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Adaptive Iterative Detection for Phase Tracking in
Turbo-Coded Systems

Achilleas Anastasopoulos, Member, IEEE,and Keith M. Chugg, Member, IEEE

Abstract—The problem of performing iterative detection
(ID)—a technique originally introduced for the decoding of turbo
codes—for systems having parametric uncertainty has received
relatively little attention in the open literature. In this paper, the
problem of adaptive ID (AID) for serial and parallel concatenated
convolutional codes (SCCC’s and PCCC’s or turbo codes) in
the presence of carrier-phase uncertainty is examined. Based on
the theoretical framework in [1], [2], adaptive soft inverse (ASI)
algorithms are developed for two commonly used blocks in turbo
codes, leading to the adaptive soft-input soft-output (A-SISO) and
the adaptive soft demodulator (A-SODEM) algorithms. Based on
these algorithms, practical AID receivers are presented. Several
design options are proposed and compared and the impact of
parametric uncertainty on previously established results for
iterative detection with perfect channel state information (CSI) is
assessed.

I. INTRODUCTION

T HE introduction of parallel concatenated convolutional
codes (PCCC’s or turbo codes) [3], and serial concate-

nated convolutional codes (SCCC’s) [4] was arguably one of
the most significant advances in coding theory. These codes
are constructed as concatenations of simple constituent codes,
and have been shown to achieve near-capacity performance.
In a standard SCCC, shown in Fig. 1(a), a block of the input
sequence is encoded by an outer convolutional code (CC). The
coded symbols are fed to an inner CC through a pseudorandom
interleaver and the output symbols are then mapped onto the
constellation points and transmitted to the channel.

When perfect channel state information (CSI) is available, a
decoder that approximates maximum-likelihood sequence de-
tection (MLSD) performance with reasonable complexity can
be constructed, by utilizing a novel decoding technique, namely
iterative detection (ID) [3]. The effectiveness of ID can be at-
tributed to the exchange of soft information related to the input/
output symbols of each constituent CC. In [5], a systematic
approach to designing ID receivers was presented for systems
consisting of an interconnection of multiple subsystems. In this
approach, which is consistent with the more general theory of
probability propagation in graphs [6],soft inverseblocks—each
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Fig. 1. (a) Serial concatenation of CC’s. (b) ID network for prefect CSI
(arrows marked with an “x” denote input/output ports that are not used).
(c) A-SODEM-based iterative receiver. (d) A-SISO-based iterative receiver
(the soft demodulator is part of the A-SISO).

one performing optimal processing considering only the local
structure of the corresponding subsystem in the original net-
work—are connected in an intuitive way to form the ID net-
work. In general, thesoft inverserequires marginalization of
joint probabilities over all combinations of possible input/output
sequences. When the subsystem is a finite state machine (FSM),
however, the soft inverse can be computed efficiently using the
so-called forward–backward soft-input soft-output (SISO) algo-
rithm [5], which is a generalization of the well-known BCJR
algorithm [7]. Such a receiver is shown in Fig. 1(b) for the
case of SCCC with perfect CSI [the system in Fig. 1(a)], where
the notation is similar to [5] (the block denoted SODEM is a
soft-output demodulator, i.e., thesoft inverseof the modulator).
Similarly, the ID network for a PCCC code can be constructed
using simplesoft inverseblocks, as shown in Fig. 2(b).

In many practical situations, perfect CSI is not available at the
receiver. Consequently, an iterative receiver should be able to
deal with the unknown, and possibly time varying parameters.
The systematic procedure for building ID receivers presented
in [5], can be extended to the nonperfect-CSI case as follows:
adaptivesoft inverse(ASI) blocks—each one corresponding to
a subsystem in the original network—are constructed and con-
nected in an intuitive way to form the adaptive ID (AID) net-
work. Several approaches have been suggested in the literature.

In the simplest scenario, the perfect-CSI iterative receiver of
Figs. 1(b) and 2(b) are preceded by an external estimator (i.e., a
phase-locked loop [PLL] in the case of unknown carrier-phase),
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Fig. 2. (a) Parallel concatenation of CC’s (the block labeled MAPPER
performs puncturing and it represents a memoryless function in general).
(b) ID network for perfect CSI (the block named SOMAP is thesoft inverse
block corresponding to the MAPPER, as in [5]). (c) A-SODEM-based iterative
receiver. (d) A-SISO-based iterative receiver (the soft demodulator is part of
the A-SISO).

which runs only before the first iteration and effectively dero-
tates the observation, which is then processed by the perfect-CSI
ID receiver [8].

