
1

Pre-defined Sparsity for Low-Complexity
Convolutional Neural Networks

Souvik Kundu, Member, IEEE, Mahdi Nazemi, Massoud Pedram, Fellow, IEEE, Keith M.
Chugg, Fellow, IEEE, and Peter A. Beerel Senior Member, IEEE,

Abstract—The high energy cost of processing deep convolutional neural networks impedes their ubiquitous deployment in
energy-constrained platforms such as embedded systems and IoT devices. This work introduces convolutional layers with pre-defined
sparse 2D kernels that have support sets that repeat periodically within and across filters. Due to the efficient storage of our periodic
sparse kernels, the parameter savings can translate into considerable improvements in energy efficiency due to reduced DRAM
accesses, thus promising significant improvements in the trade-off between energy consumption and accuracy for both training and
inference. To evaluate this approach, we performed experiments with two widely accepted datasets, CIFAR-10 and Tiny ImageNet in
sparse variants of the ResNet18 and VGG16 architectures. Compared to baseline models, our proposed sparse variants require up to
∼82% fewer model parameters with 5.6× fewer FLOPs with negligible loss in accuracy for ResNet18 on CIFAR-10. For VGG16 trained
on Tiny ImageNet, our approach requires 5.8× fewer FLOPs and up to ∼83.3% fewer model parameters with a drop in top-5 (top-1)
accuracy of only 1.2% (∼2.1%). We also compared the performance of our proposed architectures with that of MobileNetV2. Using
similar hyperparameters and FLOPs, our ResNet18 variants yield an average accuracy improvement of ∼2.8%.

Index Terms—Convolutional neural network (CNN), pre-defined sparsity, parameter reduction, complexity reduction, energy-efficient
CNN, storage aware sparsity.

F

1 INTRODUCTION

IN recent years, deep convolutional neural networks
(CNNs) have become critical components in many real

world vision applications ranging from object recognition
[2]–[5] and detection [6]–[8] to image segmentation [9]. With
the demand for high classification accuracy, current state-of-
the-art CNNs have evolved to have hundreds of layers [2]–
[4], [10], [11], requiring millions of weights and billions of
FLOPs. However, because a wide variety of neural network
applications are heavily resource constrained, such as those
for embedded and IoT devices, there is increasing interest in
CNN architectures that balance implementation efficiency
with accuracy and associated hardware accelerators that
target CNNs [12]–[14]. In particular, because energy is often
the primary limited resource, researchers have focused on
minimizing the number of non-zero model parameters and
the accelerator’s access to off-chip DRAM, which consumes
around 200× more energy than access to on-chip SRAM
[15].

Previous work has focused on accelerating inference and
proposed model pruning [16]–[20] and quantization [21]–[26]
to reduce the number of non-zero parameters. Recently,
a more detailed analysis showed that such unstructured
pruning may not reduce energy consumption because of the
overhead required to manage sparse matrix representations
[18]. This motivates structured pruning [18] which favors
structure in the sparsity patterns that can more efficiently
be managed in inference hardware.

• S. Kundu, M.Nazemi, M. Pedram, K. M. Chugg and P. A. Beerel are
with Department of Electrical and Computer Engineering, University of
Southern California, Los Angeles, CA 90089, USA. E-mail: {souvikku,
mnazemi, pedram, chugg, pabeerel}@usc.edu.

• This work was partly supported by NSF grant #1763747.
• Portions of this work were presented at the 57th Allerton Conference, 2019

[1].

Other work focused on the efficiency of both inference
and training acceleration by defining notions of pre-defined
sparsity in which a subset of the weights are fixed at zero
before training and remain zero through inference. For
example, a recent work [27] showed that neural networks
can be trained with pre-defined hardware-friendly sparse
connectivity in the fully connected multilayer perceptrons
layers that avoids costly sparse matrix representations and
thus can both speed-up and reduce the energy consump-
tion of both inference and training. Other researchers have
tried to address convolution (CONV) layers’ computation
complexity issue, which contribute the largest number of
FLOPs for deep networks, exemplified by the CONV layer
in ResNet18 [5] which accounts for∼98% of the total FLOPs
for Tiny ImageNet classification. In particular many investi-
gations have focused on efficient pre-defined computationally-
limited filter designs to reduce complexity of training and
inference at the cost of accuracy, including MobileNet [28],
MobileNetV2 [29] and ShuffleNet [30].

This paper proposes pre-defined sparse convolutions to
improve energy and storage efficiency during both training
and inference. We refer to this approach as pSConv and
presented initial simulation results that show negligible per-
formance degradation compared to fully-connected baseline
models in [1]. However, as mentioned earlier, unstructured
forms of pSConv may not lead to energy reductions due to
the overhead of managing their sparse matrix representa-
tions.

Motivated by this fact, we extend pSConv by proposing
a form of periodicity, repeating a relatively small pattern
of pre-defined sparse kernels within a 3D filter such that
fixed zero-weights occur repeatedly with a constant interval
across the 3D filter. This can greatly reduce the overhead
associated with managing sparsity, allowing the proposed
CNN architecture to exhibit significant reductions in energy
consumption compared to baseline CNNs with dense filters.

2

Fig. 1: Four major variants of convolutions: (a) standard fully connected convolution (SFCC), (b) depth-wise convolution (DWC),
(c) group-wise convolution (GWC), and (d) point-wise convolution (PWC).

Finally, we present a convolutional channel modification
to boost the accuracy of pSConv-based CNNs. In particular,
the accuracy loss incurred due to the added periodicity
constraint may be non-negligible in some cases. To combat
this phenomenon, we introduce fully-connected (FC) 2D
kernels at fixed intervals within a 3D filter. By ensuring that
the sparse kernels are combined with the fully connected
(dense) kernel maintain periodicity, the overhead associated
with managing sparsity remains small and energy savings
can be achieved while accuracy is also preserved.

To evaluate the effectiveness of our proposed sparsity
based CONVs, we run image classification tasks on variants
of VGG [3] and ResNet [5] with CIFAR-10 [31] and Tiny
ImageNet [32] datasets. We also show that we achieve
higher test accuracy than MobileNetV2 [29] with similar
network hyperparameter settings on these datasets. Finally,
we analytically quantify the benefits of our algorithm com-
pared to traditional approaches in terms of both FLOPs and
storage, the latter assuming a variety of well-known sparse
matrix representations.

The remainder of this paper is structured as follows.
Section 2 provides notable related work in the domain of
CNN architectures and efficient sparse matrix representa-
tions. Section 3 describes our proposed architecture in detail
and is followed by our analytical evaluation of FLOPs and
storage requirements in Section 4. We present our simulation
results in Section 5 and conclude in Section 6.

2 PRELIMINARIES AND RELATED WORK

TABLE 1: Descriptions of tensor dimensions in a convolutional
layer

Variable Description
N batch-size of a 3D feature map

Hi, Wi height, width of IFM to a layer
Hf , W ∗

f height, width of a 2D kernel in a layer
Ho, Wo height, width of OFM from a layer
Ci # of IFM/# of 3D filter channels
Co # of OFM channels/# of 3D filters
Cg # of channels in a group from GWC
S stride size in a CONV operation
n # of parameters per kernel not pre-defined to be zero

CONV layers in neural network architectures transform
the input images into abstract representations known as

feature maps. To generate the output feature maps (OFMs)
the filters of a layer are convolved with input feature maps
(IFMs) which is comprised of the element wise product of
filter and IFMs and the accumulation of partial sums. In
particular, the following equation shows the computation of
each OFM element in a standard fully-connected convolu-
tion (SFCC) layer.

