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MLSE for an Unknown Channel- 
Part I: Optimality Considerations 

Keith M. Chugg, Member, IEEE, and Andreas Polydoros, Fellow, IEEE 

Abstruct- The problem of performing joint maximum- 
likelihood (ML) estimation of a digital sequence and unknown 
dispersive channel impulse response is considered starting from 
a continuous-time (CT) model. Previous investigations of this 
problem have not considered the front-end (FE) processing in 
detail; rather, a discrete-time signal model has been assumed. 
We show that a fractionally-spaced whitened matched filter, 
matched to the known data pulse, provides a set of sufficient 
statistics when a tapped delay line channel model is assumed, 
and that the problem is ill-posed when the channel impulse 
response is generalized to a CT, finite-length model. Practical 
approximations are considered that circumvent this ill-posed 
condition. Recursive computation of the joint-ML metric is 
developed. Together, the FE processing and metric recursion 
provide a receiver structure which may be interpreted as the 
theoretical foundation for the previously introduced technique of 
per-survivor processing, and they lead directly to generalizations. 
Several FE processors representative of those suggested in the 
literature are developed and related to the practically optimal FE. 

I .  INTRODUCTION 

HE RECEIVER structure for performing maximum- 
likelihood sequence estimation (MLSE) of a digital signal 

corrupted by known finite-length intersymbol interference 
(ISI) and additive Gaussian noise is well-known. Forney [2] 
showed that the receiver may be divided into two distinct 
components: i) the front-end (FE) processor, the so called 
“whitened matched filter” (WMF) [which is a cascade of a 
matched filter (MF) and a noise whitening filter (WF)], and 
ii) a nonlinear post-processor based on the Viterbi algorithm 
(VA). This conceptual partition has been widely embraced 
primarily due to the fact that the output of the FE is a set 
of sufficient statistics modeled by an equivalent discrete-time 
(DT), symbol-spaced IS1 signal in white noise. 
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Specifically, when the continuous time (CT) complex base- 
band model 

T ( t )  = a,h(t - iT) + n(t)  = y ( t )  + n(t)  
a 

is applied to the WMF, the output has the statistically 
alent DT model 

L-1 

m=O 

The data sequence { a a } ,  assumed independent and uniformly 
distributed over a finite alphabet A, is common to (1) and (2). 
The equivalent DT channel coefficients { fm}&z\ in (2) and 
the CT overall channel impulse response h ( t )  are related by’ 

(3) Rh(‘)l.r=kT = fk * f l ; k  

where T is the symbol duration and the notation Rm(r) = 
m(r)  x mX(-r)  is used to denote the correlation of any finite 
energy pulse m(t).  The noise free signal in (1) represents the 
response of the physical channel, with impulse response c(t), 
to the quadrature-modulated signal C, a,u(t - iT), so that 
h( t )  = c ( t )  * u( t ) .  The data pulse u(t)  and physical channel 
c ( t )  are assumed to have support contained in [O,L,T) and 
[O.L,T], respectively, so that h(t)  is nonzero only for t E 
[O. LT), with L = L,  + L,. The additive white Gaussian noise 
(AWGN) n(t)  has spectral level No (Le., E{n(t+r)n*(t)} = 
? i g S ( r ) ,  where E{.} and S ( t )  denote the expectation operator 
and the Dirac delta, respectively).2 

The statistical sufficiency of (2) arises from the expansion 
of the ML metric (i.e., a quantity proportional to the negative 
log-likelihood functional) for the data based on observing ~ ( t )  
on the interval J’ 

In (4), 0 is a set of unknown parameters that is included for 
future reference (i.e., in the current setting, 0 is empty). Note 

’ (.)* denotes complex conjugation. 
2The term “Gaussian” is used throughout as shorthand for “complex circular 

’R{ .} denotes the real-part operator. The notation f i  is used to denote a 
Gaussian.” 

hypothesized value of an arbitrary quantity m. 
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(k+ l)T 

Hypothesized Versions of y ( t )  

Multiple Signal Lines 

Fig. 1. The direct structure for known-channel MLSE. 

that (4) can be expressed in a heuristic sense as4 

which emphasizes the least-squares nature of the problem. The 
metric in (4) represents the limit of 

K 

k = l  

(6) 

as K + oc where { R k }  is the set of coefficients corre- 
sponding to the expansion of ~ ( t )  in terms of the orthogonal 
eigenfunctions of the noise covariance operator and { Y h }  is 
the analogous set corresponding to y(t). Ungerboeck [3] has 
shown that the ML metric in (4) can be updated recursively 
at the symbol-rate using the front-end MF outputs directly, 
so that MLSE may be implemented without a WF. In fact, 
we may consider the conceptually simple “direct structure,” 
which eliminates the front-end MF as well. This is because 
symbol-rate recursive computation of I l k  (uk), the ML metric 
of (4) for the estimation of5 Uk = [ulc a k - 1  . . .  agIT 
with J = [0, ( IC  + l)T), is obtained by 

rk(iik) = rk-l(uk-l) + Iy(t; & ) I 2  d t  

The receiver structure suggested by this metric recursion is 
diagrammed in Fig. 1. In this direct structure, a hypothesized 
version of the noise-free signal is generated for each survivor 
extension by driving a local version of the channel, which 
effectively distributes the MF to all possible paths. 

