
Iterative Detection

Adaptivity, Complexity Reduction,

and Applications

ITERATIVE DETECTION
Adaptivity, Complexity Reduction,
and Applications

KEITH M. CHUGG
University of Southern California
TrellisWare Technologies, Inc.

ACHILLEAS ANASTASOPOULOS
University of Michigan

XIAOPENG CHEN
Marvell Semiconductor, Inc.

Kluwer Academic Publishers
Boston/Dordrecht/London

To our parents

Contents

Preface xi
Introduction xvii

1. OVERVIEW OF NON-ITERATIVE DETECTION 1
1.1 Decision Theory Framework 1

1.1.1 The Bayes Decision Rule 3
1.1.2 Composite Hypothesis Testing 4
1.1.3 Statistical Sufficiency 6

1.2 MAP Symbol and Sequence Detection 7
1.2.1 The General Combining and Marginalization Problem

and Semi-Ring Algorithms 15
1.2.2 Detection with Imperfect CSI 23

1.3 Data Detection for an FSM in Noise 28
1.3.1 Generic FSM Model 28
1.3.2 Perfect Channel State Information 31
1.3.3 Detection with Imperfect CSI 45

1.4 Performance Bounds Based on Pairwise Error Probability 49
1.4.1 An Upper Bound using Sufficient Neighborhood

Sets 51
1.4.2 Lower Bounds Based on Uniform Side Information 54
1.4.3 An Upper Bound for MAP-SqD 59
1.4.4 A Lower Bound for MAP-SyD 64

1.5 Chapter Summary 67
1.6 Problems 68

2. PRINCIPLES OF ITERATIVE DETECTION 77
2.1 Optimal Detection in Concatenated Systems 77
2.2 The Marginal Soft-Inverse of a System 85

2.2.1 Some Common Subsystems 88
2.3 Iterative Detection Conventions 95

2.3.1 Summary of a General Iterative Detector 98
2.3.2 Explicit Index Block Diagrams 100

vii

viii ITERATIVE DETECTION

2.4 Iterative Detection Examples 101
2.4.1 Normalization Methods and Knowledge of the AWGN

Noise Variance 101
2.4.2 Joint “Equalization” and Decoding 105
2.4.3 Turbo Codes 111
2.4.4 Multiuser Detection 120

2.5 Finite State Machines SISOs 128
2.5.1 The Forward-Backward Fixed-Interval SISO 130
2.5.2 Fixed-Lag SISOs 131
2.5.3 Forward-Only (L2VS) FL-SISO 133
2.5.4 Sliding Window SISOs 136
2.5.5 A Tree-Structured SISO 138
2.5.6 Variations on Completion and Combining Windows

142
2.5.7 Soft-Output Viterbi Algorithms 143

2.6 Message Passing on Graphical Models 144
2.6.1 Optimality Conditions for Message Passing 146
2.6.2 Revisiting the Iterative Detection Conventions 156
2.6.3 Valid Configuration Checks 161
2.6.4 Other Graphical Models 169

2.7 On the Non-uniqueness of an Iterative Detector 175
2.7.1 Additional Design Guidelines 181

2.8 Summary and Open Problems 182
2.9 Problems 184

3. ITERATIVE DETECTION FOR COMPLEXITY REDUCTION193
3.1 Complexity Reduction Tools 193

3.1.1 Operation Simplification 194
3.1.2 Decision Feedback Techniques 194

3.2 Modified Iterative Detection Rules 199
3.2.1 Altering the Convergence Rate 199
3.2.2 Modified Initialization Schemes 202

3.3 A Reduced-State SISO with Self-Iteration 204
3.3.1 Reduced-State SISO Algorithm 205
3.3.2 Example Applications of the RS-SISO 209

3.4 A SISO Algorithm for Sparse ISI Channels 213
3.4.1 Sparse ISI Channel 213
3.4.2 Existing Algorithms for S-ISI Channels 217
3.4.3 The Sparse SISO Algorithms for S-ISI Channels 218
3.4.4 Features of the S-SISOs 223
3.4.5 Design Rules for the S-SISO Algorithms 223
3.4.6 Using the Sparse SISO Algorithms 229
3.4.7 On Performance Bounds for S-ISI Channels 231

3.5 Summary and Open Problems 234
3.6 Problems 235

4. ADAPTIVE ITERATIVE DETECTION 239
4.1 Exact Soft Inverses – Optimal Algorithms 242

Contents ix

4.1.1 Separate Sequence and Parameter Marginalization
243

4.1.2 Joint Sequence and Parameter Marginalization 244
4.2 Approximate Soft Inverses – Adaptive SISO Algorithms 246

4.2.1 Separate Sequence and Parameter Marginalization
246

4.2.2 Joint Sequence and Parameter Marginalization 248
4.2.3 Fixed-Lag Algorithms 250
4.2.4 Forward Adaptive and Forward-Backward Adaptive

Algorithms 252
4.3 TCM in Interleaved Frequency-Selective Fading Channels 253
4.4 Concatenated Convolutional Codes with Carrier Phase

Tracking 259
4.4.1 SCCC with Carrier Phase Tracking 259
4.4.2 PCCC with Carrier Phase Tracking 262

4.5 Summary and Open Problems 268
4.6 Problems 269

5. APPLICATIONS IN TWO DIMENSIONAL SYSTEMS 273
5.1 Two Dimensional Detection Problem 273

5.1.1 System Model 273
5.1.2 Optimal 2D Data Detection 274

5.2 Performance Bounds for Optimal 2D Detection 276
5.2.1 Finding Small Distances 281

5.3 Iterative 2D Data Detection Algorithms 283
5.3.1 Iterative Concatenated Detectors 283
5.3.2 Distributed 2D SISO Algorithms 290

5.4 Data Detection in POM Systems 294
5.4.1 POM System Model 294
5.4.2 Existing Detection Algorithms 296
5.4.3 The Performance of Iterative Detection Algorithms

297
5.5 Digital Image Halftoning 300

5.5.1 Baseline Results 301
5.5.2 Random Biasing 302
5.5.3 Larger Filter Support Regions 306
5.5.4 High Quality and Low Complexity using 2D-GM2 307

5.6 Summary and Open Problems 308
5.7 Problems 310

6. IMPLEMENTATION ISSUES: A TURBO DECODER DESIGN
CASE STUDY 315
6.1 Quantization Effects and Bitwidth Analysis 316

6.1.1 Quantization of Channel Metrics 316
6.1.2 Bitwidth Analysis of the Forward/Backward State

Metrics 320
6.1.3 Soft-Out Metric Bitwidths 323

x ITERATIVE DETECTION

6.2 Initialization of State Metrics 326
6.3 Interleaver Design and State Metric Memory 328
6.4 Determination of Clock Cycle Time and Throughput 330
6.5 Advanced Design Methods 333

