A New Class of Turbo-like Codes with Universally Good Performance and High-Speed Decoding

Keith M. Chugg!2, Phunsak Thiennviboon?, Georgios D. Dimou?, Paul Gray?, and Jordan Melzer!

!Communication Sciences Institute
Electrical Engineering Dept.
University of Southern California
Los Angeles, CA, 90089-2565
{chugg, jmelzer}e@usc.edu

Abstract— Modern turbo-like codes (TLCs), including concatenated
convolutional codes and low density parity check (LDPC) codes,
have been shown to approach the Shannon limit on the additive
white Gaussian noise (AWGN) channel Many design aspects remain
relatively unexplored, however, including TLC design for maximum
flexibility, very low error rate performance, and amenability to simple
or very high-speed hardware codecs. In this paper we address these
design issues by suggesting a new class of TLCs that we call
Systematic with Serially Concatenated Parity (S-SCP) codes. One
example member of this family is the Generalized (or Systematic)
Repeat Accumulate code. We describe two other members of this family
that both exhibit good performance over a wide range of block sizes,
code rates, modulation, and target error probability. One of these
provides error floor performance not previously demonstrated with
any other TLC construction and the other is shown to offer very low
complexity decoding with good performance. These two codes have
been implemented in high-speed hardware codecs and performance
curves based on these down to bit error rates below 10710 are provided.

I. INTRODUCTION

The introduction of turbo codes [1] and the rediscovery of low
density parity check (LDPC) codes [2], [3] has revolutionized
coding theory and practice. Initially demonstrated for relatively
low code rates, large block sizes, and binary modulation, these
modern or Turbo-Like Codes (TLCs) have since been shown to
be capable of near-optimal performance for nearly all practical
operational scenarios. We use the term operational scenario as a
given target block error rate (BLER) or bit error rate (BER), input
block size (k), code rate (r), and modulation format.

While good TLCs have been demonstrated for most operational
scenarios of interest, no one simple code structure has been shown
to provide good performance over the entire range of practical
interest. Also, some operational scenarios have been particularly
challenging for TLC designers. An important example is the case
of very high code rates (= > 0.9), moderate block sizes (k <
4096), and very low error probabilities (BER < 10~1%) which is
of interest in data storage and high-speed fiber links.

In this paper we describe a new class of TLCs, called System-
atic with Serially Concatenated Parity (S-SCP) codes, that provide
good performance over a wide range of operational scenarios and
are amenable to simple hardware implementation. These codes
were not designed to be the best performing codes at a single
operational scenario, but rather were designed for this universally
good performance, flexibility, and ease of implementation. This is
in contrast to much of the recent TLC code design literature which
has focused on performance optimization for a given operational
scenario. In particular, optimizing the asymptotic signal-to-noise
(SNR) threshold has received a great deal of attention (e.g., [4],

*TrellisWare Technologies, Inc.
16516 Via Esprillo, Ste. 300
San Diego, CA 92127-1708

{phunsak, gdimou, pgray}

@trellisware.com

[5], [6], [7D. However, such optimizations typically yield highly
irregular code structures, which complicate implementation and
rate-adaptation, especially for high-speed decoding.

Despite the fact that the S-SCP codes proposed have not
been highly optimized for a particular operational scenario, the
performance achieved is near that of the best point designs.
Specifically, the best performance for a particular operational
scenarios is readily estimated — providing a “theoretical bound”
on achievable performance [8], [9]. The best point designs are
typically within approximately 0.5 dB of SNR of this limit. The
simple, flexible S-SCP codes presented typically perform within
0.3 dB of the best point design over a wide range of operational
scenarios. In the case of high code rates, small block sizes, and
low error probabilities, the new code presented provides the best
performance known to the authors.

The S-SCP code construction shares some common traits
with serially concatenated convolutional codes (SCCCs)[10], hy-
brid concatenated convolutional codes (HCCCs) [11], and the
structured LDPC codes that we refer to as Generalized Repeat
Accumulate (GRA) codes [12]. In fact, an effort has been made
to combine the best traits of these constructions. The new TLC
is a systematic code with parity bits generated using a scrial
concatenation of an outer code, an interleaver and an inner
recursive parity generator as illustrated in Fig. 1(a). Note that a
key feature of this code is that the inner parity generator outputs
fewer bits than it takes in — this allows the code rate to be adjusted
casily by adjusting this ratio.

In this paper we present two example S-SCP codes that were
developed by TrellisWare Technologies in 2003 and are commer-
cially available in various hardware codecs. One code, called the
FlexiCode by TrellisWare, uses 4-state convolutional codes and
provides exceptional error floor performance [13], [14]. Another
version is the Flexible LDPC (F-LDPC) code [15] which provides
SNR threshold performance similar to that of the FlexiCode,
but exhibits error floors typical of well-designed LDPC codes
(LDPCCs) — i.e., higher floors than that of the FlexiCode, but still
acceptable for many applications. The F-LDPC code uses two-
state convolutional codes and can be interpreted as a punctured,
structured LDPC code. Using TrellisWare’s high-speed hardware
implementations of these codes allows us to present curves with
BER down to 1010,

In Section II we describe the S-SCP family further, its relation
to existing TLCs, and the special cases used for the TrellisWare
codes. The decoding operations are summarized in Section III.
A more detailed comparison of the decoding complexity of the
F-LDPC and GRA codes are considered in Section IV. The

(a) General S-SCP structure

i Q->J
b; outer T 4 Inner Parity P=kQ/J parity bits pm
code [l Generator (IPG)
kQ bits k systematic bits b;

(b) Generalized Repeat Accumulate IPG = RSPC (zig-zag)

P/S
b titi i P
i repetition| m
code 1/(1+D) P=kQ/T
=) parity bits
4
‘ Q@ wp) k systematic bits b;
. IPG= SPC-CC
(c) TrellisWare Code o PIS . S/P .
i) inner
b; outer E} ’ ‘ ([\1 ISD U |cony. P
LOHE cg2> U c code P=kQ/]
code J parity bits

//ksystematic bits ¥

Q
(2 typ.shown)

Fig. 1. The S-SCP code structure with two examples. The GRA code is shown for
J = 6 and the TW code is shown for .J = 3. The S/P and P/S are serial-parallel
and parallel to serial converters, respectively.

performance of the FlexiCode and F-LDPC codes is demonstrated
in Section V. We provide uniform interleaver analysis of a
subclass of S-SCP codes that includes the TrellisWare codes
in the Appendix. In particular, the asymptotic interleaver gain
propetties of the TrellisWare codes are shown to be the same as
that of SCCCs, providing justification of the excellent error floor
performance.