A common feature of the above Forney, Ungerboeck, and 
direct structures for known-channel MLSE is that they all use 
explicit knowledge of h(t) .  In this paper, we are concerned 
with the case when the physical channel and, hence, h,(t) ,  is 

4The expression in (5) is heuristic (Le., ill-defined) because r ( t )  contains 

5Transposition is denoted by (.)’. 
white noise, which prevents the mean-square convergence of the integral. 

a priori unknown. Throughout this work, the term “unknown- 
channel” will mean that c ( t )  is unknown, u( t )  is known, and 
L,, and L, are assumed to be known or adequately upper- 
bounded. A quasistatic assumption is made so that c ( t )  is 
modeled as a fixed and deterministic waveform. 

The model in (2) has become so ingrained in the study of 
MLSE for IS1 channels that it has also been adopted for cases 
where the channel is unknown [4]-[9]. Clearly, if the channel 
is unknown, the WMF cannot be identified, hence, adoption 
of the DT model in (2) with unknown channel coefficients 
purveys an imprecise notion of the FE processing. Sometimes 
this contradiction is ignored in the unknown-channel MLSE 
literature; other times, a brief description of the FE processing 
assumed to arrive at (2) is provided. An FE which is frequently 
suggested (or implicitly assumed) is a receiving filter sampled 
at the symbol-rate [SI, [8]-[ Symbol-rate sampling the 
output of a filter matched to the data pulse, which results in 
(2), has also been suggested [5], [ 111. A version of the sampled 
FE with multiple samples per symbol was introduced in [12], 
and a similar structure was related to the concept of a bank 
of adaptive WMF’s in [7]. 

In this paper, we investigate joint-ML (also known as 
the “generalized likelihood’ method [ 131) channel and data 
estimation starting from the CT model of (1) with the goal of 
formalizing the optimal FE processing and determining the 
effect of information-lossy alternatives. Within this general 
setting, we present the symbol-rate recursive computation 
of the ML metric, along with a reduced complexity ap- 
proximation. This metric recursion allows joint-ML channel 
and data estimation to be viewed as an M-ary tree search 
problem, where M = IAl. Unlike the known-channel case, 
the VA is not equivalent to exhaustive search. In fact, any 
bounded complexity tree-search algorithm is inherently sub- 
optimal (for an infinite observation interval) because the 
functional form of the ML metric depends upon the entire 
hypothesized data sequence through the associated channel 
estimate. 

6This approach is often sccn in the conventional blind equalization literature 
as well, but it can he argued that there, a constrained s m t c m v  which includes 
the fixed FE is assumed, while the receiver structure for the ML approach 
is ostensibly derived from the desire to maximize likelihood without any 
constraint. 
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Transition Lletrics for 
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Processor 
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T R E E S E A R C H  
PROCESSOR 

1. Extend Paths  
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transition metrics 

3. Compare new metric 

4. Eliminate “bad” extensions 
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Metric Recursion Processor (MRP) Tasks (conducted at symbol rate): 

- Provide metric updates for supplied path extension(s) 
- Update and store all recursion parameters for surviving paths MRP #n 

(e.g channei estimates; recusion parameters) 

Fig. 2. The general recursive receiver structure. 

If the VA is adopted as a suboptimal tree-search algorithm, 
the resulting receiver may be viewed as an application of 
the previously developed principle of per-survivor processing 
(PSP) [7], [14]. Virtually any tree-search algorithm may be 
employed in place of the VA [15], [16]. The resulting receiver 
structure will be of the form shown in Fig. 2. Although this fig- 
ure implies a breadth-first strategy, metric-first and depth-first 
algorithms will result in similar structures, with the possible 
addition of data buffers. Associated with each path investigated 
by this receiver is an estimate of the channel. The resulting 
structure is a natural extension of the previously mentioned 
direct structure for known-channel MLSE. Special cases of this 
structure have been suggested for other applications of MLSE 
in the presence of uncertainty, such as multiuser detection 
in a code division multiple access system with unknown 
user amplitudes andor delays [17], [IS] and demodulation of 
continuous phase and trellis coded modulation signals in the 
presence of carrier phase uncertainty [7] ,  [19]-[21]. 

This paper is organized as follows: The optimal joint- 
ML FE processing is developed in Section 11. Suboptimal 
versions of these FE processors are defined in Section 111. 
Recursive computation of the joint-ML metric is discussed in 
Section IV. The details of the ill-posed nature of the joint-ML 
problem for the general CT channel model are contained in 
Appendix A. The effects of FE processing in the channel- 
tracking environment are assessed through simulation and 
analysis in a companion paper [I]. 

11. FRONT-END OPTIMALITY CONSIDERATIONS 

For the sake of conceptual flow, we first develop the well- 
defined FE processing for a tapped delay line (TDL) physical 

channel model before showing that the optimal processing 
for the general CT channel model is ill-posed. This ill- 
posed condition is then circumvented for practical purposes by 
demonstrating that the TDL channel model and the associated 
FE processing are good approximations to the CT counter- 
parts. The details of the ill-posed condition are contained in 
Appendix A. 

