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Adaptive Soft-Input Soft-Output Algorithms for
Iterative Detection with Parametric Uncertainty
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Abstract—The soft-input soft-output (SISO) module is the basic (PCCCs and SCCCs) [1], [2], decoding of trellis coded modula-
building block for established iterative detection (ID) algorithms  tion (TCM) in interleaved frequency-selective fading channels
for a system consisting of a network of finite state machines. The [3], [4], as well as various multidimensional detection problems

problem of performing ID for systems having parametric uncer- . . . . .
tainty has received relatively little attention in the open literature. [5], [6]. The core building block in these iterative schemes is the

Previously proposed adaptive SISO (A-SISO) algorithms are ei- SOft-input soft-output (SISO) module [7]; an algorithm—sim-
ther based on an oversimplified channel model, or have complexity ilar to the Viterbi Algorithm (VA) [8]—that accepts priori
that grows exponentially with the observation length/N' (or the  jnformation on the input and output symbols of an FSM and

smoothing lag.D). In this paper, the exact expressions for the soft ,,1ts the correspondiragposterioriinformation, with com-
metrics in the presence of parametric uncertainty modeled as a lexit ina i v with th dl e

Gauss—Markov process are derived in a novel way that enables the plexity growmg. mealr y wi e record lengiy . .
decoupling of complexity and observation length. Starting from In most practical situations where perfect channel state infor-

these expressions, a family of suboptimal (practical) algorithms is mation (CSI) is not available at the receiver (e.g., PCCCs and
motivated, based on forward/backward adaptive processing with  SCCCs with carrier phase tracking or TCM in fast frequency-se-
linear complexity in IN. Recently proposed A-SISO algorithms, as lective fading channels), an adaptivid (AID) scheme is re-
well as existing adaptive hard-decision algorithms are interpreted ired to deal with th ,k d ibly ti .
as special cases within this framework. Using a representative quired to dea W' € unknown, and possi : y .|me-\_/ary|ng Pa'
application—joint iterative equalization-decoding for trellis-based ~ rameters. In this paper, a subclass of adaptive iterative receivers
codes over frequency-selective channels—several design optionss investigated, in which the parameter estimates are not ex-
are compared and the impact of parametric uncertainty on changed as part of the iterative procedure, rather, they are gener-
previously established results for ID with perfect channel state ated and are confined inside the adaptive SISO (A-SISO) mod-
information is assessed. . .
o _ _ ules, which are the natural extension of the SISO modules for the
~ Index Terms—Channel estimation, frequency-selective fading, case of parametric uncertainty. Nevertheless, the exchange of
intersymbol - interference, iterative decoding, Kalman filters, —gnt information on the FSM symbols provides a implicit mech-
per-survivor processing, serially concatenated codes, soft statis- anism for the reestimation of the unknown parameters as well
tics, symbol-by-symbol MAP detection, turbo codes. ; P g :
In the simplest case of the unknown parameter being mod-
eled as a Markov chain with finite number of states, the optimal
. INTRODUCTION A-SISO is a modified SISO that runs on the augmented FSM

ECENTLY, there has been great interest in iterative detel®]- Of more interest is the case of the parameter being con-

tion (ID) schemes for systems consisting of multiple finitdNUOUS in nature (e.g., phase offset or channel taps). Early at-
state machines (FSMs), which can be loosely defined as the'§&pPtS to Solve this more general problem were based on the
of rules to exchange, combine, and marginalize some sortBfum-Welch method (or equivalently the expectation maxi-
soft information related to the FSM input/output symbols, witfization (EM) algorithm [10]). Since convergence to a locally
the purpose of providing reliable decisions about the input gptimal solution is possible, the optimality of the EM algorithm
quence. Applications that utilize this scheme include turbo deannot always be guaranteed. In [11], a Gauss—Markov (GM)

coding of parallel and serial concatenated convolutional cod®@del is assumed for the unknown parameter and the optimal
scheme is derived. Starting from a different viewpoint, struc-
turally similar algorithms are derived in [12] and [13] for GM
Paper approved by T. Aulin, the Editor for Coding and Communicatiorgnd deterministic parameter models, respectively. Finally, a sub-
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required to deliver reliable soft information. On the other handbserved in additive white Gaussian noise (AWGN) with power
the same parameter determines the amount of pruning of sectral density leveN,.
sequence tree and needs to be kept as small as possible, espe-

(a9} L
cially since it results in exponential complexity growth. Addi- o -
tional simplifications may then be summoned upon to decouplez(t) = VvEs k_z_: d’“ Z:O en(B)p(t = KT —nTo) +n(t).

D and complexity (e.g., thresholding is used in [11], while re- 3)
duced state sequence estimation and suboptimal filtering is used

in [12] to further reduce the processing burden). Several options are available at the receiver front-end (FE) for
In this paper, meaningfulsoft metrics for the GM param- reprocessing the received signal: low-pass filtering or match
eter model are defined and exact expressions are derived ifyigring with p*(—t), followed by fractionally-spaced sampling
novel way, that motivates a family of suboptimal practical algQsyery 7, (where7, = T /N,, with N, integer), followed by
rithms, the unique characteristic of which is the decoupling gfise whitening (if necessary), as is extensively discussed in
complexity and smoothing depth, leading directly to fixed inr16]1[18]3 Regardless of the specific FE structure, the FE

terval (FI) schemes that have linear complexity with thg reCOEﬁUtput can be modeled as an equivalent symbol-spaced vector
length vV, as is the case for SISOs when no parametric UNC&ktersymbol interference (ISI) channel as follows:

tainty is present. In addition, all existing A-SISO algorithms for

continuous valued parameter models can be viewddrasrd L

only special cases within this framework. In the application ex- 2, = VE Y ding, (n) +my (4a)
amined in this paper—TCM in interleaved frequency-selective =0

fading channels—the effectiveness of the various A-SISO op- = VE[d,....dr—r]og, +n4

tions is assessed via extensive simulations, and the impact of = og +n, =0 o (Vey) +my (4b)

parametric uncertainty on previously established conclusions
(e.g., in[15]) for iterative detection in systems consisting of cowhere z,,, n,,, andg, (n) are all N,-dimensional vectors, and

catenated FSMs, is assessed. n,, is complex, circular AWGN with independently, identically
In the next section, the system and channel models are pdistributed components anid{||n,|*} = No. The N, (L. +
sented. Soft metrics are defined in Section Il and the exactdimensional vectot;, = [co(kNsT5), ..., co((kNs + Ng —

