
Asynchronous Logic Implementation of Tree-Structured SISOs

Peter A. Beerel, Keith M. Chugg, Georgios D. Dimou, Pankaj Golani, and Mallika Prakash
Ming Hsieh Dept. of Electrical Engineering

University of Southern California

Los Angeles, CA 90089-2565, USA

Email: {pabeerel, chugg, dimou, pgolani, mallikap}@usc.edu

Abstract— Tree-structured soft-in/soft-out (SISO) processors
provide an exponential speed-up relative to the standard forward-
backward algorithm (FBA). These Tree-SISOs were originally
described analogously to fast tree-structured adders and later
as standard message-passing on a binary tree graphical model
for a finite state machine (FSM). In this paper, we summarize
and unify these theoretical results and also summarize recent
efforts to implement high-speed iterative decoders based on
Tree-SISOs. Specifically, we design a Tree-SISO based on a
traditional synchronous design flow and another based on our
asynchronous design flow. The asynchronous design offers sig-
nificant advantages in terms of throughput/area of the resulting
high-speed iterative decoder at the cost of some additional energy
consumption.

I. INTRODUCTION

The primary building block for iterative decoding of modern

codes is the forward-backward algorithm (FBA) (e.g., [1],

[2], [3]). The FBA implements the locally optimal soft-

in/soft-out (SISO) decoding for a code modeled by a trellis

(e.g., a convolutional code or block code). In this paper we

summarize the so-called Tree-SISO algorithm which computes

the same SISO results as the FBA with lower latency. These

two algorithms can be viewed and compared in two frame-

works. First, one can view the SISO computation problem

as a prefix/suffix computation and draw upon the various

architectures for implementing this computation (e.g., adder

circuits). With this view, the FBA is a serial prefix/suffix

computational architecture and the Tree-SISO is a parallel

prefix/suffix computational architecture. Second, both the FBA

and the Tree-SISO can be viewed as standard message-passing

on an acyclic graphical model of the code. If the diameter of

the graph associated with the FBA (i.e., a trellis) is K, then the

graph associated with the Tree-SISO has diameter log2(K).
This yields an exponential reduction in latency in executing a

complete activation schedule on the acyclic graph.

Both the FBA and Tree-SISO can be implemented us-

ing standard digital logic techniques. In this paper, how-

ever, we focus on the potential advantages of implementing

the Tree-SISO using asynchronous digital logic methods,

where no global clock is used to time the logic compo-

nents. Asynchronous methods have the potential for better

area/power/speed trade-offs, especially in data-driven circuits

such as iterative decoders. As way of comparison, we designed

two decoders based on Tree-SISOs for a serially concatenated

convolutional code (SCCC). The first is based on standard

cell synchronous design methods. The second is based on

recently developed standard cell asynchronous design flow

called Static Single Track Full Buffer (SSTFB). These designs

were implemented using the IBM 0.18 micron process and

the decoders achieve data rates near OC-12. The asynchronous

design shows significant advantages in terms of throughput per

area. These advantages are most notable at smaller block sizes

when SISO latency can be a dominant factor in the iterative

decoder throughput due to pipeline overheads.

In Section II we review the Tree-SISO architecture and

the relationship between the two interpretations. Section III

motivates asynchronous Tree-SISO designs and Section IV de-

scribes our specific designs. Comparisons of iterative decoders

based on synchronous and asynchronous Tree-SISO designs

are made in Section V.

II. TREE-SISO OVERVIEW

The SISO operation for a system modeled as a finite state

machine (FSM) is typically performed using the FBA, which

is standard message-passing running on a specific graphical

model for the FSM [2]. There are several forms of message-

passing depending on the optimality criterion and the format

used to store soft information on variables. In the following,

soft information is assumed to be stored in the metric domain

(i.e., negative-log of probabilities) and min-sum processing is

assumed. All of the algorithms described are so-called semi-

ring algorithms [3] so that they may be directly translated to

different message formats and/or optimality criteria.