An alternative approach considers both the modulator and the
channel as a separate subsystem, and asoft inverseblock for this
subsystem is derived, namely the adaptive-soft-output demod-
ulator (A-SODEM). In this way, the estimation process is tied
with the detection process through the exchange of soft or hard
information between the A-SODEM and the rest of the ID net-
work, as shown in Figs. 1(c) and 2(c), for SCCC and PCCC, re-
spectively. This is roughly the approach followed in [9] and [10]
for the case of decoding of PCCC’s in a flat fading channel.

Finally, when the inner CC of a SCCC, the modulator, and the
channel are treated as a combined subsystem, the ID structure
depicted in Fig. 1(d) emerges, where the correspondingsoft in-
verseblock is the adaptive SISO (A-SISO) algorithm introduced
in [1], [2], [11], that jointly estimates the unknown parameters
and provides soft information on the data symbols. An algo-
rithm with a similar structure was developed in [12]. While this
approach is straightforward to implement for SCCC, this is not
the case for PCCC, since both CC’s are directly involved in the
generation of the output symbol. Modified ID structures, based

(a)

(b)

Fig. 3. (a) Isolated FSM with unknown parameter. (b) Uncoded data sequence
with unknown parameter.

on A-SISO’s can also be built for PCCC’s, as will be described
in detail in this work.

In this paper we consider the above approaches to AID for
phase tracking in SCCC and PCCC systems. In Section II we
develop two basic ASI blocks, namely the A-SISO and the
A-SODEM, by appealing to the framework established for the
linear estimation problem in [1], [2], [13]. We then apply these
algorithms for AID for phase tracking in SCCC (Section III)
and PCCC (Section IV). These results demonstrate that the
dramatic gains in performance associated with turbo codes
relative to traditional convolutional coding are maintained
in the presence of severe phase dynamics if and only if a
well-designed AID scheme is used.

II. PRACTICAL ASI ALGORITHMS FORPHASE TRACKING IN

TURBO CODES

A. Practical A-SISO Algorithms

Consider an isolated FSM, shown in Fig. 3(a), with input,
state —together constituting the transition —
and output , where eachintegerquantity (i.e., , or

) is assumed to take values in the set .
The output is mapped to the complex symbol and trans-
mitted on an AWGN channel, which introduces phase offset
as well, resulting in the following complex baseband model

(1)

where the symbols are normalized to unit average energy,
is complex circular additive white Gaussian noise (AWGN)

with , and is the symbol energy.
In [1], [13] a slightly different observation model was as-

sumed, where the unknown parameter is linearly dependent with
the observation as shown in (2)

(2)

In particular, under the assumption of the unknown parameter
being a deterministic but unknown constant, algorithms were
developed for the exact evaluation of the extrinsic information
on a generic quantity (i.e., , or ) based on the
entire observation record, defined by

(3)
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where denotes the vector denotes all
input sequences consistent with , and is a normalizing
constant. Furthermore, in [1], [2] exact algorithms were devel-
oped for the case of the unknown parameter being modeled as a
Gauss Markov (GM) random process.1 As could be expected
from the hard-decision literature [14], these exact algorithms
have exponential complexity in the sequence length, thus sub-
optimal practical algorithms were developed. Among the multi-
tude of algorithms developed in [1], [2], [13], we now describe
two basic families of practical algorithms, the basic character-
istics of which are:

• Forward/backward recursions on a trellis, similar to the
recursions performed in the BCJR [7], or the perfect-CSI
SISO [5] algorithms.

• Multiple, per-state parameter estimation, in a way similar
to the per-survivor processing (PSP) [14] hard-decision al-
gorithms, both in the forward and in the backward direc-
tion. Alternatively, parameter estimation is performed in
both directions using a single external delayed decision
directed estimator, as in [15]–[17], for hard decision algo-
rithms.

• The existence of abinding term that quantifies the agree-
ment of the forward and backward phase estimates. This
term is only present in the nonperfect-CSI case and is a di-
rect consequence of the theoretical framework developed
in [2], [11], [13].

