
Journal of VLSI Signal Processing 43, 25–42, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11265-006-7278-y

An Iterative Algorithm and Low Complexity Hardware Architecture for
Fast Acquisition of Long PN Codes in UWB Systems∗

ON WA YEUNG AND KEITH M. CHUGG
Department of Electrical Engineering, Viterbi School of Engineering, Communication Science Institute,

University of Southern California, Los Angeles, CA 90089-2565

Abstract. Rapidly acquiring the code phase of the spreading sequence in an ultra-wideband system is a very
difficult problem. In this paper, we present a new iterative algorithm and its hardware architecture in detail. Our
algorithm is based on running iterative message passing algorithms on a standard graphical model augmented
with multiple redundant models. Simulation results show that our new algorithm operates at lower signal to noise
ratio than earlier works using iterative message passing algorithms. We also demonstrate an efficient hardware
architecture for implementing the new algorithm. Specifically, the redundant models can be combined together
so that substantial memory usage can be reduced. Our prototype achieves the cost-speed product unachievable by
traditional approaches.

1. Introduction

In an ultra-wideband (UWB) system, the source signal
energy is spread over a bandwidth many times larger
than its original bandwidth during transmission. As a
result, the transmitted signal has a very low signal to
noise ratio (SNR) and is completely buried in noise.
Though this is a desirable property which minimizes
interference to other users and makes it very difficult
for an unintended receiver to detect and intercept the
signal, it also presents the receiver designers with a
very challenging problem of detecting and acquiring
the signal at very low SNR.

Pseudo-random or pseudo noise (PN) sequences
play important roles in a UWB system. They are peri-
odic sequences with long period in practical systems.
In a direct sequence ultra-wideband (DS/UWB) sys-
tem, the transmitted signal is a train of very narrow
pulses with polarities determined by the product of a

∗This work was supported in part by the Army Research Office
DAAD19-01-1-0477 and the National Science Foundation CCF-
0428940.

PN binary sequence and the incoming binary source
data sequence. For security reasons, it is often desir-
able to have PN sequences of very long period, so that
to an unintended receiver over a short time interval,
the sequences appear to be aperiodic and completely
random [1, 2].

For a UWB receiver, the first step of demodulation
is to de-spread the signal. In a DS/UWB system, this is
achieved by multiplying the incoming samples by a lo-
cal replica of the PN sequence. Therefore, the receiver
must determine the unknown PN code phase embedded
in the transmitted signal by analyzing the data collected
from a short (compared to the PN code period) observa-
tion window so that it can synchronize the local replica.
This is termed PN acquisition and will be the focus of
this paper. Once the code phase is acquired, the receiver
maintains the PN code synchronization through code
tracking.

Traditionally, PN acquisition is achieved by search-
ing explicitly over possible code phases. Reference sig-
nals corresponding to different code phases are cor-
related with the received signal and the one with the
largest correlation is selected. For a DS/UWB system,
the receiver estimates the arrival time of the pulses (i.e.

26 Yeung and Chugg

the frame epoch), samples the incoming noisy signal
and performs PN acquisition on these samples. The
above process is repeated until acquisition is declared.
Letting T f be the pulse repetition period (frame time)
and Tp be the pulse width, there are T f

Tp
possible frame

epoch values. In low data rate applications, typical val-
ues of the ratio T f

Tp
range from 100–1000, thus the re-

ceiver has to perform up to 100–1000 PN acquisitions to
locate the correct frame epoch though this number may
be reduced if multi-path delay spread is exploited [3].
As explained in [2, 4], for a UWB system, the PN ac-
quisition has to be completed quickly. If it is too slow,
the correct code phase may never be acquired because
the frame epoch may change due to timing drift or
moving receiver before the receiver finishes evaluating
the current frame epoch estimate. In this paper, we fo-
cus on fast PN acquisition and frame acquisition is not
considered.

At one extreme of the traditional approaches to PN
acquisition, all correlations are completed in one obser-
vation window. This is the full parallel search approach
and it offers the best performance. At the other extreme,
only one correlation is formed every observation win-
dow and acquisition is declared if a certain threshold
is exceeded. This is the serial search approach. Hybrid
search (i.e. correlating only a subset of PN code phases
in every observation window) is a compromise between
the two extreme cases. Practically, parallel search is too
expensive to implement for reasonably long sequences.
As a result, serial and hybrid search are the only avail-
able options. As an example, the PN acquisition mod-
ule of the UWB prototype in [5] was built using a hy-
brid approach to acquire a short PN sequence of period
128. However, for long PN sequences, serial search
is often too slow and hybrid searches, at best, pro-
vides only a linear tradeoff between the speed and cost
[1, 6].

Recently, iterative message passing algorithm
(iMPA) similar to low density parity check code
(LDPC) and turbo code decoding was proposed in
[2, 4] for fast PN acquisition in both direct sequence
spread spectrum (DS/SS) and DS/UWB systems. Sim-
ilar approaches have also been proposed in [7–9]. Our
exposition most closely follows that of [2]. These it-
erative algorithms offer the speed of parallel search
and acquisition performance similar to that of se-
rial search at short block lengths. Unlike parallel
search, it is practical to implement the proposed al-

gorithm in hardware to acquire PN sequences with
long period. There are two drawbacks of the algo-
rithm proposed in [2, 4]. First, the algorithm con-
verges slowly at low SNR. Second, the performance
of the algorithm does not scale well with observation
length. Specifically, doubling the observation window
length lowers the operating SNR of the traditional ap-
proaches by 3 dB but only 1-2 dB for the proposed
algorithm.

In this paper, we present a new improved itera-
tive message passing algorithm and its hardware ar-
chitecture based on the algorithm proposed in [2].
Specifically, we introduce multiple redundant mod-
els in the iMPA to mitigate the aforementioned draw-
backs discussed in [2, 4]. The new algorithm con-
verges faster and operates at lower SNR without in-
creasing the hardware complexity. We will also demon-
strate how to aggregate these multiples models to a
single model to reduce memory usage. In our hard-
ware prototype, the spreading sequence is of period
222 − 1. Rapidly acquiring such a long sequence is
impractical by both serial and parallel search, but the
logic design based on our architecture can be eas-
ily fit into a small field programmable gate array
(FPGA).

The remained of this paper is as follows. In Section 2,
we introduce the theory of operation. We then proceed
to discuss various architectures for the main compo-
nents of our module in Section 3. Section 4 gives a
detailed account of our hardware implementations as
well as various techniques we used in the optimization.
Section 5 concludes the paper and gives directions for
future work.

2. Theory of Operation

2.1. Maximal-Length Sequences

A maximal-length sequence or m-Sequence is a linear
feedback shift register (LFSR) sequence which has the
maximum possible period for an r -stage shift regis-
ter [10]. As its name implies, an m-Sequence xk can
be generated by an r -stage linear feedback shift reg-
ister structure as shown in Fig. 1. When the registers
are loaded with any non-zero values, the generated se-
quence will cycle through all 2r − 1 possible non-zero
states before repeating (i.e., its period is 2r −1). Math-

An Iterative Algorithm and Low Complexity Hardware Architecture 27

D D

+ +
g1

xk+r-1

g2

xk+r-2

+

D
xk+3

+

D
xk+2

+

D
xk+1

grgr-1

xk

gr-2gr-3g0

Figure 1. Linear feedback shift register (LFSR) structure for m-Sequence generation.

ematically, the sequence structure can be expressed
as

xk = g1xk−1 ⊕ g2xk−2 ⊕ · · · ⊕ gr xk−r (1)

where g0 = gr = 1, gk ∈ {0, 1} for 1 < k < r and
⊕ is the modulo-2 addition. The generator polynomial
is g(D) = Dr + gr−1 Dr−1 + gr−2 Dr−2 + · · · + D0

where D is the unit delay operator [10]. Given r ,
there is only a very limited set of gk values that
generates an m-Sequence. Because of their excellent
correlation properties, m-Sequences are widely used
as spreading sequences in spread spectrum systems
[1, 10].