At time index k, the FSM has state sk, input ak, output xk

and state transition tk = (sk, ak, xk, sk+1). Incoming metrics

on ak and xk define a transition metric Mk[tk] for each

transition tk. Define the minimum sequence metric (MSM)

conditioned on a variable u as the minimum summed metric

over all valid state transitions from time k1 to k2

MSMk2
k1

[u] Δ= min
t
k2
k1

:u

k2∑

k=k1

Mk[tk] (1)

where vj
i indicates a sequence {vn}j

n=i, and tk2
k1

: u is

shorthand for all paths consistent with the particular value of

u. Note that MSMk2
k1

[u] should be viewed as a table of values,

one for each of the finite values that u can take.

The FBA computes the forward and backward state metrics

via the forward and backward state metric recursions

F[sk+1]
Δ= MSMk

0 [sk+1] = min
tk:sk+1

(F[sk] + Mk[tk]) (2a)

B[sk] Δ= MSMK−1
k [sk] = min

tk:sk

(Mk[tk] + B[sk+1]) (2b)

5651-4244-1564-0/07/$25.00 ©2007 IEEE

ITW 2007, Lake Tahoe, California, September 2 - 6, 2007

where it is assumed that k runs from 0 to K−1. For a given k,

once F[sk] and B[sk+1] are available, the soft-out metrics for

ak and xk can be computed (i.e., the completion operation).

Note that there is data dependency in the state metric update

– e.g., F[s10] cannot be updated without F[s9] – resulting in

the so-called add-compare-select (ACS) bottleneck. So that, in

its direct form, the FBA requires latency K times the latency

of a state metric update.

The Tree-SISO architecture allows for the same compu-

tation with latency O(log2(K)). This was described in [4],

[5] using analogies to tree-adder architectures from the digital

circuits literature. A similar architecture was presented from

the perspective of standard message-passing on an acyclic

graphical model in [6]. In the next two sections, we briefly

summarize these results and describe their relation.

A. Parallel Prefix/Suffix Architectures

A prefix computation [7, Section 29.2.2] is

zk = y0 ◦ y1 ◦ · · · ◦ yk k = 0, 1, . . . K − 1 (3)

where ◦ is any binary associative operator. To compute

{zk}K−1
k=0 , one may specify an association (i.e., assign paren-

theses) in a number of ways. For example, assigning paren-

theses as

z3 = (((y0 ◦ y1) ◦ y2) ◦ y3) (4)

yields a serial prefix architecture. This architecture has high

latency and low hardware logic complexity because it executes

each ◦ once at a time. A more parallel architecture can result

from

z3 = (y0 ◦ y1) ◦ (y2 ◦ y3) (5)

in which the two ◦ operations in parentheses can be carried

out in parallel using parallel hardware to reduce latency. This

illustrates the basic idea behind parallel prefix architectures.

Various parallel prefix architectures have been studies in the

context of circuits for fast adders (e.g., [7], [8]) where fan-out

from a particular ◦ operator is a primary design consideration.

In the context of SISO processing for an FSM, the analogous

suffix computation

zk = yk ◦ yk+1 ◦ · · · ◦ yK−1 k = 0, 1, . . . K − 1 (6)

is also of interest. In particular, the forward and backward

state metrics can be obtained using prefix/suffix computations

on the multi-stage transition metrics defined as

C[sk, sm] = MSMm−1
k [sk, sm] (7)

which is a table of the metrics of the best way to get from

state sk at time k to state sm at time m ≥ k. Note that

if m = k, these are the transition metrics if there are no

parallel state transitions. The C-fusion operator fuses C[sk, sl]
with C[sl, sm] to obtain C[sk, sm] by marginalizing out the

intermediate state sl

C[sk, sm] = C[sk, sl] ◦ C[sl, sm] ⇐⇒ (8)

C[sk, sm] = min
sl

(C[sk, sl] + C[sl, sm]) ∀sk, sm

C-fusion processor

B-C-fusion processor

F-C-fusion processor

F[s1] F[s1]

F[s2]

C[s1, s2]

C[s2, s3]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s5, s6]

C[s6, s7]

B[s6]

B[s7]

C[s1, s2]

C[s2, s3]

C[s3, s4]

C[s4, s5]

C[s5, s6]

C[s6, s7]

B[s7]

F[s1]

F[s2]

F[s3]

F[s4]

C[s1, s4]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s4, s7]

B[s4]

B[s5]

B[s6]

B[s7]

F[s1]

F[s2]

F[s3]

F[s4]

F[s5]

F[s6]

F[s7]

B[s1]

B[s2]

B[s3]

B[s4]

B[s5]

B[s6]

B[s7]

Fig. 1. A Tree-SISO processing flow diagram for K = 8.