A-SISOs are developed, while practical algorithms are derivedir,), ... cr_((kNs + N, — 1)T3)]* contains all the informa-
in Section IV. An extensive discussion on the available optiomi®n relevant to the channel process), while all the details
for receiver design and numerical results are offered in Sesf-the pulse shaping and the FE are included in the mafrix
tion V, and the conclusions are summarized in Section VI.  as shown in [18]. Finally, theéV,(L + 1)-dimensional vector
g9, = [g5(0),. .., g} (I)]" is the equivalent channel (which in-
II. SYSTEM AND CHANNEL MODEL cludes the effect of pulse shaping, channel, and FE) attime

Consider a typical time-division multiple-access (TDMA nd the shorthandiamond(¢) notation is used in (4b) to denote

cellular transmission system consisting of a memoryless sou E mle_d mr;er proguct II’T;Iphe(ij by _(t‘:]a)' tochasti ¢
that feeds a convolutional code. The trellis-coded symbols are th_Ja lon (d) ian _e_u;s_e un erel_ er ats OX antIC or an(;’;l-s 0-
interleaved, mapped into a constellation, and puIse—shapCé}f1S ic (i.e., deterministic) assumption ). An often use

before transmission. The low-pass equivalent transmitted sigmﬂde.l forg, gnd thug, = Vg, is that of a Gaussian autore-
is of the form gressive-moving average (ARMA) process, generated by the

plant equations [19]

st)=VE, > dip(t - kT) @)

k=—cc

P =20t 6 =09, ®)

) ) ) . wherey,, is a white noise sequence and the dimensionality of
whered, is the coded symbol (normalized to unit enerdgy)is o state¢. is in general higher than,. It has been shown

the symbol energy)(t) is the shaping pulse (normalized to uni{e o 120]) that such model can adequately approximate real-
energy), and’ is the symbol duration. This signal is distorted by fading channels with nonrational spectrum (e.g., [21]).

atime-varying frequency-selective fading channel with impulse 54 of the conclusions in [16]-[18] is that, while the specific
response of the form FE processing (i.e., the matrik) is important for making

L. quantitative claims and for claiming optimality, qualitative
ot ) = ch(t)g(T — nT}) 2) concl_usions about different postprocessors rgmain the same
oy for different FEs (e.g., per-survivor Processing (PSP) [22]

. ] ) outperforms the conventional, adaptive maximum-likelihood
whereT,. = T/N, with N, integer, and the dynamics of thesequence detector (CA-MLSD) [23]). In this paper, we focus

vector random processt) = [co(t), .. ., cr, (t)]" are assumed gn the introduction of novel postprocessing approaches that
slow compared to the symbol durati@h The distorted signal is
3A fractionally-spaced T, = T..) matched filtering withp* (—t), followed
2The term “meaningful” is used to distinguish algorithms that are designéxy whitening, was shown to be optimal, i.e., it provides sufficient statistics when
to compute quantities that are consistently defined and may be considered t¢t)-is slowly varying compared t&'. Similarly, low-pass filtering and fraction-
sonable soft metrics, as opposed to algorithms constructeddd hacmanner, ally-spaced sampling is optimal as long as the filter @ndre selected such that
where the nature of the soft output produced is not understood. the signal part of(t) is not distorted.
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are valid for any FE processing (i.e., for the general model e define thea posterioriprobability (APP) and minimum se-

(4)—(5). However, in order to improve the readability of thguence metric (MSM) soft outputs as follows:

development and to reduce the simulation effort, we focus on

the following special case. In particular, regarding the channel APP,(uy) p (ug |25 ) =c Z Pz, z0)

model in (5), a first-order GM model is adopted fgy, and [

thusg, (i.e.,¢, = ¢, is assumed). Furthermore, we chose to _ noomn

iIIustFété the?:%ncep?ts using a sin)1plified symbol-spaced scalar - Z Be {P (=, = | O)} (%2)

ISI model (i.e.,N; = 1). Once the concepts introduced are

understood, it is straightforward to modify the algorithms to MSM,,(uz) def —log {q}ax P(zl |2 )}

account for the more general caseNaf > 1 and arbitrary plant Fo Hk

model. Finally, to simplify the notation, vector quantities will

not be underlined.

In the following, a model for a generic FSM is presented. , I

The outputy, of a generic FSM can be defined as a function =c¢ —log {g”ﬁ Eo {P (2, g | @)}} (9b)

of its inputz;, and states,—together constituting the transition

tr = (s, xp)—through the equations wherezj : u; denotes all input sequences consistent with
andc, andc’ are normalizing constants. These soft outputs are

Yr = oub(xx, sp)  Sk41 = ns(an, sk) (6) the direct generalizations of well-known soft outputs for per-

where eachinteger quantity «;, (i.e., z, yx, g, Or t3) iS as- fect CSl [7] to th‘? case of an ””kT‘OW” pgrame(ﬁarWhen

sumed to take values in the s, — {0, 1,..., N, — 1}. The _the SISO module_|s part of an |t_erz_:\t_|ve receiver, the spft qutput
e’\gusually normalized to tha priori information resulting in

zf U

= —log | max P (2}, xy)
ng}:uk

outputy;, of the FSM is either used as an input to another FS ST .
or observed indirectly, through a function, which also involv € so-called extrinsic mformauon (e:®PPP(“k)/P(“k)’ or
SM,,(ux) — (—log P(ug)) is used in place oAPP,(-) or

the unknown parametey.. Under the simplifying assumption ) .
mentioned earlier, théf, + 1)-dimensional vector procedgs } MSM,,(+), respectl\_/ely). We observe that in btzth (r:Lases, the soft
evolves in time according to the equations outputs can be derived from the quantify { P(+y, =7 | ©)} by
either averaging or maximizing—fetPP,,(-) or MSM,,(+), re-
gk = Ggr_1 +w  (forward) spectively—over the nuisance parameteffs ;.
_ Equation (9) clearly suggests a way of manipulating
9 = Fgrn + v (backwarg % P(zy, zfy | ©) to obtain the proposed soft metrics. Maintaining
wherewy,, v, are zero-mean Gaussian vectors with covariantiee conditioning over the entire input sequence, expectation
K,(m) = Q6x(m) andK,(m) = Q6x(m), respectively. can be performed on the unknown parameter. Combining of
Equation (4) can now be written as the resulting metrics over the nuisance parametérs:
- - is performed as a final step, leading to the final two soft
2= f(yrn)” gn + e = @i gr + N = Mg+ N (8)  metrics foruy. Since operatory ..., and Ee commute, an