II. S-SCP CODE STRUCTURE AND PROPERTIES

The S-SCP code structure is shown in Fig. 1(a). The &
information bits {b; } are sent to the channel and parity generating
concatenated system. The outer code is rate r, = 1/ and
generates k() bits that are bit interleaved and input to the inner
parity generator (IPG). The ratio of the number of input bits to
output bits for the IPG is ; = .J. We are most interested in cases
where J > 1 so that the IPG is not an error correction code since
its mapping is not invertible. Note that the rate of the overall code

1S
k J
P= —
k+kQ/T J+Q

and this can be controlled for a given) by varying the parameter
J of the inner code. To summarize notation, there are % input bits,
kQ interleaved bits, P = k()/.J parity bits, and n = k + P total
codeword bits.

Two specific examples of S-SCP codes are the Generalized
Repeat Accumulated (GRA) [12] and TrellisWare (TW) code
structures shown in Figs. 1(b) and (c), respectively. The outer
code for the GRA code is a repetition code, typically of rate
1/4 (Q = 4). The IPG for the GRA code is a concatenation of
a single parity check (SPC) mapper and an accumulator. This
combination was called a Zig-Zag code in [16] and may also
be accurately termed a Recursive Single Parity Check (RSPC)
generator. The TW code uses a convolutional code (CC), typically
with rate r, = 1/2. The output bits of the interleaver are then
grouped into non-overlapping blocks of size .J and their modulo 2

(M

| code rate (r) | SPC size (J) for TW Codes [SPC size (J) for GRA |

12 2 4

0.6 3 6

2/3 4 8

3/4 6 12

7/8 14 28

19/20 38 76
TABLE I

VARIOUS OVERALL CODE RATES FOR THE TW AND GRA CODES WITH OUTER
CODE 7o = 1/2 AND o = 1/4 (Q = 4), RESPECTIVELY.

sum is formed and used as the input to drive a recursive rate one
convolutional code. This SPC processing has the effect of making
the IPG have a “rate” of .J > 1. Note that for these typical values
of) and a given input block size and code rate, the GRA code
will have an interleaver size and .J value that are twice as large
as those of the TW code. Table I provides representative code
rates achieved with integer J for the GRA and TW codes.

One of the primary advantages of the S-SCP code structure is
the ability to achieve excellent error floor performance, even at
high code rates. This can be explained in terms of the interleaver
gain properties that result from the uniform interleaver analysis
methods developed in [17], [18], [10], [11]. These methods sug-
gest that the BER () and BLER (F,,,) will vary asymptotically
with block size as

By i e By~ N me 11 Q)

where N is the interleaver size and ayn.y iS the maximum
exponent of N in an asymptotic union bound approximation [17],
[18], [10], [11]. If the BER (BLER) decays with N, then the code
is said to achieve interleaver gain in BER (BLER). For the S-SCP
structure with IPG comprising a SPC followed by a recursive CC,
we show in the Appendix that

LMJ 3)

2

where d, min 1s the minimum distance of the outer code, assumed
to be at least 2. Note that if do min > 3, then cpmax < —2 and
the S-SCP code will achieve interleaver gain in both BER and
BLER.

Note that SCCCs, known for their excellent error floor prop-
erties, have the same maximum exponent of N as given (3).
Designing low complexity SCCCs with high code rate is difficult,
however, since for a SCCC the overall code rate is the product
of the inner and outer code rates. One can select a recursive, rate
one inner code and the overall SCCC code rate is then equal
to the outer code rate r,. For code rates of 7/8 and larger, it
is difficult to achieve d, min > 3 with a four state outer code.
Outer convolutional codes with more than four states can be used
at a complexity cost. This complexity can be alleviated to some
degree by decoding this outer code over the graph of the dual
code [19]. This approach, however, does not yield a single simple
code structure that can be adapted easily over all rates and block
sizes. To achieve reasonably good rate flexibility for SCCCs with
4-state constituent codes, one must use constituent codes with
a large number of parallel state transitions and complex, rate-
specific puncture patterns. The S-SCP code structure avoids this

Qmax — —

problem by using an IPG with rate above one. This enables the
use of a lower outer code rate so that the minimum distance of
3 or larger can be achieved with low complexity.

The TW F-LDPC code uses a two state outer CC with generator
polynomial G1(D) = G3(D) = 1+ D and the same IPG as
the GRA - i.e, the RSPC generator. Note that this outer code
and the QQ = 4 repetition code both respond to a weight one
input with a weight four output. In fact, the performance of the
F-LDPC and GRA (with @ = 4) arc nearly identical. The F-
LDPC code and GRA codes, which may both be interpreted
as structured LDPCCs, are compared in detail in Section IV.
The F-LDPC code has good performance for all block sizes
and for rates ranging from r = 1/2 to 19/20. The flooring
performance of the F-LDPC code is good — e.g., for £ = 1024 and
r =7/8, the F-LDPC and GRA codes will begin to hit an error
flare at a BER of approximately 10~7. This is impressive floor
performance considering the low complexity of the constituent
codes and would be very difficult to achieve with a SCCC
based on 2-state codes. While this performance is acceptable
for many applications, operational scenarios calling for lower
error rates at these high code rates motivate the TW FlexiCode
design, which uses 4-state convolutional codes for the outer code
and IPG. Specifically, the outer code of the FlexiCode is non-
recursive with generator selected as a mixture of G1(D) = 1,
Go2(D) =1+ D+ D? and G3(D) =1+ D? which is achieved
by puncturing a the corresponding rate 1/3 code to rate 1/2 using
puncture pattern of length 8 outer trellis stages (i.e., 24 input to
16 output bits). The inner convolutional code is a rate 1 recursive
code and uses the parity generator (1 + D?)/(1+ D + D?) for
overall rate 1/2, and (14 D) /(14 D+ D?) for all other code rates.
As will be demonstrated, using 4-state constituent codes improves
the floor performance significantly relative to the F-LDPC and
GRA codes. In the & = 1024, » = 7/8 example, the FlexiCode
construction achieves a BER of 10~ !° without significant flooring
effects.