O[z][v][x][y] = ReLU

(
B[v] +

Ci−1∑
k=0

Hf−1∑
i=0

Wf−1∑
j=0

I[z][k][Sx+ i][Sy + j]W [v][k][i][j]

)
0 ≤ z < N, 0 ≤ v < Co,

0 ≤ x < Ho, 0 ≤ y < Wo (1)

Here, O, I, W are the 4D OFM, IFM, and filter weight tensors,
respectively and B is the 1D bias tensor added to each
3D filter result. Also, O[z][v][x][y] represents the (x, y)th

OFM element in the vth output channel corresponding to
the input batch z. Note the extensive data reuse both in
IFM and weights, for which optimized dataflow is needed
to ensure energy efficiency [15], [33], [34]. The number of
FLOPs* necessary to generate the OFM for a SFCC layer can
be estimated as

FLSFCC = k2HoWoCoCi, (2)

where, k represents both height and width of the 2D kernel
and meaning of the other variables are defined in Table 1.

2.1 Pre-defined Computationally Limited Filters
Because the SFCC [35], shown in Fig. 1(a), is computation-
ally intensive, several pre-defined computationally-limited
filters have been proposed to reduce the complexity of
convolution. These filters can be broadly classified into three
different categories, as shown in Fig. 1. The first category
is depth-wise convolution (DWC) [36], shown in Fig. 1(b).
Here, each 2D kernel of size Hf × Wf is convolved with
a single channel of the IFM to produce the corresponding
OFM; thusCi 2D kernels will produce an OFM of dimension

*In this work we consider a FLOP and a multiply-accumulate
operation to be equivalent.

3

Ho × Wo × Ci. This requires Ci times less computations
compared to SFCC, but the output features capture no
information across channels.

The second category is group-wise convolution (GWC)
[2], shown in Fig. 1(c), which provides a compromise
between SFCC and DWC. Here, a single channel of the
OFM is computed by convolving groups of CG channels
from the IFM with partitions of the 3D filters, each of
size Hf ×Wf × CG. Thus, with a total number of groups
G = Ci/CG, a 3D filter of dimension Hf×Wf×Ci provides
an OFM of size Ho × Wo × G. Interestingly, SFCC can be
viewed as GWC with CG = 1 and DWC can be viewed as
GWC with CG = Ci. Typically, the number of groups G is
chosen to be a small power of 2, but the choice is highly
network architecture dependent [37].

Finally, Fig. 1(d) illustrates PWC in which the 2D kernel
dimension has size 1 × 1, thus generating a single OFM
channel with low complexity. In particular, compared to a
3× 3 2D kernel dimension, the PWC has 9× lower compu-
tational complexity. However, OFMs generated through this
approach do not contain any embedded information within
a channel.

Many well known network architectures have taken
advantage of the benefits of pre-defined computationally-
limited filters. For example, a combination of GWC and
PWC was used in [37] and in the Inception modules [11],
[38]. The ResNext architecture [39] also uses a combination
of GWC and PWC to replace each CONV layer of ResNet
[5]. A class of scaled-down, reduced parameter architectures
that replace most of the 3×3 filters with PWC filters was
dubbed SqueezeNet in [40]. MobileNet and MobileNetV2,
two popular variants of low complexity architectures de-
signed to be implemented in mobile devices, replace the
SFCC layer with a DWC followed by a PWC layer to
gather information across channels. ShuffleNet [30] uses a
combination of GWC, a channel shuffling for information
sharing across channels, followed by a DWC layer.

2.2 Sparse Matrix Storage Formats

Most hardware platforms that process deep neural networks
can benefit from sparse weight matrices only when such
weights are represented through sparse matrix storage for-
mats. These formats typically store non-zero elements of a
given matrix in a vector while auxiliary vectors describe the
locations of non-zero elements. This section explains three
such methods commonly employed.

2.2.1 Coordinate List (COO)
The COO format [41] uses three vectors to represent a sparse
matrix: a data vector which keeps the values of non-zero
elements, a row vector which stores the row indices of non-
zero elements, and finally, a column vector which keeps
track of column indices of non-zero elements. For example,
consider the sparse matrix M shown below.

M =

0 1 0 0 2 0 3
4 0 0 5 6 0 7
0 0 0 8 9 0 0

The data, row, and column vectors for this matrix are as
follows:

data =
[
1 2 3 4 5 6 7 8 9

]

row =
[
0 0 0 1 1 1 1 2 2

]
column =

[
1 4 6 0 3 4 6 3 4

]
In this representation, the size of all three vectors are the

same and equal to the number of non-zero elements in the
original sparse matrix.

2.2.2 Compressed Sparse Row (CSR)
Similar to the COO format, the CSR format [41] uses three
vectors to represent a sparse matrix. The data vector stores
values of non-zero elements in the order they are encoun-
tered when traversing the elements of the original matrix
from left to right and top to bottom. The column vector keeps
track of the column indices of non-zero elements, and the
index vector stores additional information used to identify
the indices of the elements of each row of the matrix within
the data vector. In fact, the column vector is the same as
the one in the COO while the index vector stores the row
vector in the COO format in a compressed manner, hence
the name CSR. As an example, the data vector and the
auxiliary vectors for the sparse matrix M are as follows:

data =
[
1 2 3 4 5 6 7 8 9

]
column =

[
1 4 6 0 3 4 6 3 4

]
index =

[
0 3 7 9

]
Here, the bold entries in the data vector indicate the first
nonzero elements of a new row of M and occur at indices 0,
3, and 7 in the data vector. Thus, storing these indices in the
index vector, along with the column vector, determine both
the row and column for each element of the data vector.
The index vector always begins with zero and ends with
the length of the data vector. If a row of M has no nonzero
elements, the corresponding element in the index vector is
repeated.

2.2.3 Compressed Sparse Column (CSC)
The CSC format [41] is very similar to the CSR and, in fact,
is equivalent to CSR storage of the transpose of M . The
column vector for CSR storage of MT is the row vector for
CSC storage of M as follows

data =
[
4 1 5 8 2 6 9 3 7

]
row =

[
1 0 1 2 0 1 2 0 1

]
index =

[
0 1 2 2 4 7 7 9

]
Similar to the CSR format, in the CSC format, the size of the
data and row vectors are the same and equal to the number
of non-zero elements. However, the size of the index vector
is equal to the number of columns in the sparse matrix plus
one.

Some of the existing deep neural network (inference)
accelerators such as Cambricon-X [42] and Eyeriss v2 [43]
have hardware support for processing values represented
using sparse storage formats. The periodic sparsity intro-
duced in this work allows us to further compress sparse
representations such as the CSR and CSC formats by reusing
the auxiliary vectors. This not only decreases the storage
required for keeping model parameters in memory but also
reduces the energy associated with transferring them from
the main memory to processing elements (PEs). Further-
more, the proposed optimized sparse storage formats can

4

be integrated into some of the existing accelerators such as
Eyeriss v2 with minor modifications to the controller logic
or PEs. Section 4 details the storage and energy savings
achieved through deployment of the proposed formats.

3 PRE-DEFINED SPARSITY

This section first describes pSConv, a form of pre-defined
sparse kernel based convolution that we initially proposed
in [1]. It then describe how we introduce periodicity to this
framework to reduce the overhead of managing sparse ma-
trix representations. Finally, the section presents a method to
boost accuracy by periodically introducing a fully connected
kernel into the 3D filters.

We define the kernel support as the set of entries in a
k× k 2D kernel that are not constrained to be zero. The size
of this set is defined as kernel support size (KSS). The kernel
variant size (KVS) is defined as the number of kernels with
unique kernel support in a 3D filter.

3.1 Pre-defined Sparse Kernels

Fig. 2: An example of pre-defined sparse kernels with 8 differ-
ent kernel variants each having KSS of 2. The colored locations
in each 2D kernel are allowed to have non-zero weight values.

