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Bounds on the Expansion Properties of Tanner Graphs
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Abstract—This work focuses on the expansion properties of a Tanner
Graph because they are known to be related to the performance of asso-
ciated iterative message-passing algorithms over various channels. By an-
alyzing the eigenvalues and corresponding eigenvectors of the normalized
incidence matrix representing a Tanner Graph, lower bounds on these ex-
pansion properties are derived. Specifically, for the binary erasure channel,
these results lead to two lower bounds on stopping distance for any given
binary linear code and an upper bound on stopping redundancy for the
family of difference-set codes (type-I 2-D projective geometry low-density
parity-check (LDPC) codes).

Index Terms—Expansion of graphs, low-density parity-check (LDPC)
codes, spectral graph theory, stopping distance and stopping redundancy,
Tanner graphs.

I. INTRODUCTION

There are two well known facts that motivate this work. First, eigen-
analysis has been successfully used in spectral graph theory (SGT) [1]
to reveal several fundamental properties of graphs, such as the spec-
trum of the graph, connectivity and routing, diameter and girth, etc.
This correspondence uses techniques from SGT to bound parameters
associated with vertex expansions of graphical models of binary linear
codes. Second, to understand the behavior of iterative message-passing
algorithms on loopy Tanner Graphs [2], several researchers have sug-
gested that iterative decoding would perform well if the underlying
Tanner Graphs had good expansion properties [3], [4]. Below we sum-
marize expansion and related graph properties and introduce precise
definitions as needed in this correspondence.

For Tanner Graphs, vertex expansion is a measure of the ratio be-
tween the number of vertices connected to a set of vertices and the
number of edges incident on the same set of vertices. By carefully
designing their iterative decoding algorithms, Sipser and Spielman
[3] argued that, for the binary symmetric channel (BSC), their al-
gorithms can correct a number of random errors if the minimum
variable expansion of the underlying Tanner Graph is good enough.
This argument was generalized by Burshtein and Miller [4] to an-
alyze Gallager’s hard-decision decoding and soft-decision decoding
(with clipping) algorithms. Also in [3], the authors introduced a new
family of asymptotically good, linear error-correcting codes, which
are known as expander codes. It has been proved by Barg and Zémor
[5] that expander codes attain the capacity under iterative decoding
for BSC.

Manuscript received May 24, 2006; revised July 12, 2007. This work was sup-
ported in part by the Army Research Office DAAD19-01-1-0477. The material
in this correspondence was presented in part at the 43rd Allerton Conference on
Communication, Control, and Computing, Urbana-Champaign, IL, September
2005.

M. Zhu was with the Ming Hsieh Department of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, CA 90089 USA. He is now with
Amicus Wireless Technology, Sunnyvale, CA 94085 USA. (e-mail: mingrui.
zhu@amicuswireless.com).

K. M. Chugg is with the Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089 USA. (e-mail:
chugg@usc.edu).

Communicated by T. Richardson, Associate Editor for Coding Theory.
Color versions of Figures 1 and 2 in this correspondence are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2007.909127

Following this, several related graph properties have been defined
and used in a number of cases to make this assertion more quantitative.

Specifically, stopping set was introduced in [6] to determine the
performance of iterative decoding on the binary erasure channel
(BEC). The size of the smallest stopping sets was defined as the
stopping distance [7]. Focusing on Tanner Graph ensembles, Orlitsky,
Viswanathan, and Zhang [8] demonstrated a linear relation between
the degree distribution and the likely size of the smallest stopping sets.
Bounds on the average block error probability were also derived in [8]
by analyzing the asymptotic behavior of both the stopping distance
and the distribution of stopping sets.

Giving the relationship between good expansion properties and per-
formance, researchers have begun searching for other graphs that have
better expansion properties than the standard Tanner Graphs. A primary
example is a redundant parity-check matrix, where additional rows are
added to the standard parity-check matrix. Previously, Schwartz and
Vardy [7] introduced the concept of stopping redundancy, which is
defined as the minimum number of rows in a redundant parity-check
matrix of a linear code C such that the stopping distance equals its
minimum distance. Furthermore, they provided bounds on stopping re-
dundancy for the family of binary Reed–Muller codes, extended Golay
Codes and maximum distance separable (MDS) codes. More recently,
improved upper bounds on the stopping redundancy of MDS codes
were provided by Han and Siegel [9].

In the literature, the concept of pseudo-codeword has also been used
in [10]–[12] to analyze the convergence of iterative decoding. It is
more general than stopping sets because pseudo-codewords for the it-
erative decoder are exactly stopping sets on the BEC whereas pseudo-
codewords are not stopping sets on the additive white Gaussian noise
(AWGN) channel. One therefore needs to consider pseudo-weight of
pseudocodewords rather than the size of stopping sets to evaluate the
performance of iterative decoding on the AWGN channel. Bounds on
pseudo-weight for linear codes have been derived in [13], [14] by an-
alyzing the structure of the decoder’s computation tree. In this work,
however, we will use a different approach to bound the expansion prop-
erties of general Tanner Graphs, which is directly related to stopping
sets and stopping distance.

