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Abstract—Conditionally cycle-free graphical models (i.e., cyclic
graphical models which become cycle-free after conditioning on
a subset of the hidden variables) are constructed for coset codes.
Following the description of a general construction procedure,
examples of a number of families of codes—including first-order
Reed-Muller (RM) and the Delsarte-Goethals codes – are provided
for which the proposed procedure yields optimal soft-in soft-out
(SISO) decoding algorithms that are less complex than the best
known trellis-based algorithms. In the case of the first-order RM
codes, which have a recursive coset construction, the optimal SISO
decoding algorithm that results when the proposed construction
is applied repeatedly is denoted recursive coset representation
(RCR) decoding. Connections are made between RCR decoding
and existing algorithms that exploit fast Hadamard transforms.
Finally, the utility of the proposed decoding algorithms are sup-
ported by a practically motivated application: the construction
of serially concatenated codes that have high rates and low error
floors. Extended Hamming codes are proposed as outer codes in
such constructions with efficient decoding employing the SISO
algorithms developed herein.

Index Terms—Codes on graphs, coset codes, graphical model ex-
traction, soft-in soft-out (SISO) decoding, trellis decoding.

I. INTRODUCTION

T RELLIS representations of block codes were first studied
by Bahl, et al. in [1], where it was shown that trellises

imply optimal soft-in soft-out (SISO) decoding algorithms that
can be much more efficient than exhaustive1 SISO decoding.
Wolf described the first systematic trellis construction method
and showed that any -ary length , dimension linear block
code can be represented by a trellis with at most

(1)
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1This denotes a generalization of an exhaustive search to SISO decoding. For
example, exhaustive sum-product decoding of a binary length �, dimension �

linear block code entails (i) computing the probability that each of � codewords
was transmitted (via multiplication) and then (ii) computing the probability that
a 0 (respectively, 1) was transmitted at each bit index � by summing the proba-
bilities of each codeword that contains a 0 (respectively, 1) at index �.

states [2]. Ten years later, Forney’s Coset Codes papers [3],
[4] sparked renewed interest in the study of trellis representa-
tions. In particular, trellis constructions with fewer states than
the bound of (1) were sought (cf., [5]) since the number of states
in a trellis is a reasonable indicator for the number of arithmetic
operations required by the decoding algorithm it implies.

From the viewpoint of graphical models for codes (cf., [6]
and [7]), trellis representations of block codes constitute simple
chain models. It is now well-known that any cycle-free graph-
ical model for a code implies an optimal SISO decoding algo-
rithm (cf., [6]–[9]). It is thus natural to ask whether there ex-
ists a more general cycle-free graphical model for a given block
code that yields a less complex decoding algorithm than an op-
timal trellis. This is an example of an extractive graphical mod-
eling problem [10] – i.e., one which is concerned with the ob-
tention, or extraction, of a model for a specific code that implies
a decoding algorithm with desired complexity and performance
characteristics. Kashyap recently established bounds on the de-
crease in decoding complexity that may be afforded by more
general cycle-free models [11], [12].

The present work considers an extractive problem that is
closely related to the aforementioned cycle-free model search:
graphical models are sought that can be made cycle-free by
conditioning on a small number of hidden variables. An optimal
SISO decoding algorithm can be obtained from such a condi-
tionally cycle-free graphical model by applying the standard
decoding algorithm implied by each conditional (cycle-free)
graph configuration and then marginalizing over the results (cf.,
[13]). While such variable conditioning has been studied previ-
ously in the context of tail-biting codes [14], the focus herein
is on a more general class of conditionally cycle-free models.
Motivated by Forney’s observation that the decomposition of
certain codes into the union of cosets of some subcode can lead
to efficient trellis realizations [4], the present work extracts
conditionally cycle-free graphical models for codes based on
such coset decompositions. The term coset SISO decoding is
introduced to denote the algorithms implied by the extracted
models.

Following a review of the necessary background material in
Section II, coset SISO decoding of arbitrary codes is formu-
lated in Section III. In Section IV, this general formulation is
applied to first-order Reed-Muller codes in order to derive ef-
ficient optimal SISO decoding algorithms, referred to as recur-
sive coset representation (RCR) decoding. Section IV includes a
comparison of the RCR decoding algorithm to trellis decoding,
Forney’s “divide-by-2” algorithms [15] – which are themselves
derived from cycle-free graphical models – and an approach
based on fast Hadamard transforms similar to that proposed by
Ashikhmin and Litsyn [16]. Section V describes coset SISO
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decoding algorithms for a number of code families related to
first-order RM codes. In Section VI, the utility of coset SISO
decoding is supported by a practically motivated application:
the construction of serially concatenated codes (SCCs) that have
high rates and low error floors (e.g., bit error rate). Ex-
tended Hamming codes are proposed as outer codes in SCC de-
signs with efficient decoding employing the SISO algorithms
described in Section V. Concluding remarks and directions for
future work are given in Section VII. Finally, a number of ap-
pendices are provided that detail the algorithms against which
RCR decoding is compared in Section IV.

II. BACKGROUND

A. Notation

The field of reals is denoted and the nonnegative reals are
denoted . The finite field with elements is denoted while

denotes the integers modulo- . The set of consecutive inte-
gers from to (inclusive) is denoted .

Bold script letters denote vectors, e.g., and , and vector el-
ements are indexed starting from 1. Codes and sets are denoted
by upper-case script letters, e.g., and . A length code com-
prising codewords and having minimum distance is de-
scribed by the triplet . If a code is linear with dimen-
sion then it is also described by the triplet .