This is a binary associative operator so that

C[s0, sk] = C[s0, s1] ◦ C[s1, s2] ◦ · · · ◦ C[sk−1, sk] (9a)

C[sk, sK] = C[sk, sk+1] ◦ C[sk+1, sk+2] · · · ◦ ◦C[sK−1, sK]
(9b)

define a prefix/suffix computation.

The forward and backward state metrics can be obtained

by marginalizing C[s0, sk] and C[sk, sK] over the initial and

final state

F[sk] = min
s0

C[s0, sk] (10a)

B[sk] = min
sK

C[sk, sK] (10b)

Therefore, applying parallel prefix/suffix architectures to the

problem in (9) yields SISOs with latency logarithmic in the

block size K by first producing the C[s0, sk] and C[sk, sK]
values for each value of k, then marginalizing as in (10)

(see [3, Fig. 2.48]). Some computation can be saved by

marginalizing as early as possible in the computation. This

is accomplished via

F[sk] = min
sm

(F[sm] + C[sm, sk]) (11a)

B[sk] = min
sm

(C[sk, sm] + B[sm]) (11b)

which are referred to as “FC” and “BC” fusion operations,

respectively. A minimal latency Tree-SISO architecture is

shown in Fig. 1 using these concepts.

B. Message-Passing on Graphs

The FBA is equivalent to standard message-passing on the

graphical model with linear topology shown in Fig. 2(a).

The graphical modeling convention is that edges are vari-

ables and boxes are constraints on variables connected. For

standard message-passing, incoming messages at each con-

straint processor are combined (e.g., summed), then marginal-

ized (e.g., minimized) over all allowable local configurations

566

a0 x0 a1 a2 a3x1 x2 x3

=

s0

s1

s2

s4

s6

s4

(s1, s2)
(s2, s3)

(s3, s4) (s4, s5)
(s5, s6)

(s6, s7)

a4 a5 a6 a7x4 x5 x6 x7

F[s4] subgraph

F[s2] subgraph

B[s4] subgraph

s7

a0

x0

a1 a2 a3

x1 x2 x3

a4 a5 a6 a7

x4 x5 x6 x7

s1 s2 s4s3 s6 s7s5
(a)

(b)

(s2, s4) (s4, s6)

Fig. 2. Graphical models that yield (a) the FBA and (b) the FB-Tree-SISO
for K = 8.

(e.g., [2], [3]). A Tree-SISO architecture can be viewed as

the result of standard message-passing on the binary tree

graph shown in Fig. 2(b). Note that multiple edges on the

graph are labeled with the same variable. This is a notational

simplification used to keep the figure less cluttered and more

precisely these are distinct variables that are constrained to

take equal values through the constraints. A more precise

notation would distinguish these variables as sl
k(i) and sr

k(i),
where i is the depth of the tree and l and r denote “left”

and “right”, respectively. For example, indexing i from 0 at

the bottom, the two s2 variables at depth 1 would be sl
2(1)

and sr
2(1) and constraints deeper in the tree ensure that these

variables are equal.

A natural, convergent schedule on the graph of Fig. 2(b) is to

simultaneously activate nodes at each level and pass messages

first upward and then back downward. This is often called

an inward-outward or forward-backward schedule and the

resulting Tree-SISO was called the forward-backward Tree-

SISO (FB-Tree-SISO) in [6] for this reason. Note that at the

first level, upward messages are the one-step transition metrics

with parallel transitions marginalized if necessary. Processing

at nodes at subsequent depths on the upward recursion cor-

respond to C, FC, or BC fusion operations. At the bottom

level on the downward recursion, the messages correspond

to the sum of the forward and backward state metrics and

the bottom nodes use these to perform completion (i.e., final

soft-out computations). For example, the node with a5 and x5

connected will receive the message F[s5]+B[s6] from above.

For an more detailed example with message interpretation see

[3, Figs. 2.64-2.65].

