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Adaptive Soft-Input Soft-Output Algorithms for
Iterative Detection with Parametric Uncertainty
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Abstract—The soft-input soft-output (SISO) module is the basic
building block for established iterative detection (ID) algorithms
for a system consisting of a network of finite state machines. The
problem of performing ID for systems having parametric uncer-
tainty has received relatively little attention in the open literature.
Previously proposed adaptive SISO (A-SISO) algorithms are ei-
ther based on an oversimplified channel model, or have complexity
that grows exponentially with the observation length (or the
smoothing lag ). In this paper, the exact expressions for the soft
metrics in the presence of parametric uncertainty modeled as a
Gauss–Markov process are derived in a novel way that enables the
decoupling of complexity and observation length. Starting from
these expressions, a family of suboptimal (practical) algorithms is
motivated, based on forward/backward adaptive processing with
linear complexity in . Recently proposed A-SISO algorithms, as
well as existing adaptive hard-decision algorithms are interpreted
as special cases within this framework. Using a representative
application—joint iterative equalization-decoding for trellis-based
codes over frequency-selective channels—several design options
are compared and the impact of parametric uncertainty on
previously established results for ID with perfect channel state
information is assessed.

Index Terms—Channel estimation, frequency-selective fading,
intersymbol interference, iterative decoding, Kalman filters,
per-survivor processing, serially concatenated codes, soft statis-
tics, symbol-by-symbol MAP detection, turbo codes.

I. INTRODUCTION

RECENTLY, there has been great interest in iterative detec-
tion (ID) schemes for systems consisting of multiple finite

state machines (FSMs), which can be loosely defined as the set
of rules to exchange, combine, and marginalize some sort of
soft information related to the FSM input/output symbols, with
the purpose of providing reliable decisions about the input se-
quence. Applications that utilize this scheme include turbo de-
coding of parallel and serial concatenated convolutional codes
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(PCCCs and SCCCs) [1], [2], decoding of trellis coded modula-
tion (TCM) in interleaved frequency-selective fading channels
[3], [4], as well as various multidimensional detection problems
[5], [6]. The core building block in these iterative schemes is the
soft-input soft-output (SISO) module [7]; an algorithm—sim-
ilar to the Viterbi Algorithm (VA) [8]—that acceptsa priori
information on the input and output symbols of an FSM and
outputs the correspondinga posteriori information, with com-
plexity growing linearly with the record length .

In most practical situations where perfect channel state infor-
mation (CSI) is not available at the receiver (e.g., PCCCs and
SCCCs with carrier phase tracking or TCM in fast frequency-se-
lective fading channels), an adaptive1 ID (AID) scheme is re-
quired to deal with the unknown, and possibly time-varying pa-
rameters. In this paper, a subclass of adaptive iterative receivers
is investigated, in which the parameter estimates are not ex-
changed as part of the iterative procedure, rather, they are gener-
ated and are confined inside the adaptive SISO (A-SISO) mod-
ules, which are the natural extension of the SISO modules for the
case of parametric uncertainty. Nevertheless, the exchange of
soft information on the FSM symbols provides a implicit mech-
anism for the reestimation of the unknown parameters as well.

In the simplest case of the unknown parameter being mod-
eled as a Markov chain with finite number of states, the optimal
A-SISO is a modified SISO that runs on the augmented FSM
[9]. Of more interest is the case of the parameter being con-
tinuous in nature (e.g., phase offset or channel taps). Early at-
tempts to solve this more general problem were based on the
Baum–Welch method (or equivalently the expectation maxi-
mization (EM) algorithm [10]). Since convergence to a locally
optimal solution is possible, the optimality of the EM algorithm
cannot always be guaranteed. In [11], a Gauss–Markov (GM)
model is assumed for the unknown parameter and the optimal
scheme is derived. Starting from a different viewpoint, struc-
turally similar algorithms are derived in [12] and [13] for GM
and deterministic parameter models, respectively. Finally, a sub-
optimal A-SISO with a single-parameter estimator was devel-
oped in [14]. The inherent limitation of all the above approaches
is that they all operate in a fixed lag (FL) mode; thus, two major
conflicting goals in designing a practical algorithm are coupled
through a single parameter, the smoothing depth. Indeed, in
an FL algorithm, a large decision delay (smoothing depth)is

1The term “adaptive” means that the algorithm attempts to track the unknown
time-varying parameters.
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required to deliver reliable soft information. On the other hand,
the same parameter determines the amount of pruning of the
sequence tree and needs to be kept as small as possible, espe-
cially since it results in exponential complexity growth. Addi-
tional simplifications may then be summoned upon to decouple

and complexity (e.g., thresholding is used in [11], while re-
duced state sequence estimation and suboptimal filtering is used
in [12] to further reduce the processing burden).