B. Coset Codes

Let be a length code over some -ary alphabet with a
defined addition operation. A coset of is defined as

(2)

where is some length vector. A coset code is simply
the union of the cosets of some code corresponding to some
set of coset representatives

(3)

If contains the all zeros vector , then is a subcode of the
coset code . We focus on codes for which any codeword
has a unique decomposition where and

, which is the case for coset codes, since always contains
exactly one representative from each coset it covers.

C. Graphical Models for Codes

In this paper, Forney’s normal graph convention is adopted;
the reader is refered to [7] and [15] for a full treatment. Briefly,
visible variables are represented by half-edges, hidden (gener-
alized state) variables by edges, and local constraints by ver-
tices. Throughout this paper, repetition and single parity-check
constraints are represented by vertices labeled with ’ ’ and
’ ’ symbols, respectively. Graphical models imply well-under-
stood SISO decoding algorithms which are optimal for cycle-
free models.

D. Semi-Ring Algorithms

In order to properly compare the proposed RCR decoding al-
gorithm to that introduced by Ashikhmin and Litsyn in [16], it is
necessary to review the semi-ring algorithm formalism. A com-
mutative semi-ring [8] is a set together with binary combining

and marginalizing operations satisfying:
S1. and are both commutative and associative on .
S2. such that and
for all .
S3. The distributive law holds so that for all ,

.
While not a strict requirement of semi-rings, the semi-rings con-
sidered in this paper all satisfy the additional property that:

S4. is a group operation so that there exists a unique
inverse for each with respect to .

Note that this property does not hold in general for marginal-
izing operators. For example, neither the nor opera-
tors have well-defined inverses—i.e., if either or

is known, remains undefined.
Semi-rings were first described in the context of SISO de-

coding by Wiberg [6], and later formalized by Aji and McEliece
[8] in order to unify a class of problems that marginalize a
product function (MPF). The exhaustive SISO decoding proce-
dure described above is one such MPF problem. It is now well-
understood that optimal symbol-wise decoding in the proba-
bility domain utilizes the sum-product semi-ring over , while
the use of the max-product semi-ring over yields optimality
with respect to codeword error probability. Similarly, in the
metric domain – where probabilities are replaced by their neg-
ative logarithms – -sum and min-sum processing replace
sum-product and max-product processing, respectively.2

A semi-ring algorithm is any algorithm that solves an MPF
problem using only the semi-ring properties of the marginal-
izing and combining operations [19]. Since it uses only the semi-
ring properties, a semi-ring algorithm developed for one partic-
ular semi-ring can be immediately converted to an equivalent
semi-ring algorithm for any other semi-ring. The forward-back-
ward algorithm (FBA) [1] is an example of a semi-ring algo-
rithm. The Viterbi algorithm [20], however, is not since survivor
path selection depends on the property of the min operator (
in the min-sum semi-ring) that , which is not
a semi-ring property.

III. GRAPHICAL MODELS FOR COSET CODES

A. Optimal SISO Decoding of Coset Codes

Let the soft inputs to a decoding algorithm for a length
binary coset code be , where

(4)

2Decoding with the ��� -sum semi-ring, which was introduced in [17], is
equivalent to “log-MAP” processing. Formally, ��� ��� �� � � ��	�� 

� �������� �����	��
� �. A similarly defined �� operator has
been described by a number of authors (cf., [18]). Note that �� -sum pro-
cessing operates on logarithms of probabilities (“log-likelihoods”) rather than
negative logarithms (“metrics”).
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Fig. 1. Generic graphical model for the coset � � ���.

is a vector that provides the metrics (or probabilities) that a 0 or
1 was received at the coordinate. An optimal SISO decoding
algorithm for computes the soft outputs [19]

(5)

for and , and where

(6)

is the combined input soft information for the codeword
. Applying a coset decomposition of to (5) yields a second

formulation of optimal SISO decoding

(7)
This formulation is readily extended to nonbinary codes. The
factorization in (7) implies a class of SISO algorithms for coset
codes that marginalize over the results of SISO decoding of each
coset; such algorithms are discussed in detail later.

B. A Generic Model

Let be a length coset code over a -ary alphabet defined as
per (3) and let be a graphical model for the subcode . Fig. 1
illustrates a generic graphical model for the coset where

. Note that are treated as deterministic
visible variables in Fig. 1. If is cycle-free, then the graphical
model illustrated in Fig. 1 implies an optimal SISO decoding
algorithm for —i.e., the decoding model implied by Fig. 1
then computes

(8)

for each codeword coordinate and value .
Fig. 2 extends the model of Fig. 1 so that is constrained not

to be a specific element of , but any element of . The graph-
ical model illustrated in Fig. 2 constitutes a model for the coset
code . Irrespective of the cyclic topology of , the model il-
lustrated in Fig. 2 contains cycles and thus implies a suboptimal
standard decoding algorithm.

An optimal SISO decoding algorithm for can be obtained
from the model illustrated in Fig. 2 via hidden variable con-
ditioning. Hidden variable conditioning in graphical models is
well-understood in the context of tail-biting codes (cf., [14]) and

Fig. 2. Generic graphical model for the coset code � �
���

�� � ����.

has also been used to slightly improve the performance of de-
coding algorithms for low-density parity-check (LDPC) and se-
rially concatenated convolutional codes [13]. For example, if a
tail-biting trellis contains a hidden (state) variable with al-
phabet size , then optimal SISO decoding can be performed
on this trellis by decoding on conditional trellises (one per
possible value of ) and then appropriately marginalizing over
the decoding rounds. This approach yields an optimal decoding
algorithm because the graphical model that results when is
constrained to a specific value is conditionally cycle-free. Re-
turning to Fig. 2, if is cycle-free then an algorithm which
computes (7) is obtained be obtained by conditioning on the
valid configurations of (to obtain (8) for each )
and then marginalizing over the results of the decoding rounds.