The main contribution of this work is twofold. In contrast to
previous work, where minimum variable expansion on ensembles
of Tanner Graphs was analyzed, we derive lower bounds on the
expansion of both variable subsets and parity-check subsets for a
specific Tanner Graph by generalizing the results in the literature of
SGT, where lower bound on the minimum variable expansion for a
given Tanner Graph is a simple extension. Furthermore, two lower
bounds on stopping distance are derived, which generalize Tanner’s
bit-oriented and parity-oriented lower bounds on minimum distance to
account for irregular Tanner Graphs. Our development also illustrates
that Tanner’s bounds are actually lower bounds on stopping distance.
These lower bounds on stopping distance can then be used to derive an
upper bound on the stopping redundancy of the family of difference-set
codes, which provides an alternate proof of Vontobel’s results [15] on
projective geometry low-density parity-check (LDPC) codes, because
the difference-set codes are also known as type-I two-dimensional
projective geometry LDPC (2-D PG-LDPC) codes [16].

On the other hand, it is known that the performance of iterative de-
coding on loopy Tanner Graphs is not only related to the minimum
variable expansion, but also a function of the distribution of the vari-
able expansions [8], [15]. However, obtaining the exact distribution is
difficult and often impractical [17]. Therefore, the concept of average
variable expansion is introduced in this work as an indicator of the dis-
tribution of the variable expansions. Using techniques from spectral
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graph theory, a lower bound on the average expansion properties for a
specific code is derived.

The structure of the rest of the correspondence is as follows. After in-
troducing the elements of graphical representation of linear codes and
the associated matrices, we will prove a lemma by analyzing eigen-
values of the normalized incidence matrix. Next, expansion proper-
ties are defined and the previous lemma will be used to provide lower
bounds on these expansion properties. We continue in Section IV to
show two lower bounds on the stopping distance for binary linear codes
and an upper bound on the stopping redundancy of difference-set codes.
Conclusions are summarized in Section V.

II. GRAPH REPRESENTATIONS AND EIGENVALUE ANALYSIS

Considering an [n; k; dmin] binary linear code C specified by a p�
n incidence matrix Hp with columns representing bit variables, rows
representing parity-checks and p � n � k = p0, the corresponding
Tanner Graph [2] GT is

GT = (Xn [ Yp; E) = (fx0; ::; xn�1g [ fy0; ::; yp�1g; E) (1)

where Xn is the set of variables, Yp is the set of single parity-check
constraints and E = f(x; y) : x 2 Xn; y 2 Ypg is the set of edges. It
can be shown thatHp = [hij ]p�n is a parity-check matrix for the code
C. When p = p0, Hp is a standard parity-check matrix for the code.
For p � p0, there are redundant parity-checks and we refer to Hp as
a redundant parity-check matrix. In either case, Hp can be interpreted
as both a parity-check matrix and the incidence matrix for the corre-
sponding bipartite graph.

Let dv denote the degree of vertex v 2 Xn [ Yp, and let S denote a
subset of vertices, i.e., S � Xn [ Yp, define

ri =weight of row i of Hp = dy (2)

cj =weight of column j of Hp = dx (3)

N(v) = the set of neighbors of v (4)

N(S) = the set of neighbors of S (5)

vol(S) = the volume of S =
v2S

dv (6)

jEj = the number of edges = vol (Xn) = vol(Yp) (7)

where 0 � i � p� 1 and 0 � j � n � 1, and the p� n normalized
incidence matrix is defined as

Ap = [aij ]p�n =
hijp
ri � cj p�n

: (8)

It is known that AT
pAp and ApA

T
p share the same set of nonzero

eigenvalues, among which the unique largest single eigenvalue is 1 [1].
Ordering the eigenvalues of AT

pAp as 1 = �0 > �1 � �2 � � � �
�p�1 � �p = � � � = �n�1 = 0 if p < n or 1 = �0 > �1 �
�2 . . . � �n�1 otherwise, with corresponding orthonormal eigenvec-
tors e0; e1; . . . en�1, it can also be shown that

e0 =
T

1=2
d 1n

vol(Xn)
=
T

1=2
d 1n

jEj (9)

where Td = [tij ] is a n � n diagonal matrix with tjj = cj , 0 � j �
n � 1 and all entries of length-n column vector 1n are 1’s. Similarly,
let e00; e

0
1; . . . e

0
p�1 be the orthonormal eigenvectors of ApA

T
p corre-

sponding to eigenvalues 1 = �0 > �1 � �2 . . . � �p�1, then

e
0
0 =

(T0
d)

1=2
1p

vol(Yp)
=

(T0
d)

1=2
1p

jEj (10)

where T0
d = [t0ij ] is a p � p diagonal matrix with t0ii = ri, 0 �

i � p � 1. Now we are ready to present our first lemma. However,

it should be noted that this normalization technique has a long history
and many applications in spectral graph theory. For more information
about spectral graph theory, we direct the interested reader to [1].

