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Abstract—Advances in lattice-based cryptography are enabling
the use of public key algorithms (PKAs) in power-constrained
ad hoc and sensor network devices. Unfortunately, while many wire-
less networks are dominated by group communications, PKAs are
inherently unicast—i.e., public/private key pairs are generated by
data destinations. To fully realize public key cryptography in these
networks, lightweight PKAs should be augmented with energy-
efficient mechanisms for group key agreement. We consider a
setting where master keys are loaded on clients according to an
arbitrary distribution. We present a protocol that uses session keys
derived from those master keys to establish a group key that is
information-theoretically secure. When master keys are distri-
buted randomly, our protocol requires O(logb t) multicasts, where
1 − 1/b is the probability that a given client possesses a given mas-
ter key. The minimum number of public multicast transmissions
required for a set of clients to agree on a secret key in our setting
was recently characterized. The proposed protocol achieves the
best possible approximation to that optimum that is computable
in polynomial time. Moreover, the computational requirements
of our protocol compare favorably to multi-party extensions of
Diffie-Hellman key exchange.

Index Terms—Ad hoc wireless networks, public key cryptogra-
phy, wireless sensor networks.

I. INTRODUCTION

S ECURITY against malicious eavesdroppers is a paramount
concern in wireless networks. While symmetric key algo-

rithms provide a lightweight means of ensuring data confiden-
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tiality in power-constrained devices, they may be ill-suited to
applications where the devices can be compromised. For exam-
ple, if a single client in a sensor network employing AES-256
with a common key is compromised, then all of the other clients
must be rekeyed. The transmissions required by over-the-air
rekeying of an entire wireless network can consume significant
energy. The use of public key algorithms (PKAs) can in prin-
ciple address this issue; however, PKAs have heretofore been
viewed as incompatible with ad hoc and sensor networks for
two reasons:

1) PKAs are much more computationally complex than
symmetric key algorithms.

2) PKAs are tailored for unicast, yet in many operational
scenarios, wireless networks are dominated by multicast
and other forms of group communications [2]–[4].

Recent advances in lattice-based cryptography paved the way
for the development of lightweight PKAs that are suitable for
use in power-constrained devices [5]; the second issue, how-
ever, has received considerably less attention in the literature.

Public key algorithms can naïvely support multicast traffic
by replacing each t-destination multicast session with t parallel
unicast sessions. However, this approach fails to capture the
energy savings afforded by, for example, multicast tree routing
[6]. It is more energy efficient to have the destination clients
first securely establish a group key and then derive a common
public/private key pair from that group key. This allows data to
be encrypted by the source, efficiently multicast to all destina-
tions, and then decrypted by all destinations simultaneously.

A multitude of group key agreement protocols have been pro-
posed in the literature (see, for example, [7]–[9] and Chapter 6
of [10]). The majority of these protocols extend traditional two-
party Diffie-Hellman (DH) key exchange [11] to multiple par-
ties and therefore provide a semantic security guarantee (i.e.,
the security depends on the intractability of the Decisional DH
problem). Burmester and Desmedt’s protocol (BD) [12] is par-
ticularly germane to our work as it employs multicasting and is
therefore a natural fit for wireless networks. In the BD protocol,
an X-bit group key is agreed upon by t clients using 2t public
multicast transmissions, each of which is approximately X bits
long. This linear growth in the number of multicasts as a func-
tion of the group size is characteristic of many existing proto-
cols that do not rely on master keys.

A. Our Contributions

In this work, we assume that master keys are loaded on
clients prior to group key agreement. Master key loading may
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occur either before the network is deployed (i.e., preloading) or
dynamically via Diffie-Hellman key exchanges. When a group
of clients wish to establish a common key, they first derive
session keys from the subset of master keys that are shared
by at least two group members. The session key shared by the
largest number of group members becomes the group key. That
key is distributed to the remaining group members via public
multicast transmissions comprising the binary sum of the group
key and other session keys—i.e., shared session keys are used
as one-time pads for the distribution of the group key. By
properly designing the master key distribution, the number of
transmissions required for group key agreement can be made
to be much smaller than the group size. For example, if the
master keys are distributed randomly such that a given client
possesses a given key with probability 1 − 1/b, then the number
of transmissions grows with the group size t as1 O(logb t).
This sublinear growth compares favorably to the linear growth
exhibited by many existing protocols.

Owing to the use of shared session keys as one-time pads, the
group key generated by our protocol is secure against out-of-
network eavesdroppers in the information-theoretic sense—i.e.,
an eavesdropper that observes all of the public transmissions
can do no better than randomly guessing the group key. How-
ever, the key may be exposed to a malicious in-network client
that shares a master key from which one of the one-time pad
session keys was derived. Since master keys can be revoked
whenever a compromised client is detected (cf., [13]), the group
key is vulnerable only to undetected compromised clients in
practice. This vulnerability, which is common to all protocols
that use master keys, may be a reasonable price to pay for
increasing the energy efficiency of group key agreement in
many operational scenarios.

Our approach is inspired by recent information-theoretic
results on group key agreement. Building on [14], Courtade and
Halford recently characterized the minimum number of public
transmissions required for key agreement assuming an arbitrary
master key distribution [15]. In particular, it was shown in
[15] that defining a key agreement protocol that minimizes the
number of transmissions is NP-hard. Our protocol employs a
greedy heuristic to approximate this optimum in polynomial
time. The principal results of this paper are:

1) The specification of a protocol for group key agreement
that can be computed in polynomial time (in the group
size t) for any distribution of the master keys.

2) For any master key distribution, the number of public trans-
missions required by our protocol is at most 1+H(t−1)

times the optimum, where H(k) denotes the kth harmonic
number. This O(log t) approximation ratio is the best pos-
sible for a polynomial time computable algorithm unless
NP contains slightly superpolynomial time algorithms.

3) If ω(log t) master keys2 are independently allocated to
each client with probability 1−1/b, our protocol requires
O(logb t) public transmissions to generate a group key.

1We say that a function f (n) = O(g(n)) if there exists constants n0 and c
such that f (n) ≤ cg(n) for all values of n > n0.