We say a 3D filter of size k × k × Ci has pre-defined
sparsity if some of the k2 × Ci parameters are fixed to
be zero before training and held fixed throughout training
and inference. A regular pre-defined sparse 3D filter has
the same KSS for each kernel that comprises the 3D filter.†

This regularity can help reduce the workload imbalance
across different PEs performing multiply-accumulates and
thus can help improve throughput of CNN accelerators [14].
Fig. 2 shows an example of kernel variants. Here, k = 3,
meaning KSS = 9 denotes the standard kernel without any
pre-defined sparsity and KSS = 2 signifies that seven of
the nine kernel entries are fixed at zero. The choice of kernel
variants can be viewed as a model search problem, however,
in this paper we adopted a lower complexity approach of
choosing them in a constrained pseudo-random manner
which ensures every possible locations in k2 2D kernel space
(9 in this case) has at-least one entry in a 3D filter which is
not pre-defined to be zero. As an example, Fig. 3 illustrates
how an OFM of size Ho × Wo × Co is generated through
convolution of Ci×Co pre-defined sparse kernels of size k2

with an IFM of size Hi ×Wi × Ci.
The challenge with efficiently implementing this scheme

is how to avoid processing the weight entries that are fixed

†We only consider the convolutional weights when defining spar-
sity. Bias and other variables associated with batchnorm are not consid-
ered because they add negligible complexity.

Fig. 3: An example of proposed pre-defined sparse kernel based
convolution with KSS of 4.

at zero. Because the kernel variants are chosen randomly from
a potential set of

(k2

KSS

)
options and KVS could be as large

as Ci for each 3D filter, the non-zero weight index memories
can represent considerable overhead. We propose to address
this problem by introducing periodicity within a 3D filter, as
described below.

3.2 Periodic Sparse Kernel Patterns
In order to reduce the overhead of storing the sparsity
patterns, we propose to repeat the sparsity patterns, using
only a small number of kernel variants across all filters. This
is particularly beneficial in the compressed sparse weight
formats because the same index values can be used for
multiple filters.

Fig. 4 shows an example of periodically repeating kernel
patterns, with a periodicity P = KV S = 4. Notice to
retain periodicity across different 3D filters and while still
providing some diversity, we rotate the sequence of kernel
variants, starting each filter (of P consecutive filters) with a
different kernel variant. For instance, if the first 3D filter
starts with KV1 followed by KV2, KV3, and KV4, and
then repeats the order, we start the second 3D filter with
KV2 to create a repeating sequence of [KV2, KV3, KV4,
KV1]. Thus, we maintain the sequence of repeating kernels
modulo rotation.

Fig. 4: Regular sparse kernel based 4D weight tensor. In the
figure the 4D weight tensor has 4 different types of 2D kernel
i.e. 4 different KVs (colored differently).

3.3 Boosting Accuracy with FC Kernels
Although the periodicity in sparse patterns is beneficial in
overhead in managing the sparsity, the choice of KSS and
the simplistic way of choosing kernel variants may some-
times cost significant classification performance. Methods

5

to find suitable sparse patterns and KVS values through
pattern pruning, inspired by image smoothing filters, were
recently considered in [44]. However, here, we propose a
complementary approach in which we periodically intro-
duce fully connected (FC) kernels, i.e., kernels with KSS =
k2, within each 3D filter. The idea, as illustrated in Fig. 5,
is to introduce one fully connected kernel every P kernels
and make the other P − 1 kernels sparse, repeating this
P pattern throughout the 3D filter. To choose the sparse
kernel variants we follow the same principle as described in
Section 3.2. However, when KVS < P , we propose to ran-
domly reuse some of the sparse kernel variants to maintain
periodicity.

Fig. 5: Periodic insertion of FC 2D kernels between sparse
kernels.

4 FLOPS AND ENERGY EFFICIENCY ANALYSIS

4.1 Complexity Analysis

TABLE 2: Expression of FLOPs count for inference operation
with various pre-defined computationally-limited filters

Approach FLOP count (forward, ideal)
MobileNet-like [28] HoWoCi(k

2 + Co)
(DWC+PWC)

ShuffleNet-like [30] HoWoCok2(
Ci
G

+ 1)
(GWC+PWC)

The total FLOPs for MobileNet-like and ShuffleNet-like
CONV layers can be estimated as shown in Table 2. The
total FLOPs for sparse (both periodic and aperiodic variants)
kernel based CONV layers with KSS of n can be estimated
as

FLS = HoWoCiCon. (3)

To estimate the FLOPs of sparse kernel based CONVs with
boosting, we start with the number of elements in a period
(P) that are allowed to be non zero which can be computed
as (shown in Fig. 5),

WP = (P − 1)n+ k2 (4)

Now, with total number of (Ci/P) dense, and (Ci − Ci/P)
sparse kernels in each 3D filter of a layer the FLOPs can be
computed as,

FLPSD =

[(
Ci

P

)
k2 +

(
Ci −

(
Ci

P

))
n

]
HoWoCo (5)

The ratio of the FLOP counts for MobileNet-like and
ShuffleNet-like layers to that of sparse kernel based CONVs
with boosting is

Rmob =
FLOPs for MobileNet-like

FLOPS for periodic-sparse with boosting

=
P (k2 + Co)

[k2 + (P − 1)n]Co
(6)

Rshuf =
FLOPs for ShuffleNet-like

FLOPS for periodic-sparse with boosting

=
Pk2(Ci

G + 1)

[k2 + (P − 1)n]Ci
(7)

It is clear that we will have computational saving when
the values of Rmob and Rshuf are greater than 1. When Co is
large and P >> k2

n , (6) and (7) can be approximated as

Rmob '
1

n
(8)

Rshuf '
k2(Ci

G + 1)

nCi
(9)

which shows the complexity increment due to periodic
insertion of FC kernels is negligible for relatively wide
networks with large periods.

4.2 The Impact of Periodicity on Storage and Energy
Sparsity leads to savings in storage only when the overhead
of storing the auxiliary vectors to manage sparsity is negligi-
ble. This section presents a new sparse representation specif-
ically tailored to periodic sparse kernels and compares it
with existing formats. It also analyzes storage requirements
of different sparse representations analytically, allowing the
study of the effectiveness of such formats at different lev-
els of density. Furthermore, it explains how the proposed
representation can be exploited in CNN accelerators.

4.2.1 CSR/CSC with a Periodic Column/Row Vector
The periodic pattern of kernels introduced in Section 3.2
allows reusing the column/row vector in the CSR/CSC
format. For example, assume a convolutional layer with
3× 3 kernels, 128 input channels, 128 output channels, and
a period of four. The 4D weight tensor corresponding to
this convolutional layer can be represented by a flattened
weight matrix where each row corresponds to a flattened
filter. As a result, the number of rows in the flattened weight
matrix is equal to 128 while the number of columns is
3× 3× 128 = 1152. Because of the periodicity across filters,
the structure of the rows of the flattened weight matrix will
also repeat with a period of four. Therefore, one can simply
store the column vector of the CSR format for the first four
rows and reuse them for the subsequent rows. We refer
to this new sparse storage format as CSR with a periodic
column vector and denote it with CSRP, where P denotes
the period of repetition of the column vector.

Similarly, because of the periodicity of kernels within a
filter, the columns of the flattened matrix also repeat with a
period of 4 × (3 × 3) = 36. As a result, one can choose to
use the CSC format to represent the flattened sparse matrix
and reuse the row vector for groups of 36 columns. We refer
to this new format as CSC with a periodic row vector and

6

denote it with CSCP, where the P here denotes the period
of repetition of the row vector.