C. Decoding Details

There are two details of the decoding algorithm for de-
scribed above that must be addressed before examining com-
plexity. It is first shown that the complexity of optimal SISO
decoding of is identical to that of . The care that must
be exercised when applying metric normalization techniques to
coset SISO decoding is then discussed.

Fig. 3 illustrates the messages passed into ( ) and out
of ( ) one of the single parity-check (SPC) constraints of
Fig. 1. Suppose first that is a binary code and that decoding
is done in the metric domain (i.e., negative logarithms of proba-
bilities). If then , , and the
message updates that occur for and at the SPC illustrated
in Fig. 3 are

(9)

If, however, then , ,
and the message updates that occur for and at the SPC
illustrated in Fig. 3 are

(10)

More generally, for arbitrary , the message updates at the SPCs
in Fig. 3 entail simply permuting the values of the incoming
messages. Thus, the SPCs of Fig. 1 do not impact decoding com-
plexity; optimal SISO decoding of is therefore identical in
complexity to that of .
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Fig. 3. Coset code single parity-check constraint update.

Metric normalization techniques are widely employed in
practical implementations of the decoding algorithms implied
by graphical models. For example, it is common practice in
LDPC decoding algorithms to replace the vector message

corresponding to a binary vari-
able by the scalar log-likelihood ratio (LLR)

(11)

Decoding with LLRs is equivalent to normalizing all metrics so
that the all-zero codeword has zero metric. Metric normaliza-
tion is also used to maintain numerical stability in the Viterbi
and forward-backward algorithms (cf., [21]). For example, the
forward and backward metrics of a -ary trellis state variable
may be rescaled such that in the FBA,
resulting in soft outputs of the form

(12)

where is a rescaling vector. Property S1 of semi-rings (see
Section II-D) implies that optimal decoding decisions can be
obtained from such rescaled soft output metrics.

Care must be exercised in applying metric normalization
techniques to coset SISO decoding. For example, suppose that
the graphical model for in Fig. 2 corresponds to a trellis
and that metric rescaling is applied on a per coset basis. The
soft outputs for the coset are then of the form

(13)

where is a coset-specific rescaling vector. It can be shown
that cannot be directly obtained from such informa-
tion – i.e., unless for all are also known.

More generally, any hidden variable metrics that are formed
in the optimal SISO decoder for the coset cannot be nor-
malized independently across cosets. In this paper, the com-
plexity of coset SISO decoding, as well as the methods to which
it is compared, is therefore formulated without regard to pos-
sible savings resulting from metric normalization. In particular,
vector messages for binary variables – rather than LLRs – are
assumed throughout.

D. Decoding Complexity

In light of the discussion of Section III-C, the complexity
of the optimal SISO decoding algorithm implied by hidden
variable conditioning in the graphical model of Fig. 2 is readily
determined as follows. Let the number of combining and
marginalizing operations required for optimal SISO decoding

of be and , respectively. The number of combining and
marginalizing operations required for optimal SISO decoding
of the length coset code over a -ary alphabet is then

(14)

(15)

where is the number of cosets of contained in . Note that
the second term of (15) captures the complexity of marginal-
izing over the results of each decoding round: for each of the

codeword indices , and for each of the possible values for
, the outputs of decoding rounds must be marginalized (at

a cost of marginalization operations).

IV. GRAPHICAL MODELS FOR FIRST-ORDER RM CODES

A. Model Derivation

Let denote the -order binary Reed-Muller
(RM) code with parameters:

(16)

Reed-Muller codes can be defined recursively as [22]

(17)

where is a length repetition code and
is a length 2 SPC. As noted by Forney, this recursive construc-
tion can be reformulated under the coset code rubric [4]. Specif-
ically, define the code

(18)

which comprises the concatenation of identical codewords of
. The recursive construction of (17) then becomes

(19)
First-order RM codes have a particularly simple representa-

tion as coset codes. Since is a length binary rep-
etition code, (19) becomes

(20)

A graphical model for can thus be constructed
as per Section III, provided a graphical model for
is known. Since codewords in are formed by
concatenating identical codewords in , a model for

can be used to construct one for . Fig. 4
illustrates the resulting graphical model for .
Note that the constraint of Fig. 2 has been replaced by a
simple binary equality constraint.

As described in Section III, the graphical model illustrated
in Fig. 4 implies an optimal SISO decoding algorithm for

if the model for is cycle-free (or,
more generally, implies an optimal decoding algorithm). Since
first-order RM codes are defined recursively, the construction of



68 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 1, JANUARY 2012

Fig. 4. Graphical model for������� �� based on a coset code represen-
tation.

Fig. 4 can be repeated recursively. Provided that optimal SISO
decoding is performed at the base of this recursion, an optimal
SISO decoding algorithm for results. As a base
for this recursion, consider applying the decomposition of (20)
to . Since is simply a length 4 SPC, trellis
decoding of this base code is sufficient.