Lemma 1: For any bipartite graphGT = (Xn[Yp; E) and a subset
S of Xn (or Yp)

vol(N(S))

vol(S)
� 1

�1 + (1� �1)
vol(S)
jEj

(11)

where �1 is the second largest eigenvalue of bothAT
pAp andApA

T
p .1

Proof: Considering S � Xn, define column vector
   S = ( 0;  1; . . . n�1)

T , where  j = 1 if xj 2 S, and
 j = 0 otherwise. Expressing T1=2

d    S as a linear combination of the
orthonormal eigenvectors of AT

pAp

T
1=2
d    S =

n�1

j=0

hT1=2
d    S ; ejiej =

n�1

j=0

ajej (12)

where

a0 = hT1=2
d    S ; e0i =

vol(S)

jEj (13)

n�1

j=0

a
2
j = hT1=2

d    S ;T
1=2
d    Si = vol(S) (14)

and h�; �i denotes the inner product of two column vectors, then

hApT
1=2
d    S ;ApT

1=2
d    Si =   TST1=2

d A
T
pApT

1=2
d    S (15a)

=

n�1

j=0

a
2
j�j (15b)

� a20 + (

n�1

j=1

a
2
j )�1 (15c)

=(1� �1)
jvol(S)j2
jEj + �1vol(S):

(15d)

Furthermore

hApT
1=2
d    S ;ApT

1=2
d    Si =

u2S v2S y:(v;y)2E
and (u;y)2E

1

dy

(16a)

=
y2N(S)

N(y) \ S
dy

2

(16b)

�
y2N(S)

jN(y)\Sjp
d

dy

2

y2N(S) dy

(16c)

=
jvol(S)j2
vol(N(S))

(16d)

where (16a) and (16b) are generalized from [1, p. 97] and (16c) results
from the Cauchy–Schwartz inequality. Combining (15d) and (16d)
yields,

(1� �1)
jvol(S)j2
jEj + �1vol(S) � jvol(S)j2

vol(N(S))
(17)

1Similar results can be found in [1] for the graphs of regular row/column
weights. However, extensions to the irregular case discussed in [1] are not fully
developed and draw invalid conclusions. The proof of Lemma 1 is based on
similar techniques and can be considered as an extension of Chung’s work.
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and (11) is the direct result. Similarly, we can prove this lemma
for S � Yp by using e

0

i’s and T
0

d as defined in (10), and
   0S = ( 00;  

0

1; . . . 
0

p�1)
T , where  0i = 1, if yi 2 S and  0i = 0

otherwise.

III. EXPANSION PROPERTIES OF TANNER GRAPHS

For a given Tanner Graph GT = (Xn Yp; E), considering a
subset Sm � Xn (or Yp) of size m, its expansion is defined as the
number of its neighbors divided by its volume,2 i.e.,

�(Sm) =
jN(Sm)j

vol(Sm)
: (18)

Thus, the minimum and average variable expansion can be defined as

�min(m) = min
S

�(Sm) (19)

�avg(m) =
1
n
m S

�(Sm) (20)

where Sm � Xn, jSmj = m and n
m

is the binomial coefficient.

A. Relations to Previous Results

In [6]–[8], stopping sets were used to determine the performance of
iterative decoding on erasure channels. For Sm � Xn, we say that
Sm is a stopping set if all vertices in the neighborhood of Sm, i.e.,
vertices in N(Sm), are connected to at least two different vertices in
Sm. Thus, if Sm is a stopping set, �(Sm) � 1

2
. However, the converse

is not necessarily true. Also, it can be shown that stopping distance [7]
is lower bounded by the largest m such that �min(m� 1) > 1

2
.

In [3], the authors discussed iterative decoding of (dv ; dc)-regular
LDPC codes on the BSC, and demonstrated that Spielman’s simple se-
quential decoding algorithm can correct any �n=2 or fewer random
errors if every variable subset of the size �n or less expands by a factor
of at least 3dv=4, where n is the number of variable vertices. Trans-
lating into our notation, it is equivalent to say that Spielman’s simple
sequential decoding can correct any pattern of m=2 or fewer errors if
�min(i) � 3=4 for 1 � i � m. Similar results were obtained in [18],
where irregular LDPC codes were discussed. Thus, our goal in this cor-
respondence is to establish lower bounds on expansion properties for a
given Tanner Graph with these results in mind.