6.5.1 Block-level Parallelism 333
6.5.2 Radix-4 SISO Architectures 334
6.5.3 Fixed and Minimum Lag SISOs 335
6.5.4 Minimum Half Window (Tiled) SISOs 335
6.5.5 Sliding Window SISOs 336
6.5.6 Tree SISOs 336
6.5.7 Low-Power Turbo Decoding 337

6.6 Problems 338

Index
357

Preface

Along with many other researchers and practicing communication en-
gineers, we were excited to learn of the existence of turbo codes in the
mid 1990’s. Initially, however, we were not working in the area of coding
and found it difficult to educate ourselves on turbo codes. We came to
understand and utilize iterative detection methods in an effort to solve
other data detection problems. In particular, we were working in two dis-
tinct areas where we eventually found the methods of iterative detection
to be extremely useful. One was two-dimensional (2D) data detection
with applications to page access storage (the focus of the third author).
The other was data detection for trellis coded modulation (TCM) over
interleaved, intersymbol interference (ISI) channels (the focus of the sec-
ond author). With a vague understanding of the turbo decoding algo-
rithm, we basically rediscovered the principles of iterative detection in
the context of these applications. As a result of this (sometimes tiring)
experience, we developed a different perspective on iterative detection
than those involved solely with turbo decoding and a good appreciation
for the pitfalls of executing the algorithm. This latter appreciation was
enhanced by the first author’s opportunity to teach iterative detection
as part of EE666 Data Communications at the University of Southern
California (USC) during the Spring 1999 term.

For the 2D data detection problem, we were able to decompose one
detection problem (a 2D problem) into coupled subproblems (two 1D
problems). Based on this, we began to think of iterative detection as
a potential tool for performing reduced complexity, near-optimal detec-
tion. That is, just as one can consider a turbo decoder as a good approx-
imation to the optimal decoder for a code constructed as a concatenated
network of constituent codes, we began to think of decomposing a sys-
tem into subsystems and applying iterative detection. The page-access
memory application also provided us with the impetus to develop algori-

xi

xii ITERATIVE DETECTION

thms with parallel, or locally-connected, architectures. After developing
such algorithms, we found the 2D application an intuitive example to
understand the view of iterative detection based on message-passing and
graphical models. We began to discover that the way that one formed
a system decomposition, or formulated a graphical model with cycles,
was not unique and we sought to select such models to minimize the
computational complexity while maintaining near-optimal performance.

The TCM-ISI application, or “joint equalization/decoding,” provided
the impetus to investigate methods of parameter estimation in concert
with iterative detection. We had been working extensively on adap-
tive/blind data detection for isolated systems with memory – e.g., hard-
decision adaptive sequence detection algorithms for ISI channels. While
trying to identify the proper soft-decision information for systems with
parametric uncertainty, we developed what we call adaptive iterative de-
tection (AID). AID is a powerful method for joint parameter and data
estimation for the same reason that iterative detection is so useful: it
allows one to exploit global system structure by locally exploiting subsys-
tem structure and exchanging marginal beliefs on digital data symbols.
Thus, in a TCM-Interleaver-ISI system, one can estimate and track the
ISI channel using estimators that exploit the TCM structure. Intuitively,
it is possible to use a decision-directed channel estimator that exploits
the coding gain.

This book is a summary of the work done from 1997 to 1999 while we
were all at USC. Our goals are to provide the following (hence the title):

An introduction to the principles of iterative detection

The notion of iterative detection as a tool for complexity reduction

The theory and practice of adaptive iterative detection

Detailed examples of the above through a variety of applications

This book is intended for readers who have a good background in dig-
ital detection and estimation theory (e.g., [Va68]) and would like to
apply iterative detection or conduct research in the area. Our goal is
to present a general view of iterative detection that is built upon the
fundamentals of Bayesian decision theory. If a reader is solely inter-
ested in turbo codes and their decoding, other references may be more
suitable (e.g., [BeMo96, HeWi98, VuYu00]). Similarly, a reader with-
out the background in detection and estimation may find it simplest
to learn the (equivalent) message passing on graphical models directly
(e.g., [Pe88, Je96, Fr98]). Even the reader with the proper background
will benefit greatly by keeping a pad and pencil (and computer and com-
piler!) nearby so the numerous examples and numerical results can be

Preface xiii

verified. Each chapter concludes with a list of exercises and open issues.
This book could be used as a text for a focused class in the second year
of graduate study (e.g., EE666 at USC).

The first bullet above is addressed in Chapters 1 and 2. This includes
a general view of iterative detection based only on detection theory and
block diagrams. This “block diagram” view relies heavily on the work
of Benedetto, et. al. [BeDiMoPo98]. Despite the appearance that [BeD-
iMoPo98] has been relatively unappreciated, we have found it to be the
most accessible reference for those getting started, who do not have an
extensive background in coding or graph theory. Part of this overview is
a detailed development of the forward-backward algorithm and its vari-
ants. Chapter 2 also includes a summary of belief (probability) propaga-
tion and graphical models. This development was heavily influenced by
Wiberg’s thesis [Wi96] and the well-known papers by McEliece, et. al.
[McMaCh98] and Kschischang and Frey [KsFr98]. Excellent talks by
Guido Montorsi and David Forney at the 1997 IEEE Communication
Theory Workshop [Mo97, Fo97] provided our early exposure to [BeD-
iMoPo98] and [Wi96], repectively, and great motivation for the work
presented herein. In Chapters 1 and 2, we include many detailed ex-
amples to familiarize the reader not only with our notation and ter-
minology, but with the details of the computational methods. Specific
examples include parallel concatenated convolutional codes (PCCCs),
serially-concatenated codes (SCCCs), and the TCM-ISI application.

The use of iterative detection for complexity reduction is covered in
Chapter 3. This includes the development of a reduced-state forward-
backward algorithm and the concept of “self-iteration.” Basically, this
allows one to trade additional iterations for fewer states in the trellis.
We demonstrate that such an approach can be useful for performing
data detection for ISI channels with large delay spread – i.e., for an iso-
lated system without any concatenation. Specifically, we show that this
method can be less complex and more robust that traditional reduced-
state sequence detection algorithms. We also consider long but sparse
ISI channels. It is demonstrated that one can decompose such a system
into a conceptual model comprising the parallel concatenation of several
ISI channels, each with small delay spread. Applying iterative detection
to this conceptual model yields near-optimal performance with substan-
tial complexity reduction. We also develop several useful generic tools
for complexity reduction in iterative detection including filtering of soft-
information to slow convergence and soft-information thresholding (i.e.,
decision feedback).

