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Abstract—Two broad classes of graphical modeling problems for
codes can be identified in the literature: constructive and extrac-
tive problems. The former class of problems concern the construc-
tion of a graphical model in order to define a new code. The latter
class of problems concern the extraction of a graphical model for
a (fixed) given code. The design of a new low-density parity-check
code for some given criteria (e.g., target block length and code rate)
is an example of a constructive problem. The determination of a
graphical model for a classical linear block code that implies a de-
coding algorithm with desired performance and complexity char-
acteristics is an example of an extractive problem. This work fo-
cuses on extractive graphical model problems and aims to lay out
some of the foundations of the theory of such problems for linear
codes. The primary focus of this work is a study of the space of
all graphical models for a (fixed) given code. The tradeoff between
cyclic topology and complexity in this space is characterized via
the introduction of a new bound: the forest-inducing cut-set bound
(FI-CSB). The proposed bound provides a more precise character-
ization of this tradeoff than that which can be obtained using ex-
isting tools (e.g., the CSB) and can be viewed as a generalization of
the square-root bound for tail-biting trellises to graphical models
with arbitrary cyclic topologies. Searching the space of graphical
models for a given code is then enabled by introducing a set of basic
graphical model transformation operations that are shown to span
this space. Finally, heuristics for extracting novel graphical models
for linear block codes using these transformations are investigated.

Index Terms—Codes on graphs, complexity measures, cut-set
bound (CSB), graphical model complexity, graphical model extrac-
tion, graphical model transformation, linear codes, normal realiza-
tions, square-root bound.

I. INTRODUCTION

G RAPHICAL models of codes have been studied since the
1960s and this study has intensified in recent years due to

the discovery of turbo codes by Berrou et al. [1], the rediscovery
of Gallager’s low-density parity-check (LDPC) codes [2] by
Spielman et al. [3] and MacKay et al. [4], and the pioneering
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work of Wiberg, Loeliger, and Koetter [5], [6]. It is now well
known that together with a suitable message passing schedule,
a graphical model implies a soft-in–soft-out (SISO) decoding
algorithm, which is optimal for cycle-free models and subop-
timal, yet often substantially less complex, for cyclic models
(cf., [6]–[10]). It has been observed empirically in the litera-
ture that there exists a correlation between the cyclic topology
of a graphical model and the performance of the decoding algo-
rithms implied by that graphical model (cf., [5] and [10]–[16]).
To summarize this empirical “folk-knowledge,” those graph-
ical models that imply near-optimal decoding algorithms tend
to have large girth, a small number of short cycles, and a cycle
structure that is not overly regular.1

Two broad classes of graphical modeling problems can be
identified in the literature:

• constructive problems: given a set of design requirements,
design a suitable code by constructing a good graphical
model (i.e., a model that implies a low-complexity, near-
optimal decoding algorithm);

• extractive problems: given a specific (fixed) code, extract
a graphical model for that code that implies a decoding al-
gorithm with desired complexity and performance charac-
teristics.

Constructive graphical modeling problems have been widely ad-
dressed by the coding theory community. Capacity-approaching
LDPC codes have been designed for both the additive white
Gaussian noise (AWGN) channel (cf., [19] and [20]) and the
binary erasure channel (cf., [21]–[23]). Other classes of modern
codes have been successfully designed for a wide range of prac-
tically motivated block lengths and rates (cf., [24]–[28]).

Less is understood about extractive graphical modeling
problems, however. The extractive problems that have received
the most attention are those concerning Tanner graph [11] and
trellis representations of block codes. Tanner graphs imply
low-complexity decoding algorithms; however, the Tanner
graphs corresponding to many block codes of practical interest,
e.g., high-rate Reed–Muller (RM), Reed–Solomon (RS), and
Bose–Chaudhuri–Hocquenghem (BCH) codes, necessarily
contain many short cycles [29] and thus usually imply poorly
performing decoding algorithms. There is a well-developed
theory of conventional trellises [30] and tail-biting trellises
[31], [32] for linear block codes. Conventional and tail-biting
trellises imply optimal and, respectively, near-optimal decoding
algorithms; however, for many block codes of practical interest,
these decoding algorithms are prohibitively complex thus

1There are a number of notable exceptions to this “folk-knowledge,” e.g.,
LDPC codes based on finite geometries (cf., [17], [18]), which perform well
despite having Tanner graphs with many short cycles.
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motivating the study of more general graphical models (i.e.,
models with a richer cyclic topology than a single cycle).

The goal of this work is to lay out some of the foundations
of the theory of extractive graphical modeling problems. Fol-
lowing a review of graphical models for codes in Section II,
a complexity measure for graphical models is introduced in
Section III. A number of properties of graphical models re-
lated to this measure are described in Section III and defined
precisely in the Appendix. The proposed measure captures
a cyclic graphical model analog of the familiar notions of
state and branch complexity for trellises [30]. The minimal
tree complexity of a code, which is a natural generalization of
the well-understood minimal trellis complexity of a code to
arbitrary cycle-free models, is then defined using this measure.

The tradeoff between cyclic topology and complexity in
graphical models is studied in Section IV. Wiberg’s cut-set
bound (CSB) is the existing tool that best characterizes this
fundamental tradeoff [6]. While the CSB can be used to estab-
lish the square-root bound for tail-biting trellises [31] and thus
provides a precise characterization of the potential tradeoff be-
tween cyclic topology and complexity for single-cycle models,
as was first noted by Wiberg et al. [5], it is very challenging
to use the CSB to characterize this tradeoff for graphical
models with cyclic topologies richer than a single cycle.
To provide a more precise characterization of this tradeoff
than that offered by the CSB alone, this work introduces a
new bound in Section IV—the forest-inducing cut-set bound
(FI-CSB)—which may be viewed as a generalization of the
square-root bound to graphical models with arbitrary cyclic
topologies. Specifically, it is shown that an th-root complexity
reduction (with respect to the minimal tree complexity as
defined in Section III) requires the introduction of at least

cycles. The proposed bound can thus be viewed as
an extension of the square-root bound to graphical models with
arbitrary cyclic topologies.

Much as there are many valid complexity measures for con-
ventional trellises, there are many reasonable metrics for the
measurement of cyclic graphical model complexity (cf., [33]).
While there exists a unique minimal trellis for any linear block
code that simultaneously minimizes all reasonable measures of
trellis complexity [34], even for the class of cyclic graphical
models with the most basic cyclic topology—tail-biting trel-
lises—minimal models are not unique [32], thus motivating the
consideration of complexity measures other that introduced in
Section III. In Section V, it is shown that, provided a given com-
plexity measure obeys some reasonable properties, then a gener-
alization of the FI-CSB for that particular measure can be made.
In particular, a measure that is a slight relaxation of that intro-
duced in Section III is examined in detail.

The transformation of graphical models is studied in
Sections VI and VII. Whereas minimal conventional and
tail-biting trellis models can be characterized algebraically via
trellis-oriented generator matrices [30], there is, in general, no
known analog of such algebraic characterizations for arbitrary
cycle-free graphical models [35], let alone cyclic models. In
the absence of such an algebraic characterization, it is initially
unclear as to how cyclic graphical models can be extracted. In
Section VI, a set of basic transformation operations on graph-

ical models for codes is introduced and it is shown that any
graphical model for a given code can be transformed into any
other graphical model for that same code via the application
of a finite number of these basic transformations. The transfor-
mations studied in Section VI thus provide a mechanism for
searching the space of all graphical models for a given code.
The Appendix provides a number of examples that illustrate
these basic transformations. In Section VII, the basic trans-
formations introduced in Section VI are used to extract novel
graphical models for linear block codes. Starting with an initial
Tanner graph for a given code, heuristics for extracting other
Tanner graphs, generalized Tanner graphs, and more complex
cyclic graphical models are investigated. Concluding remarks
and directions for future work are given in Section VIII.

II. BACKGROUND

A. Notation

The binomial coefficient is denoted where are
integers. The finite field with elements is denoted . Given
a finite index set , the vector space over defined on is the
set of vectors

(1)

Suppose that is some subset of the index set . The
projection of a vector onto is denoted

(2)

B. Codes, Projections, and Subcodes

Given a finite index set , a linear code over defined on
is some vector subspace . The block length, dimen-

sion, and rate of are denoted ,
and , respectively. If known, the minimum
Hamming distance of is denoted and may be described
by the triplet . This work considers only linear
codes and the terms code and linear code are used interchange-
ably.

A code can be described by an ,
generator matrix over , the rows of which span . An

generator matrix is redundant if is strictly greater than
. A code can also be described by an

, parity-check matrix over , the rows of which
span the null space of (i.e., the dual code ). Each row of

defines a -ary single parity-check equation, which every
codeword in must satisfy. An parity-check matrix
is redundant if is strictly greater than

(3)

Given a subset of the index set , the projection of
onto is the set of all codeword projections

(4)

Note that can be interpreted as the code punctured at .
Closely related to is the subcode : the projection onto
of the subset of codewords satisfying for . Note
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that can be interpreted as the code shortened at . Both
and are linear codes.

While code projections and subcodes correspond to codes de-
fined on a subset of the code index set, it is also useful to con-
sider codes defined on a superset the index set. Let be a
superset of . The protracted code is defined as the code of
largest dimension such that the projection of onto is pre-
cisely . Specifically, the dimension of is .

Suppose that and are two codes over defined on the
same index set . The intersection of and is a
linear code defined on comprising the vectors in that are
contained in both and .