Up

wheregi, = f(y) is a complex vector depending on the mode_xdditional choice is available for the evaluation of the metric in

ulation format (e.g., in the TCM systenfi(-) maps the output (9a). Here, the sequence combining is done initially, followed
of the inner ESM. which is the entire transitigp = ,, to the by the parameter elimination. Different soft metrics can also
L + 1 constellation points, as shown in (4)). be defined b)_/ mterchan_gmg t_haax,,_rg,u,k operator Wlth_the_
Eo operator in (9b). This option will not be pursued in this
work, mainly because it does not appear to lead to rigorously
expressed optimal structures.

The objective of a SISO algorithm is to provide soft informa-
tion about the input and output symbols of the FSM based @ parameter-First Combining

the observation record. This reliability information can either We begin by deriving optimal algorithms for the evaluation

be in the form of ara posterioriprobability or any other related ) . .
guantity. It would be advantageous at this point to generaliott.-the soft outputs defined in (92) and (9b) and more precisely

the notion of the state; and transitiont, to longer sequence . c quantltyP(zO,xO). It 1S noted once more that thesg algo
. . rithms are optimal for a given FE processing at the receiver. The
portions (e.g., a super-state and super-transition can be defingd. : . . Lo
s des p pi. opvious approach is a straightforward evaluation of this likeli-
ass), = (te—d,--.,te—1, sx) andt; = (tx—_g,...,t) for arbi-

n+1 ;
trary d). This foreshadows the result that the optimal algorithmhsOOd for each of theA.) Input sequences. The procedure

do not “fold” [24] onto a trellis as in the case of known chann |§ concluded with the appropriate combining of these quantities

and that the size of the trellis eventually used is a design par;‘g%ummatlon or maximization fokPP), () or MSM (uz), re-

X L . . spectively). This type of processing is based on the fact that the
eter. For a generic quantity (i-€., 2k, yk, sk, k. 5k, T €1C) iy elingod P(z%, ) can be computed recursively as in [25]

“We assume a time-invariant model for notational and expositional simplicity.

I1l. EXACT EVALUATION OF THE SOFT METRICS

All results generalize to the time-variant case. P (z(’;, 37]6) =P (= | 261 73;’5) P(x)P (;;6“*173;’5*1)
5A necessary and sufficient condition for stationarity{of. } as well as the T T .
time-reversed procedg_. } is that the covariance of;. satisfies the equation =N (zk; Qo Ik | k—15 No + g3, G | k71Qk)

K, =GK,GT+Q,G* = K,GTK; ' andQ® = k, — K,GT K 'GK,, ool Bt
where(-)T denotes complex conjugate and transpose. X P(xk)P (zo_ »Tg ) (10)
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where N (z;m;0?) denotes the probability density function of
a complex circular Gaussian random variable with meaand
variancer? /2 for the real and imaginary part, whilg |, and
Gy |x—1 are the channel one-step prediction and corresponding Nx
covariance matrix generated by a sequence-conditioned Kalmal R
filter (KF). This technique, although efficient, results in subop- .
timal algorithms where complexity and smoothing depth are ex- '
ponentially coupled, as mentioned in Section I. I
An alternative optimal procedure for the likelihood calcula- ‘
tion, based on which, several suboptimal useful algorithms will 0 Kk

. . . . 7 n
be developed in the next section, is now described. We observe ! 1

that, due to the presence of the parameter profess future T :....>Nx

observations depend on past observations conditioned on th Metrics

state of the FSM. On the other hand, by conditioning on the -
parametery; as well, separation of the future and past obser- .
vations occurs, yielding (11), shown at the bottom of the page t
(see the Appendix for the details of the derivation). The rela- Nn—k
X

tion in (11) and subsequent analogous expressions are the bas "sz

for the practical algorithms proposed in Section IV and is a key

contribution of this paper. It indicates that the likelihood can be

split into three factors, of which the first two depend each on

the past/present and future, respectively, while the third canfe 1. Likelihood evaluation using forward/backward tree structures.
viewed as a weighting factor that binds them together. Indeed,

the third factor quantifies the dependence of the future, pres
and past that is introduced due to the parameter proggss
and in the absence of parametric uncertainty would be eli
nated. An alternative interpretation can be offered by realizi

Metrics

n+l
X

N

Metrics

ﬁ%t path are stored in each node. At each tinihe tree is ex-
anded forward and the probabilities corresponding to the newly
enerated branches are calculated using (10). It is implied from

that th ion in (11) is closelv related to the total Kis equation that a KF that depends on the entire path history
at the expression in (11) is ¢ osely refated to the total me equired to complete the recursion. Similarly, starting at time
square error of a sequence-conditioned Kalman smoother,

i - i nAa backward tree is expanding according to the recursion (12).
closed-form expression can be found for the binding factor singe .\ - o+ <honnel estimates are provided by a per-path back-
itinvolves an integral of Gaussian densities (see the Appendi ard running KF. Afteds +1 forward andn— k backward steps

and althOLthh the e;(prestglor; |$Efa|rl'y co;npllcated (|tt|1nvqlvetsh| pef two trees meet each other. The likelihood of each sequence
verse matrices and matrix determinants), we emphasize that, can now be evaluated as indicated by (11). Thg )+

o_loes not reguire any repropessing ofthe obs_ervation recprd. iﬁglihoods corresponding to the nodes of the forward tree are
first factor in (11) is recursively evaluated using (10), while th@ombined with the(V,)"~* likelihoods corresponding to the

second is calculated through a similar backward recursion. nodes of the backward tree (future) and weighted by the binding
factor in (20). The final soft output for a generic quantity; is

P (s @ | sie1) the summation (or maximization) over all factors with the same
=r (Zk+1 2420 Sk+1, $k+1) P(ap41) u,,. Note that the choice df, the particular point in time when
X P (240, Thyo | Sk+2) the past and future metrics are combinedpisipletely arbitrary