In this paper, meaningful2 soft metrics for the GM param-
eter model are defined and exact expressions are derived in a
novel way, that motivates a family of suboptimal practical algo-
rithms, the unique characteristic of which is the decoupling of
complexity and smoothing depth, leading directly to fixed in-
terval (FI) schemes that have linear complexity with the record
length , as is the case for SISOs when no parametric uncer-
tainty is present. In addition, all existing A-SISO algorithms for
continuous valued parameter models can be viewed asforward
onlyspecial cases within this framework. In the application ex-
amined in this paper—TCM in interleaved frequency-selective
fading channels—the effectiveness of the various A-SISO op-
tions is assessed via extensive simulations, and the impact of
parametric uncertainty on previously established conclusions
(e.g., in [15]) for iterative detection in systems consisting of con-
catenated FSMs, is assessed.

In the next section, the system and channel models are pre-
sented. Soft metrics are defined in Section III and the exact
A-SISOs are developed, while practical algorithms are derived
in Section IV. An extensive discussion on the available options
for receiver design and numerical results are offered in Sec-
tion V, and the conclusions are summarized in Section VI.

II. SYSTEM AND CHANNEL MODEL

Consider a typical time-division multiple-access (TDMA)
cellular transmission system consisting of a memoryless source
that feeds a convolutional code. The trellis-coded symbols are
interleaved, mapped into a constellation, and pulse-shaped
before transmission. The low-pass equivalent transmitted signal
is of the form

(1)

where is the coded symbol (normalized to unit energy),is
the symbol energy, is the shaping pulse (normalized to unit
energy), and is the symbol duration. This signal is distorted by
a time-varying frequency-selective fading channel with impulse
response of the form

(2)

where with integer, and the dynamics of the
vector random process are assumed
slow compared to the symbol duration. The distorted signal is

2The term “meaningful” is used to distinguish algorithms that are designed
to compute quantities that are consistently defined and may be considered rea-
sonable soft metrics, as opposed to algorithms constructed in anad hocmanner,
where the nature of the soft output produced is not understood.

observed in additive white Gaussian noise (AWGN) with power
spectral density level .

(3)

Several options are available at the receiver front-end (FE) for
preprocessing the received signal: low-pass filtering or match
filtering with , followed by fractionally-spaced sampling
every (where , with integer), followed by
noise whitening (if necessary), as is extensively discussed in
[16]–[18].3 Regardless of the specific FE structure, the FE
output can be modeled as an equivalent symbol-spaced vector
intersymbol interference (ISI) channel as follows:

(4a)

(4b)

where , and are all -dimensional vectors, and
is complex, circular AWGN with independently, identically

distributed components and . The
-dimensional vector

contains all the informa-
tion relevant to the channel process , while all the details
of the pulse shaping and the FE are included in the matrix
as shown in [18]. Finally, the -dimensional vector

is the equivalent channel (which in-
cludes the effect of pulse shaping, channel, and FE) at time,
and the shorthanddiamond notation is used in (4b) to denote
the mixed inner product implied by (4a).

Equation (4) can be used under either a stochastic or an a-sto-
chastic (i.e., deterministic) assumption for . An often used
model for , and thus is that of a Gaussian autore-
gressive-moving average (ARMA) process, generated by the
plant equations [19]

(5)

where is a white noise sequence and the dimensionality of
the state is in general higher than . It has been shown
(e.g., [20]) that such model can adequately approximate real-
istic fading channels with nonrational spectrum (e.g., [21]).

One of the conclusions in [16]–[18] is that, while the specific
FE processing (i.e., the matrix ) is important for making
quantitative claims and for claiming optimality, qualitative
conclusions about different postprocessors remain the same
for different FEs (e.g., per-survivor Processing (PSP) [22]
outperforms the conventional, adaptive maximum-likelihood
sequence detector (CA-MLSD) [23]). In this paper, we focus
on the introduction of novel postprocessing approaches that

3A fractionally-spaced(T = T ) matched filtering withp (�t), followed
by whitening, was shown to be optimal, i.e., it provides sufficient statistics when
c(t) is slowly varying compared toT . Similarly, low-pass filtering and fraction-
ally-spaced sampling is optimal as long as the filter andT are selected such that
the signal part ofz(t) is not distorted.
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are valid for any FE processing (i.e., for the general model in
(4)–(5). However, in order to improve the readability of the
development and to reduce the simulation effort, we focus on
the following special case. In particular, regarding the channel
model in (5), a first-order GM model is adopted for, and
thus (i.e., is assumed). Furthermore, we chose to
illustrate the concepts using a simplified symbol-spaced scalar
ISI model (i.e., ). Once the concepts introduced are
understood, it is straightforward to modify the algorithms to
account for the more general case of and arbitrary plant
model. Finally, to simplify the notation, vector quantities will
not be underlined.

In the following, a model for a generic FSM is presented.
The output of a generic FSM can be defined as a function
of its input and state —together constituting the transition

—through the equations

(6)

where eachinteger quantity (i.e., , or ) is as-
sumed to take values in the set . The
output of the FSM is either used as an input to another FSM,
or observed indirectly, through a function, which also involves
the unknown parameter . Under the simplifying assumption
mentioned earlier, the -dimensional vector process
evolves in time according to the equations4

forward

backward (7)

where are zero-mean Gaussian vectors with covariance
and , respectively.5

Equation (4) can now be written as

(8)

where is a complex vector depending on the mod-
ulation format (e.g., in the TCM system, maps the output
of the inner FSM, which is the entire transition , to the

constellation points, as shown in (4)).