Table 3 summarizes the notation used for comparing the
storage cost of different storage formats. Using the notation
introduced here, Table 4 explains storage requirements of
different storage formats.

TABLE 3: Summary of notation for matrix storage formats

Variable Description
HF , WF height, width of a flattened weight matrix

ρ density (0 ≤ ρ ≤ 1)
bv number of bits for representing data values
br, bc number of bits for representing row, column values
bi number of bits for representing index values
bP number of bits for representing the period

TABLE 4: Storage requirement of storing a matrix using dense
and sparse storage formats

Format Storage Requirement (bits)
Dense HFWF bv
COO ρHFWF (bv + br + bc)
CSR ρHFWF (bv + bc) + (HF + 1)bi
CSC ρHFWF (bv + br) + (WF + 1)bi
CSRP ρHFWF bv + ρPWF bc + (HF + 1)bi + bP
CSCP ρHFWF bv + ρPHF br + (WF + 1)bi + bP

Based on Table 4, the COO format is expected to have
higher overhead than that of the CSR and CSC formats,
which have similar storage overhead. Furthermore, it is evi-
dent that the introduction of periodicity to the CSR and CSC
formats can significantly decrease the storage overhead.

4.2.2 Application to CNN Accelerators
As noted above, a convolutional layer with periodic sparse
kernels induces a flattened weight matrix that also has
periodically repeating columns and rows. In a CNN acceler-
ator, the processing of a convolutional layer is often broken
down into smaller operations where subsets of the flat-
tened weight matrix are processed across multiple PEs. This
processing requires accessing a sub-matrix of the flattened
weight matrix. If this sub-matrix is large enough, it will also
have row or column vectors that are repeated periodically.
For example, Fig. 6 demonstrates a subset of a flattened
weight matrix that is used in a single processing element
of an architecture like Eyeriss v2 [14] (the original flattened
weight matrix is built using the first four kernel variants
shown in Fig. 2). This sub-matrix corresponds to processing
the first (top) row of four kernels of 16 filters. Specifically,
the sub-matrix consists of 16 rows corresponding to 16 filters
and 12 columns corresponding to the top row of four kernels
per filter. Note in Fig. 6, the four kernels have been rotated
as described in Section 3.2. Based on the periodic pattern
across filters, the sub-matrix shown in Fig. 6 has repeating
rows with a period of four and can be represented using
CSR4.

Assuming bv = 8, bc = br = 4, and bi = 7, Fig. 7a
compares storage requirements of various existing storage
formats at different levels of filter density. It is observed that
the CSR and CSC formats yield lower total storage when the
original matrix is at most 62% and 65% dense, respectively.

Fig. 7b compares storage requirement of dense, CSR,
and CSRP formats for the same matrix that was shown in
Fig. 7a, for different values of P , and bP = 6. It is observed
that the CSR8 and CSR16 yield lower total storage when the

P = 4

P

P

P

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 1 KV 2 KV 3

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 4

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 1KV 2 KV 3

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 4

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 1 KV 2KV 3

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 4

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 1 KV 2 KV 3

W11 W12 W13

W21 W22 W23

W31 W32 W33

KV 4

Fig. 6: Illustration of how periodicity in a filter leads to repeat-
ing rows of sub-matrices of the filter’s flattened weight matrix.

original matrix is at most 82% and 73% dense, respectively.
Furthermore, at 62% density, CSR8 and CSR16 yield lower
total storage compared to CSR by 23% and 16%, respectively.
This is equivalent to 60.04% and 39.86% reduction in the
overhead of storing auxiliary vectors for the CSR8 and
CSR16 compared to the CSR format, respectively.

4.2.3 Hardware Support for Periodic Sparsity
The energy cost associated with transferring from the
DRAMs is well-modeled as proportional to the number
of bits read [45]. The reduced storage requirements of
CSRP/CSCP thus lead to a proportional reduction in the
energy cost associated with DRAM access. For example,
a 50% savings in storage will result in a ∼2× reduction
in energy consumption related to DRAM access. For this
reason, in the following we focus on savings in storage
requirements with the energy savings being implicit.

Note that CSRP/CSCP cannot be integrated into ex-
isting accelerators without ensuring they can support the
proposed periodic sparse format. For example, in Eyeriss v2,
each weight value (i.e. data) is coupled with its correspond-
ing index and they are read as a whole from the main
memory. On the other hand, the CSRP/CSCP store the
column/row vector separately from the data vector and
read the auxiliary vectors once for all data values. This not
only requires proper adjustment of the bus that transfers
data from the DRAM to the chip but also may require a
minor modification in either the control logic or PEs.

One approach to make an accelerator like Eyeriss v2
compatible with periodic sparsity is to store the weights
in DRAM using the proposed sparse periodic format and
modify the system-level control logic to expand the col-
umn/row vector before storing them in the PE’s scratchpad
memory. In other words, the sparse column/row vector
is read from the DRAM only once, but replicated before
being written into the scratchpad memory corresponding
the the column/row vector so that they adhere to the
CSR/CSC format. In this manner, the scratchpad memory
within each PE remains the same and stores bundled (data,
index) pairs. Because DRAM accesses consume two orders
of magnitude more energy than on-chip communication, we
can thus achieve close to the optimal energy savings without
requiring any change in the PE array or its associated control
structures.

A more comprehensive approach to supporting periodic
sparsity involves ensuring the PEs can use the column/row
scratchpad memory as a configurable circular buffer, which,

7

0.0 0.2 0.4 0.6 0.8 1.0
Density

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

St
or

ag
e

(K
iB

)
Dense
COO
CSR
CSC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Density

0.0
0.1
0.2
0.3
0.4
0.5
0.6

St
or

ag
e

(K
iB

) Dense
CSR
CSR2
CSR4
CSR8
CSR16

(b)

Fig. 7: Comparison of storage requirements of (a) various existing storage formats and (b) dense, CSR, and CSRP formats at
different levels of density for a matrix of size 32× 12 (bv = 8, bc = br = 4, bi = 7, and bP = 6).

to support periodicity, will be configured to have length P .
This type of support may already exist because in many
cases, the size of the weight matrix processed within each
PE is smaller than the size of the corresponding scratchpad
memory and therefore, only a portion of the scratchpad
memory is used. In this approach, the periodic column/row
vector is read from the DRAM once, written into the scratch-
pad memory, and accessed multiple times for different rows
of the weight matrix. This reduces the required on-chip com-
munication and thus may save more memory compared to
storing the expanded column/row vectors in the scratchpad
memory.

While the presented approaches enable compression of
the column/row vectors, one may be able to compress the
index vector as well, as suggested by the row periodicity il-
lustrated in Fig. 6. However, this may require more complex
hardware support to expand the index vector before storing
them in the PEs or adding support for the compressed index
vectors within the PE.

5 EXPERIMENTAL RESULTS

TABLE 5: Nomenclature of the network architectures used in
simulation

Name Description of the network architecture
aaa_pSC<n> aaa network with pre-defined sparse

kernel based convolution where each 2D kernel
has n weights not pre-defined to be zero.

aaa_pSC<n>_P<m> aaa network with every mth kernel is
FC and rest are pre-defined sparse kernels

having n weights not pre-defined to be zero.
aaa_PS<n>_P<m> aaa network with both periodicity

and kernel variant values of m, and each 2D kernel
has n weights not pre-defined to be zero.

aaa_PSD<n>_P<m> aaa network with periodic kernel variants
having periodicity m, where each period has m− 1
sparse kernel variants each with n weights not pre-

defined to be zero and 1 FC k × k kernel.