A. Other S-SCP Codes

Other S-SCP code designs are possible and may perform
slightly better for specific operating scenarios. Noting that the
role of the SPC is to adjust the rate of the IPG, a natural case to
consider is using a puncture pattern on the outputs of a rate one
recursive code instead of the SPC at its input. This is possible, and
although the proof is not included for brevity, such codes have the
same asymptotic interleaver gain as described above. For the case
of the 1/(1+ D) inner convolutional code (i.e., an accumulator),
the SPC and puncturing are equivalent (see Section I'V). For the
TW FlexiCode case, the SPC and puncturing are different. Ping
was the first to suggest using a SPC to alter rate in place of
puncturing [20] and also noted that the potential for complexity
reduction. Considering the FlexiCode, there are 2k inputs to the
IPG, but only P = 2k/.J inputs passed from the SPC to the
4-state convolutional code. As will be described in Section III,
this means that the iterative decoder need only run the forward-
backward algorithm (FBA) (e.g., [21], [22]) on 2k/.J 4-state trellis
sections and 2k 2-state trellis sections. If no SPC is used and
the 4-state inner code is punctured, 2% 4-state trellis sections are
processed. Thus, for .JJ > 2 using a SPC in place of puncturing can

substantially reduce decoder complexity. Furthermore, using the
SPC instead of puncturing for the 4-state code typically provides
better performance.

Another possible variation is to use irregular designs based on
mixing different outer code polynomials. This is achieved to some
degree in the FlexiCode design by sclecting the outer puncture
pattern. Further improvements in threshold can be achieved,
however, by using an outer code with rate less than 1/2 based on
mixtures of generating polynomials. For example, the F-LDPC
code threshold performance can be improved with the following
modification. Use an outer code with generators G1(D) = 1
and Go(D) = 1+ D; repeat the first output bit of this code
21 times and the second Qo times (the F-LDPC code uses
@1 = 0 and Q9 = 2). Time-varying values of ¢); and > can
be optimized, setting J to the corresponding value required to
fix the overall rate, using standard methods of SNR threshold
optimization [4], [5]. The best distribution on the values of
@)1 and Q2 will change with code rate, however, and typically
the resulting interleaver will have size larger than 2k, which
results in larger decoder implementation complexity. A similar
construction, termed Accumulate Repeat Accumulate codes, have
been developed for » = 1/2 in [23], [24] with G1(D) = 1 and
Go(D) = 1/(1 + D). Similar optimizations for the GRA code
have been performed with similar advantages and drawbacks [12].

Finally, we note that the S-SCP code structure is similar to
that of the Hybrid Concatenated Convolutional Codes (HCCCs)
described in [11] with a parallel branch comprising just the
systematic bits. The difference between the S-SCP code structure
shown in Fig. 1 and the HCCCs discussed in [11] is that the
former uses an inner parity generator that is not a code (i.e., not
invertible) while the HCCCs use an inner code. While this may
seem to be a minor difference, as discussed above, this is the key
property allowing the S-SCP codes to achieve high code rates and
maintain interleaver gain which the HCCCs cannot achieve.

III. ITERATIVE DECODING OF THE S-SCP CODES

The S-SCP codes are decoded iteratively using the standard
rules of iterative decoding (e.g., see [25], [26], [27]. [22]). This
may be viewed either as iterative message-passing on a graphical
model of the code containing cycles or, equivalently, as a set of
soft-in/soft-out (SISO) decoder modules updating and exchanging
soft-decision messages. We focus on the TW code structure here
and discuss some of the details of the decoding in this section.

The iterative decoder for the TW code structure of Fig. 1(c)
is shown in Fig. 2(a). The iterative decoder accepts soft-decision
metrics from the channel. We consider an additive white Gaussian
noise (AWGN) channel with model,

Zt =V Ec(_l)zt + wy,

where n is the output block size, =, is the sequence of coded
bits (ie, {x:} = {b;} U {pn}) and w; is a realization of
AWGN with variance Ny/2. Therefore the incoming channel
messages (or metrics) for the channel bits are MI[z,] = 4@2@,
which are the bit-level negative log-likelihood ratios (NLLRS).
The channel metrics corresponding to the systematic bits are input
to the outer code SISO. The activation schedule for the iterative

decoder in Fig. 2(a) is: outer-SISO, interleaver, SPC-SISO inward,

t=0,1,...n @)

IPG SISO

channel metrics
for parity bits

channel metrics for
systematic bits

SPC

()

Fig. 2. The iterative decoder for the TW code structure of Fig. 1(c) is shown
in (a) with the corresponding graphical model in (b) (shown for J = 3). The
constraints marked with 4 are even parity constraints; those marked with T, and
T; are the outer and inner CC trellis section constraints, respectively.

inner SISO, SPC-SISO outward, and deinterleaver; which defines
one iteration. The inner and outer SISOs can be based on the
standard forward-backward algorithm (FBA) (e.g., [21], [22]).
The SPC-SISO is discussed in detail below. At each activation
of the outer SISO, hard decisions on the information bits can
be obtained by adding the systematic channel metrics and the
extrinsic messages on b; provided by the outer SISO —i.e., b; =1
is MI[b;] + MO[b;] < 0 and b; = 0, otherwise.

The iterative decoding described above is equivalent to running
the standard message-passing rules on the graphical model of the
TW code structure shown in Fig. 2(b).! The message activation
schedule is left and right on the bottom subgraph (outer SISO
FBA), up through the interleaver permutation, up through the SPC
nodes (SPC-SISO inward), left and right on the top subgraph
(inner SISO FBA), downward through the SPC nodes (SPC-SISO
outward), and through the deinterleaver permutation.

When processing messages in the negative-log (metric) domain
as described above, one can use either min-sum processing or
min*-sum processing where min*(x,y) = min(z,y) — In[l +
exp(—|z—y|] (e.g., [22]). The SPC-SISO processing is as follows.
Consider one SPC block that enforces the constraint

ag+ay+ag---+ay=0 (%)

and takes in inputs messages for each’ denoted by MI[a;| for
+=0,1,...J. The outgoing messages are

MOl[a;] = g(Mlag], ... MI[a;—1], MI[a;+1], ... MI[as]) (6)

IThis convention for graphical models is similar to the normal graphs described
in [28] and the explicit index diagrams in [22]. In particular, variables are
represented as edges and constraints as vertices. Equality constraints are shown
as circles and the message updates are the same as the “variable nodes™ in other
graphical modeling conventions.

2 All messages for binary variables are assumed to be in normalized or NLLR
form. Specifically, a positive (negative) metric indicates a belief that the variable
is a 0 (1) and larger magnitude indicates higher confidence in this belief.