2.2. Signal Model

For a DS/UWB system, a standard model for acquisi-
tion characterization is [1, 2]

zk =
√

Ec(−1)xk + nk (2)

where zk , 0 ≤ k ≤ M −1, is the noisy sample received
by the acquisition module, xk , 0 ≤ k ≤ M − 1, is the
spreading m-Sequence, Ec is the transmitted energy per
pulse and nk is additive white Gaussian noise (AWGN)
with variance N0

2 . We also assume that xk is generated
by an r -stage LFSR and r & M & 2r − 1. This is
a much simplified model which does not include the
effect of jamming, oversampling, etc, but it is widely
used in literatures to benchmark the performance of PN
acquisition algorithms.1

The goal of the acquisition module is to estimate
xk based on zk 0 ≤ k ≤ M − 1 for a given frame
epoch estimate and decide whether the frame epoch
estimate is correct. In our design, we obtain the estimate

of xk , denoted by x̂k , by running an iterative message
passing algorithm. Because x̂k has to be consistent with
(1), once r consecutive x̂k are obtained, the rest of the
sequence is determined by extrapolating the estimate
by (1). As the last step, zk is correlated with x̂k , 0 ≤
k ≤ M − 1 to check whether the correlation threshold
is reached.

2.3. Iterative Message Passing Algorithm (iMPA)
for Fast PN Acquisition

In traditional PN acquisition approaches, the received
sequence zk is correlated with up to 2r − 1 PN se-
quences generated by different x0, x1, . . . , xr−1 com-
binations for the whole observation window and the
algorithm chooses the phase corresponding to the high-
est correlation. In terms of computation complex-
ity, the main difference between parallel search and
serial/hybrid search is whether all correlations are
completed every observation window. Since each cor-
relation requires M − 1 additions, the computation
complexity is of O(M · 2r) for all of these tradi-
tional approaches. For parallel search, all valid con-
figurations of xk are correlated, we can therefore in-
terpret it as maximum likelihood (ML) decoding of
xk from (2) and serial/hybrid search as approxima-
tions to ML decoding. Based on this observation, we
formulate the PN acquisition problem as a decoding
problem and apply an iterative message passing algo-
rithm similar to turbo code [11, 12] or LDPC decoding
[13–15].

Since the inception of turbo codes, iterative message
passing algorithms have been widely studied. They
can be easily derived by constructing the correspond-
ing graphical models for the system and applying a
standard set of rules. It is now understood that if the
graphical model has no cycles, the algorithm is equiv-
alent to maximum likelihood decoding. Otherwise, the

28 Yeung and Chugg

algorithm is heuristic and sub-optimal [16–21]. How-
ever, it is often a good approximation to maximum like-
lihood decoding and offers near-optimal performance
as in the case of turbo code and LDPC decoding.

In practical applications, cyclic graphical models are
chosen for low complexity decoding. The graphical
models chosen have a significant impact on the perfor-
mance of the algorithm. Heuristically, a good model
should neither have short nor regular cycles [16, 22,
23]. Several graphs corresponding to the same gener-
ator polynomial g(D) = D15 + D1 + D0 are shown
in [2, Fig. 2] and each implies a different decoding
algorithm.

For a binary variable X , the message passed (i.e., soft
information) in a cyclic graph is an approximation of
the negative log-likelihood ratio − log Pr (X=1)

Pr (X=0) [21]. In
our case, in each iteration, the algorithm successively
updates messages and decisions are made by compar-
ing a decision message Mdec to 0 where Mdec is an
approximation of − log Pr(xk=1)

Pr(xk=0) . If Mdec ≥ 0, x̂k = 0,
otherwise, x̂k = 1. The absolute value of Mdec can
be interpreted as the confidence of the decision. If the
algorithm converges, Mdec will stabilize after certain
number of iterations indicating some level of confi-
dence in the decisions.

+

= = = = = = = = = = =

+ + + + +

P[22] P[23] P[44] P[45] P[M-2] P[M-1]

X[M-2] X[M-1]X[22] X[23] X[44] X[45]X[43]X[1] X[2]X[0] X[21]

+

=

SPC constraint (check node)

Equality constraint (variable node)

(a) Tanner graph for g(D) = D22 + D1 + D0.

=
x0

s0 sτ τ τ τ τ τ τ1

=
x1

=
x22

s22 s23

=
x23

=
x44

s44 s45

=
x45

=
xM-1

sM-1 sM

From xM-23

2-State FSM

0 1 22 23 44 45 M-1

2-state trellis cons traint Hidden va riable sk = xk-1 Equality cons traint (variable node)=

(b) Tanner-Wiberg graph for g(D) = D22 + D1 + D0 with hidden variable Sk = xk−1 introduced.

Figure 2. Different graphical models for g(D) = D22 + D1 + D0.

A detailed discussion of iterative message pass-
ing algorithms is beyond the scope of this pa-
per. In the remaining sections, we consider ac-
quiring the m-Sequence with generator polynomial
g(D) = D22 + D1 + D0 and only the details rel-
evant to our example are presented. Interested read-
ers can refer to [11, 16, 17, 21, 24, 25] for further
details.

Similar to the polynomial g(D) = D15 + D1 + D0

presented in [2], our polynomial can also be represented
by several graphical models with two shown in Fig. 2(a)
and (b). Decoding algorithms based on both models of-
fer similar performance as in [2] and suffer the same
problems. The slow convergence experienced by the
algorithms is similar to that of LDPC decoding and
can be attributed to the weak constraints and the flood-
ing activation schedule. The SNR scaling problem is
attributed to the existence of regular cycle structures
in the graphs in [2]. Qualitatively speaking, this is a
“bad” graphical model to apply standard iterative mes-
sage passing algorithm. The problem is tackled in [2]
by inverting the signs of the set of messages corre-
sponding to the least reliable decisions and rerunning
the algorithm if acquisition fails. This approach does
improve sensitivity, but itstill requires many iterations.

An Iterative Algorithm and Low Complexity Hardware Architecture 29

+

= = = = = = = = = = =

+ + + + +

P0[22] P0 [23] P0 [44] P0 [45] P0 [M-2] P0 [M-1]

X[M-2] X[M-1]X[22] X[23] X[44] X[45]X[43]
X[1]

X[2]
X[0] X[21]

+ + + +

P1 [44] P1 [45] P1 [M-2] P1 [M-1]

Figure 3. Forming the 2nd order graphical model using the primary model (g(D) = D22 + D1 + D0) and the 1st order auxiliary model
(g(D) = D44 + D2 + D0).

This motivates us to find a better graphical model on
which we can apply the standard iterative message
passing algorithm and is more amenable to hardware
implementation.