A. TDL Channel Model 

In this subsection, a simple TDL model with unknown tap 
coefficients is assumed for the physical channel, namely 

lV, L r 

c ( t )  = c d ( t  - IT,) 
1=0 

where the resolution time, T,, is assumed to be related to 
the symbol-time by T = N,T,, with N, 2 1 an integer.7 
Assuming a finite data length I ,  the noise-free channel output 
is 

I-1 N,L, 

y ( t )  = c a,qu(t - ( I  + iN,)T,). (9) 
2 = 0  l=O 

If y ( t )  is observed in white Gaussian noise during the interval 
J when it is nonzero, the ML metric of (4), with 0 = 

{ c l } ~ ~ ‘ ,  involves ~ ( t )  only through 

r( t )u*(t  - (ilv, + I)T,) d t  
L=O 1=0 

’The reason for this terminology will be made clear in Section II-B2. 
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Fig. 3 .  The optimal front-end processing for the TDL channel model. 

It follows that the output of a filter matched to u( t )  can be 
sampled at t = ICT, to provide a sufficient set of statistics for 
the joint-ML estimation. 

The output of a T,-spaced WMF matched to u( t )  is 

I-1 N,L, 

where {wk} is a white Gaussian sequence with variance NO. 
The finite length sequence {vk}f;iU-' is the maximum-phase 
factor of the sampled pulse correlation (i.e., the sampled pulse 
correlation convolved with the realizable WF), and will be 
referred to as the DT (T,) equivalentpulse. This terminology 
is appropriate since vk and u( t )  are related in precisely the 
same manner as f k  and h(t)  in the known channel case [i.e., 
see (3)] .  The equivalent unknown channel can then be defined 
asx 

N,L, 

f k  c k  * vk = clvk-l, k E Z L N ,  (12) 
1=O 

so that 
r- i  

i=O 

The T,-spaced DT IS1 model in (13) can be converted into 
a T-spaced component vector ISI model 

L-1 

&=-,+tu,= @ - m i m  + Wk (14) 
m=O 

where the (N,) component vector rnk of an arbitrary sequence 
{mi} is defined as 

m k  = [m(k+l)Ar,-l m(k+l )Ar , -2  ' '  ' m k I V T l T .  (15) 

The component vector contains the N, samples obtained every 
symbol interval. 

The set of sufficient statistics for estimation of {cz} and 
{ u i }  from r ( t )  for t E J is then { ~ ~ } f L f - ~ .  Either the 
unknown component vector channel coefficients { f . }  or the 
original channel TDL weights { c l }  may be estimiied for a 
given data sequence. Since the ultimate goal is a metric that 
depends only on the hypothesized data path, and in light of the 
linear relation between the two parameter sets, the choice is 
somewhat irrelevant. However, the larger set of parameters, 
{ f i } ,  is chosen in order to simplify symbol-rate recursive 
computation of the ML metric. The optimal FE processing 

'The notation 2 . b ~  = {(I, 1 . . . N - 1) iq used for any integer IT. 

for the TDL channel model is illustrated in Fig. 3, with the 
WF frequency response expressed in terms of V ( v ) ,  the DT 
Fourier transform of the DT equivalent pulse. 

The two fundamental differences between the model re- 
sulting from the FS-WMF in (14) and the analogous known- 
channel expression in (2) are that the MF is associated with the 
known data pulse rather than the overall channel, and multiple 
samples per symbol are required for (14). 

B. General Continuous-Time Channel Model 

In this section, the channel model is relaxed to be an 
arbitrary finite-energy, time-limited signal, which is identical 
to the model assumed for the known-channel development in 
[2]. Without loss of generality, we consider the combined 
effects of the pulse and physical channel filters and focus 
on joint estimation of the data and h(t). The ML metric 
rk(uk, A )  for joint-ML estimation of uk and h( t ) ,  based on 
the observation of r ( t )  for t E J = [0, ( k  + l)T), is given by 
(4) with 0 = { h ( t ) : t  E [O,LT)}. 

A chipped signal notation, identical to that defined in [2],  
is introduced for an arbitrary function m(t) 

Applying this to a &[O, (i+l)T) function results in a sequence 
of chips from &[O. T ) .  which can be denoted by a vector' 

m,(t) = [Tn&(t) m-l ( t )  ' .  ' ?no( t ) ]T  

E (&[O. T))("+1). (17) 

The finite duration of h ( t )  results in an ( L  x 1) vector 
representation denoted by h(t) = h ~ - ~ ( t ) .  

The convolution of data and channel may be expressed in  
terms of the chips as 

L-1 a 
y,(t) = a,_,h,(t) = a," 0 h(t)  = (h"(t) 0 a,)* 

m=O 

(18) 

and al is an L-dimensional vector with where (.)" = 
components in A defined by 

a," = [U?.-L+l Uz-L+2 " '  a,]. (1% 

The last expression in (18) will be referred to as a mixed 
(inner) product. This shorthand notation eliminates the need 

9L2[0. T )  denote\ the space of squarc-integrable functions on 10.7) 
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to introduce identity operators on the signal Hilbert space 
(C, [0, T) at this point). 

