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Abstract—This letter presents an iterative soft-in soft-out
(SISO) decoding algorithm based on redundant Tanner graphs
that is applicable to arbitrary linear block codes. The proposed
algorithm utilizes the permutation group of a code in order to
efficiently and randomly generate redundant parity-checks.

Index Terms—Iterative decoding, linear block codes, permu-
tation groups, redundant Tanner graphs.

I. INTRODUCTION

WHEREAS modern codes are designed with cyclic
graphical models in mind, classical linear block codes

by and large were not. Graphical models of such codes which
imply decoding algorithms with desired performance and
complexity characteristics must thus be sought. The Tanner
graphs [1] that are used to decode low-density parity-check
(LDPC) codes are a natural starting point in the search
for good graphical models of classical linear block codes.
Although Tanner graphs imply very low-complexity decoding
algorithms, most classical linear block codes are defined by
high-density, rather than low-density, parity-check matrices
and the performance of the decoding algorithms implied by
these models is poor. Specifically, a recent result demonstrates
that the Tanner graphs corresponding to many classical linear
block codes necessarily contain cycles of length four [2] and
it has been observed empirically (cf., [3], [4]) that four-cycles
can be detrimental to Tanner graph decoding performance.

A number of authors have considered SISO decoding algo-
rithms for linear block codes that utilize redundant Tanner
graphs. Jiang and Narayanan developed a SISO decoding
algorithm for cyclic linear block codes that effectively decodes
on the graph implied by a different parity-check matrix at
each decoding iteration by randomly cyclicly shifting soft
information [5]. Kothiyal et al. developed a SISO decoding
algorithm for arbitrary linear block codes that decodes on
the graph implied by a different parity-check matrix at every
iteration which is chosen adaptively in order to minimize
the propagation of unreliable soft information [6]. Related
algorithms were presented in [7], [8]. Furthermore, a number
of authors have considered redundant graphical models in
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other contexts such as the iterative decoding of one-step
majority logic decodable codes [9], LDPC decoding [10], [11],
[12], pseudo-noise sequence acquisition [13], and iterative
decoding on the binary erasure channel [14].

This work present a novel redundant Tanner graph SISO
decoding algorithm - random redundant iterative decoding
(RRD) - that is both practically realizable and applicable
to arbitrary linear block codes. The remainder of this work
is organized as follows. Section II defines redundant Tanner
graphs and describes the iterative decoding algorithms implied
by such models. Section III presents the proposed RRD
algorithm. The performance of the proposed algorithm is
examined empirically in Section IV. Concluding remarks are
given in Section V.

II. REDUNDANT TANNER GRAPHS

Let C be an [n, k, d] linear block code with r ≥ n − k ×
n parity-check matrix H = [hij ]. The codes considered in
this work are binary; however, the proposed algorithm can be
applied to codes over arbitrary fields. Associated with H is the
bipartite Tanner graph TG(H) = (U ∪W , E). Vertices in U =
{ui}r−1

i=0 represent the single parity-check constraints (SPCs)
corresponding to the rows of H . Vertices in W = {wj}n−1

j=0
represent the repetition constraints (RCs) corresponding to the
columns of H . An edge in E connects ui to wj if and only
if hij = 1. If r is strictly greater then n − k then H is a
redundant parity-check matrix and the corresponding Tanner
graph is denoted redundant. This work focuses specifically
on redundant parity-check matrices where r is a multiple of
n−k, r = m(n−k); the Tanner graph corresponding to such
a matrix is denoted a degree-m redundant Tanner graph.

As an example, consider the [8, 4, 4] extended Hamming
code C8 which can be represented equivalently by the two
parity-check matrices:

H1 =

⎡
⎢⎣

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0

⎤
⎥⎦ , H2 =

⎡
⎢⎣

0 1 0 1 0 1 0 1
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0

⎤
⎥⎦ .

(1)
A redundant parity-check matrix for C8 can be formed by
concatenating the rows of H1 and H2 to form HR. The
corresponding degree-2 redundant Tanner graph TG(HR) is
illustrated in Figure 1 where Forney’s normal graph convention
has been adopted [15]. Degree-m redundant Tanner graphs
imply the following standard iterative decoding algorithm
(note that the message passing schedule described below
is reasonable but not unique). For each set of checks Hi,
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Fig. 1. Degree-2 redundant Tanner graph for the [8, 4, 4] extended Hamming
code corresponding to the concatenation of the rows of H1 and H2. Single
parity-scheck constraints are illustrated by square vertices labeled with ‘+’
symbols and the repetition constraints corresponding to codeword bits are
represented by square vertices labeled with ‘=’ symbols.

i = 1, . . . , m, denote by M�i the vector of messages passed
from checks to variables and denote by M�i the vector of
messages passed from variables to checks. Note that for all
i = 1, . . . , m, M�i is initialized to zero1. For i = 1, . . . , m,
the M�i messages are first updated at the RCs using the
channel observations and the M�j messages (for j �= i).
The M�i messages are then updated at the SPCs using M�i.
This updating procedure repeats for a prescribed number of
iterations, I . Note that this schedule can be modified so that
a number of decoding iterations are performed on each set of
checks before proceeding to the next.