Note that on the upward recursion, the messages on s4

from the left and right are F[s4] and B[s4], respectively. Thus,

if only the forward and backward state metrics for s4 were

desired, one need only run the upward recursion. Similar tree-

structured graphs could be defined to obtain the forward and

backward state metrics at different times. For example, several

of these are identified as subgraphs in Fig. 2(b) – i.e., running

upward on the subgraph label F[s2] yields this forward state

s0

s1

s2

(s1, s2)

(s2, s3)

a0 x0 a1 a2x1 x2

F[s2] subgraph

s3

Fig. 3. A graphical model yielding F[s3] on the upward recursion.

metric. As another example, consider the graph in Fig. 3,

which is targeted to produce F[s3] at the end of the inward

recursion. Note that this graph and the F[s4] subgraph in

Fig. 2(b) both contain the F[s2] subgraph. Therefore, if one

were running a set of parallel upward recursions on graphs

targeting different time indices, it would be natural to share

common information (messages). For example, F[s2] could

be used by two different upward recursions, one targeting

F[s4] and the other targeting F[s3]. Following this logic leads

precisely to the Tree-SISO structure shown in Fig. 1. For

example, the computations leading to F[s4] and B[s4] in Fig. 1,

can be identified with the upward message updates on the F[s4]
and B[s4] subgraphs shown in Fig. 2. Similarly, the sharing

of the F[s2] subgraph in the F[s3] and F[s4] subgraphs (see

Figs. 2 and 3) corresponds to the fan-out of the F[s2] value

in Fig. 1. The rest of the fan-out connects can be similarly

interpreted. Other parallel prefix tree architectures (e.g., [7],

[8]) can be viewed as a trade-off between the extremes of the

Tree-SISO in Fig. 1 and the FB-Tree-SISO. Finally, note that

this is analogous to running forward and backward only to time

k in the FBA, which can be executed in parallel for different

k. The difference is that when this is performed on a graph

of the form in Fig. 2(a), there is no shared subgraph structure

and all targeted inward recursions process independently (this

corresponds to a flooding schedule on the graph in Fig. 2(a)).

As a final, simple example, consider a single parity check

(SPC) constraint. The graphs corresponding to those in Fig. 2

for this special case are shown in Fig. 4. In this simple case, the

constraints all reduce to local SPC constraints for which the

min-sum message update rule is trivial. For a set of incoming

messages on the 8 variables constrained by the SPC, a set

of convergent messages is shown. Since all variables involved

(including state variables) are binary, messages are shown as

normalized metrics (i.e., negative log-likelihood ratio format).

Note that the output messages on the visible variables are the

same in each case and that the forward and backward metrics

F[s4] and B[s4] can be found in each of the two algorithms

as described above.

III. DESIGN CONSIDERATIONS

A. Advantages of Tree-SISO in high-speed decoding

A given SISO architecture in a given process will have a

maximum speed. If the required throughput is higher than

that provided by a single SISO, M processors can be used,

567

+ + + +

+ +

+

-2-4 +2-9 +1-3 +2-6

+2

-2 -2

-1

+1

-2

+1

-1

+1

+2

+1

+1 +1 +1 -1 -2 -1+1+1

+
+1

-4
+

+1 -4 +1 -2

-1

+2
+

+1 -9

+1

-2
+

-1 +2

+1

-2

+

+1 -3

-1

+2
+

-2 +1

-2

+1
+

+1 -6

+2

-1
+

-1 +2

-2

Fig. 4. Linear (top) and binary tree (bottom) models for a degree 8 SPC
with convergent min-sum mesages shown.

each processing a subset of the trellis sections. The parameter

M is often called the degree of parallelism. The speed of

the iterative decoder can therefore be increased by increasing

the speed of an individual SISO unit and/or using parallel

SISOs. A rough analysis suggests that the throughput increases

linearly with M , but this is not achieved in practice. In the

following, we describe why it is more effective to increase

the SISO speed than to use large M and how the Tree-SISO

offers advantages toward this end.

First, increasing M causes issues related to memory access.

After being processed, messages have to be interleaved be-

tween SISO modules. The interleaver should have a random-

like structure for good code performance, so that for large

M many bits per cycle have to first be stored into a RAM

structure and then retrieved in random order. Multiple banks

of RAM can be used, each receiving data corresponding to one

processed bit. As the data comes out of those banks in random

order, it then has to be multiplexed and distributed back to

the SISOs. Constraints should be placed on the interleaver

to ensure it is clash-free. This not only adds significant

complexity to the decoder, due to the crossbar switch that

has to be built into the interleaver, but also places constraints

on the interleaver design that could yield poor decoding

performance. From a hardware perspective, it also requires

the instantiation of many more RAM cores that are extremely

small and shallow, that consequently require significantly more

area and power than fewer larger and narrower RAM instances.