2We say f (n) = ω(g(n)) if there exists n0 such that |f (n)| ≥ c|g(n)| for all
n > n0 and for every fixed positive number c.

B. Related Work

Following Burmester and Desmedt’s foundational work [12],
a rich literature on group key agreement protocols has emerged
(see [16] for a recent survey). Of particular relevance to our
work is an extension of the BD protocol proposed by Jung [17].
In Jung’s scheme, a group key is established among a set of
t clients g1, . . . , gt by first establishing master keys between
clients gi and gi+1 for i ∈ [1, t] (gt establishes a key with g1
to complete the cycle). Conditioned on this cyclic master key
distribution, our protocol requires t − 1 public multicast trans-
missions. Jung’s protocol employs a suboptimal transmission
scheme that requires t public multicasts.

Also related to the present work are information-theoretic
results on secret key generation. Characterizing the amount of
communication required to generate a secret key under different
models of shared randomness is a long standing problem [18].
In [19], Chan gave a suboptimal bound on the communication
required for key generation under a finite linear source model
that is essentially equivalent to the master key distribution
model that we consider in this work. In [15], Courtade and Hal-
ford provided a complete characterization of linear3 protocols
under this model. Contemporaneous to that work, Mukherjee
and Kashyap characterized secret key generation under a model
in which each pair of clients shares a random string of bits that
is independent of the string shared by every other pair [20]. This
pairwise independent network (PIN) model, which was previ-
ously studied in [21]–[24], is more restrictive than our master
key distribution model as it only allows randomness to be
shared by pairs of nodes.

The primary difference between our protocol and the
schemes developed to constructively prove results in [19]–[22]
is its generality—i.e., we do not require a specific master key
distribution.

C. Organization

We first introduce our protocol via example in Section II.
Following some mathematical preliminaries in Section III, we
establish our main results in Section IV, with the proof of the
second main result appearing in an Appendix. In Section V we
explore a number of extensions of our protocol including sup-
port for dynamic master key loading and group join operations.
It is shown that over the time, the energy savings afforded by
our protocol—in terms of the number of transmissions required
for group key agreement—outstrip the overhead costs of dy-
namic master key loading. Since energy efficiency is a function
of both computation and communication in power-constrained
devices, we demonstrate that the computational burden of our
protocol compares favorably to multi-party generalizations of
Diffie-Hellman key exchange in Section VI. We conclude with
directions for future work in Section VII.

II. PREVIEWING THE PROTOCOL VIA EXAMPLE

Consider the simple 11-client, fully-connected network illus-
trated in Fig. 1. A total of 21 master keys have been preloaded

3In a linear protocol, every public transmission is a linear combination of a
subset of the master keys (or session keys derived from the master keys).
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Fig. 1. A total of 21 master keys are preloaded on the 11 clients in this simple,
fully-connected network.

on the clients. For example, client v1 has been preloaded with
five keys: k1, k2, k4, k11, and k15. Each pair of clients shares at
least one master key initially. For example, v1 and v6 share k1.
As shown in Section III, this condition allows key agreement
among any subset of the 11 clients.

Suppose that clients v2, v4, v8, v10, and v11 wish to establish
a group key for a session with unique identifier u. Observe that
clients v2, v4, and v10 share master key k5 while clients v8, v10,
and v11 share master key k11. The desired group key can be
established as follows:

• Clients v2, v4, and v10 apply a common pseudorandom
function4 (PRF) to the shared master key k5 to obtain the
session key s5,u = φ(k5, u). This will be the group key.

• Clients v8, v10, and v11 apply a common PRF to k11 to
obtain the session key s11,u = φ(k11, u). Fig. 2(a) shows
the distribution of the session keys after this step.

• Client v10 now possesses both session keys. As illustrated
in Fig. 2(b), it next transmits the bitwise sum m1,u =
s5,u ⊕ s11,u to clients v8 and v11, which recover the group
key by computing m1,u ⊕ s11,u = s5,u.

Observe that in this simple example a group key has been
generated among five clients via a single public multicast
transmission. By using the session key s11,u as a one-time pad,
the group key s5,u is secure from any eavesdropper that does
not possess k5 or k11 (since k5 and k11 are required to generate
s5,u and s11,u, respectively). Furthermore, by using the output
of a pseudorandom function as a group key, the security of the
master keys has not been reduced—i.e., no clients obtain any
new master keys.

Before describing the tools required to generalize the above
example, it is instructive to consider a second example where
two public multicast transmissions are required for group
key agreement among a different 5-client group in the same

4A PRF family is a set of polynomial time computable functions {φ(x, s)|s ∈
S} of some input variable x that are indexed by a seed parameter s such
that when s is selected randomly from the set of possible seeds S, φ(x, s) is
computationally indistinguishable from a random function [25]. In practice, a
keyed-hash message authentication code (HMAC) could be used.

Fig. 2. After the sessions keys are derived from the master keys k5 and k11 by
the group members (a), client v10 transmits their binary sum (b) so that clients
v8 and v11 recover the group key s5,u.

network. Suppose that clients v1, v5, v6, v9, and v11 wish to
establish a group key for a session with unique identifier w. The
desired group key can be established as follows:

• Clients v5, v6, and v11 apply a common PRF to k6 to obtain
the group key s6,w = φ(k6, w).

• Clients v1 and v6 compute s1,w = φ(k1, w), while clients
v1 and v9 compute s4,w = φ(k4, w).

• Client v6 computes and transmits the message m1,w =
s6,w ⊕ s1,w to client v1, which in turn recovers the group
key via m1,w ⊕ s1,w = s6,w.

• Client v1 computes and transmits the message m2,w =
s6,w ⊕ s4,w to client v9, which in turn recovers the group
key via m2,w ⊕ s4,w = s6,w.

By using the session keys s1,w and s4,w as one-time pads, the
group key s6,w is secure in the information-theoretic sense from
any eavesdropper that possesses neither k1 nor k4.