The corresponding received signal chips are therefore 

T , ( t )  = 7JL(t) + nz(t ) l  2 = 0.1. ' .  . k (20) 

which, in vector form, is 

T I , ( t )  = Y , ( t )  + m ( t )  = AI, 0 h(t)  + m(t) (21) 
AI, =[CYI, C Y I , - ~  . . .  (22) 

The ( ( k  + 1) x L )  Toeplitz matrix AI, consists of elements 
from the M-ary alphabet A. The mixed-product notation in 
(21) is the natural extension of that in (18). 

This modeling technique allows the ML metric in (4) to be 
expressed as 

J o  

where the one-to-one correspondence between a, and AI, has 
been used. For a fixed A,, minimization over h( t )  results in the 
critical point i ( t ;  A,) = A ,  o  TI,(^), where A, is the pseudo- 
inverse of A k  [22].1° Substituting this result into (23) yields a 
metric dependent only on the hypothesized data sequence 

- I  - 1 .  

rk(AI,) 5 rI,(&lk(t&) (24d 

= - l T r B ( t )  o PI,  o r,(t) d t  (24b) 

= - l T [ f ' k  o  TI,(^)]^ o P k  o r k ( t )  dt  (24c) 

where P,  = A,Ak is the matrix which projects onto the range 

The structure suggested in (24) is akin to squaring and 
integrating the output of a network of TDL filters when the 
input contains white noise, so that the metric does not exist 
in the mean-square sense. To illustrate this, consider a fixed 
t E [O,T) so that" 

~ { n f ( t )  o PI, o n k ( t ) )  = t r  (PI, o ~ { n i , ( t ) n f ( t ) )  o Pl;) 

(25) 

which is not well defined since E{n(t + -r)n*(t)} = NoS(7). 
It follows that the ensemble average of the ML metric for any 
path is infinite. The conclusion is that the MLSE solution for 
the known-channel IS1 problem considered by Forney, with the 
general CT channel model, has no well-defined counterpart for 
joint-ML channel and sequence estimation. 

The root of the ill-posed condition, as clearly pointed out 
in [13, p. 4571, occurs due to the lack of structure assumed 
about h(t) .  In fact, it is shown in Appendix A that this is 
not a technicality arising from the white noise model, but 
rather a fundamental problem due to this lack of assumed 

- I  

of AI, [22]. 

structure. Specifically, since the channel is assumed to have 
an unknown, possibly nonzero projection onto infinitely many 
of the eigenfunctions of the noise covariance operator, the ML 
channel estimate uses the components of received signal in the 
direction of each of these basis functions. 

Two reasonable approximations are considered below, each 
based on the assumption that the desired signal has negligible 
energy above some frequency. 

I )  Approximation Using the Continuous-Time ML Metric: 
The orthogonal eigenfunctions of the white noise covariance 
operator can always be taken to be harmonically spaced 
complex exponentials. These functions are also the eigen- 
functions of any wide-sense stationary covariance operator for 
asymptotically large observation intervals [ 131. Truncation of 
the series expansion in (6) with these functions corresponds to 
ignoring high frequency energy in y(t). 

In practical situations, the noise confronting the processor 
is broadband, but has finite power due to physical filtering 
effects. The ML metric for this broadband noise model is 
also ill-defined as is shown in Appendix A. However, im- 
plementing the white-noise metric of (23) in the presence of 
broadband noise effectively implements the truncation of the 
series expansion described above; thus, minimization of (23) 
in the presence finite-power broadband noise is well defined 
and effectively optimal for the truncated series metric. 

Even with this interpretation, which circumvents the ill- 
posed condition, the CT signal processing implied by the 
metric of (24) (and the time-recursive version in Section IV) 
is not likely to be amenable to implementation using digital 
hardware. For this reason we next show that the general CT 
channel model can be approximated by the TDL model for 
practical channels. 

2 )  The TDL as an Approximation to the Continuous-Time 
Channel: The approximations 

(27) 
1 
a u( t )  E u( t )  * - sinc ( t /A )  

where ILT1 = T / A  is assumed to be an integer and 
sinc ( x )  = sin ( T ~ ) / ( T X ) ,  imply 1 

Na Lc 

h ( t )  E qu(t  - la) (28) 
1=0 

with cl = &(la). Since c ( t )  and u( t )  are strictly time-limited 
signals, they are not bandlimited. However, because both are 
assumed to have finite energy, they are each approximately 
bandlimited in the sense that the energy outside the frequency 
band [-l /A. l /A]  can be made arbitrarily small by decreasing 
the positive parameter A. It follows that the approximation 
error for each of (26)-(28) can be made arbitrarily small by 
decreasing A. Thus, the TDL channel model of Section II- 
A may be interpreted as an approximation to the general CT 
channel model with the resolution time T, defined so that 
A = T, results in an acceptably small approximation error. 

'"This is a special case of the developments of Appendix A and Section 
IV. ._ 

"The notation t r  ( . )  is used to represent the trace of a square matrix. This simple result, which is the static, deterministic analog to 
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T, -spaced FS-WMF (matched to u( t ) )  

The Decimated FS-WMF (D-WMF) F E  

21, -spaced FS-WMF (matched to u ( t ) )  

The Under-Sampled FS-WMF (US-WMF) F E  

Low Pass Filter 

The (filtered) sampled FE NS 

Fig. 4. Suboptimal FE processors considered 

Bello's multipath fading channel model [23], is valid for any 
time-limited, finite energy channel h(t) .  