_ N( T N+ ol G . ) (i.e., itis notrelated ten). In fact, the two extreme valués= n
Fhot 1 Do 1901 | B425 V0 T D 101 | h2 i1 andk = 0 correspond to a single forward or a single backward
X P(zpy1)P (z£’+2, Ty | sk+2) . (12) tree. In a practical algorithm, however, the reference phiist
chosen to be in the neighborhood+af in order to maximize
The scheme suggested by (10)—(12) is illustrated in Fig. 1 athet number of relevant sequences combined to produce the soft
can be described as follows. Starting attime 0, a forwéyehry  information onu,,,. Thus, while it may seem redundant to store
tree is built, each node of which represents a sequence path. &hd update both a forward and a backward tree (i.e., same re-
IikelihoodP(zf;‘_l, x’g—l), together withg;, | 1 —1 andG,, |x—1 Of sult can be accomplished with a single forward tree), the fact

P (gr |28, 25) P (gr | sttt 23q1: 241)
P(gr)

bindings, ()

dgr (11)

P8 = P (o) P o o) |
S— ~~ Ik
past/present future
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that the two trees can be pruned independently, decouples com-
plexity and observation length, leading to practical algorithms,
as will be discussed in Section IV.

B. Sequence-First Combining 0 S o
: . k n
The special form ofAPP,,(«;) allows us to obtain alterna- K -
tive expressions for the optimal soft outputs by realizing that . N
we can interchange the expectation operators in (9a), to obtain . ’>metrtics
APP,(ur) = cP(2},us). In particular, a straightforward ex- I
pression fortAPP () can be derived by utilizing the fact that WA '
the procesq(tx,gx)} is a mixed-state Markov chain. Unfor- X {
tunately, the storage requirement for these recursions is infinite ¥ N

due to the fact thaj, takes values in a continuous space, making

it of primarily conceptual valué.Although it is conceivable to Fig. 2. Soft-metric evaluation in the case of sequence-first combining.
guantize the channel values, we will follow another approach.

A derivation similar to (11) leads to (13), shown at the bottom def ] n n

of the page. The forward and backward recursions for the firstMSMd(u’“) = c—log ;?f}ﬁ mélxp(zo’xo 1©)|. (16)

two quantities are as follows: ) ) )
The development of the exact expressions for this modeling op-

P (2, s1q1) = Z P (2571, s1) tion is similar to that associated with the GM channel, and is not
oSkt presented here for brevity (refer to [27] and [28] for a more de-
% P (Zk |tk,z(’§_1) P(xy) (14a) ta_lilgd pre_sentation)_. Th_e resulting (_axpressions are stru_cturally
similar with the main difference being the channel estimator,
Pz | Skt1) = Z P (2rs1 [ tha1: 2iy0) which is arecursive least-squares (RLS) estimator instead of the
ter1iSi KF. Similarly to the GM case, by exchanging the order of max-
X P(z41)P (2842 | sk+2) - (14b) imization in (16), sequence-first expressions can be developed
as well.

Aside from the evident similarity of (13) and (14) with (11),
(10), and (12), there are two important differences as follows: 1)
the recursions described here do not depend (at least explicitly)
on the entire path history and 2) the evaluation of the third factor The exact evaluation of the soft metrics developed in the pre-
of (13) as well as the innovation factors in (14) is complicatedous section involves likelihood updates on a forward and back-
due to the fact that they are mixed-Gaussian densities. Newagrd tree, assisted by per-path filters, followed by binding of the
theless, assuming that the latter difficulty can be overcome, tp@st and future metrics. In view of this fact, any suboptimal al-
algorithm suggested by (13) and (14) is much simpler: onlygerithm for the case of parameter-first combining can be inter-
forward and backward recursion is performed over a state trelligeted as the result of applying one or more of the following
followed by a combining (multiplication) of the updated quansimplifications: 1) nonexhaustive tree search; 2) non-Kalman
tities with an appropriate weight (third factor). This procedurehannel estimators; and 3) suboptimal binding of the past and
is depicted in Fig. 2. Once more, we emphasize that the genigture metrics. Similarly, for the case of sequence-first com-
alized states; and transitiong; can be used with the corre-bining, any suboptimal algorithm is the result of a simplifying

IV. SuBOPTIMAL (FIXED-COMPLEXITY) ALGORITHMS

sponding updating equations unchanged. assumption for the innovation factors, as well as a simpler form
for the channel estimators and binding factor in (13). In the fol-
C. Comments on the Deterministic Parameter Model lowing, this design space is partially explored.

In the case when the unknown parameter is modeled as a de- ) o
terministic constant, and expectation over the unkn@wsnot A Parameter-First Combining

feasible, a reasonable soft output choice is 1) Tree-Search Techniquefkegarding the tree search,
dof many options are available to prune the sequence tree (e.g.,
APPy(u) = ¢ Y max P (2,25 | ©) (15) from the hard-decision literature [29]). Breadth-first schemes
Ty Uk seem to be the most appropriate for soft-decisions, since they
6These recursions are basically the well-known BCJR [26] recursions fornaaintain a common front in the search process, which facili-
mixed-state Markov process. tates the combining task. One such algorithm is the VA, which

dgr (13)

‘ P (g | sk, 257 P(ar | trs gr ) P(zr) P (gx | Skt 27
P (75, tx) :P(zé_l78k)P(zz+1| 5k+1)/ (gk|8k = ) = I}’&Q;B) < (9"|3"+1 7k+1)
Ik d

b0
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Observation from receiver front end

Trellis Based Trellis Based
—{ Forward {Buffer & Combiner;) Backward =
PS/ACS PS/ACS
~ W W ~b
Exk-1 Eklk+1
I I
{ [
Channel APP(ty) / MSM(tp Channel
Estimators | Estimators |

Observation from receiver froat end

Trellis B::ised Trellis Based
Forwar ———=>{(Buffer & Combiners=——— Backward
PS/ACS PS/ACS

g )
k-dlk-d-1 Eierdlk+d+1

Channel APP (1 / MSM 4(ty) Channel

Estimator \ / Estimator

d delayed/advanced hard/soft tentative decisions

Fig. 3. Trellis-based practical A-SISO algorithms with a multiple or single estimator.