Observe that in both of the above examples, other clients in
the network could potentially derive the group key from the
public transmissions. For example, clients v5 and v1 possess
master keys k5 and k11, respectively, and could therefore re-
cover the first group key. If these clients were compromised,
then that key would be revealed to the attacker. This indicates
that our protocol should be considered for use in ad hoc and sen-
sor networks that also employ protocols for client compromise
detection (e.g., [13] and the references therein).

III. MATHEMATICAL BUILDING BLOCKS

A. Secrecy via Coded Cooperative Data Exchange

Our approach is motivated by recent results on secret key
agreement via the coded cooperative data exchange (CCDE)
problem. Introduced first by El Rouayeb et al. in [26], the CCDE
problem has received significant attention (e.g., [14], [27]) and
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Fig. 3. Definition of the coded cooperative data exchange problem among two
5-client groups within the network of Fig. 1. A total of 4 (resp., 6) transmissions
are required for the optimal solution to the CCDE problem defined by (a) [resp.,
(b)]. Both solutions generate 2 packets of secrecy.

is stated as follows. Suppose that k packets are distributed
among a network of t clients. What is the minimum number of
transmissions M required to recover all k packets at all t clients?
In [28], it was shown that if the network5 is fully connected,
then the CCDE problem can be solved in polynomial time. At
roughly the same time, Chan [19] and Milosavljevic et al. [32]
independently established similar results. In general, less than k
transmissions are required by optimal CCDE solutions in fully-
connected networks. The difference betweeen k and M can be
exploited for secret key agreement.

In Fig. 3(a) and (b), we revisit the groups studied in the
two examples of Section II. The master keys {ki}21

i=1 have been
replaced by packets {pi}21

i=1 with the same indices for consis-
tency with the notation used in the CCDE literature. Observe
that only those packets shared by at least two clients are listed
in these figures. This is because any packet possessed by only
one of the clients in a group does not contribute to the CCDE
solution in an interesting way (i.e., that packet must simply be
broadcasted to the other group members so that the difference
between k and M does not change).

A total of k = 6 packets have been distributed among
the clients in Fig. 3(a). Using the tools of [14], it can be
shown that these M = 4 transmissions define an optimal CCDE
solution:

(i) v2 transmits m1 = p3 ⊕ p5. v4 and v10 recover p3 =
m1 ⊕ p5. v8 recovers p5 = m1 ⊕ p3.

5While the networks considered in this work need not be fully connected
at the physical layer (PHY), cryptographic protocols are often implemented at
higher layers that see an abstracted, one-hop topology. Moreover, a number of
emerging wireless stacks employ cooperative flooding protocols at the PHY
and present a fully-connected topology to higher layers [29]–[31].

(ii) v4 tranmits m2 = p5 ⊕ p14. v2, v8, and v10 all recover
p14 = m2 ⊕ p5. v11 recovers p5 = m2 ⊕ p14 and then
p3 = m1 ⊕ m2 ⊕ p14.

(iii) v8 transmits m3 = p11 ⊕ p18. v4 recovers p11 = m3 ⊕
p18. v10 and v11 recover p18 = m3 ⊕ p11.

(iv) v11 transmits m4 = p12 ⊕ p18. v4, v8, and v10 all recover
p12 = m4 ⊕ p18. Finally, v2 recovers p18 = m4 ⊕ p12 and
then p11 = m3 ⊕ m4 ⊕ p12.

The results of [18] indicate that if all 6 packets are crypto-
graphic keys, then this scheme generates precisely k − M = 2
packets worth of secrecy. In this example, p5 and p18 can form
the secret.

Similarly, k = 8 packets are distributed among the clients in
Fig. 3(b). It can be verified that the following M = 6 transmis-
sions comprise a CCDE solution with p1 and p15 as the secret:
(i) v1 transmits p4 ⊕ p15, (ii) v5 transmits p6 ⊕ p15, (iii) v6
transmits p1 ⊕ p9, (iv) v9 transmits p1 ⊕ p12, (v) v9 transmits
p1 ⊕ p19, and (vi) v11 transmits p11 ⊕ p12.

In these examples, two packets worth of secrecy were gen-
erated using 4 (resp., 6) public multicast transmissions that re-
sulted in the clients recovering 6 (resp., 8) packets. Since group
key agreement requires only a single secret packet, a full CCDE
solution may not be necessary for our application. Indeed, in
the first example of Section II, one secret packet was generated
using one public multicast transmission and only two packets
were recovered by the destination clients (s5,u and s11,u).
This observation motivates the following definition.

Definition 1: Let a set of k packets p1, . . . , pk be distributed
among n clients v1, . . . , vn. A group key agreement protocol
for that packet distribution is specified by m ≤ n encoding func-
tions fi1(·), . . . , fim(·) and n decoding functions g1(·), . . . , gn(·)
such that:

P-1. For each j ∈ [1, m], the inputs to the encoding function
fij(·) depend only on the packets possessed initially by
client vij .

P-2. For each i ∈ [1, n], the inputs to the decoding function
gi(·) depend on the packets possessed initially by client
vi and on the output of the encoding functions fij(·) for
all j ∈ [1, m].

P-3. The output of every decoding function is a common
packet x. This packet is the group key.

P-4. There is zero mutual information between x and the
outputs of the encoding functions fi1(·), . . . , fim(·).

If for all j ∈ [1, m], client vij evaluates and transmits fij(·), then
all of the clients can recover x by evaluating their respective
decoding functions. Property P-4 ensures that the common
packet x that is recovered by all of the clients is a secret key.

Observe that in the first example of Section II, we implicitly
defined a group key agreement protocol in which all of the
clients recover the session key s5,u. There is a single encoding
function in that example corresponding to the message trans-
mitted by client v10,

f10(s5,u, s11,u) � s5,u ⊕ s11,u, (1)

and the clients employ one of two decoding functions depend-
ing on whether they initially possess s5,u or if they must obtain
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it from the message transmitted by client v10:

g2(s5,u)=g4(s5,u)=g10(s5,u)�s5,u,

g8
(
s11,u, f10(·)

)=g11
(
s11,u, f10(·)

)
�s11,u ⊕ f10(·) = s5,u. (2)

Owing to the security of the XOR operator, there will be zero
mutual information between the transmission f10(·) and the
group key s5,u provided that s5,u and s11,u are secret keys.