2.4. Graphical Models with Redundancy

To improve the performance of the iMPA, we introduce
a new decoding graph for g(D) = D22 + D1 + D0. It
is constructed using multiple graphical models each
of which fully captures the PN code structure. In this
sense, the model has redundancy. This is equivalent to
adding redundant parity checks to the standard parity
check matrix. The technique is also applied in soft de-
coding of some of the classical codes [26–28]. Fig. 3
shows the special case of using two models. Each of
the subgraphs is based on a different generator poly-
nomial to the same m-Sequence. Mathematically, we
introduce reducible polynomials to generate the same
sequence. For example, let xk be the sequence gener-
ated by g(D) = D22 + D1 + D0, we have the following
equations:

xk ⊕ xk−1 ⊕ xk−22 = 0 (3)

xk−1 ⊕ xk−2 ⊕ xk−23 = 0 (4)

xk−22 ⊕ xk−23 ⊕ xk−44 = 0 (5)

Adding (3), (4) and (5) together, we have xk +xk−2+
xk−44 = 0. Therefore, g(D) = D44+D2+D0 also gen-
erates the same sequence. The argument can be easily

extended to show that

g(D) = D22·2n + D2n + D0, n = 0, 1, 2, 3 . . . (6)

all generate the same sequence. In this paper, we refer
the graphical model based on (6) as the nth order auxil-
iary model and the one based on g(D) = D22+D1+D0

as the primary model. Also, we refer to the model
that combines the primary model and the 1st, 2nd
. . . (n − 1)th order auxiliary models as the nth order
model. Our decoding graph for an nth order model is
formed by constraining the output of primary model
and each of the i th order auxiliary model 1 ≤ i ≤ n
to be equal. As an example, the graph of the 2nd order
model is shown in Fig. 3. The performance improve-
ment by combining multiple models is shown in Fig. 4.
Even though each individual auxiliary model produces
very unreliable decoding decisions, combining them
improves the convergence behaviour dramatically. We
gain around 1 dB gain for each additional auxiliary
model introduced. Only 10 iterations are required for
practical convergence for a 5th order model. Our multi-
ple model algorithm also works for other m-Sequences.
As a comparison, Fig. 5 shows the performance for
g(D) = D15 + D1 + D0 where the curve for algorithm
in [2] is also included.

Our baseline algorithm is summarized in Algo-
rithm 1. The complexity of both the decoding and
correlation operations is of O(M), therefore our al-
gorithm is also of O(M) complexity. There is substan-
tial complexity reduction compared to the traditional

30 Yeung and Chugg

Algorithm 1: Baseline iMPA algorithm for fast PN acquisition.

approaches. Also, our new algorithm offers better per-
formance with no additional complexity compared to
the approach in [2] since we reduce the number of it-
erations dramatically.

3. Hardware Architecture for Iterative Decoder

In this section, we present the hardware architecture
of the basic building blocks in our iMPA algorithm.
Assuming using an nth order model, the pulses are de-
coded by n different models during each iteration. The
hardware module that performs the iterative message
passing algorithm for each auxiliary model is an itera-
tive decoder.

3.1. Forward Backward Algorithm Based Iterative
Decoder

The basic building block in our algorithm is an itera-
tive decoder that decodes the sequence generated by
g(D) = D22 + D1 + D0. We have two hardware archi-
tecture candidates: one based on Fig. 2(a) and another
based on Fig. 2(b). Simulation shows that both architec-

tures performs similarly (the difference in sensitivity is
less than 0.3 dB).

If we choose the Tanner graph representation as
shown in Fig. 2(a), the number of messages needed
to be saved in each iteration equals to the number of
edges in the graph. Therefore, the minimum storage
requirement is 3M messages.

Alternatively, if we base our decoder on a Tanner-
Wiberg graph [16] with hidden variables introduced as
shown in Fig. 2(b), we have a more memory efficient
hardware architecture. Equations similar to [2, (23)]
to [2, (29)] can readily be obtained from this graph.
This graph is an explicit index diagram [21, 25]. For
readers not familiar with Tanner-Wiberg graph, the up-
date equations may be more easily explained by con-
sidering Fig. 6(a) which decomposes the sequence gen-
erating LFSR structure into three parts: one 2-state
g(D) = D + 1 finite state machine (FSM)2, one de-
lay block (D21) and one broadcaster (i.e., an equal-
ity constraint). Applying the standard iterative mes-
sage passing rules [21, 25], we derive the decoding
graph (Fig. 6(b)) by replacing each component by a
soft-in soft-out (SISO) module which performs the a-
posteriori probability (APP) decoding [29].

An Iterative Algorithm and Low Complexity Hardware Architecture 31

-14 -13 -12 -11 -10 -9 -8 -7

0.86

0.88

0.9

0.92

0.94

0.96

0.98

P
acq

 versus E
c
/N

0
, M=1024, g(D)=D22+D1+D0

E
c
/N

0
(dB)

P ac
q

(1,15)

(2,15)

(3,15)

(4,15)

(5,15)

(6,15)

(5,20)

(5,10)

(2,15), Hardware
architecture

(n,I): n = model order
I = # iterations

Figure 4. Acquisition performance vs. Ec/N0 for using an nth order model on g(D) = D22 + D1 + D0. The acquisition performance of our
hardware implementation (see Section 4) is marked as “(2,15), hardware architecture”.

-15 -14 -13 -12 -11 -10 -9 -8

0.86

0.88

0.9

0.92

0.94

0.96

0.98

E
c
/N

0
(dB)

P ac
q

(1,15)
(2,15)

(3,15)

(4,15)

(5,15)

(6,15)

[2],
100 iter.

(n,I):
n = model order
I = # iterations

Figure 5. Acquisition performance vs. Ec/N0 for using an nth order model on g(D) = D15 + D1 + D0. As a reference, the acquisition
performance by running the [2] algorithm is marked as “ [2], 100 iter.”.

32 Yeung and Chugg

D 21

D+

xk-1
2-State FSM

Broadcaster
(=)

ak

(a) Decomposition of g(D) = D22 +D1 +D0

as a combination of a 2-state FSM, a broad-
caster and a delay block.

D21

Mch[k-1]

D-21

MO[xk-1]

MI[xk-1]

MO[ak]

g(D)=D+1
SISO

MI[ak]

MI[0]

MO[0]

MI[1]

MO[1]

=
SISO

MI[2]

MO[2]

1

2

2

1

(b) Corresponding g(D) = D22 +D1 +D0 iterative decoder architec-
ture, the circled number is the activation order.

Figure 6. Deriving the g(D) = D22 + D1 + D0 decoder architecture from the LFSR structure.

The relationship between Fig. 6(b) and Fig. 2(b) is
that Fig. 2(b) is an explicit index diagram and Fig.
6(b) is an implicit index diagram where the time index
is hidden in the graphical representation [21, 25]. The
associated iterative processing is the same in both cases.