This section describes our simulation results and analy-
sis. We first detail the datasets, architecture, and important
hyperparameters used for our experiments, followed by our
experimental results of our proposed pSConv approach, the
introduction of periodicity, and our performance boosting
technique. Finally, we compare our modified network archi-
tectures with MobileNetV2 [29], a popular low-complexity
CNN variant for image classification, in terms of FLOPs,
model parameters, and accuracy. We used Pytorch [46] to
design the models and trained/tested the models on AWS
EC2 P3.2x large instances that have an NVIDIA Tesla V100
GPU.

5.1 Datasets, Architectures, and Hyperparameters
To evaluate our models we used CIFAR-10 [31] and Tiny
ImageNet [32], two widely popular image classification
datasets. The input image dimensions of CIFAR-10 and Tiny
ImageNet are (32×32×3) and (64×64×3), respectively. The
number of different output classes for these two datasets are
10 and 200, respectively. We chose variants of VGG16 [3] and
ResNet18 [5] as the base network models to apply our archi-
tectural modifications. The VGG16 architecture has thirteen
3×3 kernel based convolutional layers. The flattened output
of final CONV layer is fed to the fully connected part having
three fully connected (FC) layers.‡ The CONVs of ResNet18
architecture consists of four layers each containing two basic
blocks, where each basic block has two convolutional layers
along with a skip connection path. We used pre-defined
sparse kernels on all k × k CONV layers where k > 1 but
excluded the first layer, as it is connected to the primary
inputs and is thus more sensitive to zero weights. Training
was performed for 120 and 100 epochs for CIFAR-10 and
Tiny ImageNet, respectively. The initial learning rate was
set to 0.1 with momentum of 0.9 and weight decay value
to 5 × 10−4. The image datasets were augmented through
random cropping and horizontal flips before being fed into
the network in batches of 128 and 100 for CIFAR-10 and
Tiny ImageNet, respectively. All results reported are the
average over two training experiments. Table 5 provides the
names of each variant of network model and corresponding
architecture descriptions.

5.2 Results for pSConv Based CNN
We analyzed three different variants of regular sparse kernel
based CONVs with KSS values of 4, 2 and 1 along side
the baseline standard convolution based network. As stated
earlier, in our choice of kernel patterns we ensure each of
the k2 possible kernel entries are covered by at least one
sparse kernel variant. Table 6 provides the results in terms
of accuracy and parameter count§ with the KSS variants ap-
plied in VGG16 and ResNet18 architectures. The ResNet18-
based results show that even with KSS of only 4, the test
accuracy degradation is within∼0.4% for CIFAR-10 dataset,
and within ∼0.6% for Tiny ImageNet. The same results for

‡In VGG16 for CIFAR-10 dataset, we used only one FC layer
because the input image dimension is 4× smaller than Tiny ImageNet
and multiple FC layers are not needed to achieve high accuracy.

§We considered the convolution layer parameters only to report in
the tables of this section without considering the overhead of indexing.

8

Fig. 8: (a), and (b) shows the test accuracy vs. epochs for CIFAR-10 dataset in different variants of VGG16 and ResNet18 models,
respectively; (c), and (d) are plots of top 5 error rate vs. epochs for Tiny ImageNet dataset in different variants of VGG16 and
ResNet18 models, respectively. The KSS for all the variants is 1.

VGG16 show a test accuracy degradation is within ∼0.7%
for CIFAR-10 dataset, and within ∼1.1% for Tiny ImageNet.

TABLE 6: Test accuracy of pSConv based VGG16, and ResNet18
on CIFAR-10 and Tiny ImageNet. Here we use KSS of 9, 4, 2,
and 1, respectively. Also, KSS of 9 means SFCC based CONVs
and thus they are used as baseline to compare accuracy, and
parameters.

Data Model Top 1 Top 5 Parameters Parameters (%)
set acc (%) acc (%) reduction

VGG16_pSC9 92.8 – 14.73 M —
C VGG16_pSC4 92.0 – 6.55 M 55.56
I VGG16_pSC2 91.2 – 3.27 M 77.78
F VGG16_pSC1 89.5 – 1.64 M 88.89
A ResNet18_pSC9 92.9 – 11.17 M —
R ResNet18_pSC4 92.5 – 5.06 M 54.65
10 ResNet18_pSC2 91.1 – 2.62 M 76.56

ResNet18_pSC1 89.4 – 1.39 M 87.50
VGG16_pSC9 57.2 78.9 14.73 M —
VGG16_pSC4 56.1 79.1 6.55 M 55.56

Tiny VGG16_pSC2 54.2 78.2 3.27 M 77.78
Image VGG16_pSC1 52.5 76.7 1.64 M 88.89

Net ResNet18_pSC9 62.4 83.2 11.17 M —
ResNet18_pSC4 61.7 83 5.06 M 54.65
ResNet18_pSC2 60.2 82.7 2.62 M 76.56
ResNet18_pSC1 59.0 82.2 1.39 M 87.50

5.3 Results for pSConv with Periodicity
The storage and energy advantage associated with peri-
odically repeating kernels with some specific set of kernel
variants, analysed in Section 4.2, motivated us to evaluate
its performance in terms of test accuracy. We leveraged the
observation provided by [44] and kept the KVS = P small
for different KSS based architectures. In particular, as KSS of
4 covers more kernel entries per variant, we chose a corre-
sponding P = KVS = 4 and covered all possible kernel entries
of the 3×3 kernels. For similar reasons, we chose larger KVS

TABLE 7: Test accuracy of different variants of periodic sparse
kernel based VGG16 and ResNet18 on CIFAR-10 and Tiny
ImageNet. The baseline architectures of Table 6 are used as the
reference for calculating the reduction in parameters.

Data Model (KVS, P) Top 1 Top 5 Parameters Parameter
set acc (%) acc (%) reduction (%)
C VGG16_PS4_P4 (4, 4) 91.7 – 6.55 M 55.56
I VGG16_PS2_P6 (6, 6) 90.6 – 3.27 M 77.78
F VGG16_PS1_P9 (9, 9) 87.9 – 1.64 M 88.89
A ResNet18_PS4_P4 (4, 4) 92.9 – 5.06 M 54.65
R ResNet18_PS2_P6 (6, 6) 91.5 – 2.62 M 76.56
10 ResNet18_PS1_P9 (9, 9) 89.6 – 1.39 M 87.50

VGG16_PS4_P4 (4, 4) 56.9 79.9 6.55 M 55.56
Tiny VGG16_PS2_P6 (6, 6) 53.9 77.8 3.27 M 77.78

Image VGG16_PS1_P9 (9, 9) 51.8 76.7 1.64 M 88.89
Net ResNet18_PS4_P4 (4, 4) 61.9 83 5.06 M 54.65

ResNet18_PS2_P6 (6, 6) 60.7 82.9 2.62 M 76.56
ResNet18_PS1_P9 (9, 9) 58.9 81.8 1.39 M 87.50

for KSS of 2 and 1, respectively (6 and 9, respectively). We
selected kernel variants as described in Section 5.2. Fig. 8
shows the learning curves for CIFAR-10 and Tiny ImageNet
datasets with different variants of VGG16 and ResNet18
models with KSS of 1.¶ It is clear that the sparse variants
learn at similar rates as the corresponding baselines.

Table 7 shows the impact of an added periodicity con-
straint on test accuracy with our proposed variants. Note
that because of the overhead of storing auxiliary vectors, the
overall storage reduction is smaller than the ones reported
in Table 7. For example, for VGG16_PS4_P4, the reduction in
the number of parameters is 55.6%, but including the stor-
age of the auxiliary vectors in CSR4 format, the reduction is
approximately 44.6%. If CSR format is used, the reduction
in overall storage requirements, relative to the baseline is
approximately 25%.

¶We saw similar trends with KSS of 2 and 4 in VGG16 and
ResNet18, and so did not show in separate plots for brevity’s sake.