A. Practical Implementation via Massive Redundancy and
Permutation Groups

From the viewpoint of practical low-complexity implemen-
tation, the decoding algorithm described above suffers from
two drawbacks:

1) For the standard message passing rules, the intermediate
messages vectors M�i must be stored for i = 1, . . . , m
resulting in an m-fold increase of the memory required
with respect to standard Tanner graph decoding.

2) Since each parity-check matrix Hi defines a different set
of checks, there is either an m-fold increase in the num-
ber of SPC trellises which must be implemented or the
SPC trellises must be implemented in a reconfigurable
fashion.

The first drawback may be addressed by using a massively
redundant Tanner graph. If a large degree of redundancy
is used then I (the number of decoding iterations on the
aggregate model) can be set to one and the intermediate
message vectors M�i need not be stored. Before addressing
the second drawback, we review permutation groups of codes.

Let C be a block code of length n. The permutation group
of C, Per (C), is the set of permutations of coordinate places
which send C onto itself [16]. The permutation groups of
many classical linear block codes are well-understood (cf.,

1Throughout this work, decoding is assumed to be performed in the
− log(·) domain, i.e., either min-sum or min�-sum processing is assumed.

[16], [17]) and for codes with short block lengths, permutation
groups can be obtained using the methods described in [18],
[19].

Returning to the [8, 4, 4] extended Hamming code, it can be
shown that [16]2:

σ = (5, 3, 1, 7, 0, 6, 4, 2) ∈ Per (C8) (2)

It is readily verified that applying σ to the columns of H1 (as
defined in (1)) yields H2 so that H2 = σH1. In light of this
example, it is clear that redundant parity-checks for a given
code C can be generated by applying permutations drawn from
Per (C) to the columns of some initial parity-check matrix H .
Observe that decoding with soft-input vector SI on TG (βH)
(where β ∈ Per (C)) is equivalent to decoding with soft-
input vector β−1SI on TG (H). It is this observation that
allows for the efficient implementation of redundant Tanner
graph decoding: provided that the redundant parity-checks are
column permuted versions of some base matrix H , redundant
Tanner graph decoding can be implemented by permuting
soft information vectors and decoding with a constant set of
constraints.

B. Redundant Tanner Graphs and Previous Work

From the above discussion, it is apparent that Kothiyal
et al.’s adaptive belief propagation (ABP) algorithm [6] and
Jiang and Narayanan’s stochastic shifting based iterative de-
coding (SSID) algorithm [5] are redundant Tanner graph de-
coding algorithms. Kothiyal et al.’s scheme adaptively chooses
new parity-check sets based on soft information reliability.
Although the ABP algorithm can be applied to arbitrary
block codes, it does not imply a practical low-complexity
implementation because the check sets change with every
iteration. Furthermore, the ABP algorithm requires the compu-
tationally expensive Gaussian elimination of potentially large
parity-check matrices at every iteration. Jiang and Narayanan’s
scheme is an example of a practical, low-complexity redundant
Tanner graph decoding algorithm for cyclic codes which uses
the permutation group approach described above. The random
redundant decoding algorithm proposed in this work is, in fact,
an extension of Jiang and Narayanan’s algorithm to arbitrary
block codes with a known permutation group.

III. PROPOSED DECODING ALGORITHM

Algorithm 1 describes the proposed decoding algorithm.
The inner for-loop of Algorithm 1 describes an efficient
redundant Tanner graph decoding algorithm with the addition
of a damping coefficient α. The outer for-loop of Algorithm
1 iterates over different values of α. By varying the damping
coefficient α, the algorithm avoids local minima in the solution
space. Many authors have considered the introduction of such
damping coefficients in iterative soft decoding algorithms to
achieve this end (cf., [20]). For practical implementations
where a large number of outer iterations is undesirable from a

2Throughout this work, permutations of n coordinate places (indexed from
0) are described by n-tuples. For example, the application of the permutation
(1, 4, 0, 2, 3, 6, 5) to a 7 bit codeword (c0, c1, c2, c3, c4, c5, c6) yields the
permuted codeword: (c2, c0, c3, c4, c1, c6, c5). The identity permutation is
denoted ε and the inverse of a permutation β is denoted β−1.