Finally, suppose that and are two codes defined on
the disjoint index sets and , respectively. The Cartesian
product is the code defined on the index set

such that and .
Equivalently, in terms of protracted codes, it is readily verified
that .

C. Generalized Extension Codes

Let be a linear code over defined on the index set . Let
be some subset of and let

(5)

be a vector of nonzero elements of . A generalized exten-
sion of is formed by adding a -ary parity-check on the subset
of codeword coordinates indexed by to (i.e., a -ary par-
tial parity symbol, rather than the parity-check on all codeword
coordinates used to define classical code extensions [36]). The
generalized extension code is defined on the index set

such that if , then
where if and

(6)

The length and dimension of are and
, respectively, and the minimum distance of sat-

isfies . Note that if and
for all , then is simply a classically defined extended
code [36]. More generally, a degree- generalized extension of

is formed by adding -ary partial parity symbols to and
is defined on the index set . The th partial
parity symbol in such an extension is defined as a partial
parity on some subset of .

D. Graph Theory

A graph consists of the following:
• a finite nonempty set of vertices ;
• a set of edges , which is some subset of the pairs

;
• a set of half-edges , which is any subset of .

Note that the graphs considered in this work do not contain par-
allel edges. It is nonstandard to define graphs with half-edges;
however, as will be demonstrated in Section II-E, half-edges are
useful in the context of graphical models for codes. A walk of

length in is a sequence of vertices in
such that for all . A path is a walk
on distinct vertices while a cycle of length is a walk such that

through are distinct and . Cycles of length are
often denoted -cycles. Two vertices are adjacent if a
single edge connects to . A graph is connected if
any two of its vertices are linked by a walk. A forest is a graph
containing no cycles (i.e., a cycle-free graph) and a tree is a con-
nected forest. A cut in a connected graph is some subset of
edges the removal of which yields a disconnected graph.
Cuts thus partition the vertex set . Finally, a graph is bipartite
if its vertex set can be partitioned , such
that any edge in joins a vertex in to one in .

E. Graphical Models of Codes

Graphical models for codes have been described by a
number of different authors using a wide variety of notation
(e.g., [6]–[11]). This work uses the notation described below,
which was established by Forney in his codes on graphs papers
[10], [35].

A linear behavioral realization of a linear code com-
prises three sets indexed by , and , respectively, the latter
two of which are disjoint and unrelated to as follows:

• a set of visible (or symbol) variables corre-
sponding to the codeword coordinates2 with alphabets ;

• a set of hidden (or state) variables with alpha-
bets ;

• a set of linear local constraint codes .
Each visible variable is -ary while the hidden variable with
alphabet is -ary. The hidden variable alphabet index
sets are disjoint and unrelated to . Each local con-
straint code involves a certain subset of the visible
and hidden variables and defines a subspace of the
local configuration space

(7)

Each local constraint is a linear code over defined on the
local index set

(8)

with well-defined block length

(9)

and dimension . Local constraints that involve
only hidden variables are internal constraints while those in-
volving visible variables are interface constraints. The full be-
havior of the realization is the set of all visible and hidden

2Observe that this definition is slightly different than that proposed in [35],
which permitted the use of � -ary visible variables corresponding to � codeword
coordinates. By appropriately introducing equality constraints and �-ary hidden
variables, it can be seen that these two definitions are essentially equivalent.
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variable configurations, which simultaneously satisfy all local
constraint codes

(10)

The projection of the linear code onto is precisely .3

Forney demonstrated in [10] that it is sufficient to consider
only those realizations in which all visible variables are involved
in a single local constraint and all hidden variables are involved
in two local constraints. Furthermore, it is sufficient to con-
sider only those realizations in which no two hidden variables
are involved in the same pair of local constraints. Such normal
realizations have a natural graphical representation in which
local constraints are represented by vertices, visible variables by
half-edges, and hidden variables by edges. The half-edge cor-
responding to the visible variable is incident on the vertex
corresponding to the single local constraint that involves .
The edge corresponding to the hidden variable is incident
on the vertices corresponding to the two local constraints that
involve . The notation and term graphical model are used
throughout this work to denote both a normal realization of a
code and its associated graphical representation.

It is assumed throughout that the graphical models considered
are connected. Equivalently, it is assumed throughout that the
codes studied cannot be decomposed into Cartesian products of
shorter codes [10]. Note that this restriction will apply only to
the global code considered and not to the local constraints in a
given graphical model.

Finally, because different local constraints are defined on dif-
ferent index sets, care must be taken in defining the intersection
of local constraints. Let be a graphical model for a code
defined on the index set , and let and be two local con-
straints in defined on the local index sets and ,
respectively. Denote by the union of
the respective local index sets. The intersection of and pro-
tracted to

(11)

is well defined because and are defined on
a common index set. When it is clear in context, the notation

is used in place of (11) for brevity’s sake.

F. Tanner Graphs and Generalized Tanner Graphs

The term Tanner graph has been used to describe different
classes of graphical models by different authors. Tanner graphs
denote those graphical models corresponding to parity-check
matrices in this work. Specifically, let be an
parity-check matrix for the code over defined on the index
set . The Tanner graph corresponding to contains
local constraints of which are interface repetition con-
straints, one corresponding to each codeword coordinate, and

3Note that it assumed throughout this work that if ��� � is such that ��� � �,
then ��� � �.

are internal -ary single parity-check constraints, one cor-
responding to each row of . An edge (hidden variable) con-
nects a repetition constraint to a single parity-check constraint

if and only if the codeword coordinate corresponding to
is involved in the single parity-check equation defined by the
row corresponding to . A Tanner graph for is redundant if
it corresponds to a redundant parity-check matrix. A degree-
generalized Tanner graph for is simply a Tanner graph corre-
sponding to some degree- generalized extension of in which
the visible variables corresponding to the partial parity sym-
bols have been removed. Generalized Tanner graphs have been
studied previously in the literature under the rubric of general-
ized parity-check matrices [37], [38].

III. COMPLEXITY MEASURE FOR GRAPHICAL MODELS

A. -ary Graphical Models

This work introduces the term -ary graphical model to de-
note a normal realization of a linear code over that satisfies
the following constraints:

• the alphabet index size of every hidden variable ,
satisfies ;

• every local constraint , either satisfies

(12)

or can be decomposed as a Cartesian product of codes, each
of which satisfies this condition.

The complexity measure simultaneously captures a cyclic
graphical model analog of the familiar notions of state and
branch complexity for trellises [30]. From the above definition,
it is clear that Tanner graphs and generalized Tanner graphs for
codes over are -ary graphical models. The efficacy of this
complexity measure is discussed further in Section V.

B. Properties of -ary Graphical Models

The following three properties of -ary graphical
models will be used in the proof of Theorem 3 in
Section IV. These properties are defined in detail in
Section B of the Appendix (which, in turn, uses notation
established in Section A of the Appendix).

1) Internal Local Constraint Involvement Property: Any
hidden variable in a -ary graphical model can be made
to be incident (on at least one end) on an internal local
constraint , which satisfies without
fundamentally altering the complexity or cyclic topology
of that graphical model.

2) Internal Local Constraint Removal Property: The removal
of an internal local constraint from a -ary graphical
model results in a -ary graphical model for a new code
defined on the same index set.

3) Internal Local Constraint Redefinition Property: Any in-
ternal local constraint in a -ary graphical model sat-
isfying can be equivalently rep-
resented by -ary single parity-check equations over the
visible variable index set.
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These properties are particularly useful in concert. Specifically,
let be a -ary graphical model for the linear code over
defined on an index set . Suppose that the internal constraint

satisfying is removed from
resulting in the new code . Denote by the set
of -ary single parity-check equations that result when is
redefined over . A vector in is a codeword in if and only
if it is contained in and satisfies each of these single
parity-check equations so that

(13)

The internal local constraint redefinition property affords the
useful notion of local constraint equivalence. Suppose that
and are two distinct graphical models for the code defined
on the index set . Let and be local constraints in and

, respectively. Denote by the code that is formed
by the intersection of the single parity-check equations that re-
sult when is redefined over . The local constraints
and are said to be equivalent (denoted throughout)
if and only if . That is, two local constraint codes
are equivalent if they impose identical constraints on the visible
variable set.

C. The Minimal Tree Complexity of a Code

The minimal trellis complexity of a linear code over
is defined as the base- logarithm of the maximum hidden

variable alphabet size in its minimal (unsectionalized) trellis
[39]. Considerable attention has been paid to this quantity (cf.,
[39]–[44]) as it is closely related to the important, and difficult,
study of determining the minimum possible complexity of op-
timal SISO decoding of a given code. This work introduces the
minimal tree complexity of a linear code as a generalization
of minimal trellis complexity to arbitrary cycle-free graphical
model topologies.

Definition 1: The minimal tree complexity of a linear code
over is the smallest integer such that there exists a

cycle-free -ary graphical model for .

Much as , the minimal tree complexity of a
code is equal to that of its dual.

Proposition 1: Let be a linear code over with dual .
Then

(14)

Proof: The dualizing procedure described by Forney [10]
can be applied to a -ary graphical model for in order to
obtain a graphical model for , which is readily shown to be

-ary.

The following propositions establish upper and lower bounds
on the tree complexity of linear codes.

Proposition 2: The tree complexity of a linear code is
upper-bounded by its minimal trellis complexity and thus
all known upper bounds on extend to .

Fig. 1. The � -ary graphical model representation of a trellis section.

Proof: Consider the section of a minimal trellis for illus-
trated in Fig. 1. The hidden (state) variables have alphabet index
sizes and , respectively. Because
and differ by at most in a minimal trellis, and because

(15)

it is readily shown that for all

(16)

completing the proof.