111. SUBOPTIMAL FRONT-ENDS 

The signal models at the output of three suboptimal FE 
processors are developed in this section. These three proces- 
sors, illustrated in Fig. 4, are based on the approximations 
of Sections 11-B1 and 11-B2 and related simplifications. Each 
of these FE processors result in (N, x 1) vector component 
symbol-rate IS1 models. Each is suboptimal when N,  < N,, 
and optimal (Le., equivalent to the T, FS-WMF) when Ns = 
N,.. One reason to consider these processors is to assess the 
effects of suboptimal FE processors suggested or implied in the 
literature. Another motivation is to determine which technique 
should be used in an effort to reduce the receiver complexity 
(i.e., to reduce the number of samples per symbol N,) .  

A. The Decimated FS-WMF (D-WMF) 
Consider the case when the output of the FS-WMF in Fig. 3 

is decimated so that only N, < N, samples are retained per 
symbol period. Whenever discussing multirate processing, we 
will assume that N,,,, = T,/T, = N,/N, is an integer, so 
that the output of such a decimation is 

A where i j 2k  = m k ~ , , ,  is the decimated version of an arbitrary 
sequence {mi } . 

This T,-spaced model can be converted to a symbol-spaced 
IS1 model by creating the ( N ,  x 1) component vectors of 

decimated signals 
L-I 

m = O  

where the component vectors are defined in a manner analo- 
gous to (15). 

B. The Under-Sampled FS- WMF (US- WMF) 
The US-WMF may be considered the result of designing 

an FS-WMF when the bandwidth of the system has been 
underestimated. Specifically, consider the effect of designing 
the receiver assuming that T, = T,! > T,. In this case, the 
WF is mismatched, so that the resulting white noise model 
may have infinite length ISI. This is shown by modifying the 
development of Section 11-A with the assumption that T5 > T,. 
For the special case of T, = T ,  the US-WMF is a pulse- 
matched filter, sampled at the symbol rate; if, in addition, an 
L,, = 1 rectangular data pulse is assumed, this corresponds 
to the symbol-rate integrate-and-dump FE suggested in [ 5 ] .  
A similar technique with pulse matched filtering and one 
sample per symbol has been recommended for global system 
for mobile communications (GSM) ill]. 

The output samples of the filter matched to u( t )  are 

r k  = yk + n k  = x a , R h , ( [ k  - iN,]T,) + nr, 
I-1 

(31) 
z=o 

where 

Rhu.(kTs) = c ( T )  * Ru(T)lr=lcT, 

R,(kT, - S ) C ( S )  ds. (32) 
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The output of the T,-spaced WMF then involves the convolu- 

tion of Rho( ky,) with v i t ,  the inverse of the minimum-phase 
factor of Rtl(kT,) (Le., the impulse response of the realizable 
WF) . 

Assuming the TDL approximation developed in Section 11- 
B2, or approximating (32) by a Riemann sum over a uniformly 

C. The Sampled Front-End 

This FE processing consists of sampling the received signal 
(or a filtered version) and has been suggested in [4]-[6], [SI, 
and [ 121. After sampling, the component function model of 
(20) is approximated by the component vector model defined 
by 

T,-spaced partition, yields L-1 

:YTLc 

l=O 

r k  = grC + nk = 1 ak-mh, + nk (39) N,. Lc 

1=O 

m =O 
~ h u ( k ~ s )  = c l ~ u ( [ k ~ . s / ,  - LIT-) = c l ~ ( k :  I )  

where the component vector of samples of an arbitrary func- 
tion, m(t) ,  is defined by (33) 

a 
where R(k;  1 )  = R,([kN,5/, - LIT,). 

The noise-free US-WMF output is of the form 

where the equivalent unknown channel is 

l=O 

and the shift-variant DT (T,) equivalent data pulse is defined 
by 

Some redundancy in (35) may be removed by noting that 
vk(m + T L N , ~ ~ , )  = u k P l L ( m ) ,  so that 

m=O n = O  m = O  

The interpretation of (37), which reduces to (12) for N s / r  = 1, 
requires that " 1  = 0 for 1 Z X J , , + ~ . ' ~  For a given value 
of m, f k . ( m )  represents the convolution of the WF and a 
(fractionally) shifted, sampled version of the pulse correlation 
function. Since the WF is autoregressive, it follows that, except 
for m = 0, fk.(m) is nonzero for possibly infinitely many 
values of k .  