Let MI[i] and MO[i] be the input and output mes-
sages with ports defined in Fig. 6(b). The broadcaster
SISO update equation is MO[i] =

∑ j=2
j=0 MI[j]−MI[i]

([21, 25]).
The 2-state g(D) = D + 1 recursive FSM SISO can

be implemented by the forward backward algorithm
(FBA) [21]. Let Fk and Bk be the forward and backward
state metric and MI[xk], MO[xk], MI[ak] and MO[ak]
be the input and output ports defined in Fig. 6(b). The
update equations for each iteration are:

F0 = 0 (7)

BM = 0 (8)

Fk+1 = min(MI[ak], Fk) − min(0, Fk + MI[ak])

+MI[xk] (9)

Bk = min(MI[ak], MI[xk] + Bk+1)

− min(0, Bk+1 + MI[xk] + MI[ak]) (10)

MO[ak] = min(Bk+1 + MI[xk], Fk) − min(0, Fk

+ Bk+1 + MI[xk]) (11)

MO[xk] = Fk+1 + Bk+1 − MI[xk] (12)

Mdec = MI[xk] + MO[xk] (13)

From the above equations, we can see that the FSM
SISO requires two types of memory. The first one
is for storing the 2M messages passed between the
g(D) = D + 1 SISO and the broadcaster SISO. Their
values are updated based on the results from the pre-
vious iteration. The second one is for storing the FSM
state metrics Fk and Bk , which are recalculated during

every iteration. In other words, the FSM state metric
memory can be reused once operations in the current it-
eration are finished. Therefore, we do not need to store
Bk if MO[·] are updated immediately once both Fk and
Bk+1 become available. In Section 4, we will show that
the state metric memory can be reduced substantially
by updating the state metrics segment by segment to
reuse the memory within the current iteration. If the
segment size is M/8, the total memory requirement
becomes M/8 state metrics + 2M messages which is
substantially less than the 3M messages requirement
based on 2(a). For low data rate applications, the
transistor count for our circuit is dominated by memory
instead of logic. Therefore, the architecture shown in
Fig. 6(b) is preferred because of its lower memory
usage.

In Fig. 6(b), we show one type of activation schedule,
the 2-state FSM SISO completes the message update,
sends them to the broadcaster, then the broadcaster up-
dates and returns the messages. This completes one
iteration.

3.2. Forming an nth Order Decoder

Once we have all the auxiliary model decoders ready,
forming an nth order model decoder is straightforward.
We only need to form an additional broadcaster (equal-
ity) constraint and the decoding architecture follows di-
rectly by applying the standard iterative message pass-
ing rules as shown in Fig. 7.

If we only consider a 2nd order model and choose
the SISO structure to be of the type Fig. 2(a), then
Fig. 7 is equivalent to Fig. 3. The memory requirement
equals to 6M messages which is the sum of the memory
requirement for each SISO.

An Iterative Algorithm and Low Complexity Hardware Architecture 33

g(D)=D22+D1+D0

Model

g(D)=D44+D2+D0

Model
=

g(D)=D22x2+D2+D0

Model

n-1 n-1

xk

g(D)=D22+D1+D0

Decoder

g(D)=D44+D2+D0

Decoder

g(D)=D22x2+D2+D0

Decoder

n-1 n-1

Broadcaster
(=)

SISO

Mch[k]

1

1

1

2

2

2

(a) (b)

Figure 7. Iterative decoder architectures for an nth order model: (a) is the combined model; (b) is the iterative decoder architecture with the
activation order circled.

D 42

D+

4-State FSM

D
Broad-
caster

(=)

+
xk-1

D 21

xk

xk-1a_0k

a_1k

(a) Decomposition of a g(D) = D44+D2+D0

FSM into two g(D) = D22 + D1 + D0 FSMs
by index partitioning.

D42

Mch[k-1]

D -42

MO[xk-1]

MI[xk-1]

MO[a_1k]

4-State
FSM
SISO

MI[a_1k]

MI[0]

MO[0]

MI[1]

MO[1]

=
SISO

MI[3]

MO[3]

1

2

2

1

MO[a_0k]

MI[a_0k] D 21

D-21

2

1

MI[2]

MO[2]

(b) g(D) = D44 + D2 + D0 decoder architecture.

Figure 8. Implementing a g(D) = D44 + D2 + D0 decoder using two g(D) = D22 + D1 + D0 decoders.

3.3. Simplification of an Auxiliary Model Decoder
Using Index Partitioning

An advantage of using auxiliary models defined as (6)
is that all auxiliary decoders can be constructed using
the g(D) = D22 + D1 + D0 decoder. This is achieved
by index partitioning on the output of the higher or-
der model. Specifically, the index partitioned output is
equivalent to the output of the primary model.

As an example, consider the FSM that generates the
g(D) = D44 + D2 + D0 sequence. As shown in Fig.
8(a), we can model this as two identical FSMs each
generating the xk = xk−1 + xk−22 sequence. One gen-
erates the sequence at odd indices and the other gener-
ates the sequence at even indices. The corresponding
decoder is shown in Fig. 8(b) which consists of two
g(D) = D22 + D1 + D0 decoders. In this case, since
each decoder only decodes M/2 pulses, the total mem-

ory requirement for messages is the same as an M-pulse
g(D) = D22 + D1 + D0 decoder.

This idea extends to higher order auxiliary model
decoders. Specifically, xk generated by (6) can be par-
titioned into 2n sub-sequences: x2nk+i , 0 ≤ i ≤ 2n − 1
with each sub-sequence generated by g(D) = D22 +
D1 + D0. The corresponding decoder can be con-
structed using multiple g(D) = D22 + D1 + D0 de-
coders similar to Fig. 8(b).

4. Hardware Architecture

In this section, we consider the case of decoding the PN
sequence g(D) = D22 + D1 + D0 over an observation
window of M = 1024 using the 2nd order model archi-
tecture. The block diagram of our acquisition module
is shown in Fig. 9.

34 Yeung and Chugg

Channel
Metric
RAM

(1024x4
x2)

FWD State Metric Recursion

BWD State Metric Recursion
+ LI_0, LI_1, RI Update

State
Metric
RAM

(512x9)

Iterative Decoder

RI
RAM

(512x5
x2)

LI_0
RAM

(512x5
x2)

LI_1
RAM

(512x5
x2)

Verifi-
cation
Unit

Acquisition
DecisionChannel

Input zk ADC

Figure 9. Block diagram of the acquisition module for g(D) = D22 + D1 + D0.

4.1. 4-State FSM Decoder

As shown in Fig. 9, instead of using Fig. 7 as our
PN estimator architecture which has three 2-state FSM
SISOs (one for g(D) = D22 + D1 + D0 and two for
g(D) = D44 + D2 + D0), we combine the two models
together using a single 4-state FSM as shown in Fig.
10(a). The new FSM captures all the information of the
original FSMs and lowers the memory requirements
from 4M messages plus state metrics to approximately
3M messages plus state metrics as demonstrated below.
Moreover, by using a single FSM, we save routing re-
sources by lowering the bandwidth requirement for the
channel metrics (Mch[k] = zk) memory since it is now
accessed only by one FSM-SISO instead of three FSM
SISOs. Using the 4-state FSM does require more logic
in the FSM SISO implementation, but this increase is
justified by the the additional savings in memory and
routing.

Our 4-state FSM decoder is also based on the for-
ward backward algorithm. We define the state as Sk =
{xk−1, xk} and the corresponding decoder is shown in
Fig. 10(b). Again, this is an implicit index digram. The
explicit index diagram (i.e., the Tanner-Wiberg graph)
is shown in Fig. 10(c). The state transition table is
shown in Table 1 and the messages passed are shown
in detail in Fig. 10(d).

The update equations are obtained by applying the
standard message passing rules [21] on either Fig. 10(b)
or Fig. 10(c). They are listed from (14) to (30) in the
appendix.