9

(a) (b)

(c) (d)

Fig. 9: Test accuracy vs. FLOPs count plots for different datasets on different architectures: CIFAR-10 on (a) VGG16, (b) ResNet18
variants; Tiny ImageNet on (c) VGG16, (d) ResNet18 variants.

5.4 Results for Boosting
The results without and with periodically sparse kernel
patterns discussed in Sections 5.2 and 5.3, respectively, show
considerable performance degradation at low KSS values
such as 1. This section presents the performance of the
network architectures with the proposed boosting method
in which we periodically incorporate FC kernels (k × k) in
the 3D filter.

We analyzed the impact of two different periodicities
(P) 8 and 16. We tested the same sparse kernel variants
as those used in section 5.3. Thus, when the number of
unique variants are less than P , we randomly chose some
of the sparse kernel variants to repeat before placing the FC
kernels. However, for simulation of aaa_PSD1_P8 models
we randomly choose 7 of 9 unique sparse kernel variants.
Note that because each period will now contain one FC
kernel, the proposed criteria of covering all kernel entries
within a period is automatically satisfied.

TABLE 8: Test accuracy of different variants of VGG16, and
ResNet18 on CIFAR-10 with periodic sparse kernels boosted
through insertion of periodic FC kernels.

Model (KVS, P) Test Improvement Parameters Parameter
acc (%) over periodic reduction (%)

VGG16_PSD4_P8 (5, 8) 92.5 +0.87 7.57 M 48.61
VGG16_PSD4_P16 (5, 16) 92.0 +0.39 7.06 M 52.1
VGG16_PSD2_P8 (7, 8) 91.9 +1.32 4.71 M 68.1
VGG16_PSD2_P16 (7, 16) 91.3 +0.74 3.99 M 72.92
VGG16_PSD1_P8 (8, 8) 91 +3.14 3.27 M 77.78
VGG16_PSD1_P16 (10, 16) 89.8 +1.97 2.46 M 83.33
ResNet18_PSD4_P8 (5, 8) 92.9 -0.05 5.82 M 47.83
ResNet18_PSD4_P16 (5, 16) 92.8 -0.20 5.43 M 51.26
ResNet18_PSD2_P8 (7, 8) 92.5 +1.09 3.68 M 67
ResNet18_PSD2_P16 (7, 16) 92.3 +0.81 3.15 M 71.78
ResNet18_PSD1_P8 (8, 8) 92.5 +2.84 2.62 M 76.56
ResNet18_PSD1_P16 (10, 16) 92.0 +2.38 2.01 M 82.02

Table 8 and 9 show the classification accuracy improve-
ment compared to their sparse periodic counterparts and
parameter count reduction compared to the corresponding
baseline models. The results show that boosting yields an
improvement of up to 3.1% (3.6%) in classification accuracy
for CIFAR-10 (Tiny ImageNet). With sparse KSS of 4, the

TABLE 9: Test accuracy of different variants of VGG16, and
ResNet18 on Tiny ImageNet with periodic sparse kernels
boosted with periodic FC kernels.

Model (KVS, P) Top 1 Improvement Parameters Parameter
acc (%) over periodic reduction (%)

VGG16_PSD4_P8 (5, 8) 57.3 +0.35 7.57 M 48.61
VGG16_PSD4_P16 (5, 16) 56.9 +0.0 7.06 M 52.1
VGG16_PSD2_P8 (7, 8) 55.9 +1.95 4.71 M 68.1
VGG16_PSD2_P16 (7, 16) 55.5 +1.55 3.99 M 72.92
VGG16_PSD1_P8 (8, 8) 55.3 +3.55 3.27 M 77.78
VGG16_PSD1_P16 (10, 16) 55.1 +3.3 2.46 M 83.33
ResNet18_PSD4_P8 (5, 8) 61.8 -0.09 5.82 M 47.83
ResNet18_PSD4_P16 (5, 16) 61.7 -0.23 5.43 M 51.26
ResNet18_PSD2_P8 (7, 8) 60.6 -0.13 3.68 M 67
ResNet18_PSD2_P16 (7, 16) 60.2 -0.48 3.15 M 71.78
ResNet18_PSD1_P8 (8, 8) 60.0 +1.15 2.62 M 76.56
ResNet18_PSD1_P16 (10, 16) 59.0 +0.15 2.01 M 82.02

average performance improvement compared to periodic
sparse models is ∼0.3%. This is quite intuitive as the poten-
tial improvement is lower when KSS is high. However, for
low KSS the average improvement is ∼2.3%. For example,
ResNet18 with KSS of 1 and repeating FC kernels with a
period of 8 on CIFAR-10 provides an accuracy degradation
of only ∼0.4% compared to the baseline, which was earlier
∼3.3% without the FC kernels inserted. This motivates the
use of boosted pre-defined kernels that are very sparse. We
observed similar trends with Tiny ImageNet as well. The
relative cost of the increase in parameters due to boosting is
low and, as the periodicity of the fully connected kernel
placement increases, it becomes negligible. Fig. 9 shows
the accuracy vs. FLOPs|| relation for different architecture
variants. Models whose points lie towards the top-left have
better accuracy with fewer FLOPs. In particular, for VGG16
and ResNet18 variants on CIFAR-10 and VGG16 variants
on Tiny ImageNet, boosting performs consistently well,
whereas, as we can see from Fig. 9 (d), boosting is not
as beneficial for Tiny ImageNet on ResNet18. In general,
we see that, with modest computation overhead, boosting
consistently improves accuracy for models with extremely

||We consider FLOPs associated with only the convolution layers
because they generally represent the vast majority of FLOPs.

10

low KSS and maintains high accuracy otherwise.
It is important to emphasize that the overall parameter

overhead is a function of both periodicity and KSS, as
exemplified by the four sparse models described in Table 10
analyzed using the storage requirement formulas in Table
4. Comparing models 1 and 2, which have the same sparse
KSS, shows the impact of periodicity; as does comparing
models 3 and 4. In contrast, comparing models 1 and 3
shows the impact of KSS for fixed periodicity; as does
comparing models 2 and 4. The last two columns of the table
represent the parameter counts normalized with respect to
the baseline model. Averaging across the four examples, the
table shows that CSRP reduces the overall parameter count
compared to CSR, including the sparse matrix representa-
tion, by 22%. Perhaps more importantly, the results show
that the CSRP format can reduce the overall parameter
count by as much as 70% compared to the baseline model.

TABLE 10: Parameters reduction and corresponding normal-
ized storage requirement including indexing overhead for four
VGG16 variants with both CSRP and CSR format of com-
pressed storage.

No. Model Model param. Normalized param. Normalized param.
reduction (%) count, using CSRP count, using CSR

1 VGG16_PSD4_P8 48.61 0.66 0.85
2 VGG16_PSD4_P16 52.10 0.69 0.81
3 VGG16_PSD1_P8 77.78 0.34 0.42
4 VGG16_PSD1_P16 83.33 0.30 0.35

Lastly, to demonstrate boosting has general benefits,
Table 11 shows the results of boosting with Tiny ImageNet**

when the FC kernels are placed periodically, with period
PD , in between sparse kernels with no pre-defined KVS or
kernel variants (as described in Section 5.2). Note, as with
the networks described in Section 5.2, the lack of structure
makes these models have higher indexing overhead com-
pared to the periodic models analyzed above.

TABLE 11: Test accuracyn of boosting as a general method to
improve accuracy. Dataset used here is Tiny ImageNet.