Proposition 3: Let be an linear code over de-
fined on the index set . Denote by the maximum
dimension of any subcode of with support size (cf., [44]).
The tree complexity of is lower-bounded by

(17)

Proof: Let be a hidden variable in a cycle-free
graphical model for . Because is cycle-free, the edge
corresponding to constitutes a cut-set in that partitions the
visible variable index set into the disjoint subsets and

. Construct a two-section trellis for with the sections
corresponding to the visible variables indexed by and ,
respectively. Wiberg’s CSB [6] in conjunction with a result due
to Forney [45] can then be used to lower-bound the alphabet
index size of by

(18)

The desired bound is obtained by noting that

(19)

and

(20)

The lower bound established by Proposition 3 is simply an
extension of the dimension-length profile (DLP) bound (cf., [39]
and [44]) (which, in turn, is an improvement of Muder’s bound
[40]). However, not all lower bounds on readily extend to

. For example, it is not clear how to extend Lafourcade and
Vardy’s results [39], [46] to bounds for due to the difficulty
of considering all possible cycle-free topologies rather than only
the line graphs implied by trellises.
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An important question for future study is, therefore, the devel-
opment of tight lower bounds on . An example of a code for
which is strictly smaller than was provided by Forney
in [35]. Specifically, let be the binary linear code
generated by

(21)

The minimal (unsectionalized) trellis complexity of this code
can be shown to be

(22)

whereas Forney illustrated a cycle-free Tanner graph for
so that

(23)

The following lemma concerning minimal tree com-
plexity will be used in the proof of Theorem 3 in Section IV.
The proof of Lemma 1 is detailed further by example in
Section C of the Appendix.

Lemma 1: Let and be linear codes over defined on
the index set such that comprises a -ary single parity-
check code on some subset of the index set . Define by
the intersection of and

(24)

The minimal tree complexity of is upper-bounded by

(25)

Proof: The result is proved by explicit construction of a
-ary cycle-free graphical model for as follows. Let

be some -ary cycle-free graphical model for and let be
a minimal connected subtree of containing the set of in-
terface constraints, which involve the visible variables in . De-
note by and the subset of hidden vari-
ables and local constraints, respectively, contained in . Choose
some local constraint vertex , as a root for .
Observe that the choice of , while arbitrary, induces a direc-
tionality in : downstream toward the root vertex or upstream
away from the root vertex. For every , denote by

the subset of visible variables in , which are upstream
from that hidden variable edge.

A -ary graphical model for is then constructed from
by updating each hidden variable , to also con-

tain the -ary partial parity of the upstream visible variables in
. The local constraints , are updated

accordingly. Finally, is updated to enforce the -ary single
parity constraint defined by . This updating procedure in-
creases the alphabet size of each hidden variable ,
by at most one and adds at most one single parity-check (or
repetition) constraint to the definition of each ,

and the resulting cycle-free graphical model is thus at most
-ary.

IV. THE TRADEOFF BETWEEN CYCLIC TOPOLOGY

AND COMPLEXITY

A. The Cut-Set and Square-Root Bounds

Wiberg’s CSB [5], [6] is stated below without proof in the
language of Section II.

Theorem 1 (CSB): Let be a linear code over defined on
the index set . Let be a graphical model for containing
a cut corresponding to the hidden variables ,
which partitions the index set into and . Let the
base- logarithm of the midpoint hidden variable alphabet size
of the minimal two-section trellis for on the two-section time
axis be . The sum of the base- logarithm of
the hidden variable alphabet sizes corresponding to the cut is
lower-bounded by

(26)

The CSB provides insight into the tradeoff between cyclic
topology and complexity in graphical models for codes and it
is natural to explore its power to quantify this tradeoff. Two
questions that arise for a given linear code over in such
an exploration are as follows.

1) For a given complexity , how many cycles must be con-
tained in a -ary graphical model for ?

2) For a given number of cycles , what is the smallest
such that a -ary model containing cycles for can
exist?

For a fixed cyclic topology, the CSB can be simultaneously
applied to all cuts yielding a linear programming lower bound
on the hidden variable alphabet sizes [5]. For the special case
of a single-cycle graphical model (i.e., a tail-biting trellis), this
technique yields a simple solution [31].

Theorem 2 (Square-Root Bound): Let be a linear code over
of even length and let be the base- logarithm

of the minimum possible hidden variable alphabet size of a con-
ventional trellis for at its midpoint over all coordinate order-
ings. The base- logarithm of the minimum possible hidden
variable alphabet size of a tail-biting trellis for is
lower-bounded by

(27)

The square-root bound can thus be used to answer the ques-
tions posed above for a specific class of single-cycle graph-
ical models. For topologies richer than a single cycle, however,
the aforementioned linear programming technique quickly be-
comes intractable. Specifically, there are

(28)

ways to partition a size visible variable index set into two
nonempty, disjoint, subsets. The number of cuts to be considered
by the linear programming technique for a given cyclic topology
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thus grows exponentially with block length and a different min-
imal two-stage trellis must be constructed to bound the size of
each of those cuts.

B. Forest-Inducing Cuts

Recall that a cut in a graph is some subset of the edges
the removal of which yields a disconnected graph. A cut

is thus defined without regard to the cyclic topology of the dis-
connected components, which remain after its removal. To pro-
vide a characterization of the tradeoff between cyclic topology
and complexity that is more precise than that provided by the
CSB alone, this work focuses on a specific type of cut which
is defined below. Two useful properties of such cuts are estab-
lished by Propositions 4 and 5.

Definition 2: Let be a connected graph. A forest-inducing
cut4 is some subset of edges the removal of which
yields a forest with precisely two components.

Proposition 4: Let be a connected graph. The
size of any forest-inducing cut in is precisely

(29)

Proof: It is well known that a connected graph is a tree if
and only if (cf., [49])

(30)

Similarly, a graph composed of two cycle-free components sat-
isfies

(31)

The result then follows from the observation that the size of
a forest-inducing cut is the number of edges, which must be
removed to satisfy (31).

Proposition 5: Let be a connected graph with forest-in-
ducing cut size . The number of cycles in is lower-
bounded by

(32)

Proof: Let the removal of a forest-inducing cut in the
connected graph yield the cycle-free components and
and let with . Because is a tree, there
is a unique path in connecting and . There is thus a
unique cycle in corresponding to the edge pair . There
are such distinct edge pairs, which yield the lower bound.
Note that this is a lower bound because for certain graphs, there
can exist cycles that contain more than two edges from a forest-
inducing cut.

Note that the forest-inducing cut size of a graph provides
a lower bound on the number of cycles in , in contrast to the
upper bound provided by the more familiar measure of cycle

4Note that such cuts were previously described as “tree-inducing” in [47] and
[48]. In this work, the terminology “forest-inducing” has been adopted for the
cuts and the resulting FI-CSB to emphasize that the graph resulting from the
removal of such a cut is disconnected.

rank. Specifically, the cycle rank of a connected graph
is equal to

(33)

and the number of cycles and unions of disjoint cycles in is
upper-bounded by (cf., [49]).

C. The Forest-Inducing Cut-Set Bound

With forest-inducing cuts defined, the required properties of
-ary graphical models described, and Lemma 1 established,

the main result concerning the tradeoff between cyclic topology
and graphical model complexity can now be stated and proved.

Theorem 3: Let be a linear code over defined on the
index set and suppose that is a -ary graphical model
for with forest-inducing cut size . The minimal tree com-
plexity of is upper-bounded by

(34)

Proof: The result is proved by induction on . Let
and suppose that is the sole edge in some forest-

inducing cut in . Because the removal of partitions
into disconnected cycle-free components, must be cycle-free
and by construction.

Now suppose that and let be an
edge in some forest-inducing cut in . By the first -ary
graphical model property of Section III-B, is (after suitable
transformations) incident on some internal local constraint
satisfying . Denote by the -ary
graphical model that results when is removed from , and
by the corresponding code over . The forest-inducing cut
size of is at most because the removal of from
results in the removal a single vertex and at least two edges. By
the induction hypothesis, the minimal tree complexity of is
upper-bounded by

(35)

From the discussion of Section III-B, it is clear that can
be redefined as single parity-check equations, for

, over on such that

(36)

It follows from Lemma 1 that

(37)

completing the proof.

An immediate corollary to Theorem 3 results when Proposi-
tion 5 is applied in conjunction with Theorem 3:

Corollary 1: Let be a linear code over with minimal
tree complexity . The number of cycles in any -ary
graphical model for is lower-bounded by

(38)
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D. Interpretation of the FI-CSB

Provided is known or can be lower-bounded, the
forest-inducing cut-set bound (FI-CSB) (and more specifically
Corollary 1) can be used to answer the questions posed in
Section IV-A. The FI-CSB is further discussed below.

1) The FI-CSB and the CSB: On the surface, the FI-CSB
and the CSB are similar in statement; however, there are three
important differences between the two. First, the CSB does not
explicitly address the complexity of the local constraints on ei-
ther side of a given cut. Forney provided a number of illustrative
examples in [35] that stress the importance of characterizing
graphical model complexity in terms of both hidden variable
size and local constraint complexity. Second, the CSB does not
explicitly address the cyclic topology of the graphical model that
results when the edges in a cut are removed. The removal of a
forest-inducing cut results in two cycle-free disconnected com-
ponents and the size of a forest-inducing cut can thus be used
to make statements about the complexity of optimal SISO de-
coding using variable conditioning in a cyclic graphical model
(cf., [10] and [50]–[54]). Finally, and most fundamentally, the
FI-CSB addresses the aforementioned intractability of applying
the CSB to graphical models with rich cyclic topologies.