Simulation results shows that the 4-state FSM de-
coder implementation improves the performance by

0.2 dB in Ec
N0

as compared to the three 2-state FSM
implementation.

We can continue to combine multiple auxiliary mod-
els to form a single FSM. For example, we can imple-
ment a 3rd order model using a 16-state FSM. How-
ever, the exponential growth in state metric memory
may outweigh any savings in the message memory for
larger n.

4.2. Forward Backward Algorithm Architecture for
Multiple Index Segments

To reduce the internal FSM state metric memory, we
divide the observation window into multiple segments
and run the forward backward algorithm (FBA) seg-
ment by segment. This is a standard approach for im-
plementing the Viterbi and turbo decoders [30, 31].

In our prototype system, we divide the observation
window (1024) into 8 segments. There is one for-
ward unit and one backward unit running 15 iterations.

Table 1. State transition table of the 4-state FSM.

Sk−1 = {xk−2, xk−1} Sk = {xk−1, xk} xk xk−22 xk−44

00 (0) 00 (0) 0 0 0
00 (0) 01 (1) 1 1 1
01 (1) 10 (2) 0 1 0
01 (1) 11 (3) 1 0 1
10 (2) 00 (0) 0 0 1
10 (2) 01 (1) 1 1 0
11 (3) 10 (2) 0 1 1
11 (3) 11 (3) 1 0 0

An Iterative Algorithm and Low Complexity Hardware Architecture 35

D 42

D+

4-StateFSM

D
Broad-
caster

(=)

+
xk-1

D 21

xk

(a) Combining the encoders for the
primary model and the 1st order aux-
iliary model to form a 4-state FSM
encoder. The output xk is redundant.

D42

Mch[k-1]

D-42

MO[xk]

MI[xk]

MO_1[ak]

4-State
FSM
SISO

MI_1[ak]

MI[0]

MO[0]

MI[1]

MO[1]

=
SISO

MI[3]

MO[3]

1

2

2

1

MO_0[ak]

MI_0[ak] D 21

D-21

2

1

MI[2]

MO[2]

(b) Corresponding iterative decoder for the 4-state FSM encoder.
The circled number is the activation order. This is an implicit index
diagram.

=
x0

s0 sτ τ τ τ

τ

τ

τ

τ τ τ1

=
x1

=
x22

s22 s23

=
x23

=
x44

s44 s45

=
x45

=
xM-1

sM-1 sM

From
xM-23

4-State FSM

From
xM-45

M-14544232210

4-state trellis constraint Hidden variable sk = {xk-1, xk} Equality constraint (variable node)=

(c) Tanner-Wiberg graph for the 4-state FSM. This is an explicit index diagram.

xk

k

Fk

Bk

Fk+1

Bk+1

Mch[k]

LO_0
k+

22

LI_1 k+44

LO_1k+44

LI_
0 k+

22

LO
_0

kLI_
0 k

LI_1 k

LO_1 k

R
O

k

R
I k

4 State FSM, S k
Sk+1, 4 State FSM

k+22

k+44

k-44

k-22

(d) Detailed view of the messages passed in and out of the 4-state
FSM trellis constraint node. For specific update equations, see (14) -
(30).

τ

τ

Figure 10. Implicit and explicit index diagrams for the 4-state FSM decoder of g(D) = D22 + D1 + D0.

During each iteration, the forward unit updates the state
metric sequentially from pulse 0 to 1023. The backward
unit computes the state metric in the following order:
127 → 0, 255 → 128, . . . , 1023 → 896. Such a se-
quence of calculations results in one problem: we do
not know the backward metric B128[i], 0 ≤ i ≤ 3
when computing 127 → 0, B256[i], 0 ≤ i ≤ 3 when
computing 255 → 128, etc. The problem is solved

in [30] and [31] by running the backward unit for an
additional “warm-up” period. The approach is moti-
vated by the fact that the backward state metric at
the segment boundary can be well approximated by
starting a backward state recursion just several con-
straint lengths away. Excluding the warm-up, (i.e., set-
ting B128[i] = 0) will incur a loss of around 0.25 dB in
Ec/N0. To run a design using the warm-up approach

36 Yeung and Chugg

C
lo

ck

Fwd Seg. 0
Wr. F 0:127 to SMM[0:127]
Rd. CMB0
Rd. MBB0

0 128 256 384 512

128

256

384

Fwd Seg. 1
Wr. F 128:255 to SMM[127:0]
Rd. CMB1
Rd. MBB1

Fwd Seg. 2
Wr. F 256:383 to SMM[0:127]
Rd. CMB0
Rd. MBB0

Bwd/ Upd Seg. 0
Rd. F 127:0 from
 SMM[127:0]
Rd. CMB0
Wr. MBB0

Channel Observation Index (k)

Bwd/Upd Seg. 1
Rd. F 255:128 from
 SMM[0:127]
Rd. CMB1
Wr. MBB1

Bwd/Upd Seg. 2
Rd. F 383:256 from
 SMM[127:0]
Rd. CMB0
Wr. MBB0

512

1024

1152

Ite
ra

tio
n

0
It

er
at

io
n

1

C
op

ie
s

B
12

8 f
ro

m
 It

er
at

io
n

0

C
op

ie
s

B
25

6 f
ro

m
 It

er
at

io
n

0

Stores B128

Stores
B256

Summary of Abbreviations:
Fwd.: Forward
Bwd: Backward
Upd: Update
Seg.: Segment
Wr.: Write
Rd.: Read
Fi:j : Forward State Metric Fk, k=i to j
Bi:j : Backward State Metric Bk ,k= i to j
SMM: State Metric Memory
CMB0: Channel Metric Bank 0
CMB1: Channel Metric Bank 1
MBB0: Message Buffer Bank 0
MBB1: Message Buffer Bank 1
There are 3 messages buffers: RI, LI_0
and LI_1

Fwd Seg. 0
Wr. F 0:127 to
 SMM[0:127]
Rd. CMB0
Rd. MBB0

Fwd Seg. 1
Wr. F 128:255 to

SMM[127:0]
Rd. CMB1
Rd. MBB1

Fwd Seg. 2
Wr. F 256:383 to SMM[0:127]
Rd. CMB0
Rd. MBB0

Bwd/Upd Seg. 1
Rd. F 255:128 from
 SMM[0:127]
Rd. CMB1
Wr. MBB1

Bwd/ Upd Seg. 0
Rd. F 127:0 from
 SMM[127:0]
Rd. CMB0
Wr. MBB0

Figure 11. Processing and memory access pipeline for the 4-state decoder.

at full-speed, an additional backward unit is required
so that one unit warms up while the other is doing the
update [30, 31]. The additional unit can be saved if
we do not use the warm-up approach but instead copy

the B128[i] values from the previous iteration. This is
feasible because the warm-up period is only required
if we are trying to approximate an FBA-SISO in iso-
lation. For an iterative system, starting the backward

An Iterative Algorithm and Low Complexity Hardware Architecture 37

-10 -9.8 -9.6 -9.4 -9.2 -9 -8.8 -8.6

0.86

0.88

0.9

0.92

0.94

0.96

0.98

E
c
/N

0
(dB)

P ac
q (4,16)

(5,16)

(3,16)

(4,4)

(4,5)

(4,6)

Floating Point

(4,16) Mid-pt.
Loading

(#Bit
ADC

, #Bit
Metric

)

Figure 12. Pacq vs. Ec/N0 for different bit width combinations, g(D) = D22 + D1 + D0.

iteration based on earlier iteration value is equivalent to
a change in the activation schedule for the iMPA on the
cyclic graph, and as such does not significantly affect
the performance. This is a known architecture for im-
plementing iterative decoders with forward-backward
based SISO decoders (e.g., see [32–34]). Once both the
forward and backward state metrics become available,
LI 0k , LI 1k , RIk and Mdec[k] are computed and the
FSM state metric memory is released immediately. The
processing pipeline is shown in Fig. 11 which shows the
update sequence as well as the corresponding memory
access.