To obtain practical A-SISO algorithms for the nonlinear pa-
rameter model in (1), we suggest replacing the parameter esti-
mators in the original A-SISO’s by some nonlinear estimator,
i.e., in a similar manner suboptimal nonlinear parameter esti-
mators were used in conjunction with PSP in the hard-decision
literature [18], [19]. In this paper, a simple first order decision
directed phase-locked loop (DD-PLL) is used

(4)

where the design parametercontrols the PLL noise equiva-
lent bandwidth [20] (normalized to the symbol time)

, and denotes the imaginary part of. The
resulting algorithms, named A-SISO-MULT (i.e., multiple es-
timators) and A-SISO-SING (i.e., single estimator), are shown
in Fig. 4, and are precisely described in Appendixes A and B,
respectively. In addition, by setting the binding term in (15)
equal to zero, two variations of the algorithms described in Ap-
pendixes A and B emerge, namely A-SISO-MULT-NB (i.e., no
binding) and A-SISO-SING-NB, respectively. All of these al-
gorithms are summarized in Table I.

At this point we emphasize that the trellis on which these al-
gorithms operate is not tightly related to the trellis implied by
the FSM model.2 In fact, we can generalize the notion of the
state and transition to longer sequence portions. As an
example, a super-state and super-transition can be defined as

and for arbitrary
, which is a design parameter that determines the amount of

1The extrinsic information computed in this case wasAPP(u ) =
c E fP (z ; x jg )g

2To distinguish these two trellises, the former is referred to as the algorithm
trellis, while the later is referred to as the FSM trellis.

(a)

(b)

Fig. 4. (a) Multiple-estimator and (b) single-estimator suboptimal (practical)
A-SISO algorithms.

pruning in the forward and backward trees, and eventually, the
complexity of the algorithm. This technique has been used ex-
tensively in the problem of data detection in the presence of un-
known parameters (e.g., [21], [22]).

B. Practical A-SODEM Algorithms

We now consider the isolated system depicted in Fig. 3(b),
where an uncoded sequence is modulated and transmitted
through the channel described earlier. We define the A-SODEM
as thesoft inverseblock that provides extrinsic information on

based on the observation. Clearly, the system in Fig. 3(b)
can be thought of as a special case of the system shown in
Fig. 3(a), with anidentity FSM having the input and output
equal to at each time . In this sense, the A-SODEM is an
A-SISO corresponding to thisidentityFSM. We emphasize that
the corresponding algorithm trellis can be arbitrary. In partic-
ular, defining the super-state , a family
of practical algorithms can be derived in a straightforward way
having structure similar to the A-SISO’s shown in Fig. 4. We
are especially interested in the simplest case of , since
this will provide useful links with existing adaptive algorithms.
Under this simplifying assumption, the algorithm trellis reduces
to a single-state trellis with parallel transitions and the
resulting A-SODEM algorithms simplify considerably. The
resulting family of A-SODEM’s is named A-SODEM-SS
(i.e., single state), and is described in Appendix C. One can
also envision different variations of the algorithm described in
Appendix C. We are especially interested in the three variations
described below, which are also summarized in Table I.

• The backward recursion is eliminated, which implies that
the binding term in (15) can be set to zero, since there is
no backward metric to be bound with the forward metric.
This algorithm is named A-SODEM-SS-FW (i.e., forward
recursion only).

• The transition metric used in the forward recursion is sim-
plified by eliminating thea priori soft information, i.e.,
(16) is simplified to ,
where all quantities are defined in Appendixes A and C.
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TABLE I
SUMMARY OF PRESENTEDASI ALGORITHMS

Furthermore, the backward recursion is eliminated, and
the binding term in (15) is set to zero. Since the soft infor-
mation is not utilized, this algorithm is a nonitera-
tive scheme which needs to be activated only once, before
the iterative decoding process. This algorithm is exactly
the one proposed in [8] and is named EXT (i.e., external
PLL) herein.

• The transition metric used in the forward and backward
recursions is simplified by eliminating the dependence
on the observation, i.e., (16) is simplified to

, and the binding term in (15) is set to zero. Under
the first simplification, the forward and backward de-
modulation steps produce the same hard estimate on the
symbol . This, together with the second simplification,
implies that the backward step can be eliminated. This is
roughly the approach followed in [10] for PCCC’s in flat
fading channels and can be summarized as follows for the
phase tracking problem: The incoming soft information

is thresholdedto extract the corresponding hard
decisions . A DD-PLL runs in the forward direction
to update the phase estimates. New soft information is
calculated as ,
where is the phase estimate corresponding to time

, and all quantities are defined in Appendixes A and
C. This algorithm is named A-SODEM-HD (i.e., hard
decisions).