Fig. 3. An alternative graphical model for the IPG of Fig. 2(b) that illustrates how
the SPC-SISO processing is equivalent to the FBA running on short accumulator
trellises (shown for J = 3).

and the function g(z,y) is defined by

g(z,y) = min(z,y) — min(0, z + y) (7a)
= min(|z[, [y|)sign(z)sign(y) (min-sum) (7b)
g9(z,y) = min*(z,y) —min*(0,z +y) (7c)
= min(|z[, y|)sign(z)sign(y)
Lioxp(zle —ol | e qumy (70)

— 1n
1+ exp(—|z +yl)

and in both cases g(.) can be computed for multiple arguments
using g(z,y,2) = g(g(z,y),z). Thus, the inward SPC-SISO
processing is computing g(-) of for blocks of J messages read
from interleaver to produce the message on v,,. The outward
SPC-SISO processing task is to compute g(-) for the message on
vy, produced by the inner SISO and the J — 1 messages for every
subset of size JJ—1 of the d; variables involved in the SPC block.
This SPC processing can also be interpreted using that fact that
a SPC constraint is equivalent to an accumulator encoder started
and terminated in the zero state. For example, consider the graph
in Fig. 3 that is an alternative representation of the IPG shown
in Fig. 2(b). This may be viewed as following directly from the
encoding constraint

U = g + dmir1 + dmira -+ dmirs—a ®

and the fact that v,,, is the input to the inner convolutional code.
With this model, it is clear that the SPC processing can be viewed
as running an FBA-based SISO on an accumulator trellis. In
particular, messages are passed upward along the SPC model in
Fig. 3 (the forward recursion of the FBA) and the final state
metric for each SPC block becomes part of the trellis transition
metrics for the inner code SISO. Then output messages from the
inner code SISO are used to initialize the backward recursion of
the FBA for each SPC block. Note that this interpretation makes
it clear that the SISO processing corresponding to the IPG is
equivalent to running the FBA on 2k accumulator trellis sections
and P = 2k/.J inner code trellis sections.

IV. CoMPARISON OF THE F-LDPC AND GRA CODES

For a more detailed comparison of the F-LDPC and GRA
codes, we first show how each may be decoded using the same
basic operations. We then show that these may be viewed as
structured LDPCCs to compare their decoding complexity with
that of other LDPC code constructions. First, the graphical models

Fig. 4. Graphical models for (a) the GRA code and (b) the F-LDPC code.

for the GRA and F-LDPC codes are illustrated in Fig. 4. Note
that the graphical model of the F-LDPC code is a special case of
that in Fig. 2(b) which accounts for the specific code generators.
Specifically, since

C; = Cgl) = = by + b1)]

4

the state of the outer code is a visible variable — i.e., s{ = b;_1.
Similarly, the state of the accumulator is s}, = p,,—1 which is
also a visible variable. The RSPC encoding constraint is

Pm = Pm—1FTUm = Pt +dms+dmict - +dmirr—1 (10)

The relation in (10) implies that a RSPC generator is equivalent
to regular (J — 1) of J puncturing at the output of a standard
accumulator (i.e., with no SPC pre-processing). This also follows
from inspection of Fig. 3 when the inner convolutional code is an
accumulator. As a result, the IPG-SISO can be implemented by
running a single accumulator-SISO over one long block of size
kQ.

The FBA-based SISO processing for an accumulator is very
simple to describe in terms of additions and the g-functions in
(7). Consider an accumulator with input bits a; and output bits
z; —ie, x; =x;_1 +a; for j =0,... P —1. Denote the input
messages for these variables as Ml[a,;] and MI[z;], respectively.

The FBA message updates can be shown to be

Fjii1 = g(F;, Ml[a;]) + MI[z] (11a)
By = g(Byy1 + Mlfe, Mllag]) (11b)
MOla;] = g(F;,Bj11 + Ml[z;]) (11c)
MOlz;] = Fj41 +Bjy1 — Mlfz;] (11d)

where I; and B; are the forward and backward state metrics for
state s; = x;_1, and MO[-] denotes the outgoing messages. The
values of Fy and Bp are initialized according to the accumulator
initialization/termination information available.

It is notable that each trellis stage in an accumulator trellis
requires 3 ¢(-) operations and 4 add operations (i.e., the sum in
(11b) and (11c) are the same). If there is no input soft information
on z; (MI[z;] = 0 for all j) and no output information on z;
is to be computed, then the number of g(-) operations is still 3,
but all of the add operations are eliminated. This corresponds to
the processing in (6) which is also the check node processing in
an LDPC decoder. If there is soft input information on x;, but
no corresponding soft output information is required, then the
number of add operations per trellis section is reduced from 4 to
2.

We now describe how the accumulator SISO processing in
(11) can be used to implement the GRA and F-LDPC decoding.
First, consider the RSPC generator that comprises the SPC and
accumulator used in both codes. Using (10) we can establish the
correspondence of d; to a; in (11) and p,, to z,,; with all other
x; variables punctured. It follows that the Ml[a;] in (11) are the
messages on d; read from the interleaver, and MI[z;] is set to the
channel metric for p,,, when j = m.J and zero for other values
of j. Note that MO[z;] is not required.

Next consider the outer code SISO for the F-LDPC. Since the
g(D) = 1 + D encoder is the inverse mapping of the accu-
mulator, the corresponding SISO operation can be implemented
with the accumulator SISO with the roles of input and output
variables reversed. In particular, it is straightforward to show
that associating a; and z; from (11) with ¢; and b; from (9),
the corresponding ¢(D) = 1 + D FBA-SISO is implemented.
Note that prior to running this FBA-based SISO, the metrics
for ¢; must be computed as the sum of the messages for c§1>
and c§2> coming from the deinterleaver. Similarly, computing the
updated messages for c§1> and c§2> to be passed to the IPG-SISO
requires more additions corresponding to the equality constraint
in Fig. 4(b).

The outer SISO processing for the GRA decoder corresponds
to activating each equality constraint in Fig. 4(a). For () = 4, this
requires 8 adds per node using the standard equality constraint
(variable) node processing.

In summary, the F-LDPC decoder must process k trellis
sections for the outer SISO and 2k sections for the IPG, or
3k total accumulator-equivalent trellis sections per iteration. The
GRA decoder must process k() trellis sections (all for the IPG).
Since, for similar performance, () = 4 is required, the GRA
decoder performs approximately 33% more g(-) operations than
the corresponding F-LDPC decoder. The number of additions
required for each GRA decoder iteration is 8% for the outer SISO
processing and 2P for the IPG. The F-LDPC decoder requires

6k adds for the outer SISO and 2P adds for the IPG SISO
processing. Thus, the GRA decoder requires 2k more adds per
iteration, which is 25% more than the F-LDPC decoder for rates
of 1/2 and above.