4.3. Bit Width

The bit widths in our system are determined by simu-
lations in two steps. First, we fixed LI 0k , LI 1k , RIk to
be of 16 bits and determine that 4 bits of ADC output
is sufficient. Compared to floating point, there is only
a performance loss of 0.2 dB.

The performance for various bit width combinations
is shown in Fig. 12. For each ADC bit width, we have
optimized the scale q that sets the ADC dynamic range
(ADCout = quantize(q · zk)) for performance. For a
4-bit ADC, qopt is found to be 1.65 by simulation. As a

reference, we also show the performance for the stan-
dard mid-point loading q = 3.5 when the ADC is of
4 bits.

The second step is to determine the bit width for the
messages LI 0, LI 1 and RI. This is necessary since
their values may grow as the decoder iterates. To avoid
using excessive bits for storage, we have to clip them
after each (FBA/=) SISO activation. As shown in Fig.
12, 5 bits are sufficient for our application when the
ADC bit width is 4.

To determine the bit width for the state metric, we
rely on the fact that for a given k, we are only inter-
ested in the difference between Fk[i] 0 ≤ i ≤ 3, not
their values. Therefore, we only need the bit width to
be big enough for the differences. If we subtract Fk[0]
from Fk[i] 0 ≤ i ≤ 3, the differences (i.e., the normal-
ized Fk[i]) can be shown to be bounded between −128
to 127 for 5-bit messages by an argument similar to the
ones in [35] and [21]. As a result, it can be represented
by 8 bits. Similarly, the normalized Bk[i] 0 ≤ i ≤ 3
can be represented by 8 bits for 0 ≤ k ≤ 1024. Also,
we do not need to store the normalized Fk[0] and Bk[0]
since they are always 0. The normalization approach is
what we apply for all binary variables because it saves
the memory usage by half and only requires one sub-
traction. For example, LI 0k is a shorthand for LI 0k[1]

38 Yeung and Chugg

Channel
Metric
Access

Unit

MUX D
+

+

+

-

Mch

PN
Extrapolation

PN_ESTIMATE

0Σ

Σ

1
Threshold

Acquisition
Decision

Correlator

Figure 13. Verification unit for the PN acquisition module.

where LI 0k[0] = 0 ∀ k. For the 4-ary state metric vari-
ables Fk[i] and Bk[i], the normalization approach is less
attractive. It only reduces the memory usage by one-
fourth at the expense of impacting the frequency scaling
of our circuit by requiring three additional subtractions
in the critical path of the forward and backward recur-
sions. As a result, we do not perform normalization
and use 9 bits to represent the state metric instead of 8
bits. This additional 1-bit approach is commonly used
in Viterbi decoders and is proven to be correct in [35]
under the condition that two’s complement arithmetic
is used.

4.4. Partitioning the Memory into Banks

In our prototype design, we have several modules con-
currently accessing memory. By carefully partitioning
the memory, contention can be avoided without the use
of multiport memory. The access pipeline for the above
memories is shown in Fig. 11.

For the message memories (LI 0, LI 1 and RI), we
divide them into two banks of 512 entries. One bank
is for the odd FBA segment and the other for the even
FBA segment. By this arrangement, there are at most 2
concurrent accesses and we can implement LI 0, LI 1
and RI using 2-port memories.

For the FSM state metric, the forward unit writes
to the memory while both the backward and LI 0,
LI 1 RI update unit read the same data from the mem-
ory. As a result, we only need a single bank of 2-port
memories.

The channel metric memory is divided into two
banks each comprising 1024 entries. The ADC and the
acquisition module always work on different banks.

By subdividing each bank into two sub-banks, one for
the FBA odd segment and the other for the FBA even
segment, there are at most two simultaneous accesses
to the same segment. Therefore, the channel metric
can also be implemented by 2-port memories. In order
to reuse the state metric memory once the backward
metric is computed, the FSM state metric are stored
in the physical memory in reverse order for even seg-
ments. For example, the even segment F128 to F255 are
stored in the state metric memory [127:0] while the
odd segment F0 to F127 are stored in the state met-
ric memory [0:127]. The details are also shown in
Fig. 11.

For design simplicity, we used 2-port memories in
our prototype implementation since it is free in our
target device (Xilinx Virtex II FPGA). However, the
design can be easily ported to single port memory only
architecture by doubling the bus width and time divi-
sion multiplexing the access.

4.5. Verification Unit

Our verification unit, shown in Fig. 13, consists of two
parts, a PN sequence extrapolation unit and a correla-
tor unit. The extrapolation unit extends the 22-bit PN
estimate it receives to the whole observation window.
The correlation unit then correlates this sequence with
the channel metric. To improve efficiency, the corre-
lator output is checked every M

4 pulses and it must
exceed the check point threshold before continuing. If
the final correlation value exceeds the final threshold,
acquisition is declared. The final threshold is chosen
to be 0.65 · q · 1024 found by simulation so that the
frequency of false alarm is 0 in 5000 trials when signal

An Iterative Algorithm and Low Complexity Hardware Architecture 39

is absent while minimizing the probability of rejecting
the correct estimate when signal is present.

4.6. Hardware Implementation

We implemented the architecture using Verilog HDL.
The code is synthesized by Synplicity, then mapped
by Xilinx Foundation to a Xilinx Virtex 2 device
(XC2v250-6). The number of bits implemented in
block RAM is 28160, the number of 4-input LUTs
used is 2433 and the number of slices used is 1481.
The design can run at 91 MHz. These figures show that
memory is the main component of the circuit and justify
our decision to trade off logic for memory reduction.

Our baseline design can decode Freqclk
15 pulses per

second. Assuming a 60 MHz clock, our prototype gen-
erates a PN code phase decision every 15

60 MHz · 1024 =
2.56 µs. The decode process has to be repeated for each
frame epoch estimate until the correct frame epoch is
found. Assuming the frame time T f = 250 ns (i.e.
pulse rate = 4 Mpulses/s) and pulse width Tp = 1.6 ns,
the approximate average acquisition time of our proto-
type system Tacq = 2.56 µs · T f

Tp
· 0.5 = 20 ms with

Pacq = 0.95 at Ec
N0

= −8.9 dB. This assumes that half
of the frame epoch values are searched on average. Un-
der these noise level conditions with no signal present,
5000 blocks were processed and acquisition was never
declared.

As a comparison, to achieve the same average Tacq,
hardware based on parallel search and running at the
same frequency requires approximately 5.6 × 105 cor-
relators, 5.6 × 105 14-bit comparators and 5.6 × 105

4-bit registers. For serial search, the hardware is triv-
ial if we assume a one addition per clock architecture.
However, it takes an average of 5.6 × 103 s (approxi-
mately 1.5 hours) to acquire the PN sequence if running
at the same frequency.