In this work we seek energy-efficient group key agreement
protocols—i.e., those requiring as small a number of public
multicast transmissions as possible. This motivates the follow-
ing definition.

Definition 2: Let a set of k packets p1, . . . , pk be distributed
among n clients v1, . . . , vn. A group key agreement protocol
is said to be optimal if it requires the fewest number of
transmissions possible over all group key agreement protocols
for that packet distribution.

Optimal group key agreements protocols need not be unique.
For example, in the packet distribution illustrated in Fig. 3(b),
15 different optimal group key agreement protocols can be
identified that establish p6 as a secret with two transmissions.

B. Key Agreement via Connected Spanning Subhypergraphs

Suppose that k packets P = {pj}j∈J are distributed among n
clients V = {vi}i∈I. For each packet index j ∈ J, let ej ⊆ V be
the subset of clients in possession of packet pj. This packet dis-
tribution can be described graphically per Figs. 1–3 or, equiv-
alently, by the hypergraph H(V, EH) with vertex set V and
hyperedge set EH = {ej}j∈J.

A hypergraph H(V, EH) is said to be connected if for every
non-empty proper subset of the vertex set U ⊂ V , there exists a
hyperedge incident on some vertex in U and on another vertex
in V \ U. The following result, which was first presented as part
of [15, Lemma 4], provides a necessary and sufficient condition
for the existence of a group key agreement protocol for a given
packet distribution.

Lemma 1: Let H(V, EH) be the hypergraph implied by a
distribution of k packets P among n clients V . A group key
agreement protocol can be defined for this packet distribution
if and only if H(V, EH) is connected.

Proof: Suppose that H(V, EH) is connected. We construct
a group key agreement protocol as follows. Select any hyper-
edge es ∈ EH and set U = es. The packet ps corresponding to
es can be recovered by all clients by repeating the following
steps until U = V:

1) Select a hyperedge ej ∈ EH that is incident on a vertex
vi ∈ U and at least one in V \ U.

2) vi transmits the binary sum mj = ps ⊕ pj, where pj corre-
sponds to hyperedge ej.

3) All clients in ej recover ps = mj ⊕ pj.
4) Update U to include all clients now possessing ps—i.e.,

U ← U ∪ ej.

Since H(V, EH) is connected, a hyperedge can be found in
Step 1 as long as U 
= V . Since all of the transmissions are of
the form ps ⊕ pt, there will be zero mutual information between
the group key ps and any of the transmissions, provided all
packets are secret keys.

To prove the converse, suppose that H(V, EH) is not con-
nected. By definition, there exists some non-empty subset of
the clients U ⊂ V such that there are no hyperedges connecting
vertices in U to those in W = V \ U. That is to say, there are no
packets that are shared by a client in U and one in W. It follows
from Theorem 6 of [14] that precisely zero packets of secret
key can be generated via a solution to the CCDE problem with
such a packet distribution. Therefore, a group key agreement
protocol cannot be defined for this packet distribution. �

Lemma 1 identifies a necessary and sufficient condition
for secret key generation given some arbitrary master key
distribution. The following result follows immediately from
Lemma 1 and provides guidance on how to design master key
distributions.

Proposition 1: A group key agreement protocol can be de-
fined among any subset of the clients in a network if and only
if every pair of clients share at least one master key.

In the proof of Lemma 1, we specified a group key agreement
protocol by identifying a subset of hyperedges ẼH ⊆ EH that
spans the vertex set V and which induces a connected subhyper-
graph. Each hyperedge ej ∈ ẼH corresponds to an encoding
function and a transmission. This suggests that to define an
energy-efficient group key agreement protocol, we should search
for connected subhypergraphs of H(V, EH) that span V with the
fewest possible hyperedges. Indeed, [15, Lemma 4] implies that
optimal group key agreement protocols coincide with solutions
to the Minimum Connected Subhypergraph (MCSH) problem
on H(V, EH). As shown in [15, Theorem 4], a connection be-
tween the MCSH problem and the NP-complete Set Cover
problem can be used to show that defining an optimal group
key agreement protocol is NP-hard. Fortunately, as with many
problems related to Set Cover, the MCSH problem can be
approximated in polynomial time using a greedy heuristic. As
will be shown in Section IV, a greedy approximation of the
MCSH problem forms the basis of our protocol.

IV. GROUP KEY AGREEMENT WITH

PRELOADED MASTER KEYS

A. Protocol Specification

We now describe our protocol for group key agreement under
the assumptions that (i) the clients have been loaded with master
keys according to a distribution satisfying Proposition 1 and
(ii) the network is fully connected. In Section V we will con-
sider extensions that support dynamic master key exchange and
extensions that account for multi-hop network topologies.

Let G = {g1, . . . , gt} be a set of t clients that wish to agree
upon a group key for a session with unique identifier u. Client
gi possesses the set of master keys with indices tabulated by
Ki. We define the occupancy set Oj ⊆ G for each master key
index j ∈ KG = ∪t

i=1Ki as the subset of G that possess the key
kj—i.e., gi ∈ Oj if and only if j ∈ Ki. Provided that the occu-
pancy sets O = {Oj}j∈KG are known to all group members, then
Algorithm 1 can be run in parallel at each client to establish the
desired group key. Algorithm 1 determines the transmissions
used for group key agreement by applying a simple greedy
heuristic to the minimal connected spanning subhypergraph
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problem implied by the distribution of the master keys indexed
by KG (hyperedges) on the clients in G (vertices).

Algorithm 1 Proposed protocol for group key agreement
running at client gi ∈ G.