maintains and updates—through the familiar add compaupdate is required. In [28], this simplification is derived in a
select (ACS) operations—a fixed number of paths in such a wepre rigorous manner for the case of deterministic parameter
that they are forced to have different recent paths. Given thmbdel, resulting in a simple and insightful expression for the
a set of paths—at the same depth—is available, an algorittwinding factor shown in (17).

for evaluatingMSM(-) metrics, proceeds by extending and
eliminating paths in the same way as in the hard-decision case
[22], while the completion is performed by minimizing the

corres ponding transiti_on metrics. Th(_a formulation ofa pra_ctic%e above expression can be interpreted as follows. If the for-
algorithm for calculatingAPP(-) metrics involves summation Wrd and backward channel estimates correspondiﬁg t0 a par-

of the sequence metrics as well as tree pruning. An aIgoritIh lar sequence are not consistent. a penalty is paid by means
that combines these two tasks can be derived employing eitl % q ent, ap yisp y
Increasing the sequence metric.

the PSP principle [22], or equivalently, the decision-feedbatk
(DF) assumption introduced in [30].

The resulting FI algorithms, shown in Fig. 3, consist of
single forward and backward recursion over the entire obser-1) Metric Simplification: Starting from (14), subop-
vation record, similar to the ones performed in the classidéinal algorithms can be derived by employing a simplifying
SISO. Product sum (PS) or ACS operations are performed fssumption for the innovation factorsd(zy |tx, z(’;‘_l),
the metric updates, for APP or MSM soft metrics, respectively’(zx 11 | tx41, #442), Which are in reality mixed-Gaussian
A KF channel estimate is kept for every trellis state and updatddnsity functions. The Gaussian approximation for the
in a PSP [22] fashion. The soft outputs figrandy, are derived above innovation terms leads to an attractive algorithm since
from the soft output of the transitian. The latter is computed only the state-conditioned/sequence-averaged forward (i.e.,
as the product (sum) of the forward metric of the starting stadg|._1(sx) = E(gx]| sk, 767 1)) and backward channel
sk, the transition metric ofy,, the backward metric of the endingone-step predictions together with the corresponding covari-
states;1, and the binding factor correspondingtia At this ances need to be maintained and updated. Note that these
point, we emphasize once more that the trellis on which this &stimates are only partially conditioned on the data sequence
gorithm operates is not tightly related to the FSM trellis. Its siztarough the states;, (or more generally the super-stagg).
is a design parameter that determines the amount of prunindRacursive update equations for these partially conditioned (PC)
the forward and backward trees, and eventually, the complexiiyannel estimates, first derived in [12], are very similar to the
of the algorithm. KF recursions, thus we use the name PCKF. Furthermore, in

2) Channel Estimate and Binding Factor Simplificathe limiting case when the super-state represents the entire
tion: Any near-optimal receiver has to search over as masgquence, the innovation factors become precisely Gaussian
paths as possible for a given amount of resources, so itaisd the PCKF becomes the sequence-conditioned KF; this is
desirable to reduce the complexity associated with the mettiee exact scenario of the parameter-first combining in the GM
updates and in particular the channel estimates. One swese. Under the Gaussian assumption, a closed-form expression
simplification is to substitute KF channel estimation with théor the binding factor in (13) can be derived as well, resulting
least mean-squares (LMS) algorithm, so no matrix storage andx function similar td,(-) (see the Appendix for details).

2
~105by() ~ g 1hs = Fprpage - @D

B. Sequence-First Combining
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Fig. 4. Serial concatenation of FSMs and the associated iterative detection network for the case of perfect CSI.

2) Further Channel Estimator Simplificationin addition whered is selected such tha,_p is included ins;, ;. Simi-
to the Gaussian approximation, a further simplification odarly, in [13], a forward-only recursion is considered to produce
curs under the assumption that the conditional means ahBP ,;(z;) andMSM,(zy) soft outputs for the special FL case
covariances of the channel are not functions of the statefithe delay being equal to the channel length, with the VA used
E(gy|sk,zq 1) ~ E(ge|25') = 8n|r_1. This approxi- to prune the tree, and RLS channel estimation. The algorithm
mation—if valid—results in a desirable solution, since only described in [12] is a forward-only special case of the A-SISO
single forward and a single backward global estimator (avesmploying per-state PCKF. Although this algorithm was not in-
aged over the sequence) needs to be maintained and upda#tied to provide soft decisions, the metric updates and channel
Assuming that a probabilistic descriptid® (¢;) is available recursions (in the form of the PCKF) are precisely those devel-
for the transitionsty, a recursion can be derived fgf|,_,. oped therein. The A-SISO of [14] is an FL, forward only ver-
The application of this single-estimator idea is inhibited, sina@on, of the single-estimator (AKF) A-SISO, operating on the
1) the above approximation is not valid and 2) an accuraseper-trelliss; = ¢;_; with d = 0. Although the zero tentative
P'(t;) can only be derived from the observatiefi and is decision delay eliminates the need for additional backward re-
therefore tightly coupled with the estimation process. Both tlrsions, it seriously compromises the accuracy of the approxi-
and 2) are alleviated by introducing a delayed (advanced) bynation in (18), motivating the nonzero deldyproposed herein.
channel estimate to evaluate the forward (backward) transition

metric at timek, since by increasing the decision deldythe  \/ TCM IN INTERLEAVED FREQUENCY-SELECTIVE FADING
accuracy of the approximation CHANNELS

