~ log,(N)
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FIGURE 2.10 Circle and tree.



Distance

As with degree, we
can compute statistical
measures of distance
(empirical or
analytical)
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Figure 2.10: A histogram from Travers and Milgram’s paper on their small-world experiment
[391]. For each possible length (labeled “number of intermediaries” on the z-axis), the plot
shows the number of successfully completed chains of that length. In total, 64 chains reached
the target person, with a median length of six.

Easley & Kleinberg
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Distance Distribution
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Figure 2.11: The distribution of distances in the graph of all active Microsoft Instant Mes-
senger user accounts, with an edge joining two users if they communicated at least once
during a month-long observation period [273].

Easley & Kleinberg
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Small World Phenomena
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Adjacency Matrix

N x N matrix A with

captures all info

(1 (4, §) is edge about graph
0 else discussed thus far

0 1 1 O
1 0 0 1
A= 1 0 0 1
0 1 1 O
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Adjacency Matrix

Undirected network Directed network
O 1 1 O 0O 01 O
Aol 1011 A=l 1O 10
v 1 1 0 O / 0O 0 0 O
O 1 0 O O 1 0 O

Image 2.7
The adjacency matrix.

Top: The elements of the adjacency matrix. The adjacency matrix of a directed (left column) and an undirected (right column) network. The figure high-
lights the fact that the degree of a node (in this case node 2) can be expressed as the sum over the appropriate column or row of the adjacency matrix.
It also shows a few basic network characteristics, like the total number of links, (L), and average degree, (ck), expressed in terms of the elements of the

adjacency matrix.

Baraba’si



Adjacency Matrix

conhectedness

(a) 0 0 0)
0 0 0
0 0 0
0 0 O [
0 0 00
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e

(b)
node 4 is a

“bridge”

Image 2.14
Connected and disconnected networks.

Baraba’si
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Adjacency Matrix
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Distance by BFS

® Breadth first search:
® Grow a tree from a given node, expanding outward
® |ncrement hop-count at each expansion step

® Disregard previously encountered nodes

® Advantage (potential)
® Matrix multiplication complexity ~ N*N

® BFS complexity ~ N+L (L=number of edges)

© Keith M. Chugg, 2014



Distance by BFS

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node MIT.

Easley & Kleinberg
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Distance by BFS

Image 2.13

The BFS algo-
rithm applied to
a small network.

Starting from the
orange node, labeled
"0", we identify all
its neighbors, label-
ing them "1" Then
we label "2" the un-
labeled neighbors of
all nodes labeled "1",
and so on, in each
iteration increasing
the labels, until no
node is left unla-
beled. The length of
the shortest path

or the distance d
between node 0 and
some other node i in
the network is given
by the label on node
i. For example, the
distance between
node 0 and the
leftmost node is
d,=3.

5939

Baraba’si
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Summary & Extensions

Undirected 60 1 10
P I O O
Y 1 1 0 O
0O 1 0 O
A, =0 A=A,

RN 2L
L=—YA, <k>==
2 N
ij=
UNDIRECTED NETWORK: a network whose links do not have a predefined

direction. Examples: Internet, power grid, science collaboration networks,
protein interactions.

O e D
O OO -
O O = O
O C = O

h N

A”, = Aﬁ

i

Directed
=0
L= A, <k >= £
: N

\

DIRECTED NETWORK: a network whose links have selected directions.
Examples: WWW, mobile phone calls, citation network.

Ll

£

Weighted 0 2 050
(undirected) ) A = 2 0 1 4
“los 1 0 0

0 4 0 0

A, =0 A=A

1 % 2L
L= 5 2 n.onzero(AU) <k >= g

WEIGHTED NETWORK: a network whose links have a predefined weight,
strength or fow parameter. The elements of the adjacency matrix are A, =
0if iand jare not connected, or A= w,if there is a link with weight wij
between them. For unweighted (binary) networks, the adjacency matrix
only indicates the presence (A,-' = 1) or the absence (A,.j =0) of a link be-
tween two nodes. Examples: Mobile phone calls, email network.

Baraba’si

SELF-INTERACTIONS: in many networks nodes do not interact with
themselves, so the diagonal elements of adjacency matrix are zero, A.=0,
i =1,..,N. In some systems self-interactions are allowed; in such networks,
representing the fact that node / has a self-interaction. Examples: WWW,
protein interactions.

Multigraph 0O = 1 0
(undirected) _ A 2 0 1 5
111 0 0
0 3 0 0

A, =0 A=A

ij Ji

1 N 21‘
L=— » nonzero(A;) <k>=—
E Lj N

i.j=1

MULTIGRAPH: in a multigraph nodes are permitted to have multiple links
(or parallel links) between them. Hence A, can have any positive integer.

Complete Graph 0 1 1 1
(undirected) 1 0 1 1
: A=
” I 1 0 1
I 1 1 0
A, =0 A, =1
max EYEE%;jgll < k >=N - 1

COMPLETE GRAPH: in a complete graph all nodes are connected to each
other; no self-connections.