A. High-Level Hardware Architecture Discussion

These high-level computation measures do translate into hard-
ware complexity, but the F-LDPC code also compares favorably
to the GRA code for other factors affecting implementation. To
consider these, let us characterize a hardware decoder imple-
mentation in terms of the rate of decoded (information) bits per
logic clock frequency (bps/logic-Hz). If no significant parallel
processing is done, then a trellis stage can be processed every
clock cycle. For the F-LDPC, this means that cach iteration
will take approximately 3% clock cycles. If I iterations are run,
the throughput is roughly 1/(37) bps/logic-Hz. For example, for
1 = 10 iterations, a throughput of 1/30 bps/logic-Hz can be
obtained implying that a design with a 100 MHz clock will
provide roughly 3.3 Mbps. The corresponding GRA decoder
(@ = 4) will achieve a throughput of about 1/(47) bps/Hz, or
2.5 Mbps in the same example scenario. In both of these low-
speed decoders, however, the memory circuitrty will dominate
hardware area for even moderate block sizes (e.g., & = 2048).
A segment-based architecture [29], [30], [31] for the FBA-based
SISO implementation reduces the memory requirements of the
forward and backward state metrics to a negligible amount and
memory is dominated by storing the channel metrics and the
messages passed through the interleaver/deinterleaver. Since the
interleave size is 2k and 4k for the F-LDPC and GRA codes,
respectively, the memory savings are substantial. Assuming the
lowest rate supported is » = 1/2, there are 2k channels messages
and one such block should be buffered during decoding. This
means that there are 4% channel metrics to store so that a total
of roughly 8% = 4k + 4k metrics are to be stored for the
GRA decoder while the F-LDPC decoder must store roughly
6k = 2k + 4k metrics. Thus, for rates of 1/2 and above, the
GRA decoder would require approximately 33% more memory
resources, with this figure approaching 50% as the code rate
increases.

For a high-speed decoder, parallel processing architectures
must be employed to improve throughput. If D degrees of
parallelism are used, then the throughput in bps/logic-Hz will
increase roughly by this same proportion with the F-LDPC design
maintaining the same proportional advantage. As an example of
the state of the art, the TW F-LDPC has been implemented in a
Xilinx XC2V8000 FPGA and achieves 300 Mbps with a 100 MHz
clock, or 3 bps/logic-Hz, with 10 iterations. As D becomes large
to achieve such speeds, memory design and routing becomes a
primary challenge. Qualitatively, regularly structured code designs
simplify this task.

As an example of the effects of irregular designs for SNR
threshold optimization, consider an optimized » = 1/2 irregular
GRA from [12, Table 3]. This code has a mixture of outer
repetition code @ values from {3, 11,12, 46,48} with an average
of Q = 19.75. This provides an improvement of approximately
0.5 dB in SNR threshold as the block size tends toward infinity.
For a block size of £ = 1000, the gain is approximately 0.25 dB.

This comes at a cost of approximately a factor of 19.74/4 ~ 5 in
memory, computational complexity, and throughput relative to the
@ = 4 GRA decoder. Relative to the F-LDPC decoder, this is a
factor 19.74/3 = 6.6. Furthermore, the irregular repetition pattern
complicates memory access for high-speed implementations and
will vary for different code rates. This motivates our approach of
designing a simple, regularly structured code that achieves good
performance and is amenable to simple/fast hardware implemen-
tation.

B. GRA and F-LDPC Codes as LDPCCs

We conclude this section by demonstrating that both the GRA
and F-LDPC codes can be interpreted as LDPCCs. In fact,
virtually any code that is constructed using only binary variables,
equality constraints, SPC constraints, and permutations can be
viewed as a LDPCC. The GRA code is equivalent to the semi-
random LDPC in [32], the lincar-time encodeable LDPC in [33],
and the stair-case structured LDPC in [34]. With a block diagonal
constraint on the interleaver, this is also the parallel concatenated
zig-zag code in [16]. To see this note that (10) implies that

P\ _
sim (D)o (1)
100 - 0
110 0
s=|0 11 01 (PxP) (13)
: 0
000 1 1

and Hp is a (k x k&) matrix with column weight ¢) and row weight
J. The vectors p (Px1) and b (kx 1) are vectors of the parity and
systematic code bits, respectively. This can be seen graphically
from Fig. 4(a) by pulling all variable (equality constraint) nodes
to the bottom of the graph.

A similar approach can be used to show that the F-LDPC code
is an LDPC with some variables punctured (or hidden) from the
channel. Specifically, the graph of Fig. 4(b) can be arranged so
that all variable (equality constraint) nodes are at the bottom of
the graph and all check nodes (SPC constraints) are at the top.
Note that the variable nodes are either b;, ¢;, or p,,. Of these,
only ¢; are not visible to the channel. It is straightforward to write
a check equation of the form

| &
} ¢
b

where c is the (k x 1) vector of bits ¢;, S is the dual-diagonal
matrix in (13), G is (kx k) and also dual-diagonal, and the matrix
'V accounts for the repetition by 2 at the outer code, interleaving
and the SPC (see [15] for details).

Thus, both the GRA code and the F-LDPC code could be
decoded using the variable-check node flooding schedule usually
assumed in the LDPC literature. This is not desirable, however,
for cither hardware of software implementation. For software,
this converges at a much slower rate than the decoder schedule
previously described. For hardware, this flooding schedule is
impractical for memory design and routing. Expressing the codes
in this form does allow for high-level comparisons with LDPCCs

=0 (14)

S vV o0
0 I G

in the literature. In particular, each check message update is
equivalent to running the accumulator FBA-SISO over a number
of trellis sections equal to the degree of the check. Thus, the
number of accumulator trellis sections processed by for each
iteration is roughly the number of edges in the LDPC code
Tanner graph. For a regular (3,6) » = 1/2 LDPC code, this
is 6k trellis sections. For highly optimized irregular LDPCCs,
this is considerably higher — e.g, the LDPC code with best
SNR threshold in [7, Table 1] has approximately 13k trellis
sections to process per iteration. In either case, the GRA code
and, in particular, the F-LDPC code compare favorably in terms
of complexity — e.g., the complexity of the regular and irregular
LDPC decoders are approximately 100% and 433% greater than
that of the F-LDPC decoder for each iteration.

V. PERFORMANCE CHARACTERISTICS

In this section we first briefly describe the theoretical lim-
its for modulation-constrained, finite block size, finite BLER
performance that serves as a guideline for good modern code
performance. We then present representative performance results
for TW’s FlexiCode and F-LDPC codes. Further performance
results for these codes are available in [14] and [15], respectively,
and available upon request.