B. Complexity

Let and , respectively, denote the number of
combining and marginalizing operations required by the op-
timal SISO decoding algorithm for presented
above. Applying the ideas of Section III to the model illustrated
in Fig. 4 yields

(21)

(22)

Note the discrepancy between the form of (14) and (21)—i.e.,
the term. The soft input values on the coordinate of

are formed as

(23)

while the soft output values on and are

(24)

where, for example, is the soft-output generated
by the decoder for for the coset. The 12
combination operations defined by (23) and (24) are repeated
for each of the inputs to . Finally, as a base for
this recursion, the operations required for SISO trellis decoding
of are (see Appendix):

(25)

TABLE I
COMPLEXITY OF RECURSIVE COSET SISO DECODING VS. TRELLIS AND

TREE-BASED METHODS

It is apparent from (21) and (22) that the complexity of the
optimal SISO decoding algorithms for first-order RM codes
implied by this RCR grows as . Table I compares
the complexity of RCR decoding to two other optimal SISO
techniques: trellis decoding and the tree-based “divide-by-2”
(DB2) algorithms described by Forney in [4], [7]. While all
three algorithms exploit the recursive structure of first-order
RM codes, and therefore exhibit growth in decoding
complexity, the constant coefficients in the rate of growth are
smallest for RCR decoding. As detailed in the Appendix,
operations are counted in the trellis-based and DB2 decoders
assuming the application of generic algorithms. For a specific
code, complexity savings could likely be obtained for trellis and
DB2 decoding by careful application of, for example, the tricks
described in [23]. However, as increases, it becomes increas-
ingly difficult to apply such techniques to decoding algorithms
for by hand. In this light, RCR decoding can be
interpreted as an efficient means of systematically obtaining
the complexity savings that can be had via careful optimization
of existing trellis- and tree-based decoding algorithms.

C. Comparison to Ashikhmin and Litsyn’s SISO

An optimal decoding algorithm for first-order RM codes
using fast Hadamard transforms (FHT) was developed in [16].
As noted by a number of authors (cf., [24]), the combination
step of exhaustive SISO decoding of first-order RM codes
(in the metric or log-likelihood domain) can be performed
efficiently via an FHT. Ashikhmin and Litsyn further noted that
by converting the resulting codeword metrics to the probability
domain, an FHT can also be used for marginalizing in the
case of symbol-wise decoding—i.e., combination is performed
via the sum operation in the metric or log-likelihood domain
( -sum or max- -sum) while marginalization is performed
via addition in the probability domain (sum-product).

A standard FHT, however, cannot be used for marginalizing in
arbitrary semi-rings. The Appendix defines a Generalized FHT
(GFHT) that can be used in place of the FHT in Ashikhmin
and Litsyn’s algorithm as follows. Adopting the notation of the
Appendix, the inputs to the combination step of the algorithm
described in [16] are

(26)

and the outputs are

(27)
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Fig. 5. Data flow of GFHT decoding algorithm for ����� ��. Per the discussion in the Appendix, solid lines indicate vector-valued variables so that each
illustrated combining (respectively, marginalizing) operation corresponds to 2 binary operations. There are thus a total of 64 binary combining and 48 binary
marginalizing operations illustrated in this figure.

where is metric for the codeword. The combining FHT
of [16] can therefore readily be replaced by a GFHT that takes
vector inputs and produces vector outputs

(28)

The marginalizing step of Ashikhmin and Litsyn’s algorithm
replaces differences of bit metrics with differences of code-
word probabilities as inputs to the GFHT. Since the GFHT is a
semi-ring algorithm, the conversion from metric to probability
domain is not necessary; the combining step outputs (28) are di-
rect inputs to the marginalizing GFHT.

The advantage of the FHT approach given in [16] is that half
as much processing is required in the computation of the stan-
dard FHT as in the GFHT, at the expense of some pre- and post-
processing (operation count ) of the probabilities. Since
the operation counts of both the FHT and the GFHT grow as

, the use of the FHT provides a slight reduction in
the total operation count. The advantage of the GFHT approach
given here is that it extends the FHT algorithm to all semi-rings
and removes the need to switch domains in the middle of the pro-
cessing. Additionally, since the GFHT allows for all computa-
tion to be done in the metric domain, numerical instability issues
inherent to probability domain computations can be avoided. Fi-
nally, since the GFHT is a semi-ring algorithm, the operator
can be used for marginalizing – i.e., optimal decoding with re-
spect to codeword error probability is possible with the GFHT.

One final matter must be considered before the resulting
GFHT method can be compared with the RCR model described

in Section IV-A. In contrast to standard decoding algorithms
implied by graphical models such as the RCR model, the GFHT
(and FHT) algorithm inherently outputs intrinsic metrics, rather
than extrinsic metrics. When used as a SISO decoding compo-
nent of a larger modern code, extrinsic metrics are desired at
the output of the GFHT SISO. Such metrics can be obtained
using postprocessing as follows:

(29)

Fig. 5 illustrates the data flow of the resulting GFHT algo-
rithm, including the postprocessing described earlier. The
and symbols denote the combining and marginalizing oper-
ators, respectively. As in the Appendix, a symbol on an input
line denotes that the value on that line is replaced by its inverse
and a symbol indicates the swapping of values described in
(52) (i.e., the vector becomes ).

From Fig. 5, the complexity of the GFHT algorithm can be
readily determined. Let and , respectively, denote
the number of combining and marginalizing operations required
by the optimal GFHT SISO decoding algorithm for

. Since the algorithm is based entirely on two consecutive
generalized FHTs, the following recursion holds (as seen for

in Fig. 5):

(30)

(31)
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Fig. 6. Data flow of RCR decoding algorithm for����� ��. Each����� �� trellis entails 24 binary combining and 12 binary marginalizing operations. A total
of 96 binary combining and 40 binary marginalizing operations are thus illustrated in this figure.