III. EXACT EVALUATION OF THE SOFT METRICS

The objective of a SISO algorithm is to provide soft informa-
tion about the input and output symbols of the FSM based on
the observation record. This reliability information can either
be in the form of ana posterioriprobability or any other related
quantity. It would be advantageous at this point to generalize
the notion of the state and transition to longer sequence
portions (e.g., a super-state and super-transition can be defined
as and for arbi-
trary ). This foreshadows the result that the optimal algorithms
do not “fold” [24] onto a trellis as in the case of known channel
and that the size of the trellis eventually used is a design param-
eter. For a generic quantity (i.e., , etc.),

4We assume a time-invariant model for notational and expositional simplicity.
All results generalize to the time-variant case.

5A necessary and sufficient condition for stationarity offg g as well as the
time-reversed processfg g is that the covariance ofg satisfies the equation
K = GK G +Q; G = K G K andQ = K �K G K GK ,
where(�) denotes complex conjugate and transpose.

we define thea posterioriprobability (APP) and minimum se-
quence metric (MSM) soft outputs as follows:

(9a)

(9b)

where denotes all input sequences consistent with,
and , and are normalizing constants. These soft outputs are
the direct generalizations of well-known soft outputs for per-
fect CSI [7] to the case of an unknown parameter. When
the SISO module is part of an iterative receiver, the soft output
is usually normalized to thea priori information resulting in
the so-called extrinsic information (e.g., , or

is used in place of or
, respectively). We observe that in both cases, the soft

outputs can be derived from the quantity by
either averaging or maximizing—for or , re-
spectively—over the nuisance parameters .

Equation (9) clearly suggests a way of manipulating
to obtain the proposed soft metrics. Maintaining

the conditioning over the entire input sequence, expectation
can be performed on the unknown parameter. Combining of
the resulting metrics over the nuisance parameters
is performed as a final step, leading to the final two soft
metrics for . Since operators and commute, an
additional choice is available for the evaluation of the metric in
(9a). Here, the sequence combining is done initially, followed
by the parameter elimination. Different soft metrics can also
be defined by interchanging the operator with the

operator in (9b). This option will not be pursued in this
work, mainly because it does not appear to lead to rigorously
expressed optimal structures.

A. Parameter-First Combining

We begin by deriving optimal algorithms for the evaluation
of the soft outputs defined in (9a) and (9b) and more precisely
the quantity . It is noted once more that these algo-
rithms are optimal for a given FE processing at the receiver. The
obvious approach is a straightforward evaluation of this likeli-
hood for each of the input sequences. The procedure
is concluded with the appropriate combining of these quantities
(summation or maximization for or , re-
spectively). This type of processing is based on the fact that the
likelihood can be computed recursively as in [25]

(10)
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where denotes the probability density function of
a complex circular Gaussian random variable with mean, and
variance for the real and imaginary part, while and

are the channel one-step prediction and corresponding
covariance matrix generated by a sequence-conditioned Kalman
filter (KF). This technique, although efficient, results in subop-
timal algorithms where complexity and smoothing depth are ex-
ponentially coupled, as mentioned in Section I.

An alternative optimal procedure for the likelihood calcula-
tion, based on which, several suboptimal useful algorithms will
be developed in the next section, is now described. We observe
that, due to the presence of the parameter process, future
observations depend on past observations conditioned on the
state of the FSM. On the other hand, by conditioning on the
parameter as well, separation of the future and past obser-
vations occurs, yielding (11), shown at the bottom of the page
(see the Appendix for the details of the derivation). The rela-
tion in (11) and subsequent analogous expressions are the basis
for the practical algorithms proposed in Section IV and is a key
contribution of this paper. It indicates that the likelihood can be
split into three factors, of which the first two depend each on
the past/present and future, respectively, while the third can be
viewed as a weighting factor that binds them together. Indeed,
the third factor quantifies the dependence of the future, present
and past that is introduced due to the parameter process
and in the absence of parametric uncertainty would be elimi-
nated. An alternative interpretation can be offered by realizing
that the expression in (11) is closely related to the total mean
square error of a sequence-conditioned Kalman smoother. A
closed-form expression can be found for the binding factor since
it involves an integral of Gaussian densities (see the Appendix),
and although the expression is fairly complicated (it involves in-
verse matrices and matrix determinants), we emphasize that it
does not require any reprocessing of the observation record. The
first factor in (11) is recursively evaluated using (10), while the
second is calculated through a similar backward recursion.