To further lower Tacq, we can use parallel FBA archi-
tectures (i.e., instantiating multiple forward and back-
ward units to process multiple data segments in par-
allel). We expect that the increase in logic will be
approximately linear when the speed up factor does
not exceed 8 because we already divide the observa-
tion window into 8 segments in our iterative decoder
and each of them can be run in parallel. For lower
speed applications, our design can be further simpli-
fied to using single port memory and running the up-
date sequentially. Such a design can save in the num-
ber of adders and reduce the routing resources. There-
fore we expect the logic gate count will scale linearly

for target pulse rate varies from 500 kpulses/s to 32
Mpulses/s.

Our design can also be directly extended to operate at
even lower SNR. This requires adding auxiliary model
decoders as well as memories for saving the messages
from the additional decoders. Since a 6th order model
is approximately three times more complex than a 2nd
order model, we estimate that the operating Ec/N0 can
be lowered to −13 dB by tripling the gate count or
alternatively, increasing the acquisition time by 3 times
and tripling the message memory.

5. Conclusion

In this paper, we present a new hardware architecture
for fast PN acquisition in UWB systems based on itera-
tive message passing on a graphical model with redun-
dancies. Our new algorithm improves sensitivity signif-
icantly via the introduction of multiple redundant mod-
els. Hardware based on the algorithm is economical to
implement and can rapidly acquire very long PN se-
quences, There is no known way to accomplish with tra-
ditional approaches using similar hardware resources.

We examined in detail the design trade-offs in choos-
ing an appropriate architecture for the main component:
a forward backward algorithm based decoder. We then
demonstrated how to combine multiple redundant mod-
els into a single model to reduce memory usage. Finally,
we gave a detailed account on our hardware implemen-
tation and discuss various implementation techniques.
Our design can be fit to a small FPGA while full paral-
lel search is impractical to implement and serial search
is fiver orders of magnitude slower than our design.

Future work will be focused on designing hardware
for a more complicated system model which will in-
corporates oversampling, interference and multi-path
channel distortions.

Appendix: Update Equations for the 4 State FSM
Decoder

The update equations for the FSM are direct application
of the standard message passing algorithms [21] on Fig.
10(c). The variables Fk , Bk , LI 0k , LI 1k and RIk are
defined in Fig. 10(d). Alternatively, they can be derived
from Fig. 10(b) by applying standard SISO update rules
to each SISO. We list the equations based on Fig. 10(c)
because it is easier to compare against [2, (23)]–
[2, (29)].

40 Yeung and Chugg

F0 = 0 (14)

BM = 0 (15)

Fk+1[0] = min(Fk[0], Fk[2] + LI 1k) (16)

Fk+1[1] = min(Fk[0] + RIk + LI 0k + LI 1k,

Fk[2] + RIk + LI 0k) (17)

Fk+1[2] = min(Fk[1] + LI 0k, Fk[3] + LI 0k

+LI 1k) (18)

Fk+1[3] = min(Fk[1] + RIk + LI 1k, Fk[3] + RIk)

(19)

Bk−1[0] = min(Bk[0], Bk[1] + RIk + LI 0k

+LI 1k) (20)

Bk−1[1] = min(Bk[2] + LI 0k, Bk[3] + RIk + LI 1k)

(21)

Bk−1[2] = min(Bk[0] + LI 1k, Bk[1] + RIk + LI 0k)

(22)

Bk−1[3] = min(Bk[2] + LI 0k + LI 1k, Bk[3] + RIk)

(23)

LO 0k = min(Fk[0] + Bk+1[1] + RIk + LI 1k, Fk[1]

+ Bk+1[2], Fk[2] + Bk+1[1] + RIk, Fk[3]

+ Bk+1[2] + LI 1k) − min(Fk[0] + Bk+1[0],

(24)

Fk[1] + Bk+1[3] + RIk + LI 1k, Fk[2]

+Bk+1[0] + LI 1k, Fk[3] + Bk+1[3] + RIk)

LO 1k = min(Fk[0] + Bk+1[1] + RIk + LI 0k, Fk[1]

+Bk+1[3] + RIk, Fk[2] + Bk+1[0], Fk[3]

+Bk+1[2] + LI 0k) − min(Fk[0] + Bk+1[0],

(25)

Fk[1] + Bk+1[2] + LI 0k, Fk[2] + Bk+1[1]

+RIk + LI 0k, Fk[3] + Bk+1[3] + RIk)

ROk = min(Fk[0] + Bk+1[1] + LI 0k + LI 1k,

Fk[1] + Bk+1[3] + LI 1k, Fk[2] + Bk+1[1]

+LI 0k, Fk[3] + Bk+1[3]) − min(Fk[0]

+Bk+1[0], Fk[1] + Bk+1[2] + LI 0k, (26)

Fk[2] + Bk+1[0] + LI 1k, Fk[3] + Bk+1[2]

+LI 0k + LI 1k)

RIk = LO 0k+22 + LO 1k+44 + Mch[k] (27)

LI 0k+22 = ROk + LO 1k+44 + Mch[k] (28)

LI 1k+44 = ROk + LO 0k+22 + Mch[k] (29)

Mdec = ROk + LO 0k+22 + LO 1k+44 + Mch[k]

(30)

Acknowledgment

The authors would like to thank Mingrui Zhu for help-
ful discussion on this research.

Notes

1. As shown in [2], this model and the algorithms developed in
this paper can be modified to work in sinusoidal carrier systems
such as direct sequence spread spectrum system (DS/SS). In such
systems, the model of (2) should be generalized to account for an
unknown carrier phase, θc . The approach suggested in [2] is to
search over a finite set of carrier phase values.

2. Note that this is the feedback polynomial. Viewed as a code, the
generator is 1/(1 + D), which is an accumulator.

References

1. M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, Spread
Spectrum Communications Handbook, McGraw-Hill, 1994.

2. K.M. Chugg and M. Zhu, “A New Approach to Rapid PN Code
Acquisition using Interative Message Passing Techniques,”
IEEE J. Select. Areas Commun., vol. 23, no. 51, June 2005.

3. E.A. Homier and R.A. Scholtz, “Rapid Acquisition of Ultra-
Wideband Signals in the Dense Multipath Channel,” in Digest
of Papers, IEEE Conference on Ultra Wideband Systems and
Technologies, May 2002, pp. 105–109.

4. M. Zhu and K.M. Chugg, “Iterative Message Passing Tech-
niques for Rapid PN code Acquisition,” in Proc. IEEE Military
Comm. Conf., Boston, MA, October 2003, pp. 434–439.

5. I.D. O’Donnell, S.W. Chen, B.T. Wang, and R.W. Broder-
sen, “An Integrated, Low Power, Ultra-Wideband Reansceriver
Architecture for Low-Rate, Indoor Wireless Systems,” IEEE
CAS Workshop on Wireless Communications and Networking,
September 2002.

6. A. Polydoros and C.L. Weber, “A Unified Approach to Serial
Search Spread-Spectrum Code Acquisition,” IEEE Trans. Com-
mununication, vol. 32, pp. 542–560, 1984.

7. L. Yang and L. Hanzo, “Iterative Soft Sequential Estimation
Assisted Acquisition of m-Sequence,” IEE Electronics Letters,
vol. 38, no. 24, 2002, pp. 1550–1551.