TABLE II
COMPLEXITY OF RECURSIVE COSET VS. GFHT-BASED DECODING

The operations required for the GFHT decoding algorithm for
provide a base for this recursion

(32)

Equations (30)–(32) are similar to the recursion (21), (22),
and (25) for the RCR decoding algorithm. Table II gives spe-
cific operation counts for both the GFHT and RCR algorithms
for various first-order RM codes. The operation count for the
GFHT algorithm includes the postprocessing required to pro-
duce extrinsic metrics at the output. RCR decoding requires
fewer marginalizing operations than the GFHT algorithm at the
expense of more combining operations.

A data flow representation of the RCR algorithm described
in Section IV-A similar to that given for the GFHT algorithm in
Fig. 5 is illustrated in Fig. 6. A comparison of Figs. 5 and 6 il-
lustrates the distinction between the GFHT and RCR algorithms
and demonstrates how the RCR algorithm trades marginalizing
operations for combining operations. Trellis decoding of the
base is more efficient than the GFHT approach (12
vs. 16 marginalizing operations). A less complex algorithm than

either RCR or GFHT decoding could thus be constructed by re-
placing the base 4-input GHFT stages in Fig. 5 by
trellises.

V. CODES RELATED TO FIRST-ORDER RM CODES

A. -Sum Decoding of Extended Hamming Codes

Hartmann and Rudolph first described optimal symbol-wise
SISO decoding algorithms for linear codes based on trellis rep-
resentations of their duals in [25]. Forney later generalized this
result to more general cycle-free realizations of group codes [7].
To review, in the context of sum-product decoding of the binary
code with dual , suppose that a vector is received and that
the likelihood ratios

(33)

are computed for each . A standard optimal SISO
decoding algorithm for takes as input these likelihood ratios
and returns as output

(34)

for each . Define the reflection coefficients as

(35)

for each . Forney proved that if are used as
input to an optimal bit-wise SISO decoding algorithm for ,
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then are returned. Thus, any optimal bit-wise SISO
decoding algorithm for can be used to decode . Forney’s
proof depends on the orthogonality property of group characters
(cf., [26])

if
otherwise

(36)

which is not a semi-ring property. While a result analogous to
(36) can be proved for the -sum semi-ring [27], such a
result does not hold for the max-product or min-sum semi-rings.
Thus, whereas optimal symbol-wise SISO decoding algorithms
can be defined using dual codes, optimal algorithms with respect
to codeword error probability cannot.

The duals of the first-order Reed-Muller codes are extended
Hamming codes. In light of the above discussion, efficient
optimal bit-wise SISO decoding algorithms for the extended
Hamming codes can be obtained by using Hartmann and
Rudolph’s dual code procedure in conjunction with the SISO
decoding algorithms presented in Section IV. Using other
methods, Ashikhmin and Litsyn developed efficient SISO
decoding algorithms for extended Hamming codes based on
fast Walsh-Hadamard transforms in [16].

B. Generalized First-Order RM Codes

Generalized RM (GRM) codes are extensions of binary RM
codes to -ary alphabets. Different authors have considered con-
structions over both (cf., [28]) and (cf., [29]). Irrespective
of the algebra of the symbol alphabet, the -ary first-order GRM
code has length and can be defined recursively
as

(37)

where is a -ary repetition code and
is a length 2 -ary SPC. As with binary first-order

RM codes, the recursive definition of can be refor-
mulated under the coset code rubric. Specifically,
comprises cosets of the code defined by concatenating iden-
tical codewords of .

A number of authors have developed optimal soft-in hard-out
(i.e., maximum-likelihood) decoding algorithms for first-order
GRM codes (cf., [24], [30]). Ashikhmin and Litsyn used the
language of group algebras in order to formulate an FHT-based
approach to optimal SISO decoding of first-order GRM codes
over [16]. The recursive coset SISO decoding algorithm for
binary first-order RM codes is readily extended to first-order
GRM codes over both and . The GFHT-based SISO of
Section IV-C is similarly readily extended. The complexity of
Ashikhmin and Litsyn’s SISO as well as the -ary generaliza-
tions of the SISO decoding algorithms described in Section IV
grow as . While minimal trellises for first-order
GRM codes are unknown, it was conjectured in [16] that the
complexity of trellis decoding of these codes grows as .

TABLE III
COMPLEXITY OF TRELLIS VERSUS . COSET SISO DECODING FOR ��

C. Nordstrom-Robinson Code (NR)

The NR code is a (16, 256, 6) binary nonlinear code. The
NR code is of particular theoretical interest as it has more code-
words than any comparable known linear code. It is well known
that can be defined as the union of 8 cosets of .
Specifically, under the standard bit-ordering of [31],

(38)

where

(39)

The technique presented in Section III can thus be used in con-
junction with the efficient optimal SISO decoding algorithms
for presented in Section IV in order to define op-
timal SISO decoding algorithms for .

Table III tabulates the complexity of the optimal SISO de-
coding algorithms for implied by: (i) a trellis; (ii) the coset
technique of Section III using the RCR SISO decoding algo-
rithm from Section IV-A for the processing; and (iii)
the coset technique of Section III using the GFHT-based SISO
decoding algorithm from Section IV-C for the pro-
cessing. Note that the GFHT approach alone does not lead to an
optimal decoding technique for ; it must be combined with
the coset construction technique of Section III. Trellis decoding
complexity was determined by explicitly counting operations in
the least complex known trellis due to Reuven and Be’ery [32].
The complexities of the three algorithms are roughly compa-
rable. Note that while a significant effort was required in order to
derive the trellis in [32], the coset SISO decoding algorithms are
readily defined. Note also that in contrast to trellis decoding, the
coset SISO decoding algorithms naturally afford a parallelism
that may be desirable for implementation in hardware [19].