2) The FI-CSB and the Square-Root Bound: Theorem 3 can
be used to make a statement similar to Theorem 2, which is valid
for all graphical models containing a single cycle.

Corollary 2: Let be a linear code over with minimal
tree complexity and let be the smallest integer such that
there exists a -ary graphical model for , which contains at
most one cycle. Then

(39)

More generally, Theorem 3 can be used to establish the
following generalization of the square-root bound to graphical
models with arbitrary cyclic topologies.

Corollary 3: Let be a linear code over with minimal
tree complexity . For some positive integer , let be the
smallest integer such that there exists a -ary graphical model
for , which contains at most cycles. Then

(40)

The desired generalization of the square-root bound is ob-
tained by noting that measures the logarithm of decoding
complexity in Corollary 3: an th-root complexity reduction
with respect to the minimal tree complexity requires the intro-
duction of at least cycles.

There are few known examples of classical linear block codes
that meet the square-root bound with equality. Shany and Be’ery
proved that many RM codes cannot meet this bound under any
bit ordering [55]. There does, however, exist a tail-biting trellis
for the extended binary Golay code , which meets the square-
root bound with equality so that [31]

and (41)

This tail-biting trellis model cannot, however, be used as the
basis for a new result on the minimal tree complexity of the

Golay code. Calderbank et al.’s tail-biting trellis representation
is sectionalized so that there are two codeword coordinates per
trellis section and two state transitions per trellis state (see [31,
Fig. 5]). While the state complexity of this tail-biting trellis is
indeed , each trellis section is described by a length , dimen-
sion code over so that the corresponding graphical model
is -ary. Corollary 2 can, therefore, be used to show that
is at most . However, it is known that . The minimal
bit-level conventional trellis for contains (noncentral) state
variables with alphabet size 512 and is thus a -ary graphical
model [40].

3) Aymptotics of the FI-CSB: Denote by the minimum
number of cycles in any -ary graphical model for a linear
code over with minimal tree complexity . For large
values of , the lower bound on established by Corol-
lary 1 becomes

(42)

The ratio of the minimal complexity of a cycle-free model for
to that of a -ary graphical model is thus upper-bounded by

(43)

The FI-CSB can be used to argue that -ary graphical models
cannot support asymptotically good codes over unless the
number of cycles increases with the square of the block length.
Specifically, consider a family of codes over with increasing
length and constant rate. To aid aymptotic analysis, assume that
the DLP bound [44] on trellis complexity of any given code
in this family is tight so that

(44)
where is some small constant that does not depend on .
Under this assumption, the difference between and
is bounded (by Proposition 3). The FI-CSB can then be used in
conjunction with Lafourcade and Vardy’s lower bound on trellis
complexity [46]

(45)

to show that . To support an aymptotically
good sequence of codes for which the assumption in (44) holds,

must thus grow linearly with and the number of cycles
must, therefore, grow with the square of . This result is
consistent with the work of Etzion et al. [56] who proved that
Tanner graphs must have cycle rank that increases linearly with
block size to support asymptotically good codes. However, the
focus on forest-inducing cut size rather than cycle rank in this
work affords a tighter resulting bound on the number of cycles.
Note that it remains open as to whether such a statement can
be made for families of codes for which the DLP lower bound
on trellis complexity is not tight or, more generally, for families
of codes for which the difference between and is not
bounded.

To further explore the asymptotics of the FI-CSB, consider
a code of particular practical interest: the binary image
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Fig. 2. Minimum number of cycles required for � -ary graphical models of
the binary image of the ����� ���� ��� Reed–Solomon code.

of the Reed–Solomon code . Because is
maximum distance separable, a reasonable estimate for the min-
imal tree complexity of this code is obtained from Wolf’s bound
[57]

(46)

Fig. 2 plots as a function of for assuming (46).
Note that because the complexity of the decoding algorithms
implied by -ary graphical models grow roughly as
is roughly a decoding complexity measure.

V. ON COMPLEXITY MEASURES AND GENERALIZATIONS OF

THE FOREST-INDUCING CUT-SET BOUND

A. Proper Complexity Measures

Recall that the aim of graphical model extraction is the ob-
tention of a model that implies a decoding algorithm with de-
sired complexity and performance characteristics. Complexity
measures for graphical models are, therefore, useful inasmuch
as they are indicative of the complexity of the iterative mes-
sage-passing algorithms implied by those models. Formally, a
graphical model complexity measure is simply a map from
the space of all graphical models to the set of nonnegative in-
tegers. Associated with any given graphical model complexity
measure is the following generalization of the minimal tree
complexity for that measure.

Definition 3: The -induced tree complexity of a linear code
over is the smallest integer such that there exists a

cycle-free model for with -complexity .

Results on the -induced tree complexity are clearly ger-
mane to the question of how small the complexity of optimal
SISO decoding of a given code can be.

Wiberg’s CSB and the square-root bound for tail-biting trel-
lises are statements that employ hidden variable alphabet size
as a complexity measure. Forney demonstrated in [35] that it is
insufficient to consider only hidden variable size, which can be
viewed as a generalization of trellis state complexity, and argued
that a suitable generalization of trellis branch complexity should
instead be studied. To this end, the constraint complexity of a
cycle-free graphical model was defined in [35] as the maximum
dimension of any of its component local constraint codes. Con-
straint complexity was further studied by Kashyap who intro-
duced the term treewidth to denote the tree complexity induced
by this measure [58]. While the constraint complexity measure
does indeed prevent local constraints from “hiding” complexity,
the dimension of local constraints is a somewhat unsatisfactory
proxy for decoding complexity because, unlike minimal trellis
and tree complexities, the treewidth of a code and its dual need
not be identical.

The complexity measure introduced in Section III-A was mo-
tivated by the desire to simultaneously capture hidden variable
complexity and an indicator of local constraint complexity that
is a more accurate gauge of decoding complexity than dimen-
sion alone. Specifically, the local constraint complexity mea-
sure used to define -ary graphical models constitutes an albeit
loose upper bound on trellis state complexity over the base field

. There are many conceivable alternative measures of local
constraint complexity: one could upper-bound the state com-
plexity of the local constraints or even their -induced tree
complexity for some measure (thus defining tree complexity
recursively). Given this range of possible proxies for local con-
straint decoding complexity, it is useful to consider the family
of proper graphical model complexity measures defined below.

Definition 4: A graphical model complexity measure is
said to be proper if it obeys the following four properties.

P1) A graphical model with -complexity has maximum
hidden variable alphabet index set size at most .

P2) The insertion of a degree- repetition constraint does not
increase the -complexity of a model.

P3) The removal of a local constraint does not increase the
-complexity of a model.

P4) The -induced tree complexity of the intersection of a
code defined on the index set with a single parity-
check constraint defined on some subset of the
index set is upper-bounded by

(47)

where is a constant that depends only on .

Properties P1)–P3) of proper graphical model complexity
measures reflect the complexity characteristics of the mes-
sage-passing algorithms implied by those models. For example,
hidden variable alphabet size dictates message size, while it has
been noted previously that degree- repetition constraints add
no complexity cost to decoding algorithms [35], and thus ought
not impact model complexity. Property P4) serves to bound
the growth in the -induced tree complexity of a code as it is
constructed as the successive intersection of single parity-check
constraints. Note that this property is consistent with existing
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measures for graphical model complexity. For example, the
addition of a single parity-check constraint to a code increases
its minimal trellis complexity by at most one. Furthermore,
the proof of Lemma 1 can be used to show that the addition
of a single parity-check constraint can increase the maximum
hidden variable alphabet index set size of a cycle-free graphical
model by at most one.

B. A Generalized FI-CSB

The forest-inducing cut-set bound is generalized to all proper
graphical model complexity measures in this section. The Proof
of Theorem 4 uses the fact that the local constraint redefinition
property studied in Section III-B is not confined to the com-
plexity measure introduced in Section III-A. Rather, as illus-
trated in Section B of Appendix, local constraints can be re-
defined as equivalent sets of single parity-check constraints on
the visible variable set regardless of the chosen graphical model
complexity measure.

Theorem 4: Let be a proper graphical model complexity
measure. Let be a linear code over defined on the index set

and suppose that is graphical model with -complexity
and forest-inducing cut size . The minimal -induced

tree complexity of is upper-bounded by

(48)

Proof: The result is proved by induction of . If ,
then is cycle-free and (48) reduces to . Suppose
that . As per the proof of Theorem 3, there exists
some local constraint satisfying that
can be removed from . Denote by the resulting graphical
model and by the corresponding code over . Note that prop-
erties P1)–P3) of proper complexity measures ensure that such a
local constraint exists without loss of generality and that the
complexity of the resulting graphical model is at most .
By the induction hypothesis, the -induced tree complexity of

is upper-bounded by

(49)

Because can be redefined as single parity-check con-
straints over , it follows from property P4) of proper graphical
model complexity measures that

(50)

completing the proof.

Theorem 4 implies the following generalization of Corollary
1 to arbitrary proper graphical model complexity measures.

Corollary 4: Let be a proper graphical model complexity
measure. Let be a linear code over with -induced tree
complexity . The number of cycles in any graphical
model for with -complexity is lower-bounded by

(51)

Proof: The result follows immediately from the applica-
tion of Proposition 5 in conjunction with the observation that
because , the upper bound of Theorem 4 is further
upper-bounded by .