B. A Lower Bounds on �(sm)

Theorem 2: For any subset Sm of Xn

�(Sm) �
1

rmax
�

jEj

�1jEj + (1� �1)vol(Sm)
(21)

and for any subset Sm of Yp

�(Sm) �
1

cmax
�

jEj

�1jEj + (1� �1)vol(Sm)
(22)

where �1 is the second largest eigenvalue of bothAT
pAp andApA

T
p ,

rmax = maxi ri and cmax = maxj cj .

2Strictly speaking, (18) only defines the “vertex” expansion, and the concept
of “edge” expansion also exists in the literature of SGT. However, as only vertex
expansion is considered throughout this work, we use the term expansion to refer
to vertex expansion. Furthermore, it should be noted that, though the definition
of vertex expansion is not restricted to variables, typically only subsets of vari-
ables, i.e., S � X , are considered to analyze the performance of iterative
decoding.

Proof: Using the fact that, for Sm � Xn, jN(Sm)j �
vol(N(Sm))=rmax, (21) follows directly from Lemma 1 and (18).
Similarly, (22) can be proved.

C. Lower Bounds on Minimum and Average Variable Expansion

A lower bound on minimum variable expansion follows from The-
orem 2.

Theorem 3: For subsets of Xn with size m

�min(m) �
1

rmax
�

jEj

�1jEj + (1� �1) �m � cmax
(23)

where �1 is the second largest eigenvalue of both AT
pAp andApA

T
p ,

rmax = maxi ri and cmax = maxj cj .
Proof: Using the fact that, for Sm � Xn, vol(Sm) � m � cmax,

(23) follows from the definition of �min(m) and (21).
The derivation of lower bound on average variable expansion is more

complicated, which is summarized in the following theorem.

Theorem 4: For a Tanner Graph GT = (Xn Yp; E) with largest
variable degree of L and jXnj = n, let nl be the number of variable
nodes of degree l and dl, 1 � l � L, be integers such that 0 � dl � nl,
then

�avg(m) �

n

::

n

d +::+d =m

n
d

:: n
d l ldl

2

rmax
n
m

n�1
j=0 �ja

2
j

(24)

where �j ’s and ej ’s are eigenvalues and corresponding eigenvectors
of AT

pAp and

a20 =
n� 1

m� 1
�

n� 2

m� 2
e
T
0Tde0 +

n� 2

m� 2
jEj

(25a)

a2j =
n� 1

m� 1
�

n� 2

m� 2
e
T
j Tdej 1 � j � n� 1:

(25b)

Proof: Considering Sm � Xn and jSmj = m, define column
vector    S = ( 0;  1; . . . n�1)

T , where  j = 1 if xj 2 Sm, and
 j = 0 otherwise. Let

aj(Sm) = hT
1=2
d    S ; eji = e

T
j T

1=2
d    S (26)

combining (15b) and (16d) yields

n�1

j=0

(aj(Sm))2 �j �
jvol(Sm)j2

vol(N(Sm))
: (27)

Summing the left side of the (27) over all Sm � Xn such that jSmj =
m

S

n�1

j=0

(aj(Sm))2 �j =

n�1

j=0

�j
S

(aj(Sm))2 (28a)

=

n�1

j=0

�j
S

jhT
1=2
d    S ; ejij

2 (28b)
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=

n�1

j=0

�j
S

e
T
j T

1=2
d    S    TS T

1=2
d ej

(28c)

=

n�1

j=0

�ja
2
j (28d)

where

a2j =
S

e
T
j T

1=2
d    S    TS T

1=2
d ej

= eTj T
1=2
d

S

   S    TS T
1=2
d ej : (29)

Using the definition of    S , we show that

   S    TS =

 0 0  0 1 �  0 n�1
 1 0  1 1 �  1 n�1
� � � �
� � � �

 n�1 n�1  n�1 1 �  n�1 n�1

is a n�n binary symmetric matrix, where the entry at the intersection
of the ith row and the jth column is 1 if and only if both xi and xj are
in Sm. Furthermore, among all n

m
matrices of the form    S    TS ,

n�1
m�1

have entry 1 at the intersection of the ith row and the ith column,
0 � i � n � 1, and n�2

m�2
have entry 1 at the intersection of the ith

row and the jth column, 0 � i 6= j � n � 1, therefore

S

   S    TS

=

n�1
m�1

n�2
m�2

� n�2
m�2

n�2
m�2

n�1
m�1

� n�2
m�2

� � � �
� � � �

n�2
m�2

n�2
m�2

� n�1
m�1

=
n� 1

m� 1
� n� 2

m� 2
In +

n� 2

m� 2
1n1

T
n (30)

where In is the n � n identity matrix and 1n is the n � 1 all one

column vector. Noting that e0 =
T 1p

jEj
and ej , 1 � j � n � 1, are

the orthonormal eigenvectors ofAT
pAp, (25a) and (25b) can be proved

by combining (29) and (30).
Using the Cauchy–Schwartz inequality, it can also be shown that