D. Delsarte-Goethals Codes (DG)

The DG codes are a family of binary nonlinear codes con-
sisting of cosets of first-order Reed-Muller codes. Specifically,
for even and for , the Delsarte-Goethals
code is a

(40)
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nonlinear subcode of comprising

(41)

cosets of [22]. The DS codes are Kerdock
codes and, in particular, is the Nordstrom-Robinson
code studied in Section V-C.

Minimal trellises are, in general, unknown for the Delsarte-
Goethals codes. It is, however, known that for and ,
the minimum possible value of the maximum number of states
in any trellis for is [33]

(42)

By comparing (41) and (42) and noting that for
, it may be seen that the complexity of trellis de-

coding of grows as

(43)

Note that for the Kerdock codes, and the
complexity of trellis decoding grows as .

The technique presented in Section III can be used in con-
junction with the efficient optimal SISO decoding algorithms for

presented in Section IV in order to define optimal
SISO decoding algorithms for . Since the complexity
of the proposed decoding algorithms for grow as

, the complexity of the resulting SISO decoding al-
gorithms for grow as

(44)

Note that for Kerdock codes, the complexity of the proposed
coset SISO decoding algorithms grow as .

VI. APPLICATION: HIGH-RATE SERIALLY CONCATENATED

CODES

A. Motivation

Very high-rate codes are of great interest for a number of prac-
tical applications including data storage and high-speed fiber
links. The design of modern codes which simultaneously have
very low error floors (e.g., bit error rate) and very
high rates (e.g., ) is a particularly challenging problem
of practical interest. Due to the inherent difficulty of simulating
the performance of codes in the very low floor region, the de-
sign of such codes often relies on the principles of uniform in-
terleaver analysis (cf., [34]–[37]). To review, on the additive
white Gaussian noise (AWGN) channel with binary antipodal
signaling, the bit error rate ( ) and codeword error rate ( )
of a large class of modern codes vary asymptotically with block
size as

(45)

where is the interleaver size and is the maximum expo-
nent of in an asymptotic union bound approximation. Note
that the maximum exponent depends on both the specific code
construction and constituent codes used. If the bit (codeword)
error rate decays with , then the code is said to exhibit inter-
leaver gain in bit (codeword) error rate. Designs for codes with

low floors require interleaver gain in both bit and codeword error
rates and thus require .

Serially concatenated code constructions (i.e., codes com-
posed of an inner code and outer code separated by a random-
like interleaver) are well-suited to low-floor design because,
provided the inner code is recursive, the maximum exponent of
(45) is [34]

(46)

where is the minimum distance of the outer code. Since the
rate of a serially concatenated code (SCC) is equal to the product
of the rates of its constituent codes, the design of a high-rate,
low-floor SCC requires a high-rate outer code satisfying .
However, it is very challenging to find such outer codes for
which there exist low-complexity optimal SISO decoding algo-
rithms. To this end, Graell i Amat, et al. introduced a class of
high-rate convolutional codes with optimal SISO decoding al-
gorithms of moderate complexity based on their respective dual
codes [38], [39].

An alternative approach to the design of high-rate, low-floor
codes are the systematic with serially concatenated parity
(S-SCP) codes proposed in [40], of which Jin, et al.’s sys-
tematic repeat accumulate (RA) codes [41] are an example.
The S-SCP code structure can be viewed as a systematic code
with a parity generating concatenated system that resembles
an SCC. It was demonstrated in [40] that S-SCP codes have
the same maximum error exponent and design rules as SCCs:
codes constructed with a parity generating system composed of
a recursive inner parity generator and an outer code satisfying

achieve interleaver gain in both bit and codeword error
rates. In contrast to SCCs, good S-SCPs can be constructed
with inner parity generators that have rate greater than 1 so
that the rate of outer code can be lower than the overall code
rate thus alleviating the challenge of finding high-rate, ,
outer codes with low-complexity SISO decoding algorithms.

The design of good high-rate, low-floor codes has thus been
largely solved for the AWGN channel. However, the S-SCP
design philosophy is not directly applicable to the large class
of systems which have recursive channels. The term recursive
channel is introduced to describe systems in which the aggregate
of the modulation and (possible) precoding with the channel is
recursive. Two examples of such systems are:

1) Continuous phase modulations over AWGN and fading
channels.

2) Certain models for precoded magnetic recoding channels
(e.g., EPR4 [42]).

In light of the above discussion, Fig. 7 illustrates two potential
structures for high-rate, low-floor codes for use in systems with
recursive channels. The first structure [Fig. 7(a)] consists of a
high-rate modern code (e.g., an SCC or S-SCP) in serial con-
catenation with the recursive channel while the second struc-
ture [Fig. 7(b)] replaces the modern outer code with a classical
code (e.g., convolutional or algebraic block code). While both
structures have the potential to offer the desired bit and code-
word error rate performance (i.e., low floors), the second struc-
ture may be more attractive for application in practical systems.
Specifically, the use of a classical outer code for which there
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Fig. 7. Potential structures for high-rate, low-floor codes for use in systems
with recursive channels. Random-like interleavers are labeled �.

exists a simple noniterative SISO decoding algorithm offers re-
ductions in decoding complexity, decoding latency and required
memory with respect to a modern, iteratively decoded, outer
code. As with the design of SCCs for the AWGN channel, the
design of such codes requires a high-rate, outer classical
code for which there exists a low-complexity optimal SISO de-
coding algorithm. The results of Section V-A indicate that the
family of extended Hamming codes provide a set of such codes.
In the remainder of this section, it is shown that extended Ham-
ming codes offer an attractive alternative to the high-rate con-
volutional codes studied in [38], [39] for use as outer codes in
serial concatenation with recursive inner channels.