A second problem with increasing M is also a consequence

of the interleaver presence. The entire block of data has to

be written into the interleaver before the data can be read to

start the next SISO process. This is due to the random-like

structure of the interleaver, which implies that some of the

first bits of data to be fetched are likely to be among the last

bits of data previously stored. Consequently, as the degree of

parallelism is increased the processing time can be linearly

reduced, but the pipeline latency remains constant yielding

diminishing benefits.

Performance degradation is more pronounced in cases with

small data block sizes where the pipeline latency is comparable

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

T
hr

ou
pu

t (
M

bp
s)

M (Number of processors)

Fig. 5. Throughput vs. number of processors M .

0

20

40

60

80

100

120

140

200 250 300 400 500

N
um

be
r

of
 p

ro
ce

so
rs

 (
M

)

Processor Frequency (MHz)

Fig. 6. Number of processors M vs. processor frequency.

to, or in extreme situations larger than, the actual processing

time. This occurs every SISO operation. Figure 5 illustrates

this point by showing the achievable decoder throughput as a

function of M . The plot assumes that each processor runs at

100 MHz for 5 iterations for a code that has two convolutional

codes and a data block size of 2 Kbits. Figure 6 also illustrates

this point by showing the number of processors needed to

achieve a throughput of 540 Mbps with varying processor

frequency (assuming 5 iterations and 2 Kbit data block size).

Thus, the required M decreases more quickly with the pro-

cessor frequency than the linear rate predicted by a rough

analysis. Alternatively, it can be concluded that increasing the

processor speed is more effective than increasing the number

of processors for increasing the overall decoder throughput.

The Tree-SISO has an advantage, relative to the FBA-

based designs, with regard to the achievable clock frequency.

The ACS bottleneck is a well-known problem in the design

of high-speed implementations of the Viterbi algorithm and

the FBA. This ACS operation usually limits the speed of a

standard FBA implementation, since it is generally accepted

that this operation cannot be pipelined any further due to the

underlying data dependency. Other architectures have been

proposed to resolve this dependency [9], but suffer from

significantly greater logic requirements. In the Tree-SISO

architecture, however, the ACS-bottleneck is inherently broken

since the state metrics can be computed largely in parallel. This

enables finer pipelining of the unit without additional logic and

therefore higher clock speeds.

B. Advantages of asynchronous circuits

Based on the above argument, one should focus on in-

creasing the processor speed rather than using large M .

However, this inevitably leads to designs that have very deep

568

pipeline structures. These structures suffer from larger pipeline

overhead, meaning that several processing cycles are wasted

loading the pipeline before any useful results are produced.

For larger block sizes this latency is small as compared to

the total processing time for the block, but for smaller block

sizes it can become significant. In synchronous design, each

pipeline stage requires a full clock cycle to be loaded with

data. Therefore, the pipeline overhead is equal to as many

cycles as there are pipeline stages. In asynchronous design,

however, each pipeline stage is associated with a forward

latency that represents the amount of time required for the data

to propagate through the pipeline stage. It is also associated

with a backward latency that is associated with the additional

amount of time it takes the pipeline stage to communicate with

its neighbors or “handshake” and return to the state where

it is ready again to receive data. The local cycle time of a

pipeline stage is equal to the sum of the two latencies. When

a pipeline is empty the data propagate into the pipeline in

time that is proportional to the forward latency, which is a

fraction of the total pipeline latency. Therefore the pipeline

overhead in an asynchronous design is much smaller since the

pipeline can be loaded in a fraction of the time. Additionally,

in many asynchronous design styles each gate holds the data

just as a sequential element does in synchronous designs. So

a gate could be perceived as a gate followed by a flip-flop.

Therefore some of the additional pipelining comes inherently

with the design style. It should be noted however that usually

these gates are substantially larger than their synchronous

counterparts.