Adaptive iterative detection is covered in Chapter 4. This is essen-
tially an extension of the material in Chapters 1 and 2 to the case where

xiv ITERATIVE DETECTION

some parameters (typically associated with the channel) are not known
at the receiver. A family of algorithms that are the conceptual equiva-
lent of the forward-backward algorithm is developed. From this frame-
work, we motivate a family of adaptive forward-backward algorithms
that can be viewed as the marriage of the forward-backward algorithm
and forward-only adaptive hard decision data detection algorithms (e.g.,
Per-Survivor Processing). We demonstrate these techniques by applying
AID to phase or fading channel tracking for PCCCs and SCCCs and to
channel tracking for TCM over interleaved, frequency-selective fading
channels.

Two-dimensional applications are considered in Chapter 5. The two
applications considered in detail are the mitigation of 2D ISI and half-
toning of gray-scale images. The latter application is an example of how
the principles of iterative detection can be applied to encoding or data
fitting problems as well as data detection. For the 2D ISI application, we
also consider the optimal detector. Specifically, we develop upper and
lower bounds on the associated performance. This provides an opportu-
nity to compare the performance of the optimal (impractical) detector
with that of the practical iterative detector which illustrates that the it-
erative algorithm performs near optimally. In both cases we demonstrate
how the complexity reduction tools can be applied. We also illustrate
the nonuniqueness of the graphical formulation or system decomposition
and show that the resulting algorithms may have significantly different
characteristics.

In Chapter 6, which is co-authored by Prof. Peter Beerel of USC, we
describe implementation issues through a baseline design of a turbo de-
coder (i.e., the decoder for a rate 1/2 PCCC). This is based on the class
EE577b VLSI System Design taught by Peter at USC during the Spring
2000 term. In particular, Pornchai Pawawongsak’s class project serves
as a baseline design. Through this baseline design, we discuss quanti-
zation effects, metric normalization methods, internal bit-width choices,
and more advanced architectures. Thus, this provides a case study which
may serve as a starting point for those interested in developing hardware
for iterative detection.

It was mentioned that the authors performed the bulk of this work
from 1997-1999 while at USC. In fact, a significant amount of recent
work performed by several Ph.D. students at USC has been included.
In particular, we thank significant contributions from Kyuhyuk Chung
(Examples 2.9, 2.21, 2.22), Robert Golshan (Section 2.4.4), Jun Heo
(Fig-2.31, Section 4.2.3, Fig-6.2, Fig-6.3), Phunsak Thiennviboon (Ex-
amples 2.15, 2.19, 2.20, 3.5-3.6, Fig-5.19, Fig-5.21, and Sections 2.6.1.2,
5.3.2.2, 5.5, 5.4.3). In addition to these students, who also provided

Preface xv

excellent feedback on the material, we thank the following for helpful
comments and discussions: Gianluigi Ferrari (visiting USC from U. of
Parma), Anders Hansson (visiting USC from Chalmers U. Tech.), Idin
Motedayen-Aval (U. Michigan), and Prof. Vijay Kumar of USC.

We thank our research collaborators and the students from EE666
and EE577b. Specifically, thanks to Prof. Mark Neifeld at the U. of
Arizona for his contributions to the 2D work (including the motivation!)
and Prof. Antonio Ortega at USC for his contributions to the halftoning
work. We gratefully acknowledge our financial supporters which include
the National Science Foundation (NCR-9616663 and CCR-9726391),
ViaSat, Inc. and the Intelligence and Information Warfare Division
(IIWD) of the U.S. Army. Special thanks to Dr. Tom Carter at Trel-
lisWare, Dr. Chul Oh at IIWD, and Prof. Andreas Polydoros from U. of
Athens and TrellisWare for their encouragement and support.

KEITH M. CHUGG

ACHILLEAS ANASTASOPOULOS

XIAOPENG CHEN

Introduction

Nearly every textbook in the area of digital communications begins
with a system block diagram similar to that shown in Fig-I.1(a)-(b).
In fact, the receiver block diagram in Fig-I.1(b) mirrors the processing
performed in most practical receiver implementations. This segregated
design paradigm allows each component of the receiver to be designed
and “optimized” without much regard to the inner workings of the other
blocks of the receiver. As long as the each block does the job it is in-
tended for, the overall receiver should perform the desired task: extract-
ing the input bits.

Despite the ubiquity of the diagram in Fig-I.1(b) and the associated
design paradigm, it is clearly not optimal from the standpoint of perfor-
mance. More specifically, the probability of error for the bit estimates
or bit-sequence estimate is not minimized by this structure. This segre-
gated processing is adapted for tractability – both conceptual tractability
and tractability of hardware implementation. The optimal receiver for
virtually any system is conceptually simple, yet typically prohibitively
complex to implement. For example, consider the transmission of 1000
bits through a system of the form in Fig-I.1(a). These bits may undergo
forward error correction coding (FEC), interleaving, training insertion
(pilots, synchronization fields, training sequences, etc.), before modula-
tion and transmission. The channel may corrupt the modulated signal
through random distortions (possibly time-varying and non-linear), like-
signal interference (co-channel, multiple access, cross-talk, etc.), and ad-
ditive noise. The point is, regardless of the complexity of the transmitter
and/or channel, the optimal receiver would compute 21000 likelihoods
and select the data sequence1 that most closely matches the assumed

1As described in detail in Chapter 1, one could average these likelihoods to obtain bit likeli-
hoods if optimal bit decisions are desired instead of the optimal sequence decision.

xvii

xviii ITERATIVE DETECTION

modulation

noise

like-signal interference
distortion (filtering, fading etc.)

demodulation

estimation
channel

demodulationdecoder
deinterleaving

and
unformatting mitigation

channel
bit decisions

(b)

estimation
channel

demodulation

channel
coding and formatting

interleaving ak

source coder
bits from

(a)

exhaustive

transmitter model
accurate channel and

bit decisions
likelihood

search
(c)

decoder mitigation
channel

bit decisions deinterleaving
unformatting
interleaving
formatting

possibly a single
processor

(d)

channel

Figure I.1. (a) A typical communication block diagram, (b) a traditional segmented
receiver design, (c) the optimal receiver processing, and (d) a receiver based on iter-
ative detection principles. The formatting includes insertion of framing and training
information (overhead). Channel mitigation includes tasks such as equalization, di-
versity combining, array combining, etc.

model. This is shown in Fig-I.1(c). Ignoring the obvious complexity
problems, this requires a good model of the transmitter formatting and
the channel effects. For example, the likelihood computation mentioned
above may include averaging over the statistics of a fading channel model
or the possible data values of like-signal interferers.