(12)

The scheme suggested by (10)–(12) is illustrated in Fig. 1 and
can be described as follows. Starting at time 0, a forward-ary
tree is built, each node of which represents a sequence path. The
likelihood , together with and of

Fig. 1. Likelihood evaluation using forward/backward tree structures.

that path are stored in each node. At each time, the tree is ex-
panded forward and the probabilities corresponding to the newly
generated branches are calculated using (10). It is implied from
this equation that a KF that depends on the entire path history
is required to complete the recursion. Similarly, starting at time

, a backward tree is expanding according to the recursion (12).
The relevant channel estimates are provided by a per-path back-
ward running KF. After forward and backward steps,
the two trees meet each other. The likelihood of each sequence

can now be evaluated as indicated by (11). The
likelihoods corresponding to the nodes of the forward tree are
combined with the likelihoods corresponding to the
nodes of the backward tree (future) and weighted by the binding
factor in (20). The final soft output for a generic quantity is
the summation (or maximization) over all factors with the same

. Note that the choice of, the particular point in time when
the past and future metrics are combined, iscompletely arbitrary
(i.e., it is not related to ). In fact, the two extreme values
and correspond to a single forward or a single backward
tree. In a practical algorithm, however, the reference pointis
chosen to be in the neighborhood of, in order to maximize
the number of relevant sequences combined to produce the soft
information on . Thus, while it may seem redundant to store
and update both a forward and a backward tree (i.e., same re-
sult can be accomplished with a single forward tree), the fact

past/present future
binding

(11)
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that the two trees can be pruned independently, decouples com-
plexity and observation length, leading to practical algorithms,
as will be discussed in Section IV.

B. Sequence-First Combining

The special form of allows us to obtain alterna-
tive expressions for the optimal soft outputs by realizing that
we can interchange the expectation operators in (9a), to obtain

. In particular, a straightforward ex-
pression for can be derived by utilizing the fact that
the process is a mixed-state Markov chain. Unfor-
tunately, the storage requirement for these recursions is infinite
due to the fact that takes values in a continuous space, making
it of primarily conceptual value.6 Although it is conceivable to
quantize the channel values, we will follow another approach.
A derivation similar to (11) leads to (13), shown at the bottom
of the page. The forward and backward recursions for the first
two quantities are as follows:

(14a)

(14b)

Aside from the evident similarity of (13) and (14) with (11),
(10), and (12), there are two important differences as follows: 1)
the recursions described here do not depend (at least explicitly)
on the entire path history and 2) the evaluation of the third factor
of (13) as well as the innovation factors in (14) is complicated
due to the fact that they are mixed-Gaussian densities. Never-
theless, assuming that the latter difficulty can be overcome, the
algorithm suggested by (13) and (14) is much simpler: only a
forward and backward recursion is performed over a state trellis,
followed by a combining (multiplication) of the updated quan-
tities with an appropriate weight (third factor). This procedure
is depicted in Fig. 2. Once more, we emphasize that the gener-
alized states and transitions can be used with the corre-
sponding updating equations unchanged.

C. Comments on the Deterministic Parameter Model

In the case when the unknown parameter is modeled as a de-
terministic constant, and expectation over the unknownis not
feasible, a reasonable soft output choice is

(15)

6These recursions are basically the well-known BCJR [26] recursions for a
mixed-state Markov process.

Fig. 2. Soft-metric evaluation in the case of sequence-first combining.

(16)

The development of the exact expressions for this modeling op-
tion is similar to that associated with the GM channel, and is not
presented here for brevity (refer to [27] and [28] for a more de-
tailed presentation). The resulting expressions are structurally
similar with the main difference being the channel estimator,
which is a recursive least-squares (RLS) estimator instead of the
KF. Similarly to the GM case, by exchanging the order of max-
imization in (16), sequence-first expressions can be developed
as well.

IV. SUBOPTIMAL (FIXED-COMPLEXITY) ALGORITHMS

The exact evaluation of the soft metrics developed in the pre-
vious section involves likelihood updates on a forward and back-
ward tree, assisted by per-path filters, followed by binding of the
past and future metrics. In view of this fact, any suboptimal al-
gorithm for the case of parameter-first combining can be inter-
preted as the result of applying one or more of the following
simplifications: 1) nonexhaustive tree search; 2) non-Kalman
channel estimators; and 3) suboptimal binding of the past and
future metrics. Similarly, for the case of sequence-first com-
bining, any suboptimal algorithm is the result of a simplifying
assumption for the innovation factors, as well as a simpler form
for the channel estimators and binding factor in (13). In the fol-
lowing, this design space is partially explored.

A. Parameter-First Combining

1) Tree-Search Techniques:Regarding the tree search,
many options are available to prune the sequence tree (e.g.,
from the hard-decision literature [29]). Breadth-first schemes
seem to be the most appropriate for soft-decisions, since they
maintain a common front in the search process, which facili-
tates the combining task. One such algorithm is the VA, which

(13)
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Fig. 3. Trellis-based practical A-SISO algorithms with a multiple or single estimator.

maintains and updates—through the familiar add compare
select (ACS) operations—a fixed number of paths in such a way
that they are forced to have different recent paths. Given that
a set of paths—at the same depth—is available, an algorithm
for evaluating metrics, proceeds by extending and
eliminating paths in the same way as in the hard-decision case
[22], while the completion is performed by minimizing the
corresponding transition metrics. The formulation of a practical
algorithm for calculating metrics involves summation
of the sequence metrics as well as tree pruning. An algorithm
that combines these two tasks can be derived employing either
the PSP principle [22], or equivalently, the decision-feedback
(DF) assumption introduced in [30].