S

jvol(Sm)j2
vol(N(Sm))

� ( S vol(Sm))2

rmax
n
m
�avg(m)

: (31)

Combining (27), (28) and (31), we have

�avg(m) � ( S vol(Sm))2

rmax
n
m

n�1
j=0 �ja

2
j

: (32)

As the final step, noting that for subsets of Xn with m = d1 +
:: + dL variable nodes, where dl, 1 � l � L, are integers such that
0 � dl � nl, and nl is the number of variable nodes of degree l,
vol(Sm) = l ldl and there are n

d
:: n

d
Sm � Xn satisfying

these conditions, therefore

S

vol(Sm) =

n

::

n

d +::+d =m

n1
d1

::
nL
dL

l

ldl (33)

and (24) follows.

IV. BOUNDS ON STOPPING DISTANCE AND STOPPING REDUNDANCY

In this section, we will use results in the previous section to derive
bounds on the stopping distance and the stopping redundancy for binary
linear codes.

A. Lower Bounds on Stopping Distance

Considering S � Xn, define bit variables in S as active bits and
parity-checks in the neighborhood of S as active parity-checks [19],
respectively, then we say that S is a stopping set if all the neighbors of
S, i.e., all active parity-checks, are connected to S at least twice. The
size of the smallest stopping set is defined as stopping distance.

Using Theorem 2, two lower bounds on stopping distance, denoted
as s(Hp), of binary linear codes are derived. Since s(Hp) � dmin,
these lower bounds are also lower bounds on dmin. In particular, they
lead to Tanner’s results [19] when the underlying Tanner Graph is reg-
ular. Thus, using Tanner’s terminology, we call (34) and (35) bit-ori-
ented bound and parity-oriented bound, respectively.

Theorem 5: For the [n; k; dmin] binary linear code C defined by the
Tanner Graph GT = (Xn [ Yp; E) with p� n incidence matrix Hp

dmin � s(Hp) �
2

r
� �1

1� �1
� jEj
cmax

(34)

dmin � s(Hp)

� 1 + 2c �2
r

� �1cmax

(1� �1)cmax
� 2jEj
cmaxrmax

(35)

where �1 is the second largest eigenvalue ofAT
pAp, rmax = maxi ri,

cmax = maxj cj and cmin = minj cj .
Proof: Since stopping distance is always no larger than minimum

distance [7], we only need to prove the second inequalities in (34) and
(35).

Let Sx � Xn be a smallest stopping set, it has been demonstrated,
in Section III-A, that �(Sx) � 1

2
. Then, (21) leads to

rmax
2

� jEj
�1jEj + (1� �1)vol(Sx)

(36)

where �1 is the second largest eigenvalue of AT
pAp. Therefore

s(Hp) = jSxj � vol(Sx)

cmax
� 2=rmax � �1

1� �1
� jEj
cmax

: (37)

To prove (35), let Sy � Yp be the set of active parity-checks of a
smallest stopping set, and (22) leads to

jN(Sy)jcmax
vol(Sy)

� jEj
�1jEj + (1� �1)vol(Sy)

: (38)

Considering N(Sy), it contains all active bits of the stopping set and
some other bits that are not in the stopping set. For those active bits,
all their neighbors are included in the set of Sy , and for the rest bits,
some of their neighbors are in Sy but others are not. Therefore, let
cavg(N(Sy)) be the average number of edges incident on N(Sy) that
are counted in vol(Sy), i.e., jN(Sy)jcavg(N(Sy)) = vol(Sy), then

cmax
cavg(N(Sy))

� jEj
�1jEj + (1� �1)vol(Sy)

: (39)

Also, among the ri neighbors of any node yi 2 Sy , at least 2 of them
are active bits and the remaining ri � 2 bits have at least one edge
connected to Sy . In other words, assuming the ri neighbors of yi are
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x1; x2; ::; xr , among which x1 and x2 are active bits and x3; ::xr
each has at least one edge connected to Sy , at least

(c1 + c2 + ri � 2)=ri

= 1 + (c1 + c2 � 2)=ri � 1 + (2cmin � 2)=rmax

edges connected to a neighbor of yi are counted in vol(Sy) on average.
Thus

cavg(N(Sy)) � 1 + (2cmin � 2)=rmax: (40)

Combining (39) and (40), and noting that s(Hp)cmax � 2jSyj �
2vol(S )

r
, (35) follows.