B. Simulation Results and Discussion

In [39], Graell i Amat, et al. studied a serially concatenated
coding scheme consisting of a high-rate convolutional outer
code and a recursive rate-1 inner code corresponding to a
simplified discrete-time model of a precoded EPR4 magnetic
recording channel. Specifically, the recursive channel model
comprises a precoder followed by a digital recording
channel subject to intersymbol interference (ISI) with partial
response polynomial followed finally by an
AWGN channel. Note that the precoder and ISI can be jointly
decoded on an 8-state trellis [19].

In this section, the performance of this scheme is compared
to one which replaces the high-rate convolutional codes with
extended Hamming codes. Specifically, 4 convolutional outer
codes with input block size 4000 bits and respective rates 8/9,
9/10, 11/12, and 16/17 are compared to four algebraic outer
codes composed of the following mixtures of extended Ham-
ming codes:

• The mixture of 3 and 69 codewords
resulting in a code with input block size 4011 bits and rate

.
• The mixture of 56 and 7 codewords

resulting in a code with input block size 4032 bits and rate
.

• The mixture of 30 and 19 codewords
resulting in a code with input block size 3990 bits and rate

.
• The mixture of 2 , 26 , and 3

codewords resulting in a code with input block
size 3975 bits and rate .

As reported in [39], the serially concatenated codes using con-
volutional codes utilize s-random interleavers [43]. The codes
using extended Hamming outer codes utilize high sum-spread
pseudorandom interleavers that were generated using the real-
relaxation optimization method described in [44].

Fig. 8 compares the performance of the respective rate 8/9
and 11/12 codes while Fig. 9 compares the performance of the

Fig. 8. Bit error rate performance of the respective rate 8/9 and 11/12 serially
concatenated codes.

Fig. 9. Bit error rate performance of the respective rate 9/10 and 16/17 serially
concatenated codes.

respective rate 10/11 and 16/17 codes. Note that the perfor-
mance of the serially concatenated codes with convolutional
outer codes is reported for 10 decoding iterations while the per-
formance of the codes with mixed extended Hamming outer
codes is reported for 10 and 20 decoding iterations. All curves
correspond to -sum processing (or its dual-domain equiv-
alent [27]).

Observe in Figs. 8 and 9 that the codes constructed with
mixed extended Hamming outer codes compare favorably in
terms of performance to those with convolutional outer codes
of similar rates and input block sizes. The mixed extended
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TABLE IV
AVERAGE NUMBER OF OPERATIONS PER DECODING ITERATION, FOR OPTIMAL

SISO DECODING OF THE MIXED EXTENDED HAMMING CODES

Hamming codes compare favorably to their high-rate convolu-
tional code counterparts in terms of complexity also. Table IV
tabulates the average number of addition and operations
per input bit, per decoding iteration, required for optimal SISO
decoding (using both the GFHT-based and recursive coset
SISO decoding algorithms described in Section IV) for each
of the mixed extended Hamming codes. The rate
convolutional outer-codes in [39] were decoded on the 16- (for

) and 32- (for ) state trellises corresponding
to their respective rate duals. Optimal SISO decoding
on a rate , 16- (32-) state trellis requires at least 96
(192) additions and 64 (128) comparisons per input bit, per
decoding iteration. Thus, if one assumes that an addition and
comparison operation have roughly the same complexity,3 then
the complexity of the proposed mixed extended Hamming code
SISO decoding algorithms are approximately 5 to 10 times
less than that of the respective high-rate convolutional code
decoding algorithms proposed in [39].

VII. CONCLUSION AND FUTURE WORK

Motivated by the search for optimal SISO decoding algo-
rithms with complexity less than that of trellis-based algorithms,
this paper studied the construction of conditionally cycle-free
graphical models for coset codes. It was shown that the pro-
posed approach yields efficient SISO decoding algorithms for
first-order RM as well as a number of related codes, e.g., ex-
tended Hamming codes. In light of (14) and (15), condition-
ally cycle-free graphical models defined using the procedure de-
scribed herein have the potential to be more efficient than trel-
lises when a code can be defined as the union of cosets of
a subcode so that: (i) is not too large; and (ii) an efficient
SISO decoding algorithm for is known. An interesting direc-
tion for future work is thus the search for other codes with these
properties.

It was shown that the proposed efficient SISO decoding algo-
rithms for extended Hamming codes are particularly useful in
the context of high-rate serially concatenated codes. There are a
number of interesting avenues of study concerning the applica-
tion of the optimal SISO decoder for extended Hamming codes.
Specifically, the recursive coset SISO decoding algorithm pre-
sented in this paper has a natural tree structure which may lead
to high-speed architectures [45].

APPENDIX

1) Trellis Decoding of First-Order RM Codes: Forney
demonstrated that the recursive coset representation of RM

3This assumption is reasonable provided a table-lookup is used for the cor-
rection term in the ��� operator.

codes can be used to define efficient trellises in [4]. Fig. 10 il-
lustrates how a trellis for can be formed by properly
combining two copies of a trellis for (i.e., a length-4
SPC). The upper portion of the trellis corresponds to

and the lower to .
Observe that an unconventional bit ordering is employed in the
trellis for .

Optimal SISO decoding of and is
achieved by applying the forward-backward algorithm (FBA)
to the trellises illustrated in Fig. 10. For , a total of
16 combining and 8 marginalizing operations are required to
compute the pertinent forward and backward trellis state met-
rics. Soft outputs are then computed via a completion step (cf.,
[19]) that entails 8 combining and 4 marginalizing operations,
hence (25). Similarly counting operations for yields
a total of 120 combining and 48 marginalizing operations. The
values in Table I were obtained by counting operations in the
trellises that result when the construction procedure illustrated
in Fig. 10 is applied repeatedly (i.e., for increasing ).