A. Theoretical Guideline for Good TLC Performance

Channel capacity is the ultimate measure of achievable perfor-
mance. For the modulation constrained, AWGN channel, capacity
is often well approximated by the upper bound of the mutual
information rate with a uniform a-priori distribution over the
signal set. This is the so-called Symmetric Information Rate (SIR)
and is readily computed as a function of the SNR [35], [9]. For a
given rate (spectral efficiency) this implies a minimum required
value of £, /Ny to operate, where E is the energy per modulation

symbol. This value, denoted by (f,o - can be interpreted
as the minimum value of F, /Ny required to achieve zero BLER

with infinite block size at the specified rate and modulation.

To account for the finite block size and non-zero error rate,
either the random coding bound (RCB) or the sphere-packing
bound (SPB) for the constellation constrained AWGN channel
can be considered. These are upper and lower bounds on the
performance of the best finite block-length signaling scheme,
respectively. The RCB can be computed for the constellation
constrained channel with some effort [9], but computation of the
SPB is difficult. A SNR penalty can be applied to the minimum
SNR implied by capacity to approximate the minimum /Ny
required by the SPB for the modulation unconstrained AWGN
channel [8]. It has also been be found empirically that applying
this same penalty term to (Es/No)minsir for the modulation
constrained channel yields a finite block-size performance bound
in close agreement with the RCB over a wide range of operational
scenarios [9]. Thus, a good performance guideline for finite
block-size, finite BLER, modulation constrained channels is

v) ()
— == + AgB (152)
(NO min, finite,dB No min,SIR,dB
_ /205 (27 41) [101og,(1/ Few)]
Adp = \/ k1In(10) (27 — 1) (156)

0.1 N T T
0.01 - E\SEEE

0001 | WWW%VV
S

0.0001

T
rate 172 —o—
rate 2/3

rate 3/4 —5—
rate 7/8
rate 1920 ——

1e-05 -

1e-06 -

BER

1e-07 -

1e-08 \
4
16-09 - g

1e-10 -

1e-11

1 2 3 4 5 6 7 8

Eb/No (dB)

Fig. 5. TW FlexiCode ASIC performance for & = 1024 and various rates.

where £ is the input block size, » is the operating spectral
efficiency in bits per 2-dimensional channel use, and P,,, is the
operating BLER.

A survey of the literature reveals that the best TLCs designed
for a single operational scenario operate within 0.5 dB of F, /Ny
of this guideline. The TW codes operate approximately 1 dB or
closer to this guideline over a large range of operational scenarios
as illustrated in the following.

B. FlexiCode Performance Examples

Performance for the FlexiCode is based on measurements
performed on the FlexiCode ASIC codec. This code supports
input block sizes from 128 bits to 16384 bits in 32 bit incre-
ments, eight code rates from rate 1/2 to rate 19/20 of the form
J/(J + 2) for integer J, and provides internal support for the
following modulation schemes: binary phase shift keying (BPSK),
quadrature phase shift keying (QPSK), eight phase shift keying
(8PSK), sixteen quadrature amplitude modulation (16QAM), and
sixteen amplitude-phase shift keying (16APSK).

Performance of the FlexiCode ASIC is shown in Figs. 5 and
6 for £k = 1024 and k& = 4096, respectively. The ability of this
S-SCP code construction to achieve very low BER performance,
even with small block size and high code rate is unique. These
results were generated using a 125 MHz logic clock and and a
throughput of 54 Mbps (information bits) or 0.432 bps/logic-Hz.
Due to pipeline overhead, the number of iterations performed is a
function of the block size and, to a lesser extent, the code rate. For
k = 1024, this corresponds to 17, 16, 16, 15, and 12 iterations for
rates 1/2, 2/3, 3/4, 7/8, and 19/20. The same values for & = 4096
are 28, 28, 28, 26, and 26. For k£ = 16384, all rates can provide
31 iterations at this throughput. The decoding converges more
quickly for higher code rates, so even the £ = 1024 results contain
most attainable iteration gain, with the rate 1/2 case still having
a potential for an additional 0.1 dB gain with further iteration.
Decreasing the number of iterations proportionally to achieve a
throughput of 155 Mbps at the same clock rate (i.e., 1.25 bps/log-
Hz) causes approximately 0.7 dB in performance degradation for
k = 1024 and approximately 0.25 dB degradation for & = 4096.

0.1

T T
rate 12 —o—
rate 23

0.01 &
rate 3/4 —5—

0.001
0.0001

1e-05

BER

1e-06

1e-07

1e-08

1e-09

1e-10

1 15 2 25 3 35 4 45 5 55 6

Eb/No (dB)

Fig. 6. TW FlexiCode ASIC performance for & = 4096 and various rates.
45
4 614K HE
35
T
é 3
o
S 25
&
g
z 2
°
&
1.5 /
1
05
0 2 4 6 8 10 12 14 16 18
Required Es/No for BLER=1e-7 (dB)
Fig. 7. TW FlexiCode ASIC performance for various block size (k), rates and

modulation and BLER of 10~ 7.

Fig. 7 compares the FlexiCode ASIC performance at 54 Mbps
to the theoretical (approximate) bound given in (15) for & of
16384, 4096, and 1024. Note that over a wide range of rates
and modulations, the performance is within 0.5 to 1 dB of the
finite block size bound for & = 16384. This is impressive when
considering that the best point design for an one of these results
is typically 0.5 dB from the bound and that these results include
all hardware implementation effects. Also, note that the BLER of
10~7 is quite low in comparison to many results in the literature.
The performance of the smaller block sizes is further than 1 dB
from the theoretical guideline. For these smaller block sizes, code
rates, and very low BLER target, these are the best results known
to the authors.?

C. F-LDPC Code Performance Examples

As mentioned previously, the F-LDPC code performs similarly
to the FlexiCode without the extraordinarily low error floors. This

31t is difficult to obtain such results without a high-speed hardware codec.

TrellisWare F-LDPC AWGN Performance - 8000 information bits 32 Iterations

BPSK -+
QPSK x
s | 16QAM ¥
640AM ©
256QAM m
BPSK Bound ------- P H
5 7 QPSK Bound -~ i} >
2 16QAM Bound -------- f
g- 64QAM Bound - —--- 5
& | 256QAM Bound
5 log2(1 +SNR) -------
2
£ s
7
s
5 4
i
=
3 3
=
b=
2
@
a 2
1 n
ettt Ul
0
5 0 5 10 i - - !