Lower bounds on minimum distance and stopping distance when
the underlying graph is regular can be considered as a special case of
Theorem 5, which is summarized in the following corollary.

Corollary 6: The dmin and s(Hp) of regular LDPC codes defined
by p � n parity-check matrix Hp satisfy

dmin � s(Hp) �
n(2c� �1)

cr � �1
(41)

dmin � s(Hp) �
2n(2c+ r � 2� �1)

r(cr � �1)
(42)

where �1 = �1cr is the second largest eigenvalue of HT
pHp.

Proof: If Hp is regular, i.e., c0 = � � � = cn�1 = c and r0 =
� � � = rp�1 = r, the n� n square matrix HT

pHp has cr as its unique
largest single eigenvalue and �1 = �1cr as its second largest eigen-
value, where �1 is the second largest eigenvalue of AT

pAp and Ap

is the normalized incidence matrix defined in (8). The proof is then
straightforward by plugging cmax = cmin = c, rmax = r, jEj = nc
and �1 = �1cr into (34) and (35) respectively.

It can be seen that the part of (41) and (42) corresponding to dmin co-
incide with Tanner’s bit-oriented bound and parity-oriented bound for
regular LDPC codes [19, Ths. 3.1 and 4.1], respectively. We have noted
that, lower bounds on both minimum BEC pseudo-weight and AWGN
pseudo-weight of regular LDPC were derived in [12], which will also
lead to Tanner’s bounds. Also, lower bounds on dmin for block-wise
irregular LDPC codes were derived in [20], where some degree of reg-
ularity is still necessary. Our main contributions are the derivation of
low bounds for general LDPC codes and demonstrating that Tanner’s
bounds are actually lower bounds on stopping distance, and an imme-
diate result of this is the explanation why Tanner’s bounds on dmin are
not tight.

B. An Upper Bound on the Stopping Redundancy of the Difference-Set
Codes

Stopping redundancy, denoted as �(C), was introduced in [7]. In this
section, we will provide an upper bound on the stopping redundancy
of the family of difference-set codes, which are also known as type-I
2-D PG-LDPC codes [16]. Specifically, assuming C is a difference-set
code of length n, �(C) � n.

Though there are relatively few codes in the family of difference-set
codes, they are nearly as powerful as the best known cyclic codes in
the range of practical interest [21]. Furthermore, several recent ex-
periments [16], [22] suggested that this family of codes can perform
very well under iterative decoding. It should also be noted that, in
[15], pseudo-weight enumerators of pseudo-codewords of both type-I
2-D PG-LDPC and type-I 2-D Euclidean geometry LDPC (EG-LDPC)
were discussed, and stopping redundancy of these two families of codes
can be derived from their pseudo-weight enumerator as well.

To analyze the algebraic properties of cyclic codes, the components
of a row vector3 v = (v0; v1; . . . ; vn�1) are usually treated as coef-
ficients of a polynomial, i.e., v(X) = v0 + v1X + v2X

2 + � � � +
vn�1X

n�1. Since the mapping between v and v(X) is one-to-one,
we use the terms “row vector” and “polynomial” interchangeably here-
after. Furthermore, for a given v(X) and its row vector v = v0, we
can work over rings of polynomials mod (Xn+1) and define a p�n,
1 � p � n, matrix as follows:

Hp(v) =

v�(X) mod (Xn + 1)

X v�(X) mod (Xn + 1)

�

�

Xp�1v�(X) mod (Xn + 1)
p�n

=

v�0

v�1

�

�

v�p�1 p�n

(43)

where v�(X) = Xkv(X�1) is the reciprocal of v(X) and v�i , 0 �
i � p� 1, are row vectors. This is called a cyclic matrix because v�i is
the i-th cyclic shift of v�0 to the right, 1 � i � p� 1.

To define a [n; k; dmin] binary cyclic code C, one only needs to
specify its generator polynomial [21, Ch.5], g(X) = 1+g1X+ � � �+
gn�k�1X

n�k�1 +Xn�k , which is the unique nonzero code polyno-
mial of degree n�k in C, and all valid code polynomials can be written
as (u0 + u1X + � � � + uk�1X

k�1)g(X) where u0; u1; . . . uk�1 are
the k information digits to be encoded. Noting that g(X) is a factor of
Xn + 1 [21, Th. 5.5], there existes one degree k polynomial

h(X) = 1 + h1X + � � �+ hk�1X
k�1 +Xk (44)

such that Xn + 1 = g(X)h(X). This h(X) is defined as parity
polynomial [21] of C because the generated cyclic matrix Hp (h),
as defined in (43) with p0 = n � k, is a parity-check matrix of C,
i.e., an length-n row vector c is a valid codeword of C if and only if
Hp (h)c = 0.