C. The Wolf Measure for Graphical Model Complexity

The local constraint complexity measure used to define
-ary graphical models in Section III-A constitutes an upper

bound on trellis state complexity over . It was established
by Lemma 1 that for this measure and, as a result,
the FI-CSB reduces to a form similar to the square-root bound
for single-cycle models.5 The specific upper bound on trellis
state complexity considered in Section III.A, however, may
not always be the best bound to consider in the context of
message-passing decoding algorithms. Specifically, let be
a graphical model for the linear code over . Suppose
that is some local constraint in incident on the hidden
variable [i.e., ]. If is to be decoded optimally
via a trellis, then the time axis of that trellis must be ordered
in such a way that the trellis stages corresponding to
are consecutive. The upper bound on trellis state complexity
considered in Section III-A does not necessarily respect this
ordering requirement. For example, the bit reordering consid-
ered in Section C of the Appendix illustrates a violation of this
requirement for -ary hidden variables.

In light of the above discussion, a graphical complexity mea-
sure that is a slight relaxation of that studied in Sections III and
IV is examined in detail in this section. Because the relaxed
measure uses Wolf’s upper bound on trellis state complexity as
a measure of local constraint complexity [57], it is denoted the
Wolf measure.

Definition 5: A graphical model for a linear code over
has Wolf measure if:

• the alphabet index size of every hidden variable ,
satisfies ;

• every local constraint , satisfies

(52)

In the following, the term Wolf complexity is used as shorthand
for the -induced tree complexity .

By definition, the Wolf measure obeys property P1) of proper
graphical model complexity measures. Following arguments
similar to those for -ary graphical models, it is readily veri-
fied that the Wolf measure obeys properties P2) and P3) as well.
It, therefore, remains to specify how Wolf complexity grows
with the addition of a single parity-check constraint. Before
stating and proving Lemma 2 below, a useful property of the
Wolf measure is first described. Proposition 6 is an analog of
the constraint refinement studied by Forney in the context of
the constraint complexity measure [35].

Proposition 6: Let be a graphical model for the code
with Wolf measure . Without loss of generality, the maximum
degree of any local constraint in is .

5Indeed, for any proper graphical complexity measure� satisfying � � �,
the generalized FI-CSB reduces to Corollary 2 for single-cycle models.
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Fig. 3. Replacement of the local constraint � by an equivalent trellis realiza-
tion.

Proof: The result is proved explicitly for an internal
local constraint; however, the same argument can be made
for interface constraints. Let be an internal local constraint
in such that . As illustrated in Fig. 3,

can be replaced by the degree- constraints
corresponding to a trellis realization of . If ,
then the trellis realization of can be constructed via the
generator matrix method, while if , then
the parity-check matrix method may be employed (cf., [59]).
In either case, the maximum alphabet index size of the new
hidden variables is . Following Proposition 2, it
is readily verified that for all

(53)

Therefore, the replacement of in by an equivalent trellis
realization neither increases graphical model complexity in
terms of the Wolf measure, nor fundamentally alters the cyclic
topology of the model.

Lemma 2: Let and be linear codes over defined on
the index set such that comprises a -ary single parity-
check code on some subset of the index set . The Wolf
complexity of is upper-bounded by

(54)

so that .
Proof: The result is proved by explicit construction of a

cycle-free model for with Wolf measure at most as
follows. Let be a cycle-free graphical model for with Wolf
measure , wherein is the minimal connected subtree of

containing the interface constraints that involve the visible
variables in . Construct a cycle-free model for following
the same procedure as used in the proof of Lemma 1. It is clear
that the maximum hidden variable alphabet index size in is
at most . It, therefore, remains to consider the local
constraints in .

Let be a local constraint in that is updated as per the
proof of Lemma 1 and denote the resulting updated local con-
straint in by . By Proposition 6, the degree of is at most

. There are two cases to consider. First, suppose that is up-
dated via the addition of a single repetition constraint. In this
case, the degree of the vertex corresponding to in is two so
that , and

(55)

Next, suppose that is updated via the addition of a -ary single
parity-check constraint. In this case, the degree of the vertex cor-

responding to in is three so that
, and

(56)

completing the proof.

Theorem 4 and Corollary 4 can now be immediately special-
ized to the Wolf measure.

Theorem 5: Let be a graphical model for the linear code
with Wolf measure and forest-inducing cut size . The

Wolf complexity of is upper-bounded by

(57)

Corollary 5: Let be a linear code over with Wolf
complexity . The number of cycles in any graphical
model for with Wolf measure is lower-bounded by

(58)

Comparing Theorems 3 and 5, the Wolf measure and the com-
plexity measure introduced in Section III yield similar interpre-
tations of the tradeoff between cyclic topology and complexity.
Specializing Theorem 5 to single-cycle models, however, illus-
trates a difference between the two respective graphical model
complexity measures.

Corollary 6: Let be a linear code over with Wolf com-
plexity and let be the smallest integer such that there
exists a graphical model for with Wolf measure con-
taining at most a single cycle. Then

(59)

Thus, the Wolf complexity measure yields a cube-root bound
rather than a square-root bound for single-cycle models. In light
of the CSB, however, it is clear that this cube-root bound cannot
be met so that the complexity measure introduced in Section III
yields a bound that may be in some sense tighter than that af-
forded by the Wolf measure for single-cycle models.

Note finally that the proof of Lemma 2 can also be used to
show that for the constraint complexity measure [35],
[58]. Statements identical to Theorem 5 and Corollary 5 can,
therefore, be made for constraint complexity and treewidth.

VI. GRAPHICAL MODEL TRANSFORMATION

Let be a graphical model for the linear code over .
This work introduces eight basic graphical model operations
the application of which to results in a new graphical model
for .

1) The merging of two local constraints and into the
new local constraint , which satisfies

(60)

2) The splitting of a local constraint into two new local
constraints and , which satisfy

(61)
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Fig. 4. Transformation of � into �� via nine subtransformations.

Fig. 5. Transformation of the � -ary hidden variable� into �-ary hidden vari-
ables.

3) The insertion/removal of a degree- repetition constraint.
4) The insertion/removal of a trivial length , dimension

local constraint.
5) The insertion/removal of an isolated partial parity-check

constraint.
Note that some of these operations have been introduced im-
plicitly in this paper and in other publications. For example, the
proof of the local constraint involvement property of -ary
graphical models presented in Section III-B utilizes degree-
repetition constraint insertion. Local constraint merging has
been considered by a number of authors under the rubric
of clustering (e.g., [9] and [10]). This work introduces the
term merging specifically so that it can be contrasted with
its inverse operation: splitting. Detailed definitions of each
of the eight basic graphical model operations are given in
Section D of the Appendix. In this section, it is shown that these
basic operations span the entire space of graphical models for

.

Theorem 6: Let and be two graphical models for the
linear code over . Then, can be transformed into
via the application of a finite number of basic graphical model
operations.

Proof: Define the following four subtransformations,
which can be used to transform into a Tanner graph :

1) the transformation of into a -ary model ;
2) the transformation of into a (possibly) redundant gen-

eralized Tanner graph ;
3) the transformation of into a nonredundant generalized

Tanner graph ;
4) the transformation of into a Tanner graph .

Because each basic graphical model operation has an inverse,
can be transformed into by inverting each of the four

subtransformations. To prove that can be transformed into
via the application of a finite number of basic graphical model
operations, it suffices to show that each of the four sub-trans-
formations requires a finite number of operations and that the
transformation of the Tanner graph into a Tanner graph
corresponding to requires a finite number of operations. This
proof summary is illustrated in Fig. 4.

That each of the five subtransformations from to illus-
trated in Fig. 4 requires only a finite number of basic graphical
model operations is proved below.

1) : The graphical model is transformed into the
-ary model as follows. Each local constraint in is split

into the -ary single parity-check constraints that
define it. A degree- repetition constraint is then inserted into
every hidden variable with alphabet index set size and
these repetition constraints are then each split into -ary rep-
etition constraints as illustrated in Fig. 5. Each local constraint

in the resulting graphical model satisfies .
Similarly, each hidden variable in the resulting graphical
model satisfies .

2) : A (possibly redundant) generalized Tanner
graph is simply a bipartite -ary graphical model with one vertex
class corresponding to repetition constraints and one to single
parity-check constraints in which visible variables are incident
only on repetition constraints. By appropriately inserting de-
gree- repetition constraints, the -ary model can be trans-
formed into .

3) : Let the generalized Tanner graph corre-
spond to an redundant parity-check matrix

for a degree- generalized extension of with rank

(62)

A finite number of row operations can be applied to re-
sulting in a new parity-check matrix the last
rows of which are all zero. Similarly, a finite number of basic op-
erations can be applied to resulting in a generalized Tanner
graph containing trivial constraints, which
can then be removed to yield . Specifically, consider the row
operation on , which replaces a row by

(63)

where . The graphical model transformation corre-
sponding to this row operation first merges the -ary single
parity-check constraints and (which correspond to rows

and , respectively) and then splits the resulting check into
the constraints and (which correspond to rows and ,
respectively). Note that this procedure is valid because

(64)

4) : Let the degree- generalized Tanner graph
correspond to an parity-check
matrix . A degree- generalized Tanner graph is
obtained from as follows. Denote by the parity-check
matrix for the degree- generalized extension defined by ,
which is systematic in the position corresponding to the th
partial parity symbol. Because a finite number of row opera-
tions can be applied to to yield , a finite number of
local constraint merge and split operations can be applied to
to yield the corresponding generalized Tanner graph . Re-
moving the now isolated partial-parity check constraint corre-
sponding to the th partial parity symbol in yields the de-
sired degree- generalized Tanner graph . By repeat-
edly applying this procedure, all partial parity symbols can be
removed from resulting in .
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5) : Let the Tanner graphs and correspond
to the parity-check matrices and , respectively. Because

can be transformed into via a finite number of row op-
erations, can be similarly transformed into via the ap-
plication of a finite number of local constraint merge and split
operations.