The approaches described in this book are exciting because they en-
able receiver processing that can closely approximate the above “holy
grail” with feasible conceptual and implementation complexity. Specifi-
cally, data detection and parameter estimation are done using the entire
global system structure. Unlike the direct approach in Fig-I.1(c), the
iterative receiver in Fig-I.1(d) exploits this structure indirectly. The key
concept in this approach is the exchange and updating of “soft infor-
mation” on digital quantities in the system (e.g., the coded modulation
symbols). This concept is shown in Fig-I.1(d). The iterative detection

INTRODUCTION xix

receiver is similar to the conventional segregated design in that, for each
subsystem block in the model, there is a corresponding processing block.
In fact, each of these corresponding processing blocks in the receiver of
Fig-I.1(c) exploits only local system structure – e.g., the FEC decoder
does not use any explicit knowledge of the channel structure. As a conse-
quence, the complexity of the receiver in Fig-I.1(d) is comparable to the
traditional segregated design in Fig-I.1(b) (i.e., the increase in complex-
ity is usually linear as opposed to the exponential increase in complexity
associated with the optimal processing in Fig-I.1(c)).

The distinction between the conventional segregated design and that
in Fig-I.1(d), however, is that the processing for each sub-block in Fig-
I.1(d) is biased by some beliefs on its inputs and outputs. These beliefs
(also referred to as reliabilities, soft decision, soft information) are pro-
vided to each local processing unit by other processing units connected
to it. These beliefs represent marginal soft information in that they are
beliefs on the individual symbols as opposed to the entire sequence. The
task of the processing unit is to update the beliefs on the input and out-
put variables of the corresponding system sub-block in Fig-I.1(a). Each
sub-block processing unit will be activated several times, each time bi-
ased by a different (updated) set of beliefs.

For example, suppose that a system using convolutional coding and in-
terleaving experiences severe like-signal interference and distortion over
the channel. In this case, the channel mitigation block in Fig-I.1(b) will
output hard decisions on the coded/interleaved bit sequence ak. Suppose
that, given the severity of the channel, the error probability associated
with these coded-bit decisions will be approximately 0.4. Deinterleaving
these decisions and performing hard-in (Hamming distance) decoding of
the convolutional code will provide a very high bit error rate (BER) –
i.e., nearly 0.5.

For the receiver in Fig-I.1(d), however, the channel mitigation block
produces soft-decision information on the coded/interleaved bit sequence
ak. For example, this may be thought of as two numbers P[ak = 1] and
P[ak = 0] that represent a measure of current probability or belief that
the k-th coded bit ak takes on the value 1 or 0, respectively. Clearly,
soft decisions contain more information than the corresponding hard
decisions. In this example, it is possible that even though the hard
decisions on ak associated with the receiver of Fig-I.1(b) are hopelessly
inaccurate, the soft decision information contains enough information to
jump-start a decoding procedure. For example, two different possible
sequences of soft decision information are shown in Table I.1. Note that
each of these correspond to exactly the same hard decision information
– i.e., the hard decisions obtained by thresholding the soft information

xx ITERATIVE DETECTION

k: 0 1 2 3 4 . . .

true data: 0 0 1 0 1
case A: (0.99, 0.01) (0.97, 0.03) (0.51, 0.49) (0.48, 0.52) (0.03, 0.97)
case B: (0.51, 0.49) (0.55, 0.45) (0.51, 0.49) (0.48, 0.52) (0.48, 0.52)

decisions: 0 0 0 1 1

Table I.1. Example of two sequences of soft information implying the same hard
decisions, but containing very different soft information. The soft information is
given as (P[a0 = 0], P[a0 = 1]).

is the same.2 However, the soft information in case B is much worse
than that in case A. Specifically, for case A, there is a high degree of
confidence for correct decisions and very low confidence for incorrect
decisions. For case B, there is little confidence in any of the decisions.

A receiver of the form in Fig-I.1(d) would pass the soft information
through a deinterleaver to a soft-in decoder for the convolutional code.
This decoder is a modified version that produces beliefs on the coded
bits as well as the uncoded bits. Thus, after activation of this decoder,
one could make a decision on the uncoded bits. Alternatively, the up-
dated beliefs on the coded bits could be interleaved and used in the role
of a-priori probabilities to bias another activation of the channel mitiga-
tion processing unit in Fig-I.1(d). In fact, this process could be repeated
with the channel mitigation and FEC decoder exchanging and updating
beliefs on the coded bits through the interleaver/deinterleaver pair. Af-
ter several iterations, final decisions can be made on the uncoded bits by
thresholding the corresponding beliefs generated by the code processing
unit. This is what is meant by iterative detection.

Note that, in this example, even though the hard decision information
on the coded bits after activating the channel mitigation processing unit
is very unreliable (e.g., an error rate of 0.4), the soft information may
allow the FEC decoder to draw some reasonable inference. For example,
if the soft information is that of case A in Table I.1, then the FEC
decoder may update the beliefs as to over-turn the unreliable (incorrect)
decisions and re-enforce the reliable decisions (i.e., the correct ones in
this example). Note that this updating takes into account only these
marginal beliefs on the coded bits and the local code structure.

In summary, the receiver processing in Fig-I.1(d) closely approximates
the performance of the optimal processing in Fig-I.1(c) with complexity
roughly comparable to that of the traditional segmented design in Fig-

2In general, hard decisions are obtained from a soft information measure by selecting the
conditional value (e.g., ak = 1 or ak = 0) associated with the largest belief.

INTRODUCTION xxi

I.1(b). It does so by performing locally optimal processing which exploits
the local system structure and updating and exchanging marginal soft
information on the subsystem inputs and outputs.

Complexity Reduction Since the processing of Fig-I.1(d) approxi-
mates the performance of the optimal processing with much lower com-
plexity, iterative detection may be viewed as a complexity reduction
tool. This complexity reduction is based on the partitioning or decom-
position of the system into subsystems. Specifically, the complexity of
the receiver in Fig-I.1(d) is roughly the sum of the complexities of the
individual processing units, multiplied by the number of times each is
activated (i.e., the number of iterations). Since each of these processors
uses only local structure, the associated complexity is roughly the same
as the optimal decoder for that subsystem in isolation. For example, in
the soft-decoder described in the above example has roughly the same
complexity as the well-known Viterbi algorithm. A key conceptual point
is that the partitioning described is entirely arbitrary. One can choose
to decompose the system into any number of equivalent block diagrams,
each of which faithfully represents the system structure. This modeling
choice, however, impacts the complexity of the associated processors in
Fig-I.1(b) and Fig-I.1(d). For example, the receiver in Fig-I.1(c) corre-
sponds to a model without decomposition and is prohibitively complex.
Furthermore, the notion that exchanging and updating soft information
can be a replacement for hypothesis searching effort can be exploited
aggressively to provide complexity reduction for systems which may not
even have been modeled as a concatenation of subsystems. This provides
motivation for the material in Chapter 3.