HALFORD and CHUGG: RANDOM REDUNDANT ITERATIVE SOFT-IN SOFT-OUT DECODING 515

time complexity standpoint, a single damping coefficient (or
a small set of coefficients) could be used depending on the
operating noise power.

Algorithm 1 takes as input a received soft information
vector, SI, a parity-check matrix for the code, H , and four
parameters:

α0: The initial damping coefficient.
I1: The number of Tanner graph decoding iterations to

perform per inner iteration.
I2: The maximum number of inner iterations to perform per

outer iteration. Each inner iteration considers a different
random permutation of the codeword elements.

I3: The maximum number of outer iterations to perform.
Each outer iteration uses a different damping coefficient.

Let s be the sum of the input soft information SI and
the output soft information produced by all previous inner
iterations. During the i2-th inner iteration, I1 Tanner graph
decoding iterations are performed on TG (H) with damping
coefficient α and soft input s producing the soft output vector
s′ and hard decision c′. The cumulative soft information vector
s is then updated to include s′. The inner iteration concludes
by applying a random permutation θ from the permutation
group of the code to s. Decoding concludes when either a
valid codeword is returned by the Tanner graph decoding step
or when a maximum number of iterations is reached. Before
returning the final soft output and hard decision vectors, the
random permutations are undone by applying the inverse of
the product of the permutations that were applied to s.

A. Initial Parity-Check Matrix Selection

It was observed empirically that the performance of the
proposed decoding algorithm depends heavily on the choice of
parity-check matrix (and thus Tanner graph) used to represent
the code. It is widely accepted that the performance of the
decoding algorithms implied by Tanner graphs are adversely
affected by short cycles (cf., [3], [21]). Algorithm 2 searches
for a suitable parity-check matrix by greedily performing row
operations on an input binary parity-check matrix H in order
to reduce the number of short cycles contained in the Tanner
graph defined by H . The operation of Algorithm 2 requires
that short cycles in bipartite graphs can be counted efficiently;
such an algorithm was described in [3].

B. Generation of Random Permutation Group Elements

Algorithm 1 requires the efficient generation of random
elements of the permutation group of a code. Cellar et al.
presented an algorithm for generating random elements of an
arbitrary finite group in [22]. Briefly, suppose that G is a finite
group with size k generating set3:

X = {x0, x1, . . . , xk−1} . (3)

Cellar et al.’s product-replacement algorithm constructs a
vector S = (s0, s1, . . . , sN−1) of length N > k containing
all of the elements of X with repeats. The basic operation

3That is, every element g ∈ G can be expressed as a finite product g =
xn1

i1
xn2

i2
· · ·xnt

it
where xij

∈ X and nj ∈ N (the set of natural numbers)
for all j.

Fig. 2. Bit error rate performance comparison of different decoding
algorithms for the [63, 39, 9] BCH code. Binary antipodal signaling on an
additive white Gaussian noise channel is assumed.

of this algorithm is to randomly choose two elements of
S, si and sj , and to replace sj by the product of si and
sj . Generation of random group elements is initialized by
performing this basic operation K times. After initialization,
successive basic operations yield random elements of G by
returning the updated value of sj . Note that the execution
of this basic operation requires the generation of two random
integers and only one group multiplication and is thus efficient
(permutation multiplication is particularly easy). Also note that
after every execution, the elements contained in S generate
G. Cellar et al. found that setting N = max(2k + 1, 10) and
K = 60 provides near-uniform random generation of group
elements in practice.

IV. SIMULATION RESULTS

The performance of the proposed algorithm is investigated
empirically in this section for the [63, 39, 9] BCH code C63.
The performance of Algorithm 1 was studied using three
choices of input parity-check matrix (labeled HC, H2, and
HR), two choices of permutation (sub)group (labeled GF and
GC), and two choices of parameter sets (labeled PA and PB)
all of which are defined below. Figure 2 compares the bit error
rate (BER) performance of four combinations of these choices
to algebraic hard-in hard-out (HIHO) decoding.

HC: The standard 24×63 cyclic parity-check matrix for C63
(cf., [16]). The corresponding Tanner graph contains
32, 625 four-cycles and 6, 981, 190 six-cycles.

H2: The output of Algorithm 2 when HC is used as input.
The corresponding Tanner graph contains 3, 162 four-
cycles and 212, 301 six-cycles.

HR: A 1200× 63 redundant parity-check matrix generated
by concatenating 50 column-permuted versions of H2
(using permutations drawn randomly from Per(C63)).
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Input: Length n soft-input vector SI.
n− k × n binary parity-check matrix H .
Parameters I1, I2, I3, α0.

Output: Length n soft-output vector SO.
Length n hard-decision vector HD.