For in particular, the RCR decoding algorithm re-
quires 24 less combining and 8 less marginalizing operations
than trellis decoding. This complexity saving can be attributed
to the latter decoding algorithm exploiting the recursive struc-
ture of in the construction of the trellis diagram, but
not in the application of the FBA to that trellis. Referring again
to the data flow diagram illustrated in Fig. 6, let the metrics that
serve as inputs to the trellises be denoted

(47)

for . These metrics are computed twice when the
FBA is applied to the trellis illustrated in Fig. 10 (once for the
forward recursion and a once for the backward), accounting
for 16 of the excess combining operations. The remaining 8
combining and marginalizing operations that are saved by the
RCR algorithm can be accounted for in the completion step.
The trellis-based decoder directly computes for bit-level
state metrics while the RCR decoder exploits the code structure
to first compute (for and ),
from which soft outputs are then derived via (24).

2) Forney’s “Divide-by-Two” Decoding Algorithm: In
[7], Forney described cycle-free realizations for first-order
RM codes formed by clustering, or “sectionalizing,” normal
realizations of Hadamard transforms. Fig. 11 illustrates the
minimal sectionalized realization for . Observe that
as with the trellis realizations described above and the RCR
decoding algorithm, bits are grouped according to the coset
representation. Forney noted that these realizations specify
the “divide-by-2” (DB2) maximum likelihood (i.e., soft-in,
hard-out) decoding algorithms proposed in [4]. In this ap-
pendix, the optimal SISO decoding algorithms implied by these
realizations are instead considered.

The FBA used for trellis decoding can be generalized to an
“inward-outward” algorithm that passes messages first into the
central 4-ary variable and then back out to the visible variables
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Fig. 10. Constructing a trellis for ����� �� by properly combining copies of a ����� �� trellis. Trellis stages are labeled by codeword coordinates. A solid
(respectively, dashed) branch at the � corresponds to � � � (respectively, 1).

Fig. 11. Forney’s “divide-by-two” (DB2) cycle-free graphical model for
����� ��. Edges are labeled by the cardinality of the corresponding hidden
variable alphabets. Local constraints are labeled by the length and dimension
of the corresponding code (over ).

that correspond to codeword bits in Fig. 11. Each (4, 2) con-
straint requires 4 combining operations for the inward compu-
tation, and 8 combining and 4 marginalizing operations for the
outward computation. Similarly, each (6, 3) constraint requires
8 (respectively, 16) combining and 4 (respectively, 8) marginal-
izing operations for the inward (respectively, outward) compu-
tation. The total complexity of the decoding algorithm implied
by the cycle-free graphical model for illustrated in
Fig. 11 is thus 96 combining and 40 marginalizing operations.

The values in Table I were obtained by counting operations
in the DB2 decoding algorithms assuming that the local con-
straints are decoded via exhaustive combination and marginal-
ization. For the code, this yields identical decoding
complexity to RCR decoding. However, for , the RCR
decoding is less complex than the application of the general
“inward-outward” algorithm to the DB2 cycle-free graphical
models. Further complexity reductions could be obtained for the

DB2 algorithms by exploiting the algebraic structure of the local
constraints. In [15], Forney provided such detailed complexity
tabulation for soft-in, hard-out decoding.

3) A Marginalizing Generalization of FHTs: The FHT
used by Ashikhmin and Litsyn in [16] can be generalized such
that it can perform both marginalization and combination. This
generalization will be derived in two steps. The first and more
straightforward generalization is illustrated in Fig. 12. In this
figure, an 8-input FHT is generalized by replacing the standard
operation of addition with any general operation for which
inverses are defined. Note that a on an input line denotes that
the value on that line is replaced by its inverse. Dashed lines are
used to indicate scalar-valued variables. For the standard case
when is addition, the inverse of a value is simply its negative.
This same procedure can be used to similarly generalize an FHT
with any number of inputs.

Now consider an -input FHT where the inputs are defined
in the following manner:

(48)

If the operation is both associative and commutative, the out-
puts of the FHT can be shown to have the following form:

(49)

where and each ( ) appears exactly once within
the expression. This forces the following statement to hold: if

is in the first parenthesized term, then is required to be in
the second parenthesized term and vice versa. Now, given

(50)
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Fig. 12. Data flow of an 8-input generalized FHT.

Fig. 13. Data flow of an 8-input GFHT.

the two parenthesized terms of (49) can be extracted from to
give the following two outputs:

(51)

A problem with this generalization arises when inverses are
not defined for the operation (as in the case of many marginal-
izing operators, e.g., min and max). However, since the de-
sired outputs and do not contain the inverse of
any input, they can still be calculated by making a few subtle
changes to the FHT shown in Fig. 12. First, the scalar input

is replaced by a vector . It can
be verified that by replacing the inverses in Fig. 12 with an
operation , which “swaps” the values and , the desired
outputs and are obtained. The swap can be de-
fined as

(52)

As before, this entire generalization procedure can be applied to
similarly generalize an FHT with any number of inputs.

This resulting form of the FHT is referred to throughout this
paper as the generalized FHT (GFHT). The data flow of an

8-input GFHT is shown in Fig. 13 where solid lines are used to
indicate vector-valued variables. Note that the symbols have
been replaced by symbols, which indicate the swapping of
values that is described in (52). Also note that the GFHT pre-
sented here works only when the original inputs are of the form
(48) and the desired outputs are of the form (51), which is the
case for the FHTs used to decode the first-order RM codes in
[16].
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