Adaptivity Acquisition and tracking of channel parameters (e.g.,
carrier phase and frequency, symbol synchronization, channel impulse
response, etc.) can also be included into the iterative processing of Fig-
I.1(d). In the above example, the interference and distortion associated
with the channel may be unknown and/or time-varying. Therefore, the
channel mitigation processor should estimate and track these parame-
ters (possibly aided by some training signals). In an iterative detector,
it is possible to re-estimate these parameters at each activation of the
channel mitigation processing unit. The estimates are different for each
of these activations because the reliability information biasing this es-
timation changes. Specifically, it is refined by the code processor using
the structure of the code. Thus, through the passing of marginal soft in-
formation and iteration, the channel estimator indirectly uses the global
system structure. Intuitively, a decision directed estimation processor

xxii ITERATIVE DETECTION

can operate with the coding gain even when isolating interleavers are
present. For an isolated system, this may be possible using joint pa-
rameter estimation and data detection (e.g., Per-Survivor Processing).
However, these adaptive iterative detection approaches, which are dis-
cussed in Chapter 4, are applicable to systems comprising concatenated
subsystem (e.g., concatenated codes with interleaving).

Applicability and Impact Notice that in the above discussion, we
have not mentioned “turbo codes.” While the decoding of these pow-
erful concatenated codes is the most well-known and celebrated special
case of iterative detection, it represents a very special case of a broadly
applicable concept. Iterative detection is applicable to virtually every
practical digital communication system and can provide significant gains
in performance and/or complexity reduction. Most significantly, we as-
sert that this can lead to a true paradigm shift in digital communica-
tion systems design. Specifically, this shift is from segmented design
paradigm to the joint-design paradigm which is enabled by the methods
described above. With this new paradigm, systems can operate reliably
in much more severe regimes. Examples of these gains will be given
throughout this book. With the new paradigm, practical codes virtually
achieve the Shannon bound. Like-signal interference that cripples the
most powerful multiuser detectors in the segmented design paradigm,
is bearable when the global system structure (e.g., FEC) is used to aid
interference mitigation. Phase dynamics that break phase-lock loops at
moderate signal to noise ratios (SNRs) function well at extremely low
SNR by exploiting coding gain in the estimation process. Furthermore,
these significant gains can be achieved with hardware complexity that is
either well within today’s technology or feasible in the near term.

Abbreviations
A number of abbreviations used throughout the book are listed in

Table I.2. In addition, for those chapters where a number of additional
abbreviations are used, a similar table of those chapter-specific abbrevi-
ations is included at the end of the chapter.

Notational Conventions
We try to follow general conventions for notation throughout this

book. In some cases more explicit notation is desirable (i.e., in intro-
ducing concepts) which later becomes cumbersome and is abbreviated
for compactness. A summary of the notation and conventions used is
given in Table I.3, which is divided roughly into typefaces, standard sig-
nal and systems notation, quantities related to probability, quantities

INTRODUCTION xxiii

8-PSK 8-ary Phase Shift Keying
A-SISO Adaptive Soft Input Soft Output
A-SODEM Adaptive Soft-output Demodulator
ACS Add Compare Select
AL Average Likelihood
APP A-Posteriori Probability
AR Auto Regressive
ARMA Auto Regressive Moving Average
AWGN Additive White Gaussian Noise
BCJR Bahl Cocke Jelineck and Raviv
BER Bit Error Rate
BPA Belief Propagation Algorithm
BPSK Binary Phase Shift Keying
CC Convolutional Code
CDMA Code Division Multiple Access
CM Combining and Marginalization (problem)
CSI Channel State Information
DD-PLL Decision Directed Phase Locked Loop
DDFSE Delayed Decision Feedback Sequence Estimate
DFE Decision Feedback Equalization
DLM Digital Least Metric (problem)
EC Estimator Correlator
FBT Forward/Backward-Tree
FI Fixed-Interval
FIR Finite Impulse Response
FL Fixed-Lag
FL-SISO Fixed Lag Soft Input Soft Output (module)
FSM Finite State Machine
GAP Generalized A-posteriori Probability
GDL Generalized Distributive Law
GL Generalized Likelihood
GM Gauss Markov
HID Hard-In Decoding
ID Iterative Detection
ISI Intersymbol Interference
iid Independent, Identically Distributed
KF Kalman Filter
L2VS Lee and Li Vucetic Sato (algorithm)
LDPC Low Density Parity Check (code)
LMS Least Mean Squares
LS Least Squares

Table I.2. Table of abbreviations (continued on next page)

related to soft information. Further notation is introduced as needed
throughout the book.

Our emphasis is on post-correlator receiver processing, so we deal with
discrete index sets almost exclusively (i.e., referencing the literature for

xxiv ITERATIVE DETECTION

M-PSK M-ary Phase Shift Keying
MAI Multiple Access Interference
MAP Maximum A-posteriori Probability
MAP-PgD MAP Page Detection
MAP-SqD Maximum A-posteriori Probability Sequence Detection
MAP-SyD Maximum A-posteriori Probability Symbol Detection
ML Maximum Likelihood
ML-SqD Maximum Likelihood Sequence Detection
ML-SyD Maximum Likelihood Symbol Detection
MMSE Minimum Mean Square Error
MPF Marginalized Product Function
MSE Mean Square Error
MSM Minimum Sequence (or Sum) Metric
M∗SM Min∗ Sum Metric
PAM Pulse Amplitude Modulation
PCCC Parallel Concatenated Convolutional Code
pdf Probability Density Function
PLL Phase Locked Loop
pmf Probability Mass Function
POM Page-oriented Optical Memory
PSP Per-Survivor Processing
QPSK Quadrature Phase Shift Keying
RA Repeat-Accumulate (code)
RLS Recursive Least Squares
RSC Recursive Systematic Code
SCCC Serial Concatenated Convolutional Code
SEP Symbol Error Probability
SID Soft-In Decoding
SISO Soft Input Soft Output (module)
SNR Signal-to-Noise Ratio
SOA Soft Output Algorithm
SOBC Soft Output BroadCaster
SODEM Soft Output Demodulator
SOMAP Soft Output MAPper
SOVA Soft Output Viterbi Algorithm
SW Sliding-Window
TCM Trellis Coded Modulation
TDMA Time Division Multiple Access
TH THreshold detector
USI Uniform Side Information
VA Viterbi Algorithm

Table I.2. (Continuation) Table of abbreviations

the models assumed). Unless specified otherwise, we use the implicit
convention that a digital quantity vn takes on values in V with index
range n = 0, 1, . . . (N − 1). Furthermore, the cardinality of the alphabet
V is denoted by |V| and, unless otherwise specified, V = {0, 1 . . . (|V| −

INTRODUCTION xxv

1)}. A digital sequence denoted by b is implicitly binary. Using the same
time index variable implies that the two sequences are defined on the
same time-scale (e.g., ak and xk). This is often not the case in systems
considered (e.g., multiple bits per symbol), so we use different index
variables to emphasize this when appropriate (e.g., am and xn). Digital
symbols corrupted unintentionally are typically denoted by letters near
the end of the alphabet (i.e., , x, y). Continuous valued variables are
limited for the most part to channel parameters, noise, and channel
observations. Channel parameters are typically denoted by f , g, h, or
θ. Noise is denoted by n or w. The channel observation is denoted by z
or possibly r.