8. R.G. Gallager, “Acquisition of I-Sequences Using Recursive
Soft Sequential estimation,” IEEE Trans. Commununication,
vol. 52, no. 2, Feb 2004 pp. 199–204.

9. B. Vigoda, J. Dauwels, N. Gershenfeld, and H. Loeliger, “Low-
Complexity lfsr Synchronization by Forward-only Message
Passing,” IEEE Trans. Information Theory, June 2003, submit-
ted.

An Iterative Algorithm and Low Complexity Hardware Architecture 41

10. S.W. Golomb, Shift Register Sequences, revised edition. Aegean
Park Press, 1982.

11. C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes,”
in Proc. International Conf. Communications, Geneva, Switzer-
land, pp. 1064–1070, 1993.

12. C. Berrou and A. Glavieux, “Near Optimum Error Correcting
Coding and Decoding: Turbo-Codes,” IEEE Trans. Commununi-
cation, vol. 44, no. 10, pp. 1261–1271, October 1996.

13. R.G. Gallager, “Low Density Parity Check Codes,”
IEEE Trans. Information Theory, vol. 8, January 1962
pp. 21–28.

14. R.G. Gallager, Low-Density Parity-Check Codes. MIT Press,
Cambridge, MA, 1963.

15. D.J.C. MacKay and R.M. Neal, “Near Shannon Limit Perfor-
mance of Low Density Parity Check Codes,” IEE Electronics
Letters, vol. 32, no. 18, August 1996 pp. 1645–1646.

16. N. Wiberg, Codes and Decoding on General Graphs, Ph.D. dis-
sertation, Linköping University (Sweden), 1996.

17. R.J. McEliece, D.J.C. MacKay, and J.F. Cheng, “Turbo Decod-
ing as an Instance of Pearl’s “Belief Propagation” Algorithm,”
IEEE J. Select. Areas Commun., vol. 16, February 1998, pp.
140–152.

18. S.M. Aji, “Graphical Models and Iterative Decoding,” Ph.D.
dissertation, California Institute of Technology, 1999.

19. S.M. Aji and R.J. McEliece, “The Generalized Distributive
Law,” IEEE Trans. Information Theory, vol. 46, no. 2, pp. 325–
343, March 2000.

20. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm,” IEEE Trans. Information Theory,
vol. 47, Feb. 2001, pp. 498–519.

21. K.M. Chugg, A. Anastasopoulos, and X. Chen, Iterative De-
tection: Adaptivity, Complexity Reduction, and Applications.
Kluwer Academic Publishers, 2001.

22. S. Benedetto and G. Montorsi, “Design of Parallel Concatenated
Convolutional Codes,” IEEE Trans. Commununication, vol. 44,
May 1996, pp. 591–600.

23. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial
Concatenation of Interleaved Codes: Performance Analysis, De-
sign, and Iterative Decoding,” IEEE Trans. Information Theory,
vol. 44, no. 3, May 1998, pp. 909–926.

24. R.M. Tanner, “A Recursive Approach to Low Complexity
Codes,” IEEE Trans. Information Theory, vol. IT-27, September,
pp. 533–547, 1981.

25. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-
Input Soft-Output Modules for the Construction and Dis-
tributed Iterative Decoding of Code Networks,” European
Trans. Telecommun., vol. 9, no. 2, March/April, pp. 155–172,
1998.

26. J.S. Yedidia, J. Chen, and M. Fossorier, “Generating Code Rep-
resentations Suitable for Belief Propagation Decoding,” in Proc.
40-th Allerton Conference Commun., Control, and Computing,
Monticello, IL., October 2002.

27. N. Santhi and A. Vardy, “On the Effect of Parity-Check Weights
in Iterative Decoding,” in Proc. IEEE Internat. Symp. Informa-
tion Theory, Chicago, IL., July 2004, p. 322.

28. M. Schwartz and A. Vardy, “On the Stopping Distance and the
Stopping Redundancy of Codes,” IEEE Trans. Information The-
ory, 2005, submitted.

29. L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decod-
ing of Linear Codes for Minimizing Symbol Error Rate,” IEEE
Trans. Information Theory, vol. IT-20, 1974, pp. 284–287.

30. A.J. Viterbi, “Justification and Implementation of the MAP De-
coder for Convolutional Codes,” IEEE J. Select. Areas Commun.,
vol. 16, February 1998, pp. 260–264.

31. G. Masera, G. Piccinini, M.R. Roch, and M. Zamboni, “VLSI
Architectures for Turbo Codes,” IEEE Trans. VLSI, vol. 7, no. 3,
1999.

32. J. Dielissen and J. Huisken, “State Vector Reduction for Initial-
ization of Sliding Windows MAP,” in 2nd Internation Sympo-
sium on Turbo Codes & Related Topics, Brest, France, 2000, pp.
387–390.

33. S. Yoon and Y. Bar-Ness, “A Parallel MAP Algorithm for
Low Latency Turbo Decoding,” IEEE Communications Letters,
vol. 6, no. 7, 2002, pp. 288–290.

34. A. Abbasfar and K. Yao, “An Efficient and Practical Architec-
ture for High Speed Turbo Decoders,” in IEEE 58th Vehicular
Technology Conference, Vol. 1, 2003, pp. 337–341.

35. A.P. Hekstra, “An Alternative to Metric Rescaling in Viterbi De-
coders,” IEEE Trans. Commununication, vol. 37, no. 11, Novem-
ber 1989.

On Wa Yeung received the B. Eng. degree in Electronic Engineering
from the Chinese University of Hong Kong, Hong Kong in 1994 and
MSEE from the University of Southern California (USC) in 1996. In
1997–2003, he was a hardware engineer in Hughes Network Systems,
San Diego, CA, designing hardware platforms for fixed wireless and
satellite terminals. He is currently working towards the Ph.D. degree
in EE at USC. His research interests are in the areas of iterative
detection algorithms and their hardware implementation.
oyeung@usc.edu

Keith M. Chugg (S’88-M’95) received the B.S. degree (high distinc-
tion) in Engineering from Harvey Mudd College, Claremont, CA in
1989 and the M.S. and Ph.D. degrees in Electrical Engineering (EE)
from the University of Southern California (USC), Los Angeles, CA
in 1990 and 1995, respectively. During the 1995–1996 academic year

42 Yeung and Chugg

he was an Assistant Professor with the Electrical and Computer En-
gineering Dept., The University of Arizona, Tucson, AZ. In 1996 he
joined the EE Dept. at USC in 1996 where he is currently an As-
sociate Professor. His research interests are in the general areas of
signaling, detection, and estimation for digital communication and
data storage systems. He is also interested in architectures for effi-
cient implementation of the resulting algorithms. Along with his for-
mer Ph.D. students, A. Anastasopoulos and X. Chen, he is coauthor

of the book Iterative Detection: Adaptivity, Complexity Reduction,
and Applications published by Kluwer Academic Press. He is a co-
founder of TrellisWare Technologies, Inc., where he is Chief Scien-
tist. He has served as an associate editor for the IEEE Transactions
on Communications and was Program Co-Chair for the Communi-
cation Theory Symposium at Globecom 2002. He received the Fred
W. Ellersick award for the best unclassified paper at MILCOM 2003.
chugg@usc.edu