The resulting FI algorithms, shown in Fig. 3, consist of a
single forward and backward recursion over the entire obser-
vation record, similar to the ones performed in the classical
SISO. Product sum (PS) or ACS operations are performed for
the metric updates, for APP or MSM soft metrics, respectively.
A KF channel estimate is kept for every trellis state and updated
in a PSP [22] fashion. The soft outputs forand are derived
from the soft output of the transition. The latter is computed
as the product (sum) of the forward metric of the starting state

, the transition metric of , the backward metric of the ending
state , and the binding factor corresponding to. At this
point, we emphasize once more that the trellis on which this al-
gorithm operates is not tightly related to the FSM trellis. Its size
is a design parameter that determines the amount of pruning in
the forward and backward trees, and eventually, the complexity
of the algorithm.

2) Channel Estimate and Binding Factor Simplifica-
tion: Any near-optimal receiver has to search over as many
paths as possible for a given amount of resources, so it is
desirable to reduce the complexity associated with the metric
updates and in particular the channel estimates. One such
simplification is to substitute KF channel estimation with the
least mean-squares (LMS) algorithm, so no matrix storage and

update is required. In [28], this simplification is derived in a
more rigorous manner for the case of deterministic parameter
model, resulting in a simple and insightful expression for the
binding factor shown in (17).

(17)

The above expression can be interpreted as follows. If the for-
ward and backward channel estimates corresponding to a par-
ticular sequence are not consistent, a penalty is paid by means
of increasing the sequence metric.

B. Sequence-First Combining

1) Metric Simplification: Starting from (14), subop-
timal algorithms can be derived by employing a simplifying
assumption for the innovation factors

, which are in reality mixed-Gaussian
density functions. The Gaussian approximation for the
above innovation terms leads to an attractive algorithm since
only the state-conditioned/sequence-averaged forward (i.e.,

) and backward channel
one-step predictions together with the corresponding covari-
ances need to be maintained and updated. Note that these
estimates are only partially conditioned on the data sequence
through the state (or more generally the super-state).
Recursive update equations for these partially conditioned (PC)
channel estimates, first derived in [12], are very similar to the
KF recursions, thus we use the name PCKF. Furthermore, in
the limiting case when the super-state represents the entire
sequence, the innovation factors become precisely Gaussian
and the PCKF becomes the sequence-conditioned KF; this is
the exact scenario of the parameter-first combining in the GM
case. Under the Gaussian assumption, a closed-form expression
for the binding factor in (13) can be derived as well, resulting
in a function similar to (see the Appendix for details).
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Fig. 4. Serial concatenation of FSMs and the associated iterative detection network for the case of perfect CSI.

2) Further Channel Estimator Simplification:In addition
to the Gaussian approximation, a further simplification oc-
curs under the assumption that the conditional means and
covariances of the channel are not functions of the states

. This approxi-
mation—if valid—results in a desirable solution, since only a
single forward and a single backward global estimator (aver-
aged over the sequence) needs to be maintained and updated.
Assuming that a probabilistic description is available
for the transitions , a recursion can be derived for .
The application of this single-estimator idea is inhibited, since
1) the above approximation is not valid and 2) an accurate

can only be derived from the observation and is
therefore tightly coupled with the estimation process. Both 1)
and 2) are alleviated by introducing a delayed (advanced) by
channel estimate to evaluate the forward (backward) transition
metric at time , since by increasing the decision delay, the
accuracy of the approximation

(18)

is improved. The resulting recursion equations, summarized in
the Appendix, closely resemble those of the KF. The intuitive
justification of this algorithm is that since a probabilistic de-
scription of —and consequently —exists, an average

can be used in place of
in the KF recursions, thus resulting in what we refer to

as an average KF (AKF). The resulting A-SISO, that utilizes a
-lag ( -advanced) soft-decision-directed forward (backward)

AKF, is depicted in Fig. 3, and proceeds as follows. The forward
metrics at time are updated as in (14a) using the-delayed
channel estimate . Starting at time , a -step non-
adaptive backward recursion is performed, at the end of which,
a smoothed soft metric is obtained.
The latter is now used in the AKF to update . A
similar one-step adaptive backward/-step nonadaptive forward
recursion is required for the update of the backward quantities.