A random quantity is indicated by explicitly denoting the sample
space variable ζ. For example, v(ζ) is a random variable. By implication,
the same variable without the sample space argument is a realization
or conditional value of that random quantity – e.g., v is a realization
v(ζ). We will often work with both probability density functions (for
continuous random variables/vectors), probability mass functions (for
discrete random quantities), and mixtures thereof. In our notation, these
different measures are to be distinguished implicitly since, for simplicity,
we denote all by p(·).

We consider baseband equivalent models throughout this book.
The associated normalization is based on the convention that ṽ(t) =
�
{
v(t)
√

2 exp(−j2πfct)
}

where ṽ(t) is a passband signal and v(t) is the
complex baseband equivalent, fc is the reference (carrier) frequency, and
j =
√
−1. Under this convention, after correlation to a normalized ver-

sion of v(t), a signal with energy Ev will be obtained. If additive white
Gaussian noise (AWGN) with two-sided spectral level N0/2 is present,
the corresponding post-correlator noise will have variance N0/2 in each
dimension. Thus, when we consider a real-valued scalar model of the
form zk = ak + wk, then E{a2

k} = Ea, E{wk} = 0, and E{w2
k} = N0/2.

If the same baseband model is complex, then E{|ak|2} = Ea, E{wk} = 0,
and E{|wk|2} = N0 with the noise being a circular complex process so
that E{� {wk}2} = E{� {wk}2} = N0/2. The shorthand used for Gaus-
sian and complex Gaussian densities is

Nn(z;m;K) =
1√

2π|K|
exp

[
−1

2
(z−m)TK−1(z−m)

]

N cc
n (z;m;K) =

1
π|K| exp

[
−(z−m)HK−1(z −m)

]
Soft information on various random digital quantities can be expressed

in a number of ways. While these variations are described in detail in
the following chapters, we use the general notation S[v] (i.e., square

xxvi ITERATIVE DETECTION

brackets) to denote some soft information on a digital random variable
v(ζ). Much like in a pmf, v represents a conditional value for v(ζ), so
that S[v] corresponds to |V| numbers. To emphasize a soft information
on a specific conditional value (e.g., 0), we will use S[v = 0].

Typefaces

bold lower case column vector (e.g., v)
bold upper case matrix (e.g., V)
calligraphy set (e.g., A)
san serif system (e.g., M)

Signals, Systems, Algebra

|A| cardinality of set A
(·)∗ complex conjugate
(·)T vector or matrix transpose
(·)H vector or matrix complex conjugate and transpose
�{·} real part
�{·} imaginary part
KI pseudo-inverse of matrix K
vn

m column vector [vn, vn−1, . . . , vm]T

(v implies the entire index range)
|K| determinant of matrix K
δk Kronecker delta function with argument k
I{q} Indicator function (1 iff q is true)
∆= equality by definition
∼= approximately equal
R set of real numbers
C set of complex numbers
O(N) order N (big-0)
N0/2 Noise spectral level
Eb (Es) energy per bit (symbol)
� convolution
sk trellis (or finite state machine) state
tk trellis (or finite state machine) state transition
L memory of a simple FSM

Table I.3. Table of notational conventions (continued on next page)

INTRODUCTION xxvii

Probability

z(ζ) random variable
pz(ζ)(z) pdf (pmf) of a continuous (discrete) random variable
pz(ζ),a(ζ)(z, a) joint mixed pdf/pmf for a continuous (z(ζ)) and

a discrete (a(ζ)) random variable
P (A) probability of the event A
Pr {v(ζ) ∈ D} probability of the event {ζ : v(ζ) ∈ D}
�{·} ensemble averaging (expectation)
�z(ζ) {·} expectation with respect to z(ζ)
var [z(ζ)] variance of the random variable z(ζ)
Nn(z;m;K) n-dimensional Gaussian pdf with mean m,

(nonsingular) covariance matrix K and argument z
N cc

n (z;m;K) same as above, for complex circular Gaussian pdf

Soft Information

≡ equivalence
∆≡ defined as an equivalent quantity
∼ related by isomorphism
©c combining operator

©c −1
inverse combining operator

©m marginalization operator
min∗ min-star operator
S[a] generic soft information on a
SI[a] generic (extrinsic) soft-in information on a
SO[a] generic (extrinsic) soft-out information on a
P[a], PI[a], PO[a] same as above, for soft information in the probability domain
M[a], MI[a], MO[a] same as above, for soft information in the metric domain
M−s soft inverse of system M
x : u all possible x consistent with u

Table I.3. (Continuation) Table of notational conventions

Chapter 1

OVERVIEW OF NON-ITERATIVE
DETECTION

1.1 Decision Theory Framework
A general decision problem can be formulated for our purposes as

involving three components

The source: producing a hypothesis, modeled as a random variable
H(ζ) that takes on a finite number of values {H0,H1, . . . H|H|−1}. A
statistical model of the source is the a-priori probability pH(ζ)(Hm)
for each hypothesis.
The channel: providing an observation z(ζ). The statistical descrip-
tion of z(ζ), conditioned on each of the possible hypotheses, is as-
sumed available at the channel.
The decision rule: mapping a realization of z(ζ) to an action (e.g.,
declaring a hypothesis to be true) in the action space based on knowl-
edge of the source and channel models.

The objective is to obtain a decision rule which is optimal with respect
to some criterion given a specific model of the source and channel. This
framework is illustrated in Fig-1.1. There are several excellent books
that treat decision theory for engineers [He60, Mi60, We68, Va68, Po94].
Our goal is to introduce these concepts to the point where the relation-
ship between different data detection methods will be clear. Thus, our
focus is on a small subset of the material covered in these references.