To clarify the notation used in Algorithm 1, we revisit the
second example of Section II wherein the t = 5 clients G =
{v1, v5, v6, v9, v11} wish to establish a group key for a session
with unique identifier w. In this example, the occupancy sets
with at least two elements are:

O1 = {v1, v6}, O4 = {v1, v9}, O6 = {v5, v6, v11},
O9 = {v6, v9}, O11 = {v1, v11}, O12 = {v9, v11},

O15 = {v1, v5}, O19 = {v5, v9}. (3)

The largest occupancy set is O6 so Algorithm 1 begins by set-
ting j0 =6, C=O6, and l=1. Clients v5, v6, and v11 next com-
pute the group key s6,w = φ(k6, w). In the first iteration of the
while loop, there are 6 occupancy sets that contain precisely
one element in C and one element not in C. To break the tie, the
occupancy set with the lowest master key index is chosen so that
l1 = 1 and i1 = 6. Client v6 thus computes s1,w = φ(k1, w) and
transmits the binary sum m1,w = s6,w ⊕ s1,w. Client v1 subse-
quently computes s1,w, receives m1,w, and recovers the group
key s6,w = m1,w ⊕ s1,w. The first iteration concludes by setting
C = {v1, v5, v6, v11} and l = 2. The second iteration proceeds
is a similar manner with l2 = 4 and i2 = 1. After two iterations,
C = G and the group key has been recovered by all 5 clients.

B. Protocol Discussion

The common PRF that is employed in Algorithm 1 ensures
that the public transmissions are computationally indistinguish-
able from random packets, thereby establishing our first key
result.

Result1: Algorithm1specifiesagroupkeyagreementprotocol
for any set of clients in a network that has been loaded with master
keys according to a distribution that satisfies Proposition 1.

Recall that specifying an optimal group key agreement pro-
tocol is NP-hard. Nevertheless, the polynomial time greedy
heuristic employed in Algorithm 1 provides a group key agree-
ment protocol with an O(log t) approximation ratio. Our second
key result is proved in the Appendix.

Result 2: The number of transmissions required by
Algorithm 1 is at most 1 + H(t − 1) times that of an optimal
group key agreement protocol, where H(t) denotes the tth har-
monic number. This O(log t) approximation ratio is the best
possible for a polynomial time computable algorithm unless NP
contains slightly superpolynomial time algorithms.

Result 1 implies that the group key established by our
protocol is secure against out-of-network eavesdroppers in the
information-theoretic sense [18]. This is a stronger security
guarantee than that provided by protocols based on Diffie-
Hellman key exchange. Of course, undetected compromised
clients can potentially recover the group key by eavesdropping
on the transmissions used for key agreement. This is the price
that we pay for group key agreement among t clients with far
fewer than t transmissions. As discussed above, however, this
security vulnerability can be mitigated by the use of a protocol
for detecting compromised clients.

We use session keys derived from master keys in our protocol
to provide forward and backward security [33]. That is to say,
an adversary not possessing any of the master keys but possess-
ing a subset of the group keys cannot discover another group
key in our protocol. In practice, an HMAC could be used as
the PRF with the session identifier as an input variable and the
master key as the seed parameter. This approach is consistent
with recommendations by the National Institute of Standards
[34] for ensuring that the compromise of a session or group key
does not degrade the cryptographic strength of the correspond-
ing master key.

C. Simulation Results—Energy Efficiency

In our simulations, we consider master key loading schemes
where R keys are distributed randomly6 among n clients such
that any client possesses any master key with probability β.
Fig. 4 compares the average number of public multicast trans-
missions required for group key agreement by Algorithm 1 when
n=50, R=�n/β�, and β varies. Observe that as β increases, the
number of transmissions required for key agreement decreases.
This is consistent with intuition: as the occupancy set sizes
increase, the minimal connected subhypergraph solution size
decreases. To highlight the sublinear growth achieved by our
protocol, the linear growth exhibited by Burmester and
Desmedt’s protocol [12] is also shown. The difference in per-
formance between the two protocols can be attributed largely to

6When required by Lemma 1 for a given group, pairwise keys are added to
the random distribution. Master key distributions derived from combinatorial
designs are an alternative approach to providing random-like key distributions
that satisfy Proposition 1. Combinatorial designs have been studied extensively
in the context of the sensor network key distribution problem (see, e.g., [35]).
Singer difference sets in particular are well-suited to our protocol.
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Fig. 4. Number of public multicast transmissions required for group key
agreement via the proposed protocol when �50/β� master keys are loaded
randomly in a 50-client network. Our protocol exhibits a sublinear growth in
the number of transmissions as the group size increases.

our use of session keys derived from preloaded master keys—
i.e., the BD protocol instead generates all keys on-the-fly.

The MCSH problem assuming a random master key distri-
bution is closely related to random instances of the Set Cover
problem. Toward connecting the two, consider the Set Cover
problem with ground set X = {1, 2, . . . , t} and subsets Si ⊆ X,
i = 1, . . . , R. A (β, t, R)-random instance of the Set Cover
problem is generated by letting an element of the ground set
x ∈ X be a member of Si with probability β, independently of
all other elements. That is:

Pr{x ∈ Si} = β

independently for all x ∈ X, i ∈ {1, . . . , R}. Building on [36],
Telelis and Zissimopoulos [37] investigated greedy approxima-
tions to (β, t, R)-random instances of the Set Cover problem,
and showed that with high probability, the size of a greedily
chosen set cover grows as

O

(
− log t

log(1 − β)

)
, (4)

provided R = ω(log t). This constraint on the number of subsets
guarantees the existence of a feasible solution with probabi-
lity one.

Returning to the MCSH problem assuming a random master
key distribution, suppose that instead of applying the greedy
heuristic of Algorithm 1, we instead employ the following two-
step approach. First, we identify a size-S subset of the master
keys whose occupancy sets cover the group. This is done using
the greedy Set Cover approximation algorithm studied in [37].
Second, we augment that subset with pairwise keys as neces-
sary to ensure that the subhypergraph implied by the selected
master keys is connected. Since at most S − 1 pairwise keys

Fig. 5. Number of public multicast transmissions for group key agreement for
the proposed protocol when n = 200, R = 100, β = 0.2, and b = 1.25. The
number of transmissions required for key agreement grows as the logarithm of
the group size.

need to be added in this step, the size of the MCSH approxima-
tion grows as O(logb t), where b = 1/(1 − β).