C. Interpretation of Existing Algorithms

By dropping the backward recursions in (11) or (13), the for-
ward-only A-SISO algorithms proposed in the literature can be
derived: The algorithm in [11] calculates soft out-
puts in an FL configuration, using the T-algorithm [29] for path
pruning and employing KF for channel estimation. To achieve
the desired smoothing depth, the forward algorithm is de-
veloped based on the super state ,

where is selected such that is included in . Simi-
larly, in [13], a forward-only recursion is considered to produce

and soft outputs for the special FL case
of the delay being equal to the channel length, with the VA used
to prune the tree, and RLS channel estimation. The algorithm
described in [12] is a forward-only special case of the A-SISO
employing per-state PCKF. Although this algorithm was not in-
tended to provide soft decisions, the metric updates and channel
recursions (in the form of the PCKF) are precisely those devel-
oped therein. The A-SISO of [14] is an FL, forward only ver-
sion, of the single-estimator (AKF) A-SISO, operating on the
super-trellis with . Although the zero tentative
decision delay eliminates the need for additional backward re-
cursions, it seriously compromises the accuracy of the approxi-
mation in (18), motivating the nonzero delayproposed herein.

V. TCM IN INTERLEAVED FREQUENCY-SELECTIVE FADING

CHANNELS

A. Receiver Structures

As mentioned earlier, the TCM system can be modeled as a
serial concatenation of two FSMs—the outer TCM encoder and
the inner ISI channel—through the interleaver.

In [4], three receiver types were identified for the case of
perfect CSI. They included the traditional hard-decision Viterbi
equalizer7 (VE) followed by a Viterbi decoder (VD), as well as
the more sophisticated iterative structure shown in Fig. 4. An
adaptive receiver can be derived in a straightforward way from
the nonadaptive version, by replacing the inner detector (i.e.,
the equalizer) with its adaptive equivalent, while leaving the
outer detector (i.e., the decoder) intact. In the more traditional
hard-decision scheme, the VE is replaced by either a CA-MLSD
VE [23], or a PSP-based VE [22], while in a soft-decision iter-
ative receiver, one of the A-SISOs proposed herein is used in
place of the inner SISO. An additional distinction of the adap-
tive iterative receiver from the nonadaptive version proposed in
[7] and depicted in Fig. 4, is that the demodulator needs to be
incorporated within the inner A-SISO.

Although there are many possible A-SISOs arising from
the framework in Section III, we only utilize trellis-based
algorithms. Several notes on the details of the implementation
follow.

• APP algorithms operating in the log domain, result in a
small complexity increase compared to MSM as reported

7The term “equalizer” is only used to signify that the particular VA is associ-
ated with the inner FSM, i.e., the ISI channel. We emphasize that this does not
imply that linear or DF equalization is taking place.
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in [7]. Indeed, all APP algorithms can be constructed from
their MSM counterparts by replacing the func-
tion in the ACS operation by

.
• Trellis-based multiple-estimator structures store and up-

date one estimator per state with zero delay, while single-
estimator schemes requirebackward steps—for every
forward step—to provide reliable tentative soft or hard
data estimates to update their single estimator.

• Regarding the particular channel estimator used, the com-
plexity increases in the order LMS, RLS, KF, AKF, PCKF,
with the KF and the AKF having almost equal complexity.

• Optimal binding is, in general, a costly operation as shown
in (20) and (21), while the suboptimal binding proposed
in (17) results in a small increase in the adaptive SISO
complexity.

• Forward-only algorithms have significantly lower require-
ments in computation and memory than forward/back-
ward algorithms with the same number of states, since
they do not require the additional backward recursion and
binding. As was discussed in Section I, however, the ex-
ponential dependence of complexity and smoothing depth

is expected to give rise to much higher overall require-
ments for forward-only algorithms, if the performance of
forward/backward algorithms is to be obtained.

B. Numerical Results and Discussion

Simulations were run for a transmission scheme comparable
to GSM [31]. The convolutionally encoded sequence is in-
terleaved using a 57 30 block interleaver. Each interleaver
column is formatted into a TDMA burst together with a training
sequence, equally split in 13 leading and 13 trailing symbols.
Each burst is modulated and sent over a three-tap equal power
Rayleigh fading channel (each tap is assumed independent
from the others) with normalized Doppler spread .
Referring back to the generic model in (4b), the above-de-
scribed scenario corresponds to a system with root-raised
cosine pulses, symbol-spaced independent fading taps (i.e.,

) and a whitened-matched-filter symbol-spaced (i.e.,
) receiver FE. Although the decorrelation time of such

a channel is much larger than 57 symbols, for the purpose of
simulation efficiency, a smaller interleaver depth is used in
conjunction with the assumption of burst-to-burst independent
channel. Three systems are considered as follows: i) a rate

, 16-state coded QPSK system (S1); ii) a rate, 32-state
coded 8PSK system (S2); iii) and an uncoded QPSK system
(S3). Regarding the naming of the presented algorithms, each
algorithm is identified by a four-part label, each part of which
denoting: 1) the type of the soft decision (i.e., APP or MSM);
2) the multiplicity of the channel estimators (i.e., SING or
MULT); 3) the particular channel estimator used (i.e., KF, RLS,
LMS, AKF); and 4) the binding method [i.e., optimal binding
(OB), suboptimal binding (SB), or no binding (NB)]. The trellis
size of all algorithms considered here is chosen to be the same
as the size of the underlying FSM trellis.