III. SCCC WITH CARRIER PHASE TRACKING

As shown in Fig. 1(a), in a SCCC the sequence of source bits
is partitioned into blocks and convolutionally encoded using

a rate outer CC, producing coded symbols . These sym-
bols are fed to an inner CC of rate through a pseudorandom
symbol interleaver3 of length . The output symbols are
mapped onto a constellation of size, resulting in an overall
code rate of (bits per channel use). The com-
plex symbols are transmitted through an AWGN channel, re-
sulting in the complex baseband model of (1).

The effectiveness of the adaptive iterative detection algorithm
can be assessed by a number of factors. For example, loss of

3In [5] it was shown that bit interleaving yields better performance with a
slightly more complicated decoder structure.

lock probability, tracking bandwidth, and BER in the tracking
mode are all relevant performance measures. Initial experiments
suggested that cycle slipping was a major performance limiting
factor. This is because the operating SNR is very low and the
block length (interleaver size) is large. Thus, we consider the
insertion of pilot symbols. In particular, pilot symbols are
inserted in the transmitted sequence for everycoded sym-
bols. The pilot insertion loss is accounted for by lowering the
transmitted symbol energy as

(5)

where is the energy per information bit.

A. Receivers

The structure of a SCCC is one of a serial concatenation of
two FSM’s through an interleaver and therefore it permits the
iterative receiver shown in Fig. 1(b) for the case of perfect CSI.
Similarly, the block diagram of the iterative receiver that uti-
lizes an A-SODEM and inner and outer nonadaptive SISO’s is
shown in Fig. 1(c), while the A-SISO based receiver is shown
in Fig. 1(d).

B. Numerical Results

The SCCC system simulated in this section consists of an
outer 4-state, rate CC, connected through a length

symbol pseudo-random interleaver to an inner 4-state,
rate CC. The corresponding generator matrices are given
by

(6a)

(6b)

The output symbols are mapped to an 8-ary Phase Shift Keying
(8PSK) constellation with Gray encoding, resulting in an overall
code rate . The phase process is
generated as a random walk as in [23]

(7)

where is a Gaussian increment of zero mean and variance.
The algorithm trellises are identical to the corresponding FSM
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Fig. 5. BER versus loop bandwidth for the SCCC with static phase. Curves
corresponding to pilot-aided and nonpilot-aided systems are shown (the loss
due to pilot insertion is�10 log (R ) = 0:51 dB). In each case, curves for
threeE =N values are presented. Receivers employing external PLL, as well
as inner adaptive SISO’s are considered.

trellises, i.e., no super-state-based A-SISO’s are examined. In
all simulations presented here, the initial forward and backward
phase estimates are assumed ideal. The motivation for this as-
sumption is that a sufficiently long initial and final training se-
quence can be attached in the sizecodeword providing accu-
rate initial phase estimates, with insignificant SNR loss.4 Note
that interpolation between phase estimates obtained using the

-separated pilot symbols was found to perform poorly under
all operational scenarios presented.

In Fig. 5 the BER is plotted versus the loop bandwidth for
the case of the true phase process being static . A large
value of suggests the ability to track larger phase dynamics.
The comparison of EXT and A-SISO-MULT curves leads to dif-
ferent conclusions depending on the bandwidth range: In the low
loop-bandwidth range ( ) the two receivers perform
almost identically, approaching the perfect-CSI performance,
thus the EXT receiver suffices. For medium and high loop-band-
width ( ) a clear advantage of the A-SISO-MULT
can be observed over the EXT receiver. In particular, the sim-
ulations show that with the proposed algorithm the PLL band-
width can be increased two to three times.

Regarding the comparison between pilot-aided and non-
pilot-aided, the basic trade-off is controlled by the parameter

(for fixed ): by increasing , better tracking is possible,
while the symbol energy is reduced as reflected in (5). In
the one extreme, no pilots are introduced , resulting in
high probability of cycle slipping at moderate phase dynamics.
In the other extreme , the pilot insertion loss nullifies
any performance gain due to the improved phase estimate.
Two practical cases are shown in Fig. 5: nonpilot-aided and

pilot-aided transmission. At low
(i.e., 1 dB) the nonpilot-aided system is superior, since the
pilot insertion loss is dB, reducing the
effective to dB, which results in poor

4For a nominalE =N = 1 dB andN = 16384, the standard deviation of
the initial phase error can be made less than 4.5with only a loss in the effective
E =N of 0.04 dB.