Converting the T,-spaced model into an ( N ,  x 1) vector 
component model yields 

mk = [m(kT + (N,q - l)Ts) . ' .  m(kT)IT. (40) 

To relate the sampled FE to each of the FE processors 
discussed thus far, consider the case when the low-pass filter in 
Fig. 4 is ideal with bandwidth W (i.e., G ( f )  = 1 for I f 1  5 W 
and zero otherwise). Also, assume that the approximation in 
(27) holds with sufficiently low error for A = T,, and that 
c ( t )  is a Tr-spaced TDL. Two choices of W are of interest: 
Wr = 1/(2T7.), which will produce negligible distortion in 
the signal, and W, 1 1/(2Ts), which is an anti-aliasing filter 
and results in a reduced noise power at the output of the 
sampler. Under the above assumptions, it is straightforward 
to show that the case of T, = T, and W = W,, the sampling 
FE is equivalent to the optimal FS-WMF. This implies that, 
under an approximately bandlimited assumption, Nyquist-rate 
sampling provides a set of sufficient statistics. For Ts 2 T, 
and W = W7., the sampling FE is equivalent to the D-WMF. 
When T, 2 Tr and W = W,. the sampled FE can be viewed 
as the optimal FE for a filtered version the data pulse (Le., the 
FS-WMF of a reduced resolution system). The US-WMF is 
similar to this (Ts 2 T,, W = W s )  case except that rather than 
rejecting the energy in the pulse outside the band [Ws, W,],  
the US-WMF folds these high-frequency signal components 
back into the band. Thus, the US-WMF cannot, in general, be 
accurately approximated by the sampled FE when G( f )  is not 
matched to the data pulse. 

Hence, the D-WMF may be viewed as a technique that sacri- 
fices signal-to-noise ratio (SNR) for reduced signal distortion, 
while employing the US-WMF has the opposite effect, and the 
optimal FS-WMF achieves the benefits of both at the expense 
of more samples per symbol. 

Iv. RECURSIVE COMPUTATION OF THE ML METRIC 

Each of the FE's considered resulted in the formulation of 
an equivalent symbol-spaced IS1 model with white Gaussian 
noise 

nb=O 

where the sum has been split in order to emphasize that a 
receiver designed around the incorrect assumption that T, = 
T, may encounter unexpected ISI. 

The notation in (41) is intended to be general; it is only 
assumed that hi E ;Ft and that r ; ,  y i  and ni are random 
elements of 'Fl, a Hilbert space.I3 

l 7  We use the same letters to denote the general case and the CT model of 
Section 11-B. This is only so that yct another set of equivalent variables is not 
necessary. 

I2This follows from the convention that C ~ L - ~ I , ~  may be nonzero, which 
was selected in an effort to maintain the relation L = L,. + L,, throughout. 
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The component equations of (41) may be written in vector 
form as 

T k = ? / k f n k = A k  O h f n k  (42) 

where h E XL and r k ,  yI, and nk are random elements of 
E'+' defined in a manner analogous to (17). In the present 
context, Ak should be viewed as a bounded linear operator 
mapping XL into 3-1'+l, with the special structure of (22). 

Due to the white Gaussian nature of the observation noise, 
in each case considered, the joint-ML channel and sequence 
estimates are found by performing the following minimization: 

(43) min_ I I T I ,  - AI, 0 hl 1 7 1 k + + 1  

where the search is over all k E ;FtL and all A k  of the form 
given in (22). The inner product in the product space is defined 
in the usual manner [24] 

- 2  

A, ,h 

k: 

(44) 
A (+)w+1 = C ( 4 . i ) X .  

i = O  

For increased numerical stability or to accommodate a 
slowly time-varying channel, an exponentially weighted ver- 
sion of the squared error cost function in (43), with forgetting 
factor p E (0, I], is considered [25] 

A k ( A k , h )  5 ( r k  - AI, o h)H o WI,  o ( r k  -A ,  o h) 
(45) 

where WI,  = diag (1, p;  p2 :  . . . p k )  is the ( ( k  + 1) x ( k  + 1)) 
diagonal weighting matrix. For a fixed A h  the metric is 
minimized by 

- 2  
= 1b-k - Ak 0 hll~H".+l,p 

- I  
h k ( A k )  = h k  = A,  o r k  (46) 

- I  . where A, is the pseudo-inverse of AI, with respect to the 
weighted inner product which generates the norm in (45). If 
A k  has rank L,  this may be expressed explicitly as [26] 

A: = (A;WkAk)-lA;Wk. (47) 

Substituting (46) into (45) yields a metric which explicitly 
involves only the data 

A l c ( A k )  A k ( A k , h k ( A k ) )  = 1lW;''ok 0 ~ k l l ~ k + ~  2 

(48) 2 
=Il&k 0 ~ I , / l ~ " + ' , p  

where the error projection matrix for the weighted least squares 
solution is 

- I  
Q k  = I - AkA, (49) 

and W;" is diagonal, with elements equal to the square root 
of those in Wk. 

Assuming that A k - 1  has rank L, the metric in (48) can be 
computed recursively as 

lITk - 6: 0 L l l k .  P h~,(Alc) pAk--l(Ak;-i) + ~ 

P + &  
(50) 

Not surprisingly, the metric recursion requires computation of 
the recursive least squares (RLS) channel estimate associated 
with the data path through the following: 

(514 

- , .  
hk = hk-i+ i j k ( ~ k  - Lif  o h k - 1 )  (5 IC) 

(51d) 

The dependence of recursion parameters in (50)-(51) on the 
hypothesized path AI, has been suppressed for the sake of 
compactness. We note that, with the exception of (51c), the 
RLS processing in (51) does not depend on the form of the 
signal Hilbert space. 