We focus on the case where the a-priori statistics of the source are
known to the receiver and thus can be used in the decision rule. Fur-
thermore, we assume that there are a finite number of allowable actions.
In most cases of interest there is a one-to-one correspondence between
the actions and the hypotheses such that action Am corresponds to de-
ciding or declaring that Hm is true. The decision rule is defined by a

1

2 ITERATIVE DETECTION

Z A

p(Am|z)p(z|Hn)

H

p(Hn)

Figure 1.1. The set-up for general decision problems considered.

probability mass function (pmf) d(Am|z) = pA(ζ)|z(ζ)(Am|z). Admissi-
ble decision rules are those for which the action A(ζ) is independent of
the hypothesis when conditioned on the observation. A deterministic
decision rule is one with all probability mass located at one action (i.e.,
d(Am|z) is one for some value of m and zero for others). A deterministic
rule yields, conceptually at least, a partitioning of the observation space
into the decision regions Zm – i.e., Z = ∪mZm and {Zi} are disjoint
– as illustrated in Fig-1.2. It is desirable to reduce the decision rule to
this form since it represents a simple receiver implementation.

A4

A5A0

A7

A1
A3

Z3

Z1

Z2

Z4

Z6

Z7

Z0

Z5

A2

Z A

A6

Figure 1.2. Decision rule implemented as a partition of the observation space.

In some cases the statistical description of the channel (e.g., p(z|Hn)
for n = 0, 1, . . . |H|− 1) will be most conveniently expressed with an ad-
ditional condition on a finite set of parameters Θ. One can associate a
statistical model for these unknown parameters provided by {p(Θ|Hm)}
or simply model the parameter as an unknown deterministic param-
eter. In the latter case, one may still impose some structure on the
parameters. For example, the energy of a signal may be modeled as a
deterministic constant, but it is known to be non-negative. It is im-
portant to distinguish the model used for the purposes of designing a
decision rule and other possible models. For example, one may select a

Overview of Non-Iterative Detection 3

deterministic model for a random parameter if there is little confidence
in the available probabilistic models. As another example, an accepted
model for a fading channel may be a random process with nonrational
power spectral density, but for the purposes of designing the decision
rule one may select an approximation to this model with rational power
spectral density.

1.1.1 The Bayes Decision Rule
A Bayes decision rule minimizes the average Bayes risk R(d) over all

admissible decision functions, where

R(d) =
∫
Z

pz(ζ)(z)

[∑
m

d(Am|z)C(Am|z)
]

dz (1.1)

where Z is the observation space and C(Am|z) is the cost (or risk) asso-
ciated with taking action Am, given z(ζ) = z, averaged over the source
statistics

C(Am|z) =
∑

i

C(Am,Hi)pH(ζ)|z(ζ)(Hi|z) (1.2)

The finite set of coefficients {C(Am,Hi)}m,i specifies the cost of taking
action Am with Hi occurring. These coefficients relate the Bayes risk to
some more tangible optimization criterion as described in the subsequent
development.

It follows from (1.1) that any rule that takes action Am with the
property that C(Am|z) ≤ C(Ai|z) for all i is a Bayes rule. The Bayes
rule is generally not unique because of “tie” conditions where two or
more actions have the same cost. In this case the total probability mass
may be spread among these best actions in any way. One can always
obtain a deterministic Bayes rule by breaking these tie conditions in a
deterministic manner (e.g., select the action with the smallest index).
Thus, we will use the notation

Bayes action = arg min
m

C(Am|z) (1.3)

Note that the A-Posteriori Probability (APP) of H(ζ) = Hm given a
realization of z(ζ) can be written as

pH(ζ)|z(ζ)(Hm|z) =
pz(ζ)|H(ζ)(z|Hm)pH(ζ)(Hm)

pz(ζ)(z)
(1.4a)

≡ pz(ζ)|H(ζ)(z|Hm)pH(ζ)(Hm) (1.4b)

where ≡ is used to denote an equivalence between quantities in terms of
information on the hypothesis H(ζ). Specifically, the term pz(ζ)(z) may
be dropped since it is not a function of the hypothesis.

4 ITERATIVE DETECTION

The Maximum A-Posteriori Probability (MAP) decision rule is the
special case of the Bayes rule when Am corresponds to deciding that Hm

is true and C(Am,Hi) = 1 − δm−i. This may be seen by substituting
these cost coefficients into (1.2) and noting that

C(Am|z) =
∑
i�=m

pH(ζ)|z(ζ)(Hi|z) = 1− pH(ζ)|z(ζ)(Hm|z) (1.5)

so that minimization of the Bayes risk is equivalent to maximization of
pH(ζ)|z(ζ)(Hm|z). Furthermore, substituting the coefficients C(Am,Hi)
= 1−δm−i into (1.1)-(1.2), it is straightforward to show that the average
risk is the probability of error. Thus, the MAP decision rule minimizes
the probability of error for the |H|-ary decision problem. For the spe-
cial case of uniform a-priori probability on the hypotheses, the APP
p(Hm|z) is equivalent to the likelihood p(z|Hm). Thus, the term Max-
imum Likelihood (ML) is often used to describe the MAP detector for
this special case. While one could use an ML rule in a case when the
a-priori probabilities are not uniform (i.e., not MAP detection), when
we use the term ML detection, it is implicitly assumed that the a-priori
probabilities are uniform.

1.1.2 Composite Hypothesis Testing
When the conditional statistical description of the observation also

depends on a parameter Θ, the decision problem is often called a com-
posite hypothesis test. The term “composite” refers to the fact each
hypothesis Hm represents many possibilities of the form (Hm,Θ).

Specifically, suppose that p(z|Hm,Θ) is known for each hypothesis and
each allowable value of the nuisance parameter (set) Θ(ζ). A random
model has been assumed for the parameter and p(Θ|Hm) is also assumed
to be known for the purposes of inferring on H(ζ). Defining the decision
rule in this case is no more difficult, conceptually at least, since

pz(ζ)|H(ζ)(z|Hm) =
∫

pz(ζ)|H(ζ),Θ(ζ)(z|Hm,Θ)pΘ(ζ)|H(ζ)(Θ|Hm)dΘ

= EΘ(ζ)|H(ζ)

{
pz(ζ)|H(ζ),Θ(ζ)(z|Hm,Θ(ζ))|Hm

}
(1.6)

Thus, from the composite problem, one can obtain the likelihood in
(1.6) and proceed as described in Section 1.1.1. To emphasize that the
resulting Bayes rule incorporates the expectation in (1.6), it may be said
that the Bayes rule minimizes the risk averaged over Θ(ζ). Similarly, the
likelihood pz(ζ)|H(ζ)(z|Hm) is often referred to as the average likelihood.
In many cases of interest, Θ(ζ) is statistically independent of H(ζ).
Finally, the special case where the nuisance parameter is a sinusoidal

Overview of Non-Iterative Detection 5

carrier phase φ(ζ), uniformly distributed over an interval of length 2π,
is very common. In this case, the decision rule is often referred to as
(phase) noncoherent detection.