On the other hand, the parity-check matrix for a given cyclic code is
usually not unique. One interesting result is the following lemma.

Lemma 7: Assuming that h(X) is the parity polynomial of an
[n; k; dmin] binary cyclic code C, if there exists another polynomial
z(X) = h(X)f(X) such that

• f(X) is a nonzero polynomial of degree f < p0 = n� k;
• the greatest common divisor of f(X) and Xn + 1 is 1, i.e.,

GCD(f(X);Xn + 1) = 1;
Hp (z), as defined in (43) with p0 = n�k, is also a cyclic parity-check
matrix for C.

Proof: To show Hp (z) is a valid parity-check matrix of C, it
suffices to show that its row vectors belong to the row space ofHp (h),
which follows from the definition of z�(X) and the cyclic property of
the row space of Hp (h), and they are linearly independent.

Assuming that the row vectors of Hp (z) are linearly dependent,
thus there exist a set of variables �i 2 f0; 1g, 0 � i � p0 � 1, such
that not all of them are zero and

�0z
�

0 � �1z
�

1 � � � � � �p �1z
�

p �1 = 0 (45)

3Different from previous sections, where column vectors are used, row vec-
tors are used here.
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where � is modulo-2 addition and 0 is a zero row vector. Noting
that z�i = Xi

z
�(X) mod (Xn + 1), 0 � i � p0 � 1 and

GCD(f�(X); Xn + 1) = 1

(45), �0h
�

0 � �1h
�

1 � � � � � �p �1h
�

p �1 = 0 (46)

contradicts with the fact that row vectors of Hp (h) are linearly inde-
pendent. Thus, row vectors of Hp (z) are linearly independent.

Definition 1: [21, Ch.5] Let q = 2� for positive integer �, n =
q(q + 1) + 1, k = 22� + 2� � 3� and D = f0; d1; . . . ; dqg be a
perfect simple difference set of order q, define polynomial z(X) =
1+Xd + � � �+Xd and h(X) = GCD(z(X);Xn+1). The cyclic
code defined by the parity-check matrix with Hp (h) = Hn�k(h) is
an [n; k; dmin = q + 2] difference-set code.

Theorem 8: The stopping redundancy of an [n; k; dmin] differ-
ence-set code is less than or equal to n.

Proof: From the definition of z(X) and h(X), it can be shown
that there exists a polynomial f(X) such that z(X) = h(X)f(X)
and GCD(f(X);Xn + 1) = 1. Lemma 7 shows that Hp (z) is a
parity-check matrix of C. By adding row vectors corresponding to
Xi
z
�(X) mod (Xn + 1), p0 � i � n � 1, to Hp (z), a n � n

redundant parity-check matrix Hn(z) is formed

Hn(z) =

z
�(X) mod (Xn + 1)

�

Xp �1
z
�(X) mod (Xn + 1)

�

Xn�1
z
�(X) mod (Xn + 1)

n�n

: (47)

Since the rows of Hn(z) are cyclic shifts of z�0 , which is a row vector
with q+1 non-zero elements, every row of Hn(z) is of weight q+1.
On the other hand, asHn(z) contains z�0 and all its n�1 cyclic-shift to
the right, the pigeonhole principle implies that every column ofHn(z)
must have weight q + 1 as well.

Let D = f0; d1; . . . ; dqg be the simple difference set used to define
z(X) and let z�i , 0 � i � n � 1, be the row vector corresponding the
reciprocal of Xi

z(X) modXn + 1, the definition of D implies that

z
�

i � (z
�

j )
T =

q + 1; 0 � i = j � n� 1,
1; ji� jj 2 D, 0 � i 6= j � n� 1,
0; otherwise.

(48)

Furthermore, letAn(z) be the corresponding normalized incident ma-
trix as defined in (8), (48) implies that An(z)

T
An(z) has diagonal

entries of 1
q+1

and off-diagonal entries of 1
(q+1)

. Then, 1 = �0 >

�1 = �2 = � � � = �n�1 =
q

(q+1)
are eigenvalues of An(z)

T
An(z),

and the bit-oriented bound, i.e., (41), is q + 2 = dmin. Therefore, the
stopping redundancy of the family of difference-set codes �(C) � n =
the length of the code.

Furthermore, for redundant parity-check matrix Hn(z), we can not
only show that its stopping distance equals the minimum distance, but
also the number of smallest stopping sets equals the number of min-
imum weight codewords, i.e.,

Theorem 9: For the family of [n; k; dmin] difference-set codes, the
number of minimum weight codewords equal the number of smallest
stopping sets in the Tanner Graph specified byHn(z), which is defined
in (47).