Fig. 6. BER versusE =N for SCCC with phase dynamics and various
inner A-SISO and A-SODEM configurations (the best performance for
SING receivers was achieved ford = 0). The loss due to pilot insertion is
�10 log (R ) = 0:27 dB. For comparison, the performance of CC with
adaptive hard-decision detection is presented.

performance even in the coherent case. At medium (i.e.,
1.5 dB) the trade-off is reversed, generating a two- to three-fold
advantage of the pilot-aided system over the nonpilot-aided
one in terms of . This behavior is attributed to the fact that
the former system is able to maintain phase lock for wider
loop bandwidths. Finally, at large values (i.e., 2 dB),
the superiority of the pilot-aided system is even more evident,
giving rise to as much as five to seven times increase in,
and achieving even lower BER. The above comparisons raise
the issue of proper selection of the system parameter .
Our design procedure is initiated by setting a target BER and

region. A search procedure is then followed, in the process
of which, and are gradually increased until the
target (BER, ) pair is reached. Regarding the selection of

, it should be smaller than the average time-to-slip or else
the performance will be dominated by cycle slips.

Fig. 6 shows a comparison of the SCCC system with the max-
imal free distance, rate , 128-state CC [24] p. 493], in the
more realistic scenario that includes phase dynamics. The CC
output is mapped on a quadrature phase-shift keying (QPSK) al-
phabet resulting in a rate (bits per channel use) code (no
pilot symbols are used). MLSD is performed using the Viterbi
algorithm (VA) in the coherent case, while two adaptive receiver
structures are considered. The first is the conventional adap-
tive-MLSD (CA-MLSD) receiver of [17], consisting of a single
DD-PLL driven by delayed tentative decisions from the VA, and
the second is a PSP-based [14] receiver consisting of a VA with
128 DD-PLL’s driven with zero-delay decisions. Simulations
were run for and was optimized for each
value. Examining the CC performance curves, the following ob-
servations can be made. With perfect CSI, a BER of is
achieved at dB. The PSP-based receiver oper-
ates at this BER with a loss of 0.4 dB, while the the CA-MLSD
receiver performs poorly resulting in a BER of 10at 4 dB.

The design procedure outlined in the previous paragraphs
was followed for the selection of for the SCCC case.
Simulation trials not shown here suggested that a reasonable



2140 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 12, DECEMBER 2001

pair is for a target BER of and a
phase process generated as in (7) with . Observing
the SCCC curves in Fig. 6 we conclude that A-SISO-MULT
and A-SISO-SING perform identically (0.6 dB
away from the coherent case at a BER of ). This may be
attributed to the fact that the former corresponds to an FSM
of only 4 states. Therefore, there is no notable gain by using
four PLL’s instead of one PLL. This is to be contrasted with
the 128-state CC case, where a large difference between the
CA-MLSD and PSP-based decoders is observed. A small
degradation of 0.2 dB (at a BER of 10) is observed when
binding is dropped in the A-SISO-SING-NB receiver. The
A-SODEM-SS receiver has very similar performance with the
A-SISO-MULT and A-SISO-SING-NB receivers, even though
it corresponds to a single-state FSM, while the simplified
version A-SODEM-SS-FW, results in a performance loss of 1
dB (at a BER of 10 ) compared to the best adaptive receivers
considered.

Regarding the performance of the proposed adaptive
schemes, it can be noted that since the pilot insertion loss is

dB, the actual loss due to the unknown
phase is only 0.33 dB (for the best adaptive scheme, i.e.,
A-SISO-MULT/SING, at a BER of 10 ). This means that if
the state space is increased y using super-state-based ASI’s),
but the pilot symbol structure remains fixed, the expected
performance gain is at most 0.33 dB. On the other hand, by
using super-state-based ASI’s, it may be possible to achieve
the same performance with less overhead due to pilot symbols,
with a potential gain of 0.6 dB.