α← α0;
for 1 ≤ i3 ≤ I3 do

Θ← ε;
s← SI;
for 1 ≤ i2 ≤ I2 do

Perform I1 decoding iterations of s on TG (H)
with damping coefficient α and place soft output
in s′ and resulting hard decision in c′;
s← s + s′;
if Hc′ = 0 then

Apply Θ−1 to s and c′;
SO← s− SI;
HD← c′;
return SO and HD

end
θ ←random element of Per (C);
Apply θ to s;
Θ← θΘ;

end
α← α0 + (1 − α0) i3

I3−1 ;
end

Algorithm 1: Random redundant iterative decoding.

GF: The full permutation group Per(C63) of C63 which is
generated by the 6 permutations:

σ(j) =
(
1, 2j + 1, 2 · 2j + 1, . . . , 62 · 2j + 1

)
(4)

for 0 ≤ j ≤ 5 (where each permutation element is
taken modulo 2m − 1) [17].

GC: The cyclic subgroup of Per(C63) generated by σ(0)

alone.
PA: α0 = 0.08, I1 = 2, I2 = 50, and I3 = 20.
PB: α0 = 0.08, I1 = 2, I2 = 1, and I3 = 20.

Optimal SISO decoding of C63 is intractable in practice.
Specifically, the least complex known optimal SISO decoding
algorithm for this code is obtained by decoding on a sixteen
stage trellis for the dual of an extension of C63 containing 215

states [23]. Random redundant decoding with {H2,GF,PA},
which is suboptimal yet tractable in practice, is shown to
outperform algebraic HIHO decoding by approximately 1.75
dB at a BER of 10−6 in Figure 2. Figure 2 demonstrates the
sensitivity of the perfomance of random redundant decoding to
the choice of initial parity-check matrix: the {H2,GF,PA} de-
coder outperforms the {HC,GF,PA} decoder by approximately
2 dB at a BER of 10−5. The {H2,GF,PA} decoder outperforms
the {H2,GC,PA} decoder by approximately 0.25 dB at a BER
of 10−6. The former considers all possible permutations in
Per (C63), rather than only those corresponding to cyclic shifts,
and is in some sense more random than the latter, which is
equivalent to Jiang and Narayanan’s algorithm [5]. Note finally
that although the {H2,GF,PA} and {HR,GF,PB} decoders
can be viewed as different message-passing schedules on the
same graphical model, the former outperforms the latter by

Input: r × n binary parity-check matrix H .
Output: r × n binary parity-check matrix H ′.

H ′ ← H , r�
1 ← −1, r�

2 ← −1, g� ← girth of TG (H);
N�

g� ← number of g�-cycles in TG (H ′);
N�

g�+2 ← number of g� + 2-cycles in TG (H ′);
repeat

if r�
1 �= r�

2 then Replace row r�
2 in H ′ with binary

sum of rows r�
1 and r�

2 ;
r�
1 ← −1, r�

2 ← −1;
/* Greedily find the row operation

which reduces the most short
cycles. */

for r1, r2 = 0, . . . , r − 1, r2 �= r1 do
Replace row r2 in H ′ with binary sum of rows
r1 and r2;
g ← girth of TG (H ′);
Ng ← number of g-cycles in TG (H ′);
Ng+2 ← number of g + 2-cycles in TG (H ′);
if g > g� then

g� ← g, r�
1 ← r1, r�

2 ← r2, N�
g ← Ng ,

N�
g+2 ← Ng+2;

end
else if g = g� AND Ng < N�

g then r�
1 ← r1,

r�
2 ← r2, N�

g ← Ng, N�
g+2 ← Ng+2;

else if g = g� AND Ng = N�
g then

if Ng+2 < N�
g+2 then r�

1 ← r1, r�
2 ← r2,

N�
g+2 ← Ng+2;

end
Undo row replacement;

end
until r�

1 = −1 & r�
2 = −1;

return H ′

Algorithm 2: Greedy Tanner graph cycle reduction.

approximately 0.9 dB at a BER of 10−5. We attribute the
performance difference to the fact that the flooding schedule
used in the {HR,GF,PB} decoder does not allow for the full
exploitation of the gains that can be realized by damping thus
indicating that the performance of the proposed random re-
dundant decoding algorithm may be attributed to both the use
of redundancy and the use of damping to slow convergence.

V. CONCLUSION

This letter introduced random redundant iterative decoding
of linear block codes which can be viewed as a generalization
of Jiang and Narayanan’s algorithm [5] for cyclic codes to
arbitrary codes. The proposed algorithm represents a practi-
cally realizable redundant Tanner graph decoding algorithm
which can be applied to any linear code with a known
permutation group. An interesting direction for future work
is the application of the proposed algorithm to codes which
are not classical block codes, e.g., short blocklength LDPC
codes with algebraic constructions which afford the ready
determination of their permutation groups.
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