Required Es/No for 1% BLER (dB)

Fig. 8. TW F-LDPC performance (software simulation) for £ = 8000, BLER=
10—2 and various modulations as compared to the theoretical bounds (including
the modulation-unconstrained AWGN capacity).

performance can be well-approximated by computing the bound
in (15) and adding a 1 dB margin. To illustrate this we consider
a system with k& = 8000 and a target BLER of 0.01. Further
refinement in the F-LDPC code rate can be achieved by further
puncturing the parity bits. We consider a regular puncture pattern
of length 16 and the fraction of parity bits maintained from each
block of 16 parity bits is ¢ = 16/16,15/16, ...8/16. This yields
an overall rate of »r = J/(J = 2¢) and provides 45 code rates
from rate 1/2 to 32/33. The coded bits (systematic and parity)
are shuffled via a simple relative prime permutation and Gray-
mapped onto quadrature amplitude modulation constellations with
size M = 2, 4, 16, 64, and 256. In the decoding process, the
noisy matched-filter samples are processed to provide the F-
LDPC decoder with binary NLLRs and no further modulation
processing is performed. The results are shown in Fig. 8 where
each point represents a simulation result for a different rate
and the theoretical performance limits are also shown. The F-
LDPC code obviously provides sufficient rate flexibility with good
performance at this block size. The TW hardware cores for the
F-LDPC code have similar block size flexibility to that of the
FlexiCode ASIC and provide qualitatively similar performance
to that shown in Fig. 8 for other block sizes.

VI. CONCLUSION

The Systematic with Serial Concatenated Parity code con-
struction described has several good practical and theoretical
properties. This family of TLCs which includes the Generalized
(or Systematic) Repeat Accumulate code, and two example con-
structions that have been built in hardware to target various points
on the speed-complexity trade-off. The TW FlexiCode provides
unique error floor performance despite being based on simple
four state convolutional codes. A key idea of this construction
is the use of an inner parity generator that is the combination
of a single parity check sum, followed by a rate one recursive
convolutional code. We have shown that such constructions offer
the same desirable asymptotic interleaver gain properties as

Serially Concatenated Convolutional Codes. The F-LDPC code
is based on the same construction with two-state convolutional
codes. It was demonstrated how this simple and flexible code
has significant advantages in terms of complexity relative to
the GRA code, which itself is an excellent, flexible modern
code design. Specifically, the F-LDPC code provides performance
within approximately 0.3 dB of the best known irregular LDPCC
designs at the block rates and number of iterations considered
for practical systems. This is achieved with complexity that is
roughly 5 times less than that of these highly optimized point
designs. We also described how one can further optimize these
codes for particular operational scenario by decreasing the outer
code rate and adding irregularity to the code constraints. Such
optimization is expected to offer similar performance advantages
(i.e., 0.3 dB) at the expense of additional complexity.

VII. APPENDIX: DESIGN RULES FOR S-SCP CODES

Uniform interleaver analysis, as developed in [17], [18], [10],
[11] is applied to the TW code construction in Fig. 1(c) —i.e, a
S-SCP code with IPG comprising a SPC and CC combination.
For a fixed length this can be viewed as a block code, and the

union bound on the BER is
E
(2r(w + h)ﬁ) (16)

N &
L2 %Agfh

h=hmin w=1
where N is the interleaver size and Aw % is the input-output
weight coefficent IOWC) of the parity branch of the of the S-
SCP code. Note that i, is the minimum output weight of the
parity branch only.

The IOWC is dependent on the exact encoders and interleavers
used, but asymptotic trends can be determined using the abstract
uniform interleaver which maps an input word of Weight w into
all its distinct (%) permutations with probabihty 1/(M), where
(1) is the binomial coefficient: (1) = =iy

Introducing s as the output weight of the SPC (over all SPC
blocks), [as the output weight of the outer convolutional code,
and pspe(s|l) as the probability of the output weight of the SPC
being s when the input weight is { yields

ACC 7zzpspc |l

=0 5=0

where AS°, and A% are the IOWCs for the outer and inner CCs,
respectiveiy. 7

The unique step in this uniform interleaver analysis for the TW
codes is the consideration of the impact of the SPC (i.e., the rest
is similar to the analysis of HCCCs in [11]). Define the reduction
in weight caused by the SPC as § = ! — s, and note that, since
the output weight is reduced when pairs of input ones fall into a
parity check for the same output bit, § can only take even values.
The number of SPC blocks into which one or more the [input
ones can fall is at most s + , this count coming from the case
where s parity checks contain a single one and contain two
ones. The probability that all ! inputs fall within a set of s+ 2
SPC blocks of the N/.J SPC blocks times the number of ways
to choose those s + % parity checks from the N/.J total parity
checks is then an upper bound on pgp.(s|!), as it also includes all

Cz’

a7
(N/ 7

output weights that are smaller than s. This provides the upper

bound
st2\ /N/T
Pepelsll) - < (th> (H/%) (8)

s\ N

- (N) <s+%s>

- (N/J)Jgs (3+FTS)l

- (s+l*TS)!

o (N/J)

which can be used in (16) to obtain a looser upper bound. Note
that a large /V approximation for the binomial coefficient has been
used.

Computation of the asymptotic IOWCs for the inner and outer
convolutional code in (16) follows the standard development in
[17], [18]. [10], [11] and is omitted for brevity. Substituting these
asymptotic approximations for the CC IOWCs and the bound in
(18) into (16) yields

Nr, N/T N Tmax Pmax

=DIEDY ZZZ ZN"*’” M

h= hz o W=Wmin 1=0 s= One=1npi=1

(19

0

E
Bw,l,n",ni,h,sQ (27”(21) + h) Nb>

where B, | o ni p s 1S DOt a function of the interleaver size V.
The number of simple error events (which depart and rejoin the
all zero trellis path exactly once) for the inner and outer CCs are
n' and n°, respectively. For a given input weight w and parity
branch output weight 4, the maximum exponent of NV in (19) is

o]
max{nOJrnl— +s_1}

h
ofw, h) = ma 5

(20)

In particular, we are interested in the maximum exponent of N
for any possible (w, h) which we denote as aypax.

We are interested in comparing recursive and non-recursive
(feed-forward) CCs as the constituent codes. The main property
of interest in this context is the minimum input weight to the
CC that will yield a simple non-propagating error pattern. For
a non-recursive CC, this minimum value is 1 while it is 2 for
a recursive CC. This is important for determining the maximum
values of »° and »’, which in turn determine cax.