The comparison of the CC and SCCC curves clearly illus-
trates the importance of adaptive iterative detection. Under per-
fect CSI, the SCCC performs with a 2.7–dB gain over the stan-
dard CC at BER of 10 . This gain vanishes when a PSP based
MLSD receiver is used to decode CC and the EXT receiver is
used for SCCC. By utilizing the more advanced A-SISO’s or
A-SODEM’s proposed herein, together with pilot symbols, the
corresponding gain is 2.6 dB (at a BER of 10).

IV. PCCC WITH CARRIER PHASE TRACKING

In a PCCC [3], a length block of the original sequence
is encoded by a rate CC, while an interleaved version

of the input sequence is encoded by a second CC of rate,
giving rise to the coded symbols and , respectively. The
output symbols and are then mapped—after possible
puncturing—to the symbols and transmitted over an AWGN
channel which introduces phase uncertainty, modeled exactly as
in the case of SCCC’s. The observation equation is written as

(8)

where the time-varying mapping is ex-
plicitly shown. Pilot symbols are inserted in the transmitted se-
quence in the same manner described in the previous section.

For concreteness, we consider the case where
consists of a systematic and a coded bit

is a binary coded bit and belongs
to a QPSK signal constellation. This signaling format, which

was the basis for the original turbo code, can be achieved by
transmitting the systematic bit , together with the coded bits

or after alternate puncturing.

even

odd
(9)

where maps the bits to the two-dimensional QPSK
signal constellation (e.g., Gray mapping is used in the numerical
results presented herein).

A. Receivers

Since PCCC’s can be modeled as parallel concatenated
FSM’s, the iterative decoder shown in Fig. 2(b) can be applied
when perfect CSI is available. The A-SODEM-based receiver
is shown in Fig. 2(c). All A-SODEM variants discussed earlier
(i.e., A-SODEM-SS, S-SODEM-SS-FW, and EXT) can be used
herein unchanged. However, for the A-SISO-based receiver,
in contrast to the serially concatenated examples considered
in Section III, the PCCC has the property that the outputs of
both FSM’s are directly affected by the channel. Furthermore,
the outputs of the constituent FSM’s are coupled via the
nonlinear mapping (8). This makes the substitution of the
perfect-CSI SISO by an A-SISO insufficient for performing
adaptive iterative detection in this case. Thus, adaptive iterative
detection for this PCCC application requires a method for
evaluating transition metrics and updating phase estimates for
each A-SISO. In the following we discuss the options for doing
so and demonstrate one specific approach.

1) Metric Evaluation: Metric evaluation in A-SISO1 can be
performed by treating the output symbols corresponding to CC2
as nuisance parameters and averaging over them. For example,
the transition metric used in (14) for the recursion in SISO1 is
evaluated as

(10)

where all quantities are defined as in Appendix A. A reason-
able choice for the probability is to use the most re-
cent soft-information produced by A-SISO2. This is identical
to the operation of soft mapper (SOMAP) [5] in the case of per-
fect CSI. The only difference is that the demodulator and the
SOMAP are now integrated with the A-SISO1, since a phase es-
timate is required for this operation. This solution is both simple
to implement, and compatible with the notion that SISO blocks
exchange information only in the form of soft metrics. A similar
procedure can be followed for the evaluation of the transition
metrics of A-SISO2.
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2) Parameter Estimate Update:Several options are consid-
ered for updating the phase estimate in A-SISO1.

Starting from the simplest solution, the channel update in
A-SISO1 is only performed for those time instants, for which
the symbol is only a function of ( is even). The resulting
updates for thispuncturedDD-PLL (P-DD-PLL) become

even

odd
(11)

This approach can be used both, in multiple- and single-PLL
A-SISO’s. The immediate consequence of this sort of channel
update is a loss of the full tracking ability of the estimator (i.e.,
the effective loop bandwidth is halved). In addition, such an
approach is not always applicable, since the mapping
may always be an explicit function of the symbol as well,
as in the case of nonpunctured codes. Furthermore, this method
cannot be used for A-SISO2, because the systematic bithas
been punctured in the lower constituent code. As a result, the
update equation corresponding to (11) for A-SISO2 degenerates
to , which means no update at all.

In order for the DD-PLL (or DD-PLL’s) to be updated for
every time instant , an estimate , of , is required when
is odd. The later can be determined by thresholding the most re-
cent soft information on available at the output of A-SISO2.
The updates for this hard decision directed PLL (H-DD-PLL)
are given by

even

odd

(12a)

Similarly, the updates for the H-DD-PLL in A-SISO2 are given
by

even

odd

(12b)

where and are hard decisions derived from the corre-
sponding soft-decisions from A-SISO1.