Fig. 5 presents performance curves for system S1, employing
the iterative receiver described in the previous section with

Fig. 5. BER versusE =N for system S1 and various configurations for the
inner A-SISO. Performance is compared between (i) MSM-MULT-LMS-SB
and MSM-MULT-LMS-NB, (ii) MSM-MULT-LMS-SB and
MSM-MULT-KF-OB, and (iii) MULT and SING.

different A-SISOs for the inner equalizer. Bit-error rate (BER)
curves for the first and fifth iteration are shown; no significant
improvement was observed for more than five iterations. For
the A-SISOs employing KF or AKF, the channel estimators
were obtained by approximating the Clarke spectrum [21] with
a first order model having 10-dB bandwidth equal to. Com-
paring the two curves corresponding to MSM-MULT-LMS,
a loss of 2 dB (1 dB) is observed for the fifth (first) iter-
ation when no binding is performed. This outcome clearly
indicates the significant practical—aside from the concep-
tual—value of the binding factor. The comparison between
MSM-MULT-LMS-SB and MSM-MULT-KF-OB shows that
LMS channel estimation with suboptimal binding is nearly as
good as the KF with optimal—and computationally expen-
sive—binding. In the first iteration, the latter performs slightly
better (by 0.7 dB at ), while in the fifth iteration,
no notable difference is observed. Multiple-estimator schemes
are shown to be 2–4 dB better than single-estimator counter-
parts in the first iteration, while this gain is decreased to 0.5–2
dB after the fifth iteration as can be observed from the compar-
ison of MSM-MULT-LMS-SB and MSM-MULT-KF-OB with
MSM-SING-LMS-SB or APP-SING-AKF-OB. Note that the
optimal value for the tentative delay was found to be for
both SING estimators. The best A-SISO achieves performance
that is just 1 dB away from that of perfect CSI. Regarding the
iteration gain, as much as 6–7 dB can be gained using five
iterations for both single- or multiple-estimator SISOs. This
result is the direct antithesis with the perfect CSI case, where
an iteration gain of only 1 dB does not even justify the need for
ID. Finally, simulation results that are not shown here confirm
the negligible difference between APP and MSM algorithms
for these operational SNRs, a fact which was noted in [4] and
[32] for the case of CSI as well.

In Fig. 6, the performance of MSM-MULT-LMS-SB of Fig. 5
is compared with that of the corresponding receiver employing
a forward-only A-SISO (as the one in [11]) with decision de-
lays and symbols. Other than the different inner
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Fig. 6. Comparison between forward/backward and forward-only inner
A-SISOs for system S1, for various values of the decision lagD.

Fig. 7. BER versusE =N for system S2 and various configurations for the
inner A-SISO. Performance is compared between (i) MSM-MULT-LMS-SB
and MSM-MULT-LMS-NB, (ii) MSM-MULT-LMS-SB and
MSM-MULT-KF-OB, and (iii) MULT and SING.

A-SISOs, all other components of the compared receivers are
identical. As expected, performance is improved by increasing
the smoothing depth , but gives rise to exponential complexity
growth. The comparison with the proposed A-SISO shows that
even with a high complexity forward-only algorithm (
corresponds to a 1024-state trellis) a performance gain of 1–1.5
dB can be achieved with the FI A-SISO with only a fraction
of the complexity (a forward and a backward recursion on a
16-state trellis is required).

Similarperformancecurvesarereproduced inFig.7 forsystem
S2 over the same channel as in the previous simulation. The pres-
ence of the denser 8-PSK constellation produces quantitatively
differentperformancecurves.Single-estimatorschemesreachan
error floor at BER values greater than 10, regardless of the
channelestimatorused(i.e.,LMSorAKF).Multipleestimatoral-
gorithms using either KF and OB or LMS and SB perform almost
identically at BERs smaller than 10. Both of these adaptive al-
gorithmsyieldmuchworseperformancecomparedtoperfectCSI
(the loss is on the order of 5 dB for the fifth iteration for the best
A-SISO at BER of 10 , while is reduced to approximately 3 dB
for a BER of 10 ).

Fig. 8. BER versusE =N for systems S2 and S3 employing hard-decision
and soft-decision decoding BER versusE =N for the receiver employing
adaptive and nonadaptive (using interpolated channel estimates) inner SISOs
for different payload sizes.

Coded modulation techniques have been considered as a
method to provide improved performance (i.e., coding gain)
with the only cost being increased receiver complexity (i.e.,
no bandwidth expansion). The design tradeoffs for this fre-
quency-selective channel are more complex than those for an
ideal AWGN channel. In [32], those tradeoffs were studied
under the perfect CSI assumption. Fig. 8 presents a comparison
between systems S3 (uncoded QPSK) and S2 (8PSK-TCM),
both having the same throughput and occupying the same
bandwidth. In the AWGN channel, S2 provides a 4.6-dB gain
over the uncoded system. Similar to [4] and [32], conclusions
are obtained for the case of perfect CSI: coding gain without
bandwidth expansion is not possible using hard-decision re-
ceivers. The utilization of soft-decision receivers results in 4-dB
coding gain at a BER of 10 for the first iteration. Additional
iterations slightly improve the performance, resulting in 5.5-dB
gain at the fifth iteration. When perfect CSI is not available,
and adaptive processing is performed, the hard-decision PSP
receiver still cannot provide any performance improvement
over the uncoded system. Furthermore, the adaptive soft-de-
cision algorithms, provides a poor coding gain when only a
single iteration is performed (i.e., 3.5 dB). On the other hand,
the use of iterative soft-decision adaptive processing results in
a gain of approximately 13 dB.