IV. TREE-SISO DESIGNS

We have designed two Tree-SISOs 8 trellis sections wide,

one that uses a synchronous design style with a standard cell

Artisan library and one that uses our asynchronous Static

Single Track Full Buffer (SSTFB) design style. This is an

evolution of the Single Track Full Buffer (STFB) library

presented earlier [10], [11], which has proven its functionality

and performance, achieving approximately 1.2GHz equivalent

performance in a 0.25μm TCMC process. SSTFB has similar

advantages while being more robust to higher process vari-

ability, crosstalk noise, and leakage currents [12], [13]. Both

designs were designed for a 0.18μm IBM technology with an

ASIC-like methodology using commercial tools. Both STFB

and SSTFB are a dual-rail design styles, meaning that for every

signal the gates use both a true and a false rail to characterize

the data, and our library gates internally use dynamic logic

that requires less area and achieves better performance than

typical CMOS libraries. The handshaking between gates is

also encoded on the data rails. The transmitter gate raises one

of the two rails (true or false) and when one of them is asserted

the following gate can detect the presence of data. It then stops

driving the wires and the receiver gate assumes this task. When

the receiver has used the data it resets the wires indicating it is

ready to receive new data. Figure 7 shows a typical STFB cells

transistor-level diagram of a n-bit input 1-bit logic function.

g p g

NMOS

transistor

stack

L01 L11

L0n L1n

L01 L0nL11 L1n

S0

S1

A

B

C

B

S0 S1

R1R0

M1 M2

R1

R0

Fig. 7. Typical STFB transistor-level schematic.

p pK/4M K/8M

Pipeline

Overhead

Pipeline

Overhead

Inner SISO

Processing

Outer SISO

Processing

Fig. 8. Execution schedule for each decoder iteration.

A. Iterative Decoder Considerations

We chose a simple SCCC structure with two 2-state con-

volutional codes to reduce the size of the decoder circuit.

The data is first encoded using a rate 1/2 non-recursive

convolutional code with polynomials [1 + D, 1 + D] and the

results are interleaved. A rate 1 accumulator (i.e., [1/(1+D)])
is used to encode the interleaved bits before transmission. This

yields an overall code rate of 1/2. Puncturing could be used to

achieve higher code rates and increase flexibility, with minor

modifications to the design, but this was not considered for

simplicity. For a block size of K bits the outer code has a trellis

length of K and the inner trellis has 2K sections. Therefore,

the throughput is

T =
fK

I
(
2p + 3K

8M

) (12)

where f is the clock frequency in Hz (or in the case of

the asynchronous design the equivalent throughput), I is the

number of iterations and 8M is the number of bits that can be

processed in parallel. Finally p is the pipeline latency in terms

of cycles. Each SISO operation has to finish and store data

back into memory, therefore the pipeline overhead is present

for every SISO activation (half-iteration). The execution sched-

ule for each iteration is shown in Figure 8.

V. DESIGN RESULTS AND COMPARISONS

The frequency of the post-place-and-route synchronous

Tree-SISO core is 475 MHz. From post-layout simulations,

the asynchronous Tree-SISO core frequency was estimated to

be approximately 1.15 GHz. Thus, we expect the asynchronous

core to run 2.4 times faster then its synchronous counterpart.

569

Block Async. Sync. Sync. T /area Energy
Size T T Msync area ratio ratio
(bits) (Mbps) (Mbps) (mm2) (S/A) (S/A)

512 383 - - - - -
768 418 415 11 27.06 3.91 1.23
1024 438 440 6 14.76 2.13 0.66
2048 471 519 4 9.84 1.28 0.4
4096 490 513 3 7.38 1.03 0.32

TABLE I

THROUGHPUT (T) PER AREA AND ENERGY CONSUMPTION COMPARISON.

A. Area comparison

The logic area of the synchronous and asynchronous Tree-

SISO cores were 2.46 mm2 and 6.92 mm2, respectively. Both

asynchronous and synchronous cores implement the exact

same function. Due to the performance advantage of the

asynchronous core, the synchronous core must be instantiated

many times in order to match the throughput (i.e., Msync > 1
is required while Masync > 1). Substituting into (12), shows

that for equivalent throughput with 6 iterations and pipeline

latencies of 60 cycles for the synchronous design and 32

equivalent cycles for the asynchronous design, the number of

required synchronous cores varies from Msync = 11 for a

block size of 768 bits to Msync = 3 for a block size of 4

Kbits.