VII. GRAPHICAL MODEL EXTRACTION VIA TRANSFORMATION

The set of basic model operations introduced in the previous
section enables the space of all graphical models for a given
code to be searched, thus allowing for model extraction to
be expressed as an optimization problem. The challenges of
defining extraction as optimization are twofold. First, a cost
measure on the space of graphical models must be found,
which is simultaneously meaningful in some real sense (e.g.,
highly correlated with decoding performance) and compu-
tationally tractable. Second, given that discrete optimization
problems are, in general, very hard, heuristics for extraction
must be found. In this section, heuristics are investigated for
the extraction of graphical models for binary linear block codes
from an initial Tanner graph. The cost measures considered
are functions of the short cycle structure of graphical models.
The use of such cost measures is motivated first by empirical

evidence concerning the detrimental effect of short cycles on
decoding performance (cf., [6], [10]–[16]), and second, by the
existence of an efficient algorithm for counting short cycles
in bipartite graphs [16]. Simulation results for the models
extracted via these heuristics for a number of extended BCH
codes are presented and discussed in Section VII-D.

A. A Greedy Heuristic for Tanner Graph Extraction

The Tanner graphs corresponding to many linear block codes
of practical interest necessarily contain many short cycles [29].
Suppose that any Tanner graph for a given code must have
girth at least ; an interesting problem is the extraction
of a Tanner graph for containing the smallest number of

-cycles. The extraction of such Tanner graphs is espe-
cially useful in the context of ad hoc decoding algorithms that
utilize Tanner graphs such as Jiang and Narayanan’s stochastic
shifting-based iterative decoding algorithm for cyclic codes
[60] and the random redundant iterative decoding algorithm
presented in [61].

The procedure defined by Algorithm 1 performs a greedy
search for a Tanner graph for with girth and the
smallest number of -cycles starting with an initial
Tanner graph , which corresponds to some binary
parity-check matrix . Define an -row operation as the
replacement of row in by the binary sum of rows
and . As detailed in the proof of Theorem 6, if and are
the single parity-check constraints in corresponding
to and , respectively, then an -row operation in
is equivalent to merging and to form a new constraint

and then splitting into and (where
enforces the binary sum of rows and ). Algorithm 1

iteratively finds the rows and in with corresponding
-row operation that results in the largest short cycle re-

duction in at every step. This greedy search continues
until there are no more row operations that improve the short
cycle structure of .

B. A Greedy Heuristic for Generalized
Tanner Graph Extraction

The study of generalized Tanner graphs (GTGs) was intro-
duced by Yedidia et al. in [38] to obtain sparse representations
for codes with necessarily dense Tanner graphs. A number of
authors have studied the extraction of GTGs of codes for which

with a particular focus on models that are four-
cycle-free and that correspond to generalized code extensions
of minimal degree [62], [63]. Minimal degree extensions are
sought because no information is available to the decoder about
the partial parity symbols in a generalized Tanner graph and the
introduction of too many such symbols has been observed em-
pirically to adversely affect decoding performance [63].

Generalized Tanner graph extraction algorithms proceed via
the insertion of partial parity symbols, an operation which is
most readily described as a parity-check matrix manipulation.6

6Note that partial parity insertion can also be viewed through the lens of
graphical model transformation. The insertion of a partial parity symbol pro-
ceeds via the insertion of an isolated partial parity check followed by a series of
local constraint merge and split operations.



HALFORD AND CHUGG: THE EXTRACTION AND COMPLEXITY LIMITS OF GRAPHICAL MODELS FOR LINEAR CODES 3897

Following the notation introduced in Section II-F, suppose that
a partial parity on the coordinates indexed by

(65)

is to be introduced to a GTG for corresponding to a degree-
generalized extension with parity-check matrix . A row
is first appended to with in the positions corresponding to
coordinates indexed by and in the other positions. A column
is then appended to with, in the case of binary codes, only
in the position corresponding to (note that this is readily gen-
eralized to nonbinary codes). The resulting parity-check matrix

describes a degree- generalized extension . Every
row in , which contains in all of the positions
corresponding to coordinates indexed by is then replaced by
the binary sum of and . Suppose that there are such
rows. It is readily verified that the forest-inducing cut size
of the GTG that results from this insertion is related to that of
the initial GTG, , by

(66)

Algorithm 3 performs a greedy search for a four-cycle-free
generalized Tanner graph for with the smallest number of in-
serted partial parity symbols starting with an initial Tanner graph

, which corresponds to some binary parity-check ma-
trix . Algorithm 3 iteratively finds the symbol subsets that re-
sult in the largest forest-inducing cut size reduction and then in-
troduces the partial parity symbol corresponding to one of those
subsets. At each step, Algorithm 3 uses Algorithm 2 to generate
a candidate list of partial parity symbols to insert and chooses
from that list the symbol, which reduces the most short cycles
when inserted. This greedy procedure continues until the gener-
alized Tanner graph contains no four cycles.

Algorithm 3 is closely related to the GTG extraction heuris-
tics proposed by Sankaranarayanan and Vasić [62] and Kumar
and Milenkovic [63] (henceforth referred to as the SV and KM
heuristics, respectively). It is readily shown that Algorithm 3
is guaranteed to terminate using the proof technique of [62].
The SV heuristic considers only the insertion of partial parity
symbols corresponding to coordinate index sets of size (i.e.,

). The KM heuristic considers only the insertion of par-
tial parity symbols corresponding to coordinate index sets satis-
fying . Algorithm 2, however, considers all coordinate
index sets satisfying and and then
uses (66) to evaluate which of these coordinate sets results in
the largest tree-inducing cut size reduction. Algorithm 3 is thus
able to extract GTGs corresponding to generalized extensions
of smaller degree than the SV and KM heuristics. To illustrate
this observation, the degrees of the generalized code extensions
that result when the SV, KM, and proposed (HC) heuristics are
applied to parity-check matrices for three codes are provided in
Table I. Fig. 6 compares the performance of the three extracted
GTG decoding algorithms for the BCH code to illus-
trate the efficacy of extracting GTGs corresponding to exten-
sions of smallest possible degree. Note that while the decoding
algorithm extracted using the HC heuristic outperforms those
corresponding to the SV and KM heuristics, respectively, it still

loses nearly 1 dB with respect to optimal (trellis) decoding thus
motivating the search for more sophisticated graphical models.

C. A Greedy Heuristic for -ary Model Extraction

For most codes, the decoding algorithms implied by general-
ized Tanner graphs exhibit only modest performance gains with
respect to those implied by Tanner graphs, if any, thus moti-
vating the search for more complex graphical models. Algo-
rithm 4 iteratively applies the constraint merging operation to
obtain a -ary graphical model from an initial Tanner graph

for some prescribed maximum complexity . At
each step, Algorithm 4 determines the pair of local constraints

and , which when merged reduces the most short cycles
without violating the maximum complexity constraint . To
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Fig. 6. BER performance of three GTG decoding algorithms for the ���� �����
BCH code. One hundred iterations of a flooding schedule were performed. Bi-
nary antipodal signaling over an AWGN channel is assumed.

TABLE I
GENERALIZED CODE EXTENSION DEGREES CORRESPONDING TO THE

FOUR-CYCLE-FREE GTGS OBTAINED VIA THE SV, KM, AND HC HEURISTICS

ensure that the efficient cycle counting algorithm of [16] can be
utilized, only pairs of constraints that are both internal or both
interface are merged at each step. Because the initial Tanner
graph is bipartite with vertex classes corresponding to inter-
face (repetition) and internal (single parity-check) constraints,
the graphical models that result from every such local constraint
merge operations are similarly bipartite.

D. Simulation Results

The proposed extraction heuristics were applied to two ex-
tended BCH codes with parameters and ,

Fig. 7. BER performance of different decoding algorithms for the ���������
extended BCH code. Fifty iterations of a flooding schedule were performed for
all of the suboptimal SISO decoding algorithms.

respectively. In both Figs. 7 and 8, the performance of a number
of suboptimal SISO decoding algorithms for these codes is com-
pared to algebraic hard-in–hard-out (HIHO) decoding (i.e., a
classical Berlekamp–Massey-style decoder) and optimal trellis
SISO decoding. Binary antipodal signaling over AWGN chan-
nels is assumed throughout.

Initial parity-check matrices were formed by extending
cyclic parity-check matrices for the respective and

BCH codes (with rows corresponding to cyclic
shifts of the generators polynomials of their respective duals)
[36]. These initial parity-check matrices were used as in-
puts to Algorithm 1, yielding the parity-check matrices ,
which in turn were used as inputs to Algorithm 3, yielding
four-cycle-free generalized Tanner graphs. The suboptimal
decoding algorithms implied by these graphical models are
labeled , and , respectively. The
generalized Tanner graphs extracted for the and
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Fig. 8. BER performance of different decoding algorithms for the ���� ��� ��
extended BCH code. Fifty iterations of a flooding schedule were performed for
all of the suboptimal SISO decoding algorithms.

codes correspond to degree- and degree- gen-
eralized extensions, respectively. Finally, the parity-check
matrices were used as inputs to Algorithm 4 with var-
ious values of . The number four-, six-, and eight-cycles

contained in the extracted graphical models for
the and codes are given in Tables II and
III, respectively.