Proof: As a minimum weight codeword corresponds to
a stopping set in Tanner graphical representation, it suffices to

show that, by letting variables in a smallest stopping set be 1 and
the rest be 0, every smallest stopping set corresponds to a min-
imum weight codeword. Without loss of generality, assuming that
fx1; x2; . . . ; xq+2g forms a stopping set and y1; y2; . . . yq+1 are
neighbors of x1, there exists at least one xj , 2 � j � q + 2, such
that yi 2 N(xj) because fx1; x2; . . . ; xq+2g is a stopping set. How-
ever, as jN(x1) N(x2)j = � � � = jN(x1) N(xq+2)j = 1 and
jN(x1)j = q + 1, by the pigeonhole principle there is only one such
xj for each yi so that all neighbors of x1 are of degree two. Similarly,
we can prove this for xj , 2 � j � q + 2. Thus, let xj = 1 for
1 � j � q + 2 and xj = 0 otherwise, a minimum weight codeword,
which is of weight q + 2, is formed.

By Theorem 9, we can argue that, when the erasure probability is
small, the performance of the iterative message-passing algorithm can
be very close to that of the ML decoding. This can be demonstrated
using the [21; 11; 6] difference-set code C21 derived from the differ-
ence set D = f0; 3; 4; 9; 11g, where h(X) = z(X) = 1 + X3 +
X4 +X9 +X11, and there are 168 codewords in C21 with Hamming
weight dmin = 6. Theorem 8 shows the stopping redundancy of C21
is upper bounded by n = 21, and Theorem 9 shows that there are 168
smallest stopping sets inH21(z) of size 6. Therefore, the performance
of iterative decoding over the BEC using the redundant parity-check
matrix H21(z) should be close to that of ML decoding and this is ver-
ified by the following simulation results.

Fig. 1 evaluates the performance of iterative decoding for C21 on the
erasure channel as a function of p, the number of rows of the cyclic
redundant parity-check matrix Hp(z) as defined in (43). It is known
that the iterative decoding on the BEC performs better when redundant
parity-checks are added to the Tanner Graph, which can be observed in
this simulation as well. For example, when the channel erasure proba-
bility is 0.12, the probability of block error is 0:001 if p = 10, but this
number is 0:00048 if p = 15 and 0:00047 when p = 21. The perfor-
mance of ML decoding is also shown in Fig. 1 and is observed to be
identical to that of the p = 21 iterative decoding algorithm.

Furthermore, Fig. 2 evaluates the performance of iterative de-
coding for C21 on the AWGN channel as a function of p. For the
iterative decoding over AWGN channel, it is pseudocodewords not
stopping sets that is used to analyze its performance and adding
redundant parity- checks is not always useful because it can increase
the number of pseudocodewords on the decoder’s computation tree.
However, Fig. 2 shows that our approach of adding parity-checks
based on the distribution of stopping sets for [21; 11; 6] differ-
ence-set code helps in AWGN scenario as well. By increasing
the number of parity-checks from 10 to 21, there is a perfor-
mance gain of 0.5 dB (in Eb=N0) and the curve corresponding the
p = 21 is only 0.25 dB away from that of the optimal ML decoding.

V. CONCLUSION

In this work, using techniques from spectral graph theory, we derived
lower bounds on the expansion properties of Tanner Graphs. Specifi-
cally, for any given Tanner Graph represented by an incidence matrix,
we showed that the expansion of both variables and parity-checks, the
minimum and the average variable expansion, can be lower bounded
by functions of the eigenvalues and corresponding eigenvectors of the
normalized incidence matrix representing the graph.

This method can also be used to derive lower bounds on the stopping
distance of binary linear codes defined by a given parity-check ma-
trix, and we have pointed out the relationship between our bounds and
Tanner’s bit-oriented bound and parity-oriented bound on minimum
distance for regular LDPC codes. Furthermore, these lower bounds
can lead to an upper bound on stopping redundancy of the family of
difference-set codes.
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Fig. 1. Performance of iterative decoder as a function of p and maximum-likelihood decoder for [21; 11;6] difference-set code on BEC. Note that the curve of
ML decoding and iterative decoding with p = 21 coincide.

Fig. 2. Performance of iterative decoder as a function of p and maximum-likelihood decoder for [21;11;6] difference-set code on AWGN channel.

An interesting open problem is how to properly add redundant
parity-checks to the Tanner graphical representation to improve the
performance of iterative decoding. In this work, we showed that this
can be done for the family of difference-set codes. The generated
redundant parity-check matrix has stopping distance equal minimum
distance, and the number of minimum stopping sets is the same as
minimum weight codewords. Therefore, the performance of iterative
decoding and ML decoding are close to each other.
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