Result 2 indicates that this two-step approach will not outper-
form the greedy heuristic of Algorithm 1. Thus, we can make a
more precise statement about the apparent logarithmic growth
observed in Fig. 4. Although Result 3 is only guaranteed to
hold in an asymptotic sense, Fig. 5 suggests that this predicted
behavior holds for finite n and t.

Result 3: If R = ω(log t) master keys are independently
allocated to each client with probability 1 − 1/b, Algorithm 1
requires O(logb t) public multicast transmissions to generate a
group key with high probability.

D. Simulation Results—Energy vs. Security Trades

Fig. 6 illustrates the tradeoff between energy efficiency and
security against undetected compromised clients in the pro-
posed protocol. Energy efficiency is measured in terms of the
number of public multicast transmissions. For different values
of β, we measured the average number of public multicast
transmissions required for group key agreement among 10, 15,
20, and 25 clients in a 50-client network. The total number of
keys R was set to �50/β� so that the average number of keys
per client remained constant. Simultaneously, we measured the
average number of clients in the network that can recover the
group key. This includes the desired group members as well as
any other clients that posses the master keys used to generate
the sessions keys in Algorithm 1. Depending on the likelihood
that a compromised in-network node will go undetected, dif-
ferent master key loading scheme parameters should be chosen
in practice. The results illustrated in Fig. 6 indicate how this
parameter selection will impact the energy efficiency of group
key agreement in our protocol.
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Fig. 6. The average number of clients that can recover the group key as a
function of the average number of transmissions required to generate it. The
tradeoffs illustrated here, along with the likelihood that a compromised node
goes undetected, can inform master key loading scheme parameter selection.

V. EXTENSIONS TO THE PROTOCOL

A. Group Key Agreement With Dynamic Master Key Exchange

The protocol described in Section IV assumes that master
keys have already been loaded on the clients. In this section, we
describe how our protocol can be extended to support on-the-fly
master key exchange and group key agreement.

1) Protocol Description: In the dynamic master key ex-
change variant of our protocol, we assume that every client
is fielded with the ability to generate cryptographic keys.
Client vi initially generates and stores fi random master keys,
where fi is a binomial random variable drawn from the
distribution

Pr{fi = m} =
(

n

m

)
αm(1 − α)n−m, (5)

with α = R/n2 chosen so that a total of R random master keys
are generated on average. These keys propagate through the
network via an epidemic model that is inspired by distributed
database maintenance algorithms [38]. Each client is initially
infected by the keys it possesses and susceptible to all other
master keys in the network. As clients interact to establish
group keys, they become infected by or immunized to master
keys possessed by other group members.

Suppose that the clients in G={g1, . . . , gt} wish to estab-
lish a group key. Before running Algorithm 1, each pair of
clients gi 
=gj first runs the following master key exchange
procedure.

• Pairwise Key Agreement: If clients gi and gj have
not previously interacted, then they establish a key for
secure pairwise communications via a traditional two-
party Diffie-Hellman key exchange.

Fig. 7. Cumulative number of transmissions required to exchange master keys
and establish group keys among 5-client groups that are randomly selected
according to the proximity multicast model. The cost of master key exchange
is amortized over time and our dynamic protocol outperforms the BD protocol.

• Random Key Exchange: Let client gi (resp., gj) possess
the random keys indexed by Ki (resp., Kj).
— For each l ∈ Ki to which gj is susceptible, gj becomes

infected by random key kl with probability β and
immune to kl with probability 1 − β. If gj is infected
by kl, then kl is securely transmitted by gi to gj

(using the pairwise key). Conversely, if gj becomes
immunized to kl, then it will never receive that key.

— For each m ∈ Kj to which gi is susceptible, client
gi becomes infected by km with probability β,
prompting a secure transmission of km from gj to
gi. With probability 1 − β, client gi instead becomes
immunized to km and will subsequently never obtain
that random key.

Note that the pairwise keys are exchanged to (i) provide a
means for secure random key exchange and (ii) ensure that
Lemma 1 is met by the master key distribution on G. At steady
state, each client will be infected by an average of βR random
master keys, and a given random master key will be incident on
a given client with a probability that approaches β. Observe that
our dynamic master key exchange procedure readily supports
extensions for master keys with finite lifetimes—i.e., new keys
could be generated as old ones expire.

2) Protocol Discussion: In order to study the dynamics of
the proposed extension of our protocol, we simulated a network
with 50 clients distributed randomly in a square. The t closest
clients to a randomly chosen source define the destination set
that establish a given group key. This proximity multicast model
is representative of military use cases.

Fig. 7 illustrates how the cumulative number of transmissions
required for master key exchange and group key agreement
evolves over time in a 50-client network under the proximity
multicast model. The multicast group size is fixed to t = 5 and
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the number of random keys is set to �log2 n/β�. Each time
a group key is generated, the total number of transmissions
required for pairwise and random key agreement is tabulated
in addition to those required for group key agreement via
Algorithm 1. Initially, there is a sharp increase in the cumulative
number of transmissions as pairwise keys are established and
random keys propagate via an epidemic model. Over time, the
cost of master key exchange is amortized and the slopes of
the curves in Fig. 7 converge to roughly 2 transmissions per
generated group key.

Observe in Fig. 7 that increasing the infection probability
from β = 0.06 to 0.2 decreases the number of transmissions
required to establish group keys at steady state but increases the
overhead associated with the random key exchange step. Setting
β = 0.1 appears to offer a good trade between the steady-state
and transient behavior.

For comparison, Fig. 7 also illustrates the cumulative number
of transmissions when the BD protocol is used for group key
agreement. Since t = 5, this is simply a line with slope 2t = 10.
Observe that after approximately 120 group keys have been
generated, the proposed protocol with β = 0.1 becomes more
energy-efficient than the BD protocol. That is to say, over time
the energy savings afforded by each group key agreement in our
protocol outstrip the overhead incurred for dynamic master key
exchange. Note that about 2 multicasts are required per gener-
ated group key in our protocol versus 10 per group key for the
BD protocol.