B. Throughput/area comparison

The ratio of throughput to area provides a fair comparison

at different block sizes. For the commonly used block size

of K = 1024, Table I shows that the asynchronous design

has a throughput to area ratio that is 2.13 larger than that of

the synchronous design. The advantages are more significant

for smaller block sizes, and for block sizes of 512 or smaller,

the synchronous design cannot match the throughput of the

asynchronous counterpart, regardless of the Msync. As the

block size increases, latency becomes less of a critical factor

and the two designs become more comparable.

C. Energy Comparisons

From the post-layout spice simulation the power consumed

by the complete asynchronous Tree SISO is estimated at 15.5

W. The power for a single synchronous core (Msync = 1)

is 1.72 W. The last column in Table I translates the Msync

requirements into energy consumption comparisons showing

that the synchronous design is more energy efficient except at

small block sizes. Although these calculations were based on

peak power and are likely conservative, the ratio should be

representative of the relative power consumption of the two

designs. Leakage power comparisons have not been included

in the calculations, but given the smaller area of the asyn-

chronous design, we expect it to have an advantage in that

respect.

VI. CONCLUSIONS

The Tree-SISO architecture was introduced using the ob-

servation that the computation of forward and backward state

metrics is closely elated to a prefix/suffix computation. Subse-

quent work showed that similar Tree-SISO structures can be

viewed as standard message-passing on an alternative, binary

tree-structured, graphical model for an FSM. In this paper

we summarized these results and showed the specific relation

between the two interpretations.

Our circuit design results demonstrate that SSTFB asyn-

chronous iterative decoder is beneficial for small to medium

block sizes. Preliminary comparisons show that the asyn-

chronous iterative decoder can offer more than a 2X advantage

in throughput per area for block sizes of 1 Kbits or less and

smaller energy per block for block sizes of 768 bits or less.

Thus, the asynchronous design is particularly useful in low

latency wireless applications in which block sizes are often

small. This chip design also motivates a number of areas of

future work. The current SSTFB library has only one size

per cell. While this is sufficient to achieve high performance,

multiple sizes for each cell can significantly reduce the overall

capacitance and power consumption. In addition, 64% of the

cell instances in the Tree SISO design are dual-rail buffers for

slack matching [14]. If these are replaced by 1-of-4 or 1-of-8

buffers (that have less switching activity per bit), significant

reductions in power consumption are likely.

REFERENCES

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Information
Theory, vol. IT-20, pp. 284–287, March 1974.

[2] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis,
Linköping University (Sweden), 1996.

[3] K. M. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection:
Adaptivity, Complexity Reduction, and Applications. Kluwer Academic
Publishers, 2001.

[4] P. A. Beerel and K. M. Chugg, “An O(log2 N)-latency SISO with
application to broadband turbo decoding,” in Proc. IEEE Military
Comm. Conf., (Los Angeles, CA), pp. 194–201, October 2000.

[5] P. A. Beerel and K. M. Chugg, “A low latency SISO with application
to broadband turbo decoding,” IEEE J. Select. Areas Commun., vol. 19,
pp. 860–870, May 2001.

[6] P. Thiennviboon and K. M. Chugg, “A low-latency SISO via message
passing on a binary tree,” in Proc. Allerton Conf. Commun., Control,
Comp., pp. 959–960, October 2000.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 1990.

[8] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Computers, vol. C-31, pp. 260–264, March 1982.

[9] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI archi-
tectures for turbo codes,” IEEE Trans. VLSI, vol. 7, September 1999.

[10] M. Ferretti, R. Ozdag, and P. A. Beerel, “High performance asyn-
chronous ASIC back-end design flow using single-track full-buffer
standard cells,” in Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 95–105, April 2004.

[11] M. Ferretti and P. A. Beerel, “Single-track asynchronous pipeline
templates using 1-of-N encoding,” in Proc. Design, Automation and Test
in Europe (DATE), pp. 1008–1015, March 2002.

[12] P. Golani and P. A. Beerel, “High-performance noise-robust standard-
cell asynchronous library,” in Proc. International Symposium on VLSI
Design, pp. 256–261, March 2006.

[13] M. Ferretti, Single-Track Asynchronous Pipeline Template. PhD thesis,
University of Southern California, August 2004.

[14] P. Beerel, A. Lines, M. Davies, and N.-H. Kim, “Slack matching
asynchronous designs,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 1008–1015, March
2006.

570