z’(j_d_l ) A. Receiver Structures

E(ge—a| sk, 2 """) = E (gka
= Gh—d| h—d—1 (18) As mentioned earlier, the TCM system can be modeled as a
serial concatenation of two FSMs—the outer TCM encoder and
is improved. The resulting recursion equations, summarizedthe inner ISI channel—through the interleaver.
the Appendix, closely resemble those of the KF. The intuitive In [4], three receiver types were identified for the case of
justification of this algorithm is that since a probabilistic deperfect CSI. They included the traditional hard-decision Viterbi
scription oft;_s—and consequently,_,—exists, an average equalizet (VE) followed by a Viterbi decoder (VD), as well as
Gh—d|k—d—1 = 2., _, W—aP’(tx_a) can be used in place of the more sophisticated iterative structure shown in Fig. 4. An
grk—a in the KF recursions, thus resulting in what we refer tadaptive receiver can be derived in a straightforward way from
as an average KF (AKF). The resulting A-SISO, that utilizestae nonadaptive version, by replacing the inner detector (i.e.,
d-lag (d-advanced) soft-decision-directed forward (backwardhe equalizer) with its adaptive equivalent, while leaving the
AKF, is depicted in Fig. 3, and proceeds as follows. The forwamliter detector (i.e., the decoder) intact. In the more traditional
metrics at timek are updated as in (14a) using thelelayed hard-decision scheme, the VE is replaced by either a CA-MLSD
channel estimaté;, _ | —q4—1. Starting at timek, ad-step non- VE [23], or a PSP-based VE [22], while in a soft-decision iter-
adaptive backward recursion is performed, at the end of whiddtive receiver, one of the A-SISOs proposed herein is used in
a smoothed soft metri€” (¢, _4) = P(t;_q|2&) is obtained. place of the inner SISO. An additional distinction of the adap-
The latter is now used in the AKF to updaje 4jx—4-1. A tive iterative receiver from the nonadaptive version proposed in
similar one-step adaptive backwateitep nonadaptive forward [7] and depicted in Fig. 4, is that the demodulator needs to be
recursion is required for the update of the backward quantitigacorporated within the inner A-SISO.
Although there are many possible A-SISOs arising from
C. Interpretation of Existing Algorithms the framework in Section Ill, we only utilize trellis-based
By dropping the backward recursions in (11) or (13), the foRlgorithms. Several notes on the details of the implementation
ward-only A-SISO algorithms proposed in the literature can fellow.
derived: The algorithm in [11] calculatesPP,(xz; ) soft out- » APP algorithms operating in the log domain, result in a
puts in an FL configuration, using the T-algorithm [29] for path small complexity increase compared to MSM as reported
pruning and employing KF for channel estimation. To achieve, . o _ _ _ _
The term “equalizer” is only used to signify that the particular VA is associ-

the desired smoothing depf, the forward algorithm is de- ated with the inner FSM, i.e., the ISI channel. We emphasize that this does not
veloped based on the super stafe = (tx—q,...,tk—1,5k), imply that linear or DF equalization is taking place.
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in[7]. Indeed, all APP algorithms can be constructed fron T A A T
their MSM counterparts by replacing thein(z, ) func- : 5 1 " 1
tion in the ACS operation byiin* = min(z, y) —log(1+ 107
exp(~|z — y])). N

* Trellis-based multiple-estimator structures store and uf 52 L
date one estimator per state with zero delay, while single :
estimator schemes requicebackward steps—for every
forward step—to provide reliable tentative soft or harc®
data estimates to update their single estimator.

» Regarding the particular channel estimator used, the cor
plexity increases in the order LMS, RLS, KF, AKF, PCKF,
with the KF and the AKF having almost equal complexity. 1 &

« Optimal binding is, in general, a costly operation as show F S T
in (20) and (21), while the suboptimal binding proposec 10° —_—
in (17) results in a small increase in the adaptive SISC ~ * y ¢ ’ 10 2 o 16
complexity.

* Forwar(_j'only algorl'Fhms have significantly lower requirery 5 ger versugt, /N, for system S1 and various configurations for the
ments in computation and memory than forward/backwmer A-SISO. Performance is compared between (i) MSM-MULT-LMS-SB
ward algorithms with the same number of states, sinégd ~ MSM-MULT-LMS-NB, (i) ~ MSM-MULT-LMS-SB  and
they do not require the additional backward recursion aftr™ MULT-KF-OB, and (iii) MULT and SING.
binding. As was discussed in Section I, however, the ex-
ponential dependence of complexity and smoothing depdifferent A-SISOs for the inner equalizer. Bit-error rate (BER)
D is expected to give rise to much higher overall requiresurves for the first and fifth iteration are shown; no significant
ments for forward-only algorithms, if the performance oimprovement was observed for more than five iterations. For
forward/backward algorithms is to be obtained. the A-SISOs employing KF or AKF, the channel estimators

were obtained by approximating the Clarke spectrum [21] with

a first order model having 10-dB bandwidth equalto Com-

paring the two curves corresponding to MSM-MULT-LMS,
Simulations were run for a transmission scheme comparabldoss of 2 dB (1 dB) is observed for the fifth (first) iter-

to GSM [31]. The convolutionally encoded sequence is imtion when no binding is performed. This outcome clearly
terleaved using a 5% 30 block interleaver. Each interleaverindicates the significant practical—aside from the concep-
column is formatted into a TDMA burst together with a trainingual—value of the binding factor. The comparison between
sequence, equally split in 13 leading and 13 trailing symboRBISM-MULT-LMS-SB and MSM-MULT-KF-OB shows that

Each burst is modulated and sent over a three-tap equal pol#tS channel estimation with suboptimal binding is nearly as

Rayleigh fading channel (each tap is assumed independgaod as the KF with optimal—and computationally expen-

from the others) with normalized Doppler spread= 0.005. sive—binding. In the first iteration, the latter performs slightly

Referring back to the generic model in (4b), the above-deetter (by 0.7 dB aBER = 10~?), while in the fifth iteration,

scribed scenario corresponds to a system with root-raisee notable difference is observed. Multiple-estimator schemes

cosine pulses, symbol-spaced independent fading taps (iagg shown to be 2—4 dB better than single-estimator counter-

T, = T) and a whitened-matched-filter symbol-spaced (i.eparts in the first iteration, while this gain is decreased to 0.5-2

T, = T) receiver FE. Although the decorrelation time of suchB after the fifth iteration as can be observed from the compar-

a channel is much larger than 57 symbols, for the purposeispn of MSM-MULT-LMS-SB and MSM-MULT-KF-OB with

simulation efficiency, a smaller interleaver depth is used MSM-SING-LMS-SB or APP-SING-AKF-OB. Note that the

conjunction with the assumption of burst-to-burst independemptimal value for the tentative delay was found tode: 3 for
channel. Three systems are considered as follows: i) a rbmh SING estimators. The best A-SISO achieves performance

1/2, 16-state coded QPSK system (S1); ii) a rat8, 32-state that is just 1 dB away from that of perfect CSI. Regarding the

coded 8PSK system (S2); iii) and an uncoded QPSK systdf@ration gain, as much as 6-7 dB can be gained using five