C. Factors Impacting Performance

The conclusions drawn in the previous section are tightly cou-
pled with the particular channel conditions and system configu-
ration, and can be significantly altered when different operating
conditions are considered. One channel characteristic, that has
a significant effect on receiver design, is the level of dynamics
(measured by the normalized Doppler spread). While high
dynamics were considered here, in the case of low dynamics, the
need for adaptive processing is questionable; an initial channel
estimate may suffice for use in conjunction with a nonadap-
tive iterative detector. Similar conclusions have been drawn for
adaptive hard-decision algorithms [33].
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Fig. 9. BER versusE =N for the receiver employing adaptive and
nonadaptive (using interpolated channel estimates) inner SISOs for different
payload sizes.

The signaling format and in particular the configuration of
the training sequence is another system characteristic that has a
great impact on receiver design. When only a leading training
sequence is available, a more reasonable choice is to use an FL
A-SISO. The design of an FL A-SISO is not a trivial extension
of the FI scenario presented here, and is a topic of current re-
search [34].

Regarding tracking versus acquisition operating mode, a rel-
evant measure is the product of the payload (i.e., burst) size
with the normalized Doppler spread of the channel

; the smaller the value of , the lower the probability
of loosing lock. For systems operating with smallvalues,
and utilizing leading/trailing training, a low complexity non-
adaptive SISO algorithm derives channel estimates by linear in-
terpolation between the initial and final channel estimates. In
Fig. 9, the performance of this scheme is compared with that
of MSM-MULT-LMS-SB for system S1. It is shown that the
interpolator based nonadaptive SISO operates with 1-dB degra-
dation compared to MSM-MULT-LMS-SB for a BER of 10
and payload size . Unfortunately, such high-perfor-
mance/low-complexity A-SISO is not feasible when either a
trailing training sequence is unavailable or when the value of

is increased. The latter is demonstrated in Fig. 9, where the
doubling of payload size results in catastrophic per-
formance for the interpolator based SISO.

VI. CONCLUSION

ID can be viewed as the exchange of soft information be-
tween “soft inverses” of each subsystem in the concatenated
network, which combine and marginalize this information. In
this paper, the soft inverse of a system with parametric uncer-
tainty present was developed. The adaptive soft inverse of an
FSM (i.e., the A-SISO) was the particular focus. It was demon-
strated how an A-SISO can be used to perform AID with numer-
ical results given for the TCM-ISI serially concatenated system.
It was found that qualitative conclusions regarding performance
(e.g., the iteration gain) are substantially different for the case
with parametric uncertainty. In particular, iteration gains for the

time-varying fading channel were considerably larger than the
perfect CSI case.

By deriving the algorithms starting from a reasonable defi-
nition for soft outputs, we obtained several classes of practical
adaptive forward–backward algorithms. A more detailed devel-
opment of this general framework is contained in [27]. The re-
sulting set of practical algorithms are, in hindsight, intuitive
combinations of forward/backward SISOs for perfect CSI and
adaptive hard-decision algorithms. Thus, one may now suggest
several similar approaches based on existing hard-decision al-
gorithms and/or SISO architectures. For example, the class of
algorithms for the linear Gaussian fading channel that utilize
steady-state finite-memory estimators [35], [36] can readily be
adapted to a forward–backward SISO using the framework de-
veloped (i.e., the binding term). Similarly, generalization of AID
to other activation schedules and architectures (i.e., FL SISOs,
parallel message passing architectures, etc.) is an interesting
area of current and future research.

APPENDIX

A. Proof of (11)

To prove (11), we first condition on the channeland then
use the fact that conditioned on the channel and the transition at
time , past and future observations are independent.

(19)

The closed-form expression for the binding factor is given by

(20a)

with

(20b)

(20c)

(20d)
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where are the sequence-conditioned forward
channel estimate, the one-step sequence-conditioned backward
channel predictor and are the corresponding
covariances.

B. Binding Factor Under the Gaussian Assumption for (13)

The binding factor in (13) under the Gaussian assumption is
given by the expression

(21a)

with

(21b)

(21c)

(21d)

where are the PC one-step forward and back-

ward channel predictors and are the corre-
sponding covariances.

C. Channel Update Equations under the Gaussian Assumption
and the Approximation in (18)

The forward recursions for the-delayed AKF are given
below. Backward recursions are similar. Assume that
is available.

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

In the practical algorithm described in Subsection IV-B,
is used as the tentative soft-deci-

sion.
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