Model (KVS, PD) Top 1 Parameters Parameter
acc (%) reduction (%)

VGG16_pSC4_P8 (–, 8) 56.6 7.57 M 48.61
VGG16_pSC4_P16 (–, 16) 56.2 7.06 M 52.1
VGG16_pSC2_P8 (–, 8) 56.6 4.71 M 68.1

VGG16_pSC2_P16 (–, 16) 56.4 3.99 M 72.92
VGG16_pSC1_P8 (–, 8) 55.5 3.27 M 77.78

VGG16_pSC1_P16 (–, 16) 54.8 2.46 M 83.33
ResNet18_pSC4_P8 (–, 8) 61.8 5.82 M 47.83

ResNet18_pSC4_P16 (–, 16) 62.3 5.43 M 51.26
ResNet18_pSC2_P8 (–, 8) 61.3 3.68 M 67

ResNet18_pSC2_P16 (–, 16) 60.5 3.15 M 71.78
ResNet18_pSC1_P8 (–, 8) 59.8 2.62 M 76.56

ResNet18_pSC1_P16 (–, 16) 59.2 2.01 M 82.02

5.5 Performance Comparison with MobileNetV2
Because MobileNetV2 [29] is a widely-accepted low-
complexity CNN architecture, we also compared it with our
proposed pre-defined periodic sparse models that have sim-
ilar or fewer FLOPs.†† In particular, Fig. 10(a) shows that for
CIFAR-10 the ResNet18_PSD1_P16 provides an increased
accuracy of 92% compared to the baseline MobileNetV2

**For the CIFAR-10 dataset we obtained similar results, with
ResNet18_pSC4_P8 exceeding the baseline performance with an aver-
age test accuracy of 92.95%.

††Note that we kept the hyperparameters for MobileNetV2 training
the same as ResNet18 except the weight decay which was set to 0, as
recommended by [29].

accuracy of 90.3%. With 0.073 G FLOPs, VGG16_PSD1_P8
has approximately 1.24× fewer FLOPs yet still outperforms
MobileNetV2 in terms of accuracy. For Tiny ImageNet, as
shown in Fig.10(b), the best classifying model provides an
accuracy improvement of 3.2% with only 4% computation
overhead. As we can see from Fig. 11(a), and (b), the
parameters requirement of our proposed network models
with similar accuracy as MobileNetV2 are 1.15×, and 2.38×
lower for CIFAR-10 and Tiny ImageNet classification prob-
lems, respectively.‡‡

5.6 Performance Evaluation on Networks Models with
Scaled Down Width
Squeezing the network layers, i.e. reducing the number of
channels per 3D filter by a factor of α (< 1.0), popularly
known as the width multiplier, is another simple technique
to reduce the network’s FLOPs and storage requirement
[28], [40], [47]. To further establish the idea of the pre-
defined periodic sparsity, we apply our proposed kernels
in squeezed variant of the ResNet18 architecture with an
α of 0.5. The important network model parameters of the
squeezed variants of ResNet18 and MobileNetV2 models
are described in Table 12. With the same hyperparameter
settings as stated in Section 5.1, the baseline accuracy for
ResNet18 with α=0.5 are 91.1%, and 59.1% for CIFAR-
10, and Tiny ImageNet, respectively. We trained several
variants of this squeezed model with KSS values of 4,
2, and 1, each with the fully connected kernel repeating
after every 8 and 16 kernels. Fig. 12 shows our proposed
variants of squeezed ResNet18 consistently outperforms
both MobileNetV2_0.75 and MobileNetV2 in classification
accuracy, keeping the number of FLOPs similar or lower.
In particular, Fig. 12 (a) shows that on CIFAR-10 dataset,
to provide similar accuracy the squeezed ResNet18 with
KSS of 2 and periodicity of 16 requires 2.36× fewer FLOPs
compared to MobileNetV2. Also, the ResNet18 variant that
requires the least number of FLOPs, provides ∼1% im-
proved accuracy with 2.6× fewer computations compared
to MobileNetV2_0.75. A similar trend is observed for Tiny
ImageNet, as shown in Fig. 12(b). Averaged over the two
datasets, the proposed squeezed ResNet18 variants provides
similar accuracy with 2.42×, and 2.37× fewer FLOPs com-
pared to MobileNetV2_0.75 and MobileNetV2, respectively.
On the same datasets, when we constrain the number FLOPs
to be similar, pre-defined periodic sparsity can provide an
average accuracy improvement of ∼3.16% and ∼2.48%,
compared to MobileNetV2 with α of 0.75 and 1.0, respec-
tively. The model parameter reduction factors are propor-
tional to the computation reduction and as the ResNet18_0.5
model has comparable parameters as MobileNetV2, advan-
tage in storage for the sparse versions of ResNet18_0.5 is
quite clear, and thus not discussed in details for brevity’s
sake.

6 CONCLUSIONS

This paper showed that with pre-defined sparsity in convo-
lutional kernels the network models can achieve significant
model parameter reduction during both training and infer-
ence without significant accuracy drops. However, manag-
ing sparsity requires matrix indexing overhead in terms of

‡‡These values can be translated to the normalized param. count
with the help of the formulas in Table 4.

11

Fig. 10: Performance comparison of our proposed architectures that have similar or fewer FLOPs as MobileNetV2 with comparable
or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

Fig. 11: Comparison of the number of model parameters of the
network models described in Fig 10 for (a) CIFAR-10, and (b)
Tiny ImageNet dataset.

TABLE 12: CONV layer channel width parameters with differ-
ent α values of the network models.

Name α Convolution layer different channel sizes
ResNet18 1.0 [64, 128, 256, 512]

ResNet18_0.5 0.5 [32, 64, 128, 256]
MobileNetV2 1.0 [16, 24, 32, 64, 96, 160, 320]

MobileNetV2_0.75 0.75 [12, 18, 24, 48, 72, 120, 240]

storage and energy efficiency. To address this shortcoming,
we added periodicity to the sparsity, periodically using
same sparse kernel patterns in the convolutional layers,
significantly reduce the indexing overhead.

Furthermore, to deal with the performance degrada-
tion due to pre-defined sparsity, we introduced a low-cost
network architecture modification technique in which FC
kernels are periodically inserted in between sparse kernels.
Experimental results showed that, compared to the sparse-
periodic variants, this boosting technique improves average
classification accuracy by up to ∼2.3%, averaged over two
periodicity of 8, and 16 in ResNet18 and VGG16 architecture
on CIFAR-10 and Tiny ImageNet. We also demonstrated the
merits of the proposed architectures with squeezed variants
of ResNet18 (width multiplier < 1.0) and have shown it to
outperform MobileNetV2 by an average accuracy of ∼2.8%
with similar FLOPs.

Our future work includes exploring additional forms
of compressed sparse representations and their hardware
support.

REFERENCES

[1] S. Kundu, S. Prakash, H. Akrami, P. A. Beerel, and K. M.
Chugg, “A Pre-defined Sparse Kernel Based Convolution for
Deep CNNs,” accepted and presented at the 57th Allerton conference,
available as arXiv e-prints, 2019.

[2] A. Krizhevsky et al., “ImageNet classification with deep con-
volutional neural networks,” in Advances in Neural Information
Processing Systems, pp. 1097–1105, 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 580–587, 2014.

[7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection
using convolutional networks,” arXiv preprint arXiv:1312.6229,
2013.

[8] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7263–7271, 2017.

[9] H. Tao, W. Li, X. Qin, and D. Jia, “Image semantic segmentation
based on convolutional neural network and conditional random
field,” in 2018 Tenth International Conference on Advanced Computa-
tional Intelligence (ICACI), pp. 568–572, IEEE, 2018.

[10] A. Coates et al., “Deep learning with COTS HPC systems,” in
International Conference on Machine Learning, pp. 1337–1345, 2013.

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826, 2016.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pp. 243–254, IEEE, 2016.

[13] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
pp. 127–138, 2016.