(S3). Regarding the naming of the presented algorithms, eaigrations for both single- or multiple-estimator SISOs. This

algorithm is identified by a four-part label, each part of whichesult is the direct antithesis with the perfect CSI case, where

denoting: 1) the type of the soft decision (i.e., APP or MSMRgn iteration gain of only 1 dB does not even justify the need for

2) the multiplicity of the channel estimators (i.e., SING olD. Finally, simulation results that are not shown here confirm

MULT); 3) the particular channel estimator used (i.e., KF, RL3he negligible difference between APP and MSM algorithms

LMS, AKF); and 4) the binding method [i.e., optimal bindingfor these operational SNRs, a fact which was noted in [4] and

(OB), suboptimal binding (SB), or no binding (NB)]. The trellig32] for the case of CSI as well.

size of all algorithms considered here is chosen to be the samén Fig. 6, the performance of MSM-MULT-LMS-SB of Fig. 5

as the size of the underlying FSM trellis. is compared with that of the corresponding receiver employing

Fig. 5 presents performance curves for system S1, employmdorward-only A-SISO (as the one in [11]) with decision de-
the iterative receiver described in the previous section withys D = 3,4, and 5 symbols. Other than the different inner

L

—>— Perfect CSI

—O©— MSM-MULT-KF-OB
—&— MSM-MULT-LMS-SB
——&—— APP-SING-AKF-OB (d=3)
—F— MSM-SING-LMS-SB (d=3)
—— MSM-MULT-LMS-NB «i

B. Numerical Results and Discussion
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Fig. 6. Comparison between forward/backward and forward-only inner EbNo

A-SISOs for system S1, for various values of the decisionlag Fig. 8. BER versugt, /N, for systems S2 and S3 employing hard-decision

o _ N — . — and soft-decision decoding BER versf /N, for the receiver employing
‘ : adaptive and nonadaptive (using interpolated channel estimates) inner SISOs
------------ ‘ : for different payload sizes.

. NS ; | Coded modulation techniques have been considered as a
- AV : S method to provide improved performance (i.e., coding gain)

: AN 5 e with the only cost being increased receiver complexity (i.e.,
no bandwidth expansion). The design tradeoffs for this fre-
guency-selective channel are more complex than those for an
ideal AWGN channel. In [32], those tradeoffs were studied

BER
3

f | : o reteacs: ' under the perfect CSI assumption. Fig. 8 presents a comparison

108 Lo N S AR VRS between systems S3 (uncoded QPSK) and S2 (8PSK-TCM),

; S oG both having the same throughput and occupying the same
L oo L [Cm_wswMuLIMSNE | pandwidth. In the AWGN channel, S2 provides a 4.6-dB gain
v s 10 15 20 over the uncoded system. Similar to [4] and [32], conclusions
Eb/No are obtained for the case of perfect CSI: coding gain without

Fig. 7. BER versus, /N, for system S2 and various configurations for thebandwdth expa}nspn IS not pos's[ble usmg hard-deC|§|on re-
inner A-SISO. Performance is compared between (i) MSM-MULT-LMS-SEeivers. The utilization of soft-decision receivers results in 4-dB

and ~ MSM-MULT-LMS-NB, (i) =~ MSM-MULT-LMS-SB  and ¢qding gain at a BER of 10 for the first iteration. Additional
MSM-MULT-KF-OB, and (iii) MULT and SING. . . . . ..
iterations slightly improve the performance, resulting in 5.5-dB

A-SISOs, all other components of the compared receivers %n at thg fifth iteratipn. When perfect CSI is not ayqilable,
identical. As expected, performance is improved by increasiﬁgd _adapn\_/e processing 1S performed, the hard_-deC|S|on PSP
the smoothing depth, but gives rise to exponential complexityr ceiver still cannot provide any performance |mpr0vement
growth. The comparison with the proposed A-SISO shows tHA(e" the uncoded system. Furthermore, the adaptive soft-de-
even with a high complexity forward-only algorithni(= 5 CiSion algorithms, provides a poor coding gain when only a
corresponds to a 1024-state trellis) a performance gain of 1—§/89l€ iteration is performed (i.e., 3.5 dB). On the other hand,
dB can be achieved with the FI A-SISO with only a fractiofin® use of |terat|ye soft-decision adaptive processing results in
of the complexity (a forward and a backward recursion on ggan of approximately 13 dB.

16-state trellis is required).

Similar performance curves are reproducedin Fig. 7 for syst
S2 over the same channel as in the previous simulation. The presfFhe conclusions drawn in the previous section are tightly cou-
ence of the denser 8-PSK constellation produces quantitativplgd with the particular channel conditions and system configu-
different performance curves. Single-estimator schemes reachaiion, and can be significantly altered when different operating
error floor at BER values greater than %) regardless of the conditions are considered. One channel characteristic, that has
channelestimatorused (i.e., LMS or AKF). Multiple estimator ah significant effect on receiver design, is the level of dynamics
gorithms using either KF and OB or LMS and SB perform almog¢teasured by the normalized Doppler spregald While high
identically at BERs smaller than 18. Both of these adaptive al- dynamics were considered here, in the case of low dynamics, the
gorithmsyield muchworse performance comparedto perfect Q&led for adaptive processing is questionable; an initial channel
(the loss is on the order of 5 dB for the fifth iteration for the besstimate may suffice for use in conjunction with a nonadap-
A-SISO at BER of 102, while is reduced to approximately 3 dBtive iterative detector. Similar conclusions have been drawn for
for a BER of 10°%). adaptive hard-decision algorithms [33].

&m Factors Impacting Performance
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time-varying fading channel were considerably larger than the
perfect CSI case.