B. Topology-Aware Group Key Agreement

The protocol described in Section IV seeks to minimize the
total number of multicast transmissions required for group key
agreement. This is a useful proxy for energy efficiency in one-
hop networks and in emerging wireless network approaches that
employ cooperative flooding protocols [29]–[31]. However, in
multi-hop wireless networks that employ more traditional tree-
based multicast routing protocols, we should also account for
the energy costs of relaying. In this section, we describe how
our protocol can be extended for use in such networks.

1) Protocol Description: The depth of the tree used for
multicast routing is a useful proxy for the energy-efficiency of
multicast in many wireless networks [39]. Let h(vi, vj) be the
distance in hops between clients vi and vj and let

h(s, D) = max
d∈D

h(s, d) (6)

be the depth of a minimum-depth multicast tree from a source
s to a destination set D. Algorithm 2 extends Algorithm 1 so as
to minimize the sum of the depths of the multicast trees used
for group key agreement rather than the number of multicasts.
Recall that in each iteration of the while loop in Algorithm 1,
the occupancy set Ojl that maximizes the number of new clients
obtaining the group key,

|Ojl \ C|, (7)

is identified (where C is the set of clients already in possession
of the group key). In each iteration of the while loop in
Algorithm 2, the occupancy set Ojl and transmitter il ∈ Ojl ∩ C

that maximizes the number of new clients obtaining the group
key per hop,

|Ojl ∩ C|
h(il, Ojl ∩ C)

, (8)

is instead identified. This topology-aware heuristic extends the
standard approximation algorithm for weighted set cover [40]
to the hypergraph setting.

Algorithm 2 Topologically-aware protocol for group key
agreement running at client gi ∈ G.

2) Protocol Discussion: We compared the performance of
the protocols described by Algorithms 1 and 2 in a n = 100
client network using a random master key distribution with
R = 100 and β = 0.2. To induce a random geometric graph
topology, the clients were placed randomly in a unit square and
a transmission radius of

r(n) = 3

2

√
log n

πn
(9)

was assumed [41]. Multicast groups were selected randomly
rather than via the proximity model considered in Section V-A.
Fig. 8 compares the average cost of group key agreement in
the two protocols as measured by two proxies for energy effi-
ciency: number of multicasts and the sum of the multicast tree
depths. Although the topology-aware protocol requires more
multicasts, the sum of the tree depths over those multicasts is
nearly halved with respect to the topology-agnostic protocol.
Changing the optimization criteria also had security implica-
tions in this experiment. Fig. 9 compares the average number of
clients that can obtain the group key under two protocols under
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Fig. 8. Average cost of group key agreement of the topology-agnostic
(Algorithm 1) and topology-aware (Algorithm 2) variants of our protocol in
an n = 100 client network.

Fig. 9. Average number of clients that can recover the group key as a function
of the group size in the topology-agnostic and topology-aware protocols. By
constraining the tree-depth of each multicast transmission, fewer unintended
clients can recover the group key under the topology-aware variant.

the assumption that all clients within h hops of the source of a
depth-h multicast transmission can eavesdrop on that transmis-
sion, but clients outside of that hop radius cannot. The results
shown in Fig. 9 are consistent with intuition: if the depth of
every multicast tree is minimized, then so will be the number of
unintended receivers.

C. Group Join Operations

In [7], Steiner et al. defined a family of auxiliary key opera-
tions required for dynamic group support—e.g., group member

join and leave—and proposed a multi-party extension of Diffie-
Hellman key exchange that supports these operations. The pro-
tocols presented in this paper can be readily extended to
support group member join operations. Indeed, the mass join
of j new group members to an existing t-client group can be
achieved with fewer than j transmissions by suitably adapting
Algorithm 1. However, member leave operations are not readily
supported in our protocols. When a member leaves, the group
key must be refreshed.

D. Network Join Operations

Our protocols assume global knowledge of the master key
distribution. That distribution must therefore be communicated
to any new client joining the network. Suppose that R keys
are distributed among n clients such that any client possesses
any master key with probability β. This random master key
distribution can be described by an n × R incidence matrix or
by a list of the keys possessed by each client. Since each client
possesses βR master keys on average,

M(n, β, R) = min
(
nR, nβR�log2 R�) (10)

bits are required to describe the random master key distribution.
For the networks considered in Figs. 4 and 5, respectively,
M(50, 0.1, 500) = 22 500 bits and M(200, 0.2, 100) = 20 000
bits. The superlinear growth of M(n, β, R) with n for the
random master key distribution may not be be satisfactory
in practice. Distributions derived from combinatorial designs
or pseudo-random distributions derived from a single ran-
dom seed could instead be used to control the overhead as-
sociated with network join operations. Since the security of
our protocol does not depend on the eavesdropper’s knowl-
edge of the master key distribution, such distributions are
permitted.

VI. COMPUTATIONAL COMPLEXITY

In Section IV, it was shown that the protocol defined in
Algorithm 1 compares favorably to Burmester and Desmedt’s
group key agreement protocol in terms of the number of
transmissions. While communication is typically the most
significant factor in energy consumption in wireless sensor net-
works [42], computation is also important in power-constrained
devices. In this section, we show that our protocol also com-
pares favorably to the BD protocol in terms of computation.

A. Review of Burmester and Desmedt’s Group Key
Agreement Protocol

Let p be a cX-bit prime for some c ≥ 1 and let α ∈ Zp have
order q, where q is an X-bit number. Suppose that a set of t
clients G = {g1, . . . , gt} wish to establish an X-bit secure group
key. In [12], Burmester and Desmedt described the following
protocol for group key agreement:

1) Each client gi randomly generates an integer modulo q,
ri, and broadcasts zi = αri mod p.
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2) Upon reception of zj for all 1 ≤ j 
= i ≤ t, each client gi

computes and broadcasts

Xi =
(

zi+1

zi−1

)ri

mod p,

where the indices are taken in a cycle so that zt+1 = z1
and z0 = zt.