The recursion in (50) is easily derived using the matrix 
inversion lemma and other standard results to obtain a re- 
cursion on Q k ,  yet it has not, to our knowledge, appeared in 
the joint channel-sequence estimation literature. This recursion 
also follows directly from a slightly different form 

B k  = ( A ; W k A k ) - '  = p p l ( l -  g k . & % ) & k - l .  

AI,(&) =pAk-l(Ak-l) 
+ ( ( T k  - i iF 0 hk-l)I(Tk - &? 0 h,))71 

(52) 

which appears in a standard reference [27]. 
The form of the update in (50) has the advantage that the 

one-step metric update can be computed without first updating 
the channel estimate, but the form in (52) may be approximated 
in a meaningful fashion for any type of channel estimator (i.e., 
non-RLS). 

A. A Reduced Complexity Approximation 

The exact ML metric recursion given in (50) requires com- 
putation of the RLS channel estimate for each hypothesized 
data path. Since any successful algorithm will need to search 
many such paths, a reduced complexity approximation to (50) 
is desired. An obvious choice is the considerably less complex 
least mean squares (LMS) estimator, which has been shown to 
track dynamic channels with performance comparable to that 
of the RLS algorithm [27], [281, [291. 

The LMS channel estimate is updated by the recursion [27] 

h k  = &,-I + P(7-k - 6; 0 i k - l ) a I ,  = h k - 1  + /3&&k: (53) 

where p E R is the step size and eXk is the one-step prediction 
error. An approximation to the metric update can then be 
defined in the spirit of (52) as the inner product of the 
prediction and filtering error, specifically 

(TI ,  - af 0 L k - l I T ,  - &: 0 Lk)R = (1 - P I I & k l / 2 ) l l e X k / l k .  

(54) 
The LMS approximation to the ML metric recursion in (50) 
is therefore 

A(&) = P A k - l ( A k - l )  + (1 - PlI&k1l2) 
. I / T ,  - &? 0 h k - l I l &  (55) 

where the per-path channel estimates are defined in (53). Note 
that in the case of constant-envelope signaling and p = 1, this 
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metric is the same as the known-channel MLSE metric with 
the channel replaced by the per-path LMS estimate. 

be handled by increasing the channel memory by one in the 
model. 

APPENDIX 
CT CHANNEL MODEL IN COLORED NOISE 

The colored noise generalization of the metric in (4) isI4 
V. CONCLUSION 

By investigating the joint-ML channel and sequence es- 
timation problem from first principles (Le., the CT obser- 
vation), several important results regarding optimality were 
demonstrated. First, it was shown that, strictly speaking, 
there is no optimal receiver in the joint-ML sense when 

rk(iik. h) = (Ak o i( t) lAk o i(t)), 

- 2 R { ( 7 - k ( t ) I A k  0 i ( t ) ) n }  (564  - ll7-k(t) - A k .  0 i(t)ll: (56b) 
the channel is unknown. By considering a model which 
characterizes the uncertainty in the channel by a finite number 
of parameters (e.g., the TDL model), the practically optimal 
FS-WMF front-end was derived. One important consequence 
of the resulting component vector IS1 model is that earlier 
work which neglected FE processing and concentrated on 
post-processor design can be easily modified to include the 
optimal FE processing, i.e., the conceptual partition between 
the FE and post-processor for unknown channel MLSE has 
been established. Along these lines, we presented a recursive 
computation of the ML metric which led to receiver structures 
that were natural extensions of the direct structure for known- 
channel MLSE. This may be viewed as both a generalization of 
the PSP technique and its theoretical foundation. An important 
conclusion is that any receiver claimed to be optimal or quasi- 
optimal must employ both fractionally-spaced processing and 
per-data-sequence channel estimation. This is in direct contrast 
to the known-channel MLSE receiver which requires only 
symbol-rate sampling. 

A framework for the design of recursive unknown-channel 
MLSE algorithms has been established. The design can be 
viewed as consisting of three phases: 

where the inner product in the reproducing kernel Hilbert space 
(RKHS) associated with the covariance of the noise is defined 
by" 

( ~ k ( t ) I ~ k ( t ) ) ,  = z f ( t )K- ' ( t ,  s ) z ~ ( s )  d s d t  (57) i b 

( k + l ) T  

= 11 x ( t ) K l l ( t ;  s ) z ( s )  d s  d t  (58) 
0 

where Kil ( t .  s) is the inverse kernel of the noise covariance 
operator 

( k + l ) T  

K;l(t;p)K,(p, s) dp = S ( t  - s). 

K ( t ,  s) = E{ni,(t)nf(s)} (60) 

(59) .i 
The chipped covariance operator is defined by 

so that the ( i , j )  element of K(t , s )  is Kn(t  + iT, s + j T )  
t .  s E [O: T ) .  This matrix is the chipped version of the 

system modeling, which includes modeling of the un- 
known parameters and consideration of sufficient statis- 
tics (i.e., FE processing); 
metric recursion development, which involves obtaining 

reduction approximations (e.g., LMS in place of RLS); 
and 

square-integrable noise covariance kernel defined for S ,  t E 
10. ( k  + 1)T) and Kpl(s. t )  is the chipped version of the 
inverse kernel so that 

the recursion and possibly making intelligent complexity 

tree search design, which has a well-established history 

framework is a starting point for the development of 

iT K P ( t ,  p)K(p, s) d p  = 6 ( t  - s ) l .  