By deriving the algorithms starting from a reasonable defi-
nition for soft outputs, we obtained several classes of practical
adaptive forward—backward algorithms. A more detailed devel-
opment of this general framework is contained in [27]. The re-
sulting set of practical algorithms are, in hindsight, intuitive
combinations of forward/backward SISOs for perfect CSI and
adaptive hard-decision algorithms. Thus, one may now suggest
: S : 1 several similar approaches based on existing hard-decision al-
1 Perfect CS1(57) ; 1 gorithms and/or SISO architectures. For example, the class of

BER

s L —©— MSM-MULT-LMS-SB(S7)  [...l....... T - . _ . . .
107 & —E— INTERPOLATOR (57) s : j  algorithms for the linear Gaussian fading channel that utilize
r| —@&— MSM-MULT-LMS-SB (120) g : ] .. . .
[| —®— INTERPOLATOR (120) | -1 steady-state finite-memory estimators [35], [36] can readily be
w0 T adapted to a forward—backward SISO using the framework de-
0 5 10 15 veloped (i.e., the binding term). Similarly, generalization of AID

it to other activation schedules and architectures (i.e., FL SISOs,

Fig. 9. BER versusE,/N, for the receiver employing adaptive andparallel message passing architectures, etc.) is an interesting
nonadaptive (using interpolated channel estimates) inner SISOs for differgitea of current and future research.
payload sizes.

. . . . . . APPENDIX

The signaling format and in particular the configuration of
the tra_mlng sequence is another system charactens_nc thaF h%s. Proof of (11)
great impact on receiver design. When only a leading training ) N
sequence is available, a more reasonable choice is to use an FLC Prove (11), we first condition on the chanmgland then
A-SISO. The design of an FL A-SISO is not a trivial extensioHS€ the fact that conditioned on the channel and the transition at
of the FI scenario presented here, and is a topic of current HE0€ &, past and future observations are independent.
search [34]. Plon gn

Regarding tracking versus acquisition operating mode, a rel- (0, 25)

evant measure is the product of the payload (i.e., burst).6ize  — P (2y, gx, 2 dgi

with the normalized Doppler spread of the channgl( P = gk

J x vq); the smaller the value aP, the lower the probability — P L / Po(an n E k

of loosing lock. For systems operating with smallvalues, (20, 0) 0 (A 2 | 20,26, 08)
and utilizing leading/trailing training, a low complexity non- < P (gk 2 37’6) dgi

adaptive SISO algorithm derives channel estimates by linear in- P " | )
terpolation between the initial and final channel estimates. In — p (2h, k) / 41 Trt1r 9k | Skt
Fig. 9, the performance of this scheme is compared with that a P(gi | sr+1)

of MSM-MULT-LMS-SB for system S1. It is shown that the X P (gx z(’;,a:’g) dgr,

interpolator based nonadaptive SISO operates with 1-dB degra- _ p (,k k) p(,n. . 4 .
dation compared to MSM-MULT-LMS-SB for a BER of 18 (20, 20) P (#iens @l | 9041)

k k n n
and payload size/ = 57. Unfortunately, such high-perfor- ></ P (g |26:26) P (90 | sas 21 Hi) dge.
mance/low-complexity A-SISO is not feasible when either a gx P(gr)
trailing training sequence is unavailable or when the value of (19)

P is increased. The latter is demonstrated in Fig. 9, where the ) o o

doubling of payload siz&J = 120) results in catastrophic per-  1he closed-form expression for the binding factor is given by
formance for the interpolator based SISO. ~ . o -
bp (gklkalekagk|k+1aGk|k+1)

VI. CONCLUSION |K,||P|
. . . =0 —exp(fTPB—7) (20)
ID can be viewed as the exchange of soft information be- |G 1] ‘Gllilk-l—l‘

tween “soft inverses” of each subsystem in the concatenated
network, which combine and marginalize this information. Iwith
this paper, the soft inverse of a system with parametric uncer-

tainty present was developed. The adaptive soft inverse of an pl= é;llk + (éz | k+1) . K;*' (20b)
FSM (i.e., the A-SISO) was the particular focus. It was demon- R R _

strated how an A-SISO can be used to perform AID with numer- B =Gk + (G’,i | k+1) AT (20c)
ical results given for the TCM-ISI serially concatenated system. ~ +

It was found that qualitative conclusions regarding performance V= §?:| kG;ﬁkak &+ (!?l;i [ k+1)

(e.g., the iteration gain) are substantially different for the case . -1
i i i i i i i x (GY TH (20d)
with parametric uncertainty. In particular, iteration gains for the k| k+1 k| k+1
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where gy gle:L are the sequence-conditioned forwardh the practical algorlthm described in Subsection IV-B,

channel estimate, the one- step sequence-conditioned backwi@,_,) = P(tx—a]| 7

channel predictor an(ﬂkm
covariances.

% k41 are the corresponding sion.

B. Binding Factor Under the Gaussian Assumption for (13)

The binding factor in (13) under the Gaussian assumption is
given by the expression

1) is used as the tentative soft-deci-
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;f - ~ b b
b, (lek—lalek—179k|k+1v Gk|k+1)

K, ||P
= Py —lPlepgtpp—a) (@1a)
oG
with o
P =Gl + Gl - K B 21b) [
=Gt Ok — 1y +To (21b)
q7
A= k|k9k|k+Gk|k+1 gk|k+1+ ]kvok (2lc) M
1 |2
Y= 05 Gk IR Gk|k+1 e ‘No [5]
(21d)

(6]

wheregy 1, Gy ., are the PC one-step forward and back- [’}

ward channel predictors an@y 1, GMHJL are the corre-
sponding covariances. -
C. Channel Update Equations under the Gaussian Assumptiorio]
and the Approximation in (18)

[10]
The forward recursions for thé-delayed AKF are given
below. Backward recursions are similar. Assume #dt;_,) [11]
is available.
Gred | hmde1 = Y Gh—aP (th—a) (22a) 112
th—d
Qk—dlk—d—l = Z(Qkfd - (ik—dlk—d—l) [13]
th—d
X (qh—d = Gr—d|k—a—1) P (te—a) ~ (22b)  [14]
Ki—a=Gra|k—d—105—d|k—d-1
. . [15]
X [NO + trace(Qy_q| k—qg—1Gr—d|k—d—1)
+ (iz_(”k_d_lék—cﬂk—d—lqu—dUg—d—l [16]
. ~1
+ G pa Qhealiaiiman | 220) gy,
Ox—d| k—d = Gk—d | k—d—1 T Kr—d
X (Zk—d - (ﬁld“ﬁ,d,lgkﬂi | kfdfl) (22d) [18]
A . - [19]
Gr—d|k—a = (I - kaqu{dwfdfl) Gr—d|k—d—1
(22¢) 10
Ok—dt1|k—d = Gir—d|r—d (22f) 21]
Gr_dt1|k—a = GGk—dlk—dG+ +Q. (229)

in the development.
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