One can also design amixed-modePLL. Such a PLL—for
A-SISO1—operates in a decision directed mode in terms of the
symbol , while it effectively averages out the
symbol . We do not pursue this design further and direct the
reader to [25], where a simple PLL structure that operates by
averaging equiprobable binary symbols is discussed.

In the following, transition metrics are evaluated by averaging
out the symbols corresponding to the other FSM as described
in (10). In addition, a hybrid approach for phase tracking is
used. Specifically, A-SISO1 is run with the P-DD-PLL of
(11) on the initial iteration, and switches to the H-DD-PLL of
(12a) in the subsequent iterations, while A-SISO2 runs with

Fig. 7. BER versusE =N for PCCC with phase dynamics and various
inner A-SISO and A-SODEM configurations (the best performance for
SING receivers was achieved ford = 0). The loss due to pilot insertion is
�10 log (R ) = 0:27 dB. For comparison, the performance of CC with
adaptive hard-decision detection is presented.

a H-DD-PLL. The rational behind this hybrid bootstrapping
procedure is that in the first iteration, there are no soft (or hard)
decisions available for the symbol , which necessitates
the use of a P-DD-PLL in A-SISO1. After the activation of
A-SISO1, soft—and thus hard—decisions are available for

, which enables the use of H-DD-PLL in A-SISO2. The ac-
tivation schedule for the iterative detector shown in Fig. 2(d), is
described as follows: A-SISO1 (with P-DD-PLL) A-SISO2
(with H-DD-PLL) A-SISO1 (with H-DD-PLL), etc.

B. Numerical Results

An overall rate code is considered in this section, con-
structed by concatenating two identical 4-state CC’s, and using a
size pseudorandom interleaver. Both the systematic
and the encoded bits are output from the first code, while only
the encoded bit is output from the second. The corresponding
generator matrices are given by

(13)
The output symbol is formed exactly as described in (9).
Furthermore, QPSK pilot symbols with
are inserted. In Fig. 7, performance curves similar to those
of Fig. 6 are presented. The conclusions are similar to
the SCCC case, with the only difference being the slight
degradation of the A-SISO-SING and A-SISO-SING-NB
algorithms over the A-SISO-MULT receivers. In addition, the
A-SODEM-SS-FW performance is very close to the perfor-
mance of the A-SISO-based receivers, and the A-SODEM-SS
algorithm results in slightly better performance compared
to A-SISO’s. The later result might seem counterintuitive,
however we emphasize that the A-SODEM and the A-SISO are
used differently, so it is not the case of one replacing the other.
Specifically, for the case using the A-SODEM, there is one
A-SODEM and two nonadaptive SISO’s, while for the case
using the A-SISO’s, there is no SODEM or A-SODEM present.
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Furthermore, iterative detection is an approximation to the
optimal solution, and the A-SISO and A-SODEM blocks are
approximations to the exact ASI algorithms developed in [1],
[2]. In this sense, there is no accurate way to predict the relative
performance of these algorithms, other than simulation. An
intuitive explanation might be that, unlike SCCC’s, the A-SISO
based algorithms require several modifications (including
averaging over the unknown symbols of the other FSM) in
order for the overall adaptive receiver to be operational, while
the A-SODEM based receiver is a very simple modification of
the perfect-CSI iterative receiver.

It is observed that, as in the case of perfect CSI, the quantita-
tive performance achieved using the SCCC and PCCC systems
is very similar. Finally, simulations for the case of static phase
revealed comparable performance with that shown in Fig. 5;
these results are not presented for brevity.

V. CONCLUSION

Iterative detection, based on ASI algorithms (i.e., A-SISO
and A-SODEM) was presented in this paper. For the detec-
tion of turbo codes (i.e., SCCC’s and PCCC’s) and phase
tracking for the practical scenarios examined, it was shown that
pilot-symbol-assisted adaptive iterative detection is effective
for maintaining the near-Shannon-limit performance previously
demonstrated for known phase systems. Incorporating the esti-
mation process into the ID process gives advantages similar to
those documented in adaptive hard decision literature, where
joint estimation and data detection is considered for an isolated
system (e.g., PSP-based phase tracking yields a factor of 2–3 in
loop bandwidth extension for trellis codes).