The utility of Algorithm 1 is illustrated in both Figs. 7 and
8: the algorithms outperform the algorithms
by approximately 0.1 and 0.5 dB at a bit error rate (BER) of

for the and codes, respectively. For
both codes, the four-cycle-free generalized Tanner graph de-
coding algorithms outperform Tanner graph decoding by ap-
proximately 0.2 dB at a BER of . Further performance im-
provements are achieved for both codes by going beyond binary
models. Specifically, at a BER of , the suboptimal SISO
decoding algorithm implied by the extracted -ary graphical
model for the code outperforms algebraic HIHO de-
coding by approximately 1.5 dB. The minimal trellis for this
code is known to contain state variables with alphabet size at
least [39], yet the -ary suboptimal SISO decoder per-
forms only 0.7 dB worse at a BER of . At a BER of ,
the suboptimal SISO decoding algorithm implied by the ex-
tracted -ary graphical model for the code outper-
forms algebraic HIHO decoding by approximately 1.2 dB. The
minimal trellis for this code is known to contain state variables
with alphabet size at least [39]; that a -ary suboptimal
SISO decoder loses only 0.7 dB with respect to the optimal SISO
decoder at a BER of is notable.

Fig. 9 illustrates the performance of the proposed heuristics
when applied to the extended BCH code. The
graphical models corresponding to the decoding algorithms

TABLE II
SHORT CYCLE STRUCTURE OF THE INITIAL AND EXTRACTED GRAPHICAL

MODELS FOR THE ���� ����� EXTENDED BCH CODE

TABLE III
SHORT CYCLE STRUCTURE OF THE INITIAL AND EXTRACTED GRAPHICAL

MODELS FOR THE ��������� EXTENDED BCH CODE

TABLE IV
SHORT CYCLE STRUCTURE OF THE INITIAL AND EXTRACTED GRAPHICAL

MODELS FOR THE �������	� �� EXTENDED BCH CODE

illustrated in Fig. 9 were constructed in a manner analogous to
those for the and codes. Table IV illus-
trates the number of four-, six-, and eight-cycles contained in
the extracted models. Note that the decoding algorithm implied
by the -ary graphical model for this code gains less than 1 dB
with respect to algebraic decoding. The results of Fig. 9 thus
motivate the study of extraction beyond simple greedy searches
as well as those that use all of the basic graphical modeling
operations (rather than just constraint merging).

VIII. CONCLUSION AND FUTURE WORK

This work studied the space of graphical models for a given
code to lay out some of the foundations of the theory of extrac-
tive graphical modeling problems. The primary contributions of
this work were the introduction of a new bound characterizing
the tradeoff between cyclic topology and complexity in graph-
ical models for linear codes and the introduction of a set of basic
graphical model transformation operations that were shown to
span the space of all graphical models for a given code. It was
demonstrated that these operations can be used to extract novel
cyclic graphical models—and thus novel suboptimal iterative
soft-in–soft-out (SISO) decoding algorithms—for linear block
codes.

There are a number of interesting directions for future work
motivated by the statement of the FI-CSB and its generalization
to proper complexity measures. While the minimal trellis com-
plexity of linear codes is well understood, less is known
about the minimal tree complexity and characterizing those
codes for which is an open problem. The recent
work of Kashyap indicates that tools from matroid theory can
be brought to bear on this problem [64]. A study of those codes
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Fig. 9. BER performance of different decoding algorithms for the ����� ���� ��
extended BCH code. Fifty iterations of a flooding schedule were performed for
all of the suboptimal SISO decoding algorithms.

that meet or approach the FI-CSB is also an interesting direction
for future work, which may provide insight into construction
techniques for good codes with short block lengths (e.g., tens to
hundreds of bits) defined on graphs with a few cycles (e.g., 3,
6, or 10). The development of statements similar to the FI-CSB
for graphical models of more general systems (e.g., group codes,
nonlinear codes, and general factor graphs) is also interesting.

There are also a number of interesting directions for future
work motivated by the study of graphical model transfor-
mation. While the extracted graphical models presented in
Section VII-D are notable, ad hoc techniques utilizing mas-
sively redundant models and judicious message filtering
outperform the models presented in this work [60], [61]. Such
massively redundant models contain many more short cycles
than the models presented in Section VII-D indicating that
short cycle structure alone is not a sufficiently meaningful
cost measure for graphical model extraction. It is known that
redundancy can be used to remove pseudocodewords (cf., [65])
thus motivating the study of cost measures, which consider
both short cycle structure and pseudocodeword spectrum.

Finally, this work has been primarily concerned with the
extraction of graphical models for classical linear codes, which
are known to have necessarily dense Tanner graphs. A class of
extractive graphical modeling problems of particular practical
interest concern the extraction of graphical models for fixed
modern codes. The extraction of graphical models for standard
codes (e.g., the DVB-S2, IEEE 802.11n, and IEEE 802.16e
LDPC codes [66]), which imply decoding architectures that
are particularly amenable to fast hardware implementation,
is an important problem currently faced by industry. Further-
more, the extraction of graphical models that imply decoding

algorithms that reduce the floors exhibited by Tanner graph de-
coding of certain codes is also interesting. While the extraction
heuristics presented in this work are not suited to such problems
(because the Tanner graphs of modern codes tend to avoid four
cycles), a number of authors have recently investigated the
application of other graphical model transformations—e.g.,
redundant check insertion [67] and constraint merging [68]—to
the Tanner graphs for the length 2640 Margulis code with
promising results.

APPENDIX

This Appendix provides detailed definitions of both the
-ary graphical model properties described in Section III-B

and the basic graphical model operations introduced in
Section VI. The proof of Lemma 1 is also further illustrated
by example. To elucidate these properties and definitions, a
single-cycle graphical model for the extended Hamming code
is studied throughout.

A. Single-Cycle Model for the Extended Hamming Code

Fig. 10 illustrates a single-cycle graphical model (i.e., a tail-
biting trellis) for the length extended Hamming code . The
hidden variables and are binary while ,
and are -ary. All of the local constraint codes in this model
are interface constraints. Equations (67)–(70) define the local
constraint codes via generator matrices (where generates )

(67)

(68)

(69)

(70)

The graphical model for illustrated in Fig. 10 is -ary (i.e.,
): the maximum hidden variable alphabet index

set size is and all local constraints satisfy
. The behavior of this graphical model is gener-

ated by (71), shown at the bottom of the next page. The projec-
tion of onto the visible variable index set , is thus
generated by

(72)

which coincides precisely with a generator matrix for .
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Fig. 10. Tail-biting trellis graphical model for the length � extended Hamming
code � .

B. -ary Graphical Model Properties

The three properties of -ary graphical models introduced
in Section III-B are restated and discussed in detail in the fol-
lowing where it is assumed that a -ary graphical model
with behavior for a linear code over defined on an index
set is given. Note that the model for the extended Hamming
code studied in the previous extension is studied further in this
section.

1) Internal Local Constraint Involvement Property: Any
hidden variable in a -ary graphical model can be made to
be incident (on at least one end) on an internal local constraint

, which satisfies without fundamentally
altering the complexity or cyclic topology of that graphical
model.

Suppose there exists some hidden variable (involved in
the local constraints and ) that does not satisfy the local
constraint involvement property. A new hidden variable that
is a copy of is introduced to by first redefining over
and then inserting a local repetition constraint that enforces

. The insertion of and does not fundamentally
alter the complexity of because
and because degree- repetition constraints are trivial from a
decoding complexity viewpoint. Furthermore, the insertion of

and does not fundamentally alter the cyclic topology of
because no new cycles can be introduced by this procedure.

As an example, consider the binary hidden variable in
Fig. 10, which is incident on the interface constraints and

. By introducing the new binary hidden variable and bi-
nary repetition constraint , as illustrated in Fig. 11, can be
made to be incident on the internal constraint . The insertion

Fig. 11. Insertion of hidden variable � and internal local constraint � into
the tail-biting trellis for � .

of and redefines over resulting in the generator ma-
trices

(73)

Clearly, the modified local constraints and satisfy the con-
dition for inclusion in a -ary graphical model.

2) Internal Local Constraint Removal Property: The re-
moval of an internal local constraint from a -ary graphical
model results in a -ary graphical model for a new code
defined on the same index set.

The removal of the internal constraint from in order to
define the new code proceeds as follows. Each hidden vari-
able , is first disconnected from and connected
to a new degree- internal constraint , which does not impose
any constraint on the value of (because it is degree- ). The
local constraint is then removed from the resulting graphical
model yielding with behavior . The new code is
the projection of onto .

As an example, consider the removal of the internal local con-
straint from the graphical model for described above;
the resulting graphical model update is illustrated in Fig. 12.
The new codes and are length , dimension codes,
which thus impose no constraints on and , respectively. It
is readily verified that the code , which results from the re-
moval of from , has dimension and is generated by

(74)

(71)
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Fig. 12. Removal of internal local constraint � from the tail-biting trellis for
� .

Note that corresponds to all paths in the tail-biting trellis
representation of , not just those paths that begin and end in
the same state.

The removal of an internal local constraint results in the in-
troduction of new degree- local constraints. Forney de-
scribed such constraints as “useless” in [35] and they can indeed
be removed from because they impose no constraints on
the variables they involve. Specifically, for each hidden variable

, involved in the (removed) local constraint , de-
note by the other constraint involving in . The constraint

can be redefined as its projection onto . It
is readily verified that the resulting constraint satisfies the
condition for inclusion in a -ary graphical model.