U51, 1161. Z k ( t )  = 1 K ( t , s ) z r , ( s ) d s  t E [O.T) * 

(61) 

The equivalence of the two notations is summarized by 
T 

. / L l l i T  

unknown channel receiver designs, not the conclusion. Deter- 
mining the best design for a given complexity is a complicated 
task and is surely dependent on the modeling and expected 
operational mode. Many issues remain unresolved in each 
of the three phases. For example, the fact that several data 
matrices may have the same projection matrix and, hence, 
the same joint-ML metric, significantly affects the acquisition 
performance of generalized PSP receivers. The tracking mode 
performance and related open issues are the subject of Part 
I1 [l]. The effectiveness of implicit versus explicit modeling 
of additional signal parameters is also an open issue. For 
example, while it appears that symbol timing and carrier phase 
were assumed known throughout, uncertainty in these quan- 
tities may actually be included in the results discussed-Le., 
a symbol timing uncertainty within one symbol period may 

',-Tl,L 

K,(t, s ) x ( s )  d s  t E [0, ( k  + l)T) (62) 

where the conversion from signals on [0, ( k  + 1)T) to (IC+ 1)- 
tuples with component functions supported on [O,T) is as 
described in Section 11-B. The above linear operation will be 
symbolically denoted simply by z = Kz.  For compactness, 
the subscript k will be suppressed in the following, as will the 
mixed product symbol (0). 

Application of the orthogonality principle of the Hilbert 
space projection theorem [24] to the heuristic expression in 

14As discussed in [30], r k  is a generalized element of the RKHS, so the 
second term is symbolic for an It0 integral. A similar remark applies to the 
the white noise case. 

I5For the sake of compactness, double integrals with identical limits on 
each integration variable are denoted with a single set of limits. 

1 Z ( t )  = 
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(56), or the calculus of variations to the exact metric leads to 
the critical point for the channel estimate must satisfy 

AHK-lr 1 kh (63) 

k ( t , s )  = A"K-l(t,s)A. (64) 

where k is the linear operator with kernel 

The operator kf is a nonnegative definite (Hermitian sym- 
metric), bounded linear operator mapping (Lz [0, T ) ) L  into 
itself. This follows from the fact that Kn(t ,  s) is a positive 
definite, bounded linear operator on L:![O, ( k +  1)T). Mercer's 
theorem guarantees the existence of the expansion in terms of 
orthogonal rank one operators [13] 

m, .) = r?eL(t).LH(S) (65)  
1 

where { e , }  is the countable collection of orthonormal (with 
respect to the standard ,La inner product) eigenvectors of k 

Me, =-,ez y, 2 0 (real) (66) 

(67) 

If the ((k + 1) x L )  matrix, A, has rank L 2 k + 1, then k is 
invertible (positive definite), so that the closed form channel 
estimate for a given data path may be written asI6 

iT e," ( t )e ,  ( t )  d t  = &, . 

x - 1 - H  
h = M  A K- l r  H 

r 

The kernel of the inverse operator of M is defined as 

1 
3: 

&-I@, s) = -e,(t)e?(s) 

with all of the eigenvalues of k being positive due to the 
assumption that A is full rank. Substituting back into (56) 
yields the ML metric for the data sequence 

?: 

0 

r,(A) = / I T ~ ( t ) p ( t ,  S ) T ( S )  ds d t  (70) 

with 
-1 I H 

p = K - l A k f  A K-l .  (71) 

The operator P is the projection operator onto the range space 
of A in the inner product of the RKHS associated with K .  
Since T is a generalized element of the RKHS, problems 
similar to those encountered in the white noise case are 
expected. 

"Modification of the following development for the case when A is not 
full rank is straightforward. 

In order to clearly demonstrate this singularity, a factoriza- 
tion of k-' is introduced 

iT G(t, P)G(P,  s )  dP 

= .bT 
(724  

- -1 
M ( t ;  s) = 

G H ( h  t ) G ( P ,  s )  dP (72b) 

with G defined by 

(73) 

Substituting this factorization into (70) yields 

where 
I - H  

v = G A  K- l r .  (75) 

The fact that V H ( t ) ' U ( t )  = tr('U(t)VH(t)) along with the 
Hermitian symmetry of K-' has also been used to obtain 
(75). Neglecting a finite constant associated with the noise-free 
signal, the average of the ML metric for a fixed path is 

I E { r k ( A ) }  - /'tr (F{G(a,P)AHK-l(n. s ) n ( s )  
0 

.nH( t )K- l ( t . [ )AG([ .a)} )  d ( t , s , p . ( , a )  

t r  G(a. B)AHK-'(?, <)AG([, a ) )  

(76) 
= lT 

' d(P.  I. a )  

where the abbreviated notation is defined as 

n-fold 

(77) 

Using the orthogonal expansions, it is straightforward to show 
that 

G(t,  p)AHK-'(p.  ()AG((,  s )  d[ dp = S ( t  - s ) l  
0 = M c m  

(78) 

so that the ML metric does not exist in the mean sense since 
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