There are several directions remaining for future research.
The effect of the code and signal selection on the performance
was not investigated. The fact that the SCCC is mapped onto an
8PSK constellation presents an additional impediment for the
phase estimator. It may be possible to construct a more efficient
SCCC using a QPSK constellation (e.g., by puncturing the outer
and/or inner code). In fact, for a channel utilization of 1 bit per
channel use at low , a QPSK constellation is adequate for
achieving capacity [26]. Also, potential further improvement for
the SCCC may be achieved by the development of rotationally
invariant—possibly multidimensional—inner codes. The use of
such codes may alleviate the detrimental effects of cycle slip-
ping, potentially enabling even wider loop bandwidths.

The presentation of the last application, namely decoding of
PCCC’s with phase tracking, revealed that the concept of adap-
tive iterative detection is broader than the concept of ASI al-
gorithms (A-SISO’s or A-SODEM’s). Although practical re-
ceivers were proposed based on the latter structures, the devel-
opment of a general framework for adaptive iterative detection
on arbitrary networks based on the theoretical framework devel-
oped in [6] is an area for future research.

APPENDIX

A. Multiple-Estimator A-SISO Algorithm (A-SISO-MULT)

In this Appendix, the multiple-estimator A-SISO algorithm
is described. The cumulative forward and backward metrics as-

sociated with state are denoted by and , re-
spectively. Similarly, the forward and backward phase estimates
associated with state are denoted by and , re-
spectively. The quantities , and denote
the input, initial state, final state, and output, associated with
transition , respectively. In addition, the quantity

denotes the constellation point associated with tran-
sition , where is the memoryless mapping from the output
of the FSM to the constellation point. The transition metric as-
sociated with transition and phase estimateis defined
by (see [1] for details)

(14)

where is the available soft input on the input symbol
. In general, is the available soft input, and
is the calculated soft output, respectively, for the

generic quantity (where can be any of ,
or ). All operations are performed in the domain with
the operator defined by

. Parameter update is performed by
using the DD-PLL in (4), which is summarized in the function

. The binding term is defined as

(15)

where is the PLL parameter in (4). We note that this last equa-
tion is an approximation obtained intuitively by the framework
in [1]. The above equation provides additional insight on the
role of the binding term: If the forward and backward channel
estimates corresponding to a particular sequence are not con-
sistent, a penalty is paid by means of increasing the sequence
metric. Furthermore, this penalty is amplified when tracking
slowly changing parameters (close to 0).

0) Initialization:
(or according to the available

information on the trellis boundaries)
initial forward phase estimate
initial backward phase estimate

1) Forward recursion:

Metric update:

Parameter update:

2) Backward recursion:

Metric update:

Parameter update:
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3) Completion stage:

Extend channel estimate:

Evaluate binding term:

Output extrinsic information:

We note that step can be omitted and
can be used in evaluating the binding term.

B. Single-Estimator A-SISO Algorithm (A-SISO-SING)

The single-estimator A-SISO algorithm is now described. In
this case, a single external forward and backward
phase estimate is stored and updated for each time. The quan-
tity is a tentative soft output of the symbol
based on the observation and is evaluated as follows: at time

a backward nonadaptive sum-product recursion is initiated,
in the same way done in the BCJR (or SISO) algorithm. After

backward steps, the forward, backward and transition met-
rics are combined and marginalized to produce the tentative soft
output. The quantity is defined and evaluated
similarly.

0) Initialization:

(or according to the available
information on the trellis boundaries)

initial forward phase estimate
initial backward phase estimate

1) Forward recursion:

Metric update:

Parameter update:
backward sum-product steps to obtain

tentative decision:

2) Backward recursion:

Metric update:

Parameter update:
forward sum-product steps to obtain

tentative decision:

3) Completion stage:

Extend channel estimate:

Evaluate binding term:

Output extrinsic information:

C. Single-State A-SODEM Algorithm (A-SODEM-SS)

For this trivial FSM, it is true that . The transi-
tion metric now can be written as

(16)

The resulting algorithm is as follows

0) Initialization:
initial forward phase estimate
initial backward phase estimate

1) Forward recursion:
Demodulate:
Parameter update:

2) Backward recursion:
Demodulate:
Parameter update:

3) Completion stage:

Extend channel estimate:
Output extrinsic information:
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