[14] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flex-
ible accelerator for emerging deep neural networks on mobile
devices,” arXiv preprint arXiv:1807.07928, 2018.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize en-
ergy efficiency of deep neural network accelerators,” IEEE Micro,
vol. 37, no. 3, pp. 12–21, 2017.

[16] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5687–5695, 2017.

[17] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural
Information Processing Systems, pp. 1135–1143, 2015.

[18] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, pp. 2074–2082, 2016.

[19] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[20] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and
Y. Wang, “A systematic dnn weight pruning framework using

12

Fig. 12: Performance comparison in terms of test accuracy and FLOPs of different squeezed (width multiplier 0.5) ResNet18
variant models with MobileNetV2 (MobV2) having width multiplier 1.0 and 0.75 on (a) CIFAR-10, and (b) Tiny ImageNet.

alternating direction method of multipliers,” in Proceedings of the
European Conference on Computer Vision (ECCV), pp. 184–199, 2018.

[21] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,”
arXiv preprint arXiv:1702.03044, 2017.

[22] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit
neural network: Squeeze the last bit out with admm,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[23] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and
Y. Wang, “Admm-nn: An algorithm-hardware co-design frame-
work of dnns using alternating direction methods of multipliers,”
in Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 925–938, ACM, 2019.

[24] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary
neural networks for resource-efficient ai applications,” in 2017
International Joint Conference on Neural Networks (IJCNN), pp. 2547–
2554, IEEE, 2017.

[25] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect:
Training deep neural networks with binary weights during prop-
agations,” in Advances in Neural Information Processing Systems,
pp. 3123–3131, 2015.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet classification using binary convolutional neural
networks,” in European Conference on Computer Vision, pp. 525–542,
Springer, 2016.

[27] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Pre-defined
sparse neural networks with hardware acceleration,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2019.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520, 2018.

[30] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6848–6856, 2018.

[31] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” tech. rep., Citeseer, 2009.

[32] Y. Le and X. Yang, “Tiny ImageNet visual recognition challenge,”
CS 231N, 2015.

[33] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A
dynamically configurable coprocessor for convolutional neural
networks,” in ACM SIGARCH Computer Architecture News, vol. 38,
pp. 247–257, ACM, 2010.

[34] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in International
Conference on Machine Learning, pp. 1737–1746, 2015.

[35] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition
with gradient-based learning,” in Shape, contour and grouping in
computer vision, pp. 319–345, Springer, 1999.

[36] V. Vanhoucke, “Learning visual representations at scale,” ICLR
invited talk, vol. 1, p. 2, 2014.

[37] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, “Deep
Roots: Improving CNN efficiency with hierarchical filter groups,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1231–1240, 2017.

[38] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-ResNet and the impact of residual connections on
learning,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[39] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1492–1500, 2017.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters and< 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[41] J. Cheng, M. Grossman, and T. McKercher, Professional Cuda C
Programming. John Wiley & Sons, 2014.

[42] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-X: an accelerator for sparse neural
networks,” in International Symposium on Microarchitecture, IEEE,
2016.

[43] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flex-
ible accelerator for emerging deep neural networks on mobile
devices,” Journal on Emerging and Selected Topics in Circuits and
Systems, 2019.

[44] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and
Y. Wang, “Pconv: The missing but desirable sparsity in dnn weight
pruning for real-time execution on mobile devices,” arXiv preprint
arXiv:1909.05073, 2019.

[45] M. Greenberg, “LPDDR3 and LPDDR4: How low-power DRAM
can be used in high-bandwidth applications,” by JEDEC, 2013.

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[47] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv preprint arXiv:1905.11946,
2019.

Souvik Kundu received his B. Tech degree
in Electronics and Communication Engineering
from West Bengal University of Technology in
2009 and M. Tech degree in Microelectronics
and VLSI design from Indian Institute of Tech-
nology Kharagpur, India in 2015. He worked as
R & D Engineer II at Synopsys India Pvt. Ltd. and
as Digital Design Engineer at Texas Instruments
India Pvt. Ltd. from 2015 to 2016 and from 2016
to 2017, respectively. He is currently working
towards the Ph.D. degree in Electrical and Com-

puter Engineering at the University of Southern California, Los Angeles,
CA, USA. His research focuses on energy aware sparsity, model search,
algorithm-hardware co-design of neural networks in machine learning.

13

Mahdi Nazemi received the B.S. degree in elec-
trical engineering from the University of Tehran,
Tehran, Iran, in 2014. He is currently pursuing
the Ph.D. degree in electrical engineering with
the University of Southern California, Los Ange-
les, CA, USA. He was an R&D software engi-
neering intern at the Cadence’s Genus Synthe-
sis Solution group during the summer of 2016
and a software engineering intern at the Mi-
crosoft’s Artificial Intelligence and Research en-
gineering group during the summer of 2018. His

research focuses on algorithm/hardware co-design for the efficient pro-
cessing of machine learning algorithms including deep neural networks.
One of his recent work in this area won the best paper award at the Asia
and South Pacific Design Automation Conference in 2019.

Massoud Pedram obtained his B.S. degree
in Electrical Engineering from Caltech in 1986
and Ph.D. in Electrical Engineering and Com-
puter Sciences from the University of Califor-
nia, Berkeley in 1991. Subsequently, he joined
the Department of Electrical Engineering of the
University of Southern California where he cur-
rently holds the Charles Lee Powell Chair. His
research interests include computer-aided de-
sign of VLSI circuits and systems, low power
electronics, energy-efficient processing, electri-

cal energy storage systems, power conversion and management ICs,
quantum computing, and superconductive electronics. He has authored
four books and more than 700 archival and conference papers. Dr. Pe-
dram received the 2015 IEEE Circuits and Systems Society Charles A.
Desoer Technical Achievement Award for his contributions to modeling
and design of low power VLSI circuits and systems, and energy efficient
computing and the 2017 USC Viterbi School of Engineering Senior
Research Award. He also received the Third Most Cited Author Award
at the 50th anniversary of the Design Automation Conf., Jun. 2013. Dr.
Pedram is an IEEE Fellow.

Keith M. Chugg (S’88-M’95-SM’06-F’10) re-
ceived the B.S. degree (high distinction) in Engi-
neering from Harvey Mudd College, Claremont,
CA in 1989 and Ph.D. degree in Electrical En-
gineering from the University of Southern Cali-
fornia (USC), Los Angeles, CA in 1995. Since
1996, he has been on the faculty of the Ming
Hsieh Department of Electrical and Computer
Engineering at USC, where he is currently a Pro-
fessor. His research interests are in the general
areas of signal processing, digital communica-

tions, machine learning, and associated efficient implementations. He is
a co-founder of TrellisWare Technologies, Inc., where he serves as Chief
Scientist.

Peter A. Beerel (S’88-M’95-SM’06-F’10) re-
ceived his B.S.E. degree in Electrical Engineer-
ing from Princeton University, Princeton, NJ, in
1989 and his M.S. and Ph.D. degrees in Electri-
cal Engineering from Stanford University, Stan-
ford, CA, in 1991 and 1994, respectively. He then
joined the Ming Hsieh Department of Electrical
and Computer Engineering at the University of
Southern California where he is currently a pro-
fessor and the Associate Chair of the Computer
Engineering Division. He is also a Research

Director at the Information Science Institute at USC. Previously, he
co-founded TimeLess Design Automation to commercialize an asyn-
chronous ASIC flow in 2008 and sold the company in 2010 to Fulcrum
Microsystems which was bought by Intel in 2011. His interests include a
variety of topics in computer-aided design, machine learning, hardware
security, and asynchronous VLSI and the commercialization of these
technologies. He is a Senior Member of the IEEE.