First consider the case when the inner CC is non-recursive. The
maximum number of simple error patterns for the inner code is
n = s, the number of non-zero inputs to the inner CC, since

max

each can cause a simple error pattern. Also, ny, . is at least | 5 |

so that
, l—s
alw,h) = rrliix{n -5 —1}

> 0

e2y)

so there is no guaranteed interleaver gain when the inner CC is
non-recursive.

When the inner code is recursive, ng, ..

= | 5]. yielding
[+s
-1
ol

Because the difference between s and [is always even, we can
break 52 into | 42| + | £]. Simplifying gives

oo |12

: o / 0
Since ng ., < PR where d,

. fr
code, we obtain

oty =ms o 5] -

(22)

(23)

is the free distance of the outer

l [+1
— max{ L J - {LJ - 1} (24)
! ?ree 2
which for df . > 2, yields
¢ 1
- LQJ 23)
2
For large block size df... = d;, and this is the result given in
3.
REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitmajshima, ‘“Near shannon limit error-
correcting coding and decoding: turbo-codes,” in Proc. International
Conf. Communications, Geneva, Switzerland, May 1993, pp. 1064-1070.

[2] R. G. Gallager, “Low density parity check codes,” IEEE Trans. Information
Theory, vol. 8, pp. 21-28, January 1962.

[3] D. . C. MacKay, “Good error-correcting codes based on very sparse
matrices,” [EE Electronics Letters, vol. 33, pp. 457-458, March 1997.

[4] S. ten Brink, “Convergence of iterative decoding,” IEE Electronics Letters,
pp. 1117-1119, June 1999.

[5] S. ten Brink, “Convergence behavior of iteratively decoded parallel con-
catenated codes,” IEEE Trans. Commununication, pp. 1727-1737, October
2001.

[6] T.J. Richardson and R.L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” [EEE Trans. Information
Theory, vol. 47, pp. 599-618, Feb. 2001.

[7]1 T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Infor-
mation Theory, vol. 47, no. 2, pp. 619-673, February 2001.

[8] S. Dolinar, D. Divsalar, and F. Pollara, “Code performance as a function of
block size,” Tech. Rep., JPL-TDA, May 1998, 42-133.

[91 KM. Chugg and P. Gray, “A simple measure of good modern code

perforamnce,” (in preparation).

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation

of interleaved codes: performance analysis, design, and iterative decoding,”

IEEE Trans. Information Theory, vol. 44, no. 3, pp. 909-926, May 1998.

D. Divsalar and F. Pollara, “Hybrid concatenated codes and iterative

decoding,” Tech. Rep., JPL-TDA, August 1997, 42-130.

H. Jin, A. Khandekar, and R. McEliece, “Irregular repeataccumulate codes,”

in Turbo Code Conf., Brest, France, 2000.

K. M. Chugg, “A new class of turbo-like code with desirable practical

properties,” in [EEE Communication Theory Workshop (no proceedings),

Capri Island, May 2004, (recent results session).

“FlexiCodes: A highly flexible FEC solution,” 2004, TrellisWare Technolo-

gies White Paper, available at http://www.trellisware.com.

K.M. Chugg, P. Gray, and R. Ward, “Flexible coding for 802.11n MIMO

systems,” September 2004, IEEE 802.11-04/0953r3, (Berlin, Germany),

available at http://www.trellisware.com.

L. Ping, X. Huang, and N. Phamdo, “Zigzag codes and concatenated zigzag

codes,” IEEFE Trans. Information Theory, vol. 47, pp. 800-807, Feb. 2001.

S. Benedetto and G. Montorsi, “Design of parallel concatenated convolu-

tional codes,” [EEE Trans. Commununication, vol. 44, pp. 591-600, May

1996.

S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on

parallel concatenated coding schemes,” [EEE Trans. Information Theory,

vol. 42, no. 2, pp. 408-428, March 1996.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Graell, i Amat, S. Benedetto, and G. Montorsi, “Optimal high-rate
convolutional codes for partial response channels,” in Proc. Globecom Conf.,
Taipei, Taiwan, 2002, pp. CTS-01-4.

L. Ping, “The SPC technique and low complexity turbo codes,” in
Proc. Globecom Conf., Rio de Janeiro, Brazil, December 1999, pp. 2592—
2596.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Information Theory,
vol. IT-20, pp. 284-287, March 1974.

K. M. Chugg, A. Anastasopoulos, and X. Chen,
Adaptivity, Complexity Reduction, and Applications,
Publishers, 2001.

A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate repeat accumulate
codes,” in Proc. Globecom Conf., Dallas, Texas, December 2004, pp. 509—
513.

A. Abbasfar, D. Divsalar, and K. Yao, “Maximum likelihood decoding
analysis of accumulate-repeat-accumulate codes,” in Proc. Globecom Conf.,
Dallas, Texas, December 2004, pp. 514-519.

N. Wiberg, Codes and Decoding on General Graphs,
Linkdping University (Sweden), 1996.

S. M. Aji and R. J. McEliece, “The generalized distributive law,” [EEE
Trans. Information Theory, vol. 46, no. 2, pp. 325-343, March 2000.

F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” I[EEFE Trans. Information Theory, vol. 47, pp. 498—
519, Feb. 2001.

G. D. Forney, Jr., “Codes on graphs: Normal realizations,” [EEE Trans. In-
formation Theory, pp. 520-548, February 2001.

J. Dielissen and J. Huisken, “State vector reduction for initialization of
sliding windows MAP,” in 2nd Internation Symposium on Turbo Codes &
Related Topics, Brest, France, 2000, pp. 387 — 390.

S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo
decoding,” IEEE Communications Letters, vol. 6, no. 7, pp. 288 — 290, July
2002.

A. Abbasfar and K. Yao, “An efficient and practical architecture for high
speed turbo decoders,” in J[EEE 58th Vehicular Technology Conference,
October 2003, pp. 337 — 341 Vol.1.

L. Ping, W. K. Leung, and N. Phamdo, “Low density parity check codes
with semi-random parity check matrix,” IEE Electron. Lett., vol. 35, no. 1,
pp. 38-39, Jan. 1999.

K. R. Narayanan, I. Altunbas, and R. Narayanaswami, “Design of serial
concatenated msk schemes based on density evolution,” JEEE Trans. Com-
mununication, vol. 51, pp. 1283 — 1295, Aug. 2003.

D. I. C. MacKay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003.

P. E. Mclllree, “Channel capacity calculations for M-ary N-dimensional
signal sets,” M.S. thesis, The U. South Australia, School of Electronic
Eng., Adelaide, February 1995.

Iterative Detection:
Kluwer Academic

Ph.D. thesis,