Continuing with the above example, , and can
be removed from the graphical model illustrated in Fig. 12 by
redefining and with generator matrices

(75)

3) Internal Local Constraint Redefinition Property: Any in-
ternal local constraint in a -ary graphical model satisfying

can be equivalently represented by
-ary single parity-check equations over the visible variable

index set.
Let satisfy and consider a hidden

variable involved in [i.e., ] with alphabet index
set . Each of the coordinates of can be redefined as a
-ary sum of some subset of the visible variable set as follows.

Consider the behavior and corresponding code , which
result when is removed from (before is discarded). The
projection of onto , has length

(76)

and dimension

(77)

over . There exists a generator matrix for that is sys-

tematic in some size subset of the index set [36]. A
parity-check matrix that is systematic7 in the positions
corresponding to the coordinates of can thus be found for this

7Let � be a code defined on the index set � with dual � . A parity-check ma-
trix � for the code � is said to be systematic in the coordinates corresponding
to � � � if � is a systematic generator matrix for � in those coordinates.

projection; each coordinate of is defined as a -ary sum of
some subset of the visible variables by . Following this pro-
cedure, the internal local constraint is redefined over by sub-
stituting the definitions of implied by for each
into each of the -ary single parity-check equations, which
determine .

Returning to the example of the tail-biting trellis for , the
internal local constraint in Fig. 11 is redefined over the visible
variable set as follows. The projection of onto is
generated by

(78)

A valid parity-check matrix for this projection that is systematic
in the position corresponding to is

(79)

which defines the binary hidden variable as

(80)

where addition is over . A similar development defines the
binary hidden variable as

(81)

The local constraint thus can be redefined to enforce the
single parity-check equation

(82)

Finally, to illustrate the use of the -ary graphical model
properties in concert, denote by the single parity-check con-
straint enforcing (82). It is readily verified that only the first four
rows of [as defined in (74)] satisfy . It is precisely
these four rows that generate proving that

(83)

C. Illustration of Proof of Lemma 1

In the following, the proof of Lemma 1 is illustrated by up-
dating a cycle-free model for [as generated by (74)] with
the single parity-check constraint defined by (82) in order to
obtain a cycle-free graphical model for . A cycle-free binary
graphical model for is illustrated in Fig. 13.8 All hidden
variables in Fig. 13 are binary and the local constraints labeled

, and are binary single parity-check constraints

8To emphasize that the code and hidden variable labels in Fig. 13 are in no
way related to those labels used previously, the labeling of hidden variables and
local constraints begin at � and � , respectively.
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Fig. 13. Cycle-free binary graphical model for � . The minimal spanning
tree containing the interface constraints that involve � � � � � , and � , respec-
tively, is highlighted.

while the remaining local constraints are repetition codes. By
construction, it has thus been shown that

(84)

In light of (82) and (83), a -ary graphical model for can
be constructed by updating the graphical model illustrated in
Fig. 13 to enforce a single parity-check constraint on ,
and . A natural choice for the root of the minimal spanning
tree containing the interface constraints incident on these vari-
ables is . The updating of the local constraints and hidden
variables contained in this spanning tree proceeds as follows.
First, note that because , and simply enforce
equality, neither these constraints, nor the hidden variables inci-
dent on these constraints, need updating. The hidden variables

, and are updated to be -ary so that they send
downstream to the values of , and , respectively.
These hidden variable updates are accomplished by redefining
the local constraints , and ; the respective gen-
erator matrices for the redefined codes are

(85)

(86)

Finally, is updated to enforce both the original repetition
constraint on the respective first coordinates of ,
and and the additional single parity-check constraint on

, and (which correspond to the respective second

Fig. 14. Local constraint merging notation. The local constraints � and �
are common.

coordinates of , and ). The generator matrix for
the redefined is

(87)

The updated constraints all satisfy the condition for inclusion
in a -ary graphical model. Specifically, can be decomposed
into the Cartesian product of a length binary repetition code
and a length binary single parity-check code. The updated
graphical model is -ary and it has thus been shown by con-
struction that

(88)

D. Graphical Model Transformations

The eight basic graphical model operations introduced in
Section VI are discussed in detail in the following where it is
assumed that a -ary graphical model with behavior for
a linear code over defined on an index set is given.

1) Local Constraint Merging: Suppose that the two local
constraints and shown in Fig. 14 are to be merged.
Without loss of generality, assume that there is no hidden
variable incident on both and (because if there is, a
degree- repetition constraint can be inserted). The hidden
variables incident on may be partitioned into two sets

(89)

where each , is also incident on a constraint
that is adjacent to . The hidden variables incident on may
be similarly partitioned. The set of local constraints incident
on hidden variables in both and are denoted
common constraints and indexed by .

The merging of local constraints and proceeds as
follows. For each common local constraint ,
denote by the hidden variable incident on
and . Denote by the projection of
onto the two-variable index set and define a new

-ary hidden variable , which encapsulates the
possible simultaneous values of and (as constrained
by ). After defining such hidden variables for each

, a set of new hidden variables results, which



3904 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 9, SEPTEMBER 2008

Fig. 15. Merging of constraints � and � in a �-ary graphical model for � .
The resulting graphical model is �-ary.

is indexed by . The local constraints and are
then merged by replacing and by a code defined over

(90)

which is equivalent to and redefining each local con-
straint , over the appropriate hidden variables
in .

As an example, consider again the -ary cycle-free graphical
model for derived in the previous section, a portion of which
is reillustrated on the bottom left of Fig. 15, and suppose that
the local constraints and are to be merged. The local
constraints , and are defined by (85) and (87).

The hidden variables incident on are partitioned into the
sets and . Similarly,

and . The sole common
constraint is thus . The projection of onto and
has dimension and the new -ary hidden variable is de-
fined by the generator matrix

(91)

The local constraints and when defined over rather
than and , respectively, are generated by

(92)

Finally, is redefined over and generated by

(93)

Fig. 16. Splitting of constraint � into � and � .

while and are replaced by , which is equivalent to
and is generated by

(94)

Note that the graphical model that results from the merging of
and is -ary. Specifically, is an -ary hidden variable

while and .
2) Local Constraint Splitting: Local constraint splitting is

simply the inverse operation of local constraint merging. Con-
sider the local constraint illustrated in Fig. 16, which is de-
fined on the visible and hidden variables indexed by and

, respectively. Suppose that is to be split into two local
constraints and defined on the index sets
and , respectively, such that and
partition while but and

need not be disjoint. Denote by the intersec-
tion of and . Local constraint splitting proceeds as
follows. For each , make a copy of and
redefine the local constraint incident on (which is not ) over
both and . Denote by an index set for the copied
hidden variables. The local constraint is then replaced by
and such that is defined over and is
defined over where

(95)

Following this split procedure, some of the hidden variables in
and may have larger alphabets than neces-

sary. Specifically, if the dimension of the projection of
onto a variable , is smaller
than the alphabet index set size of , then can be redefined
with an alphabet index set size equal to that dimension.

The merged code in the example of the previous section
can be split into two codes: defined on , and ,
and defined on , and . The projection of onto
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Fig. 17. Insertion and removal of degree-� repetition constraints.

has dimension and can thus be replaced by the -ary
hidden variable . Similarly, the projection of onto
has dimension and can be replaced by the -ary hidden
variable .

3) Insertion/Removal of Degree- Repetition Constraints:
Suppose that is a hidden variable involved in the local con-
straints and . A degree- repetition constraint is inserted
by defining a new hidden variable as a copy of , redefining

over and defining the repetition constraint , which
enforces . Degree- repetition constraint insertion can
be similarly defined for visible variables. Conversely, suppose
that is a degree- repetition constraint incident on the hidden
variables and . Because simply enforces , it
can be removed and relabeled . Degree- repetition con-
straint removal can be similarly defined for visible variables.
The insertion and removal of degree-2 repetition constraints is
illustrated in Fig. 17(a) and (b) for hidden and visible variables,
respectively.

4) Insertion/Removal of Trivial Constraints: Trivial con-
straints are those incident on no hidden or visible variables so
that their respective block lengths and dimensions are zero.
Trivial constraints can obviously be inserted or removed from
graphical models.

5) Insertion/Removal of Isolated Partial Parity-Check Con-
straints: Suppose that are -ary repetition con-
straints (that is each repetition constraint enforces equality on
-ary variables) and let be nonzero. The in-

sertion of an isolated partial parity-check constraint is defined as
follows. Define new -ary hidden variables ,
and , and two new local constraints and such that
enforces the -ary single parity-check equation

(96)

and is a degree- constraint incident only on with dimen-
sion . Note that the new hidden variable is involved in
and (for ), while the new hidden variable
is involved in and . The new local constraint defines
the partial parity variable and is denoted isolated because
it is incident on a hidden variable which is involved in a de-
gree- , dimension local constraint (i.e., does not constrain
the value of ). Because is isolated, the graphical model that
results from its insertion is indeed a valid model for . Similarly,
any such isolated partial parity-check constraint can be removed
from a graphical model resulting in a valid model for .

As an example, Fig. 18 illustrates the insertion and removal
of an isolated partial parity-check on the binary sum of and

in a Tanner graph for corresponding to (72) [note that

Fig. 18. Insertion/removal of an isolated partial parity-check constraint on �
and � in a Tanner graph for � .

is self-dual so that the generator matrix defined in (72) is also a
valid parity-check matrix for ].
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