3) Upon reception of Xj for all 1 ≤ j 
= i ≤ t, each client gi

computes the group key

K = (zi−1)
nri · Xn−1

i · Xn−2
i+1 · · · Xi−2

= αr1r2+r2r3+···+rnr1 mod p,

where, again, the indices are taken in a cycle.

In addition to requiring the generation of t random integers
in Zq, this protocol requires computing a total of t inverses,
t2 exponentiations, and t2 + t multiplies in Zp.

B. Complexity Comparison

Regardless of the master key loading scheme, our protocol
requires at most 2(t − 1) PRF evaluations. Assuming that an
X-bit secure HMAC is used as the PRF in our protocol and that
a hash-based pseudo-random number generator (e.g., [43]) is
used in Burmester and Desmedt’s protocol, the total complexity
of the PRF evaluation and random number generation in the
two protocols is comparable. The difference in computational
complexity therefore lies elsewhere.

By extending the standard linear time greedy set cover algo-
rithm [40] to the hypergraph setting, it can be shown that the
number of operations required by the MCSH approximation in
Algorithm 1 grows as O(tn) (assuming O(n) total master keys).
Since this algorithm is executed at all t clients in parallel, the
total complexity is O(t2n). Owing to the complexity of modular
arithmetic over very large integers, this complexity growth
compares favorably with the BD protocol. Specifically, the
complexity of inversion, multiplication, and exponentiation in
Zp grows with the modulus p as O

(
(log p)2

)
, O

(
(log p)2

)
, and

O
(
(log p)3

)
, respectively. Thus, the complexity of the X-bit

secure BD protocol grows as O(t2X3).

VII. CONCLUSION AND FUTURE WORK

Motivated by a desire to employ public key cryptography
for group communications in ad hoc and sensor networks, this
paper described a protocol that can establish a group key among
t clients using far fewer than t transmissions. When master keys
are distributed randomly in the network, our protocol requires
O(logb t) public multicast transmissions, where 1 − 1/b is the
probability that a given client possesses a given master key.
The group key established by our protocol is secure in the
information-theoretic sense against out-of-network eavesdrop-
pers; however, it may be exposed to undetected malicious in-
network clients. This vulnerability, which is common to all
protocols that use master keys, may be a reasonable price to pay
for increasing the energy-efficiency of group key agreement in
many operational scenarios.

Our approach was inspired by recent work by the first two
authors. In [15], the amount of communication required to gen-
erate a key of prescribed length was characterized in the com-
binatorial setting (i.e., when nodes share master keys according
to some arbitrary distribution). When a group key with the
same length as the master keys is desired, obtaining an optimal
communication scheme is equivalent to solving the Minimum
Connected Subhypergraph problem on the hypergraph implied
by the master key distribution. This problem is NP-hard. We
therefore employ a greedy approximation in our protocol that
provides a strong performance guarantee.

Future work will address the translation of the abstract pro-
tocols described in this paper to an Application Layer solution
suitable for implementation in power-constrained wireless net-
works. The key issue to address in that translation is protocol
scalability. For example, a pseudo-random master key distri-
bution that can be derived from a single seed could be used in
place of the random distributions considered herein. This would
enable low-overhead network join operations while maintaining
energy-efficient group key agreement. Other issues to address
include support for group join operations, robustness to lossy
wireless links, and key refreshing.

APPENDIX

In [44], Ren and Zhao studied a generalization of the Min-
imum Connected Subhypergraph problem which we review
briefly in this appendix in order to prove Result 2.

Let V be a finite set, let E = {ei ⊆ V}i∈I be a collection of
subsets of V , and let G be a connected graph with vertex set E.
A connected set cover F ⊆ E with respect to (V, E, G) is a set
cover of V such that F induces a connected subgraph of G. If
G is a complete graph, then the Minimum Connected Set Cover
(MCSC) problem is equivalent to Set Cover.

In order to state Ren and Zhao’s greedy algorithm for ap-
proximating MCSC, some notation is required. For ej, ek ∈ E,
dG(ej, ek) is the length of the shortest path between ej and ek

in G. The sets ej and ek are graph-adjacent if dG(ej, ek) = 1
and cover-adjacent if ej ∩ ek 
= ∅. The cover-diameter Dc(G)

is the maximum distance in G between any two cover-adjacent
sets. For any ∅ 
= F ⊂ E and g ∈ E \ F, an (F → g)-path is
a path {ei0, ei1, . . . , eik} in the graph G such that ei0 ∈ F,
eik = g, and ei1, . . . , eik ∈ E \ F. Finally, the weight ratio of an
(F → g)-path is defined as the length of the path in G divided
by the number of elements of V that are covered by ei1 ∪ · · · ∪
eik but not by the union of the sets in F.

In [44, Theorem 1], Ren and Zhao proved that Algorithm 3
yields a connected set cover F with a size that is at most

Dc(G) (1 + H(γ − 1)) (11)

times as large as the optimal MCSC solution, where γ is
the size of the largest element in S and H(γ ) = ∑γ

k=1 1/k is
the γ th harmonic number. Moreover, they proved that this ap-
proximation ratio is order-optimal unless NP contains slightly
superpolynomial algorithms.

It is readily shown that the MCSH problem is a special case
of the MCSC problem where G is defined such that the vertices
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corresponding to sets ej and ek are connected via an edge if and
only if ej ∩ ek 
= ∅. In this case, cover-adjacency and graph-
adjacency are equivalent and every iteration of the while loop
in Algorithm 3 selects a path {ei0, ei1} that maximizes |ei1 \ U|.
This is the same heuristic used to choose the next occupancy
set in Algorithm 1. Moreover, the heuristic used to choose the
first element g in Algorithm 3 is identical to that used to choose
the first occupancy set in Algorithm 1. Therefore, the greedy
approximation for the MCSH problem used in Algorithm 1
is a special case of Ren and Zhao’s algorithm. The proof of
Result 2 is completed by noting that Dc(G) = 1 when cover-
adjacency and graph-adjacency are equivalent.

Algorithm 3 Ren and Zhao’s greedy algorithm for the Mini-
mum Connected Set Cover problem.
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