In the case where Θ is modeled as unknown and deterministic, defining
an optimality criterion for the decision rule is more nebulous. Specif-
ically, the risk associated with a reasonable rule often depends on the
actual value of Θ. One common approach is to use the most likely value
of Θ, conditioned on z and Hm to provide a representative from the
set of likelihoods pz(ζ)|H(ζ)(z|Hm; Θ), where the notation p(·; Θ) denotes
parameterization by Θ. Specifically, the generalized likelihood is defined
by [Va68]

gz(ζ)|H(ζ)(z|Hm) ∆= pz(ζ)|H(ζ)(z|Hm; Θ)
∣∣
Θ=Θ̂(z,Hm)

(1.7a)

Θ̂(z,Hm) = arg max
Θ

pz(ζ)|H(ζ)(z|Hm; Θ) (1.7b)

As mentioned earlier, the optimization in (1.7b) may be restricted to
some set if such information is available about Θ. The generalized like-
lihood may then be used in place of pz(ζ)|H(ζ)(z|Hm) in designing a de-
cision rule. We refer to the rule that uses the generalized likelihood in
place of the (average) likelihood in (1.2) as the generalized Bayes deci-
sion rule, or, for the special case of (1.5), the generalized MAP rule. Use
of generalized likelihood, however, is ad-hoc and, in general, does not
optimize a well-defined cost criterion [Va68].

Notice that the average and generalized likelihoods differ only in the
manner in which they marginalize out the parameter from the composite
test. Specifically, this is done by maximizing in the generalized likelihood
case and ensemble averaging in the average likelihood case. It may be
reasonable to consider using maximization even when a probabilistic
model is assumed for the nuisance variable. Specifically, we will also
consider “likelihoods” of the form

gz(ζ)|H(ζ)(z|Hm) = max
Θ

p(z|Hm,Θ)p(Θ|Hm) (1.8)

which is simply (1.6) with the expectation replaced by maximization. We
also refer to this as generalized likelihood. Thus, generalized likelihood
refers to (1.7) and (1.8) in the contexts of deterministic and random nui-
sance parameter models, respectively. When we wish to emphasize the
difference, we use the term d-generalized and p-generalized for (1.7) and
(1.8), respectively, to remind the reader of the deterministic or proba-
bilistic nuisance parameter model.

Note that (1.7) and (1.8) may be viewed as using the ML and MAP
estimates of Θ in place of the true value of Θ in the probability density

6 ITERATIVE DETECTION

function (pdf) of z conditioned on H(ζ) = Hm. Thus, when estimation
of Θ may be expected to be reliable (e.g., high SNR), one expects the
generalized likelihood approach to work well. Problem 1.7 provides an
example to compare average and generalized likelihoods.

1.1.3 Statistical Sufficiency
The Bayes decision rule can always be expressed in terms of the like-

lihoods pz(ζ)|H(ζ)(z|Hm). Thus, these likelihoods form a set of sufficient
statistics for obtaining the Bayes rule from the observation z. In many
cases of interest, however, a simpler set of sufficient statistics exists. In-
formally, if one begins with the likelihood and simplifies via equivalence
relationships (i.e., dropping terms that do not depend on Hm), then the
result is a set of sufficient statistics. In other words, if the equivalent of
the likelihoods p(z|Hm) can be expressed in terms of s(z|Hm) for each
possible hypothesis, then {s(z|Hm)} is a set of sufficient statistics for
deciding on H(ζ) from z.

Example 1.1.
Consider the case of deciding between signals corrupted by AWGN

z(ζ) = x(H(ζ)) + w(ζ) (1.9)

It is straightforward to verify that s(z|Hm) = zTx(Hm) for m = 0, 1, . . .
|H| − 1, is a set of sufficient statistics. Note that the dimension of ob-
servation z can be larger than |H| so that it is often the case that one
cannot reconstruct z from S = {s(z|Hm) = zTx(Hm)}, but the associ-
ated likelihood can be reconstructed.

End Example

More formally, S(ζ) is a set of sufficient statistics for deciding on H(ζ)
from z if

pz(ζ)|S(ζ),H(ζ)(z|S,Hm) = pz(ζ)|S(ζ)(z|S) ∀ m (1.10)

Notice that if (1.10) holds then

pz(ζ),S(ζ)|H(ζ)(z,S|Hm) = pz(ζ)|S(ζ)(z|S)pS(ζ)|H(ζ)(S|Hm) (1.11)

which means that the likelihood p(z|Hm) is equivalent to the likelihood
p(S|Hm). In the engineering literature (1.11) is often summarized by
the notion of irrelevance [WoJa65]. Specifically, if (1.11) holds, then
z(ζ) is said to be irrelevant in the presence of S(ζ) for the purposes of
deciding on H(ζ). This also often leads to reformulating the problem
as an equivalent decision problem with S(ζ) treated as the observation.

Overview of Non-Iterative Detection 7

For example, in Example 1.1, one could obtain the joint pdf of vm(ζ) =
zT(ζ)x(Hm) for all m conditioned on H(ζ) = Hm and find the MAP
rule via this equivalent problem.

When there is a nuisance parameter, the conditional likelihoods
p(z|Hm,Θ) and p(z|Hm; Θ) always form a set of sufficient statistics for
the stochastic and deterministic parameter models, respectively. For the
average likelihood method, the notion of a sufficient statistic is clear since
the marginalization over Θ(ζ) in (1.6) yields the likelihood in (1.10). For
the generalized likelihood cases in (1.7) and (1.8), we define the statisti-
cal sufficiency analogously with p(·) in (1.10) replaced by g(·) as appro-
priate (i.e., with the averaging over Θ replaced by maximization). More
precisely, S is a set of sufficient statistics for deciding on H(ζ) from z
using a generalized rule for the nuisance parameter Θ if

gz(ζ)|S(ζ),H(ζ)(z|S,Hm) = gz(ζ)|S(ζ)(z|S) ∀ m (1.12)

where g(·) represents maximization of the associated pdf over Θ ac-
cording to (1.7) and (1.8) for the deterministic and random parameter
models, respectively.

1.2 MAP Symbol and Sequence Detection
In order to begin constructing the building blocks of iterative de-

tection receivers, we consider a typical example system which maps a
sequence of independent symbols {am}M−1

m=0 to a sequence of outputs
{xn}N−1

n=0 by some manner that is known at the receiver. The sequence
xn is then corrupted by a memoryless probabilistic channel to produce
the observation sequence zn. The arbitrary system is illustrated in Fig-
1.3 in three different block diagram conventions. With the implicit index

a1

a0

x1

x0

am xn
...

aM−1

aM−2

xN−1

xN−2

xa
M

(a) (b)

M

(c)

... M

Figure 1.3. The basic system block diagram in the (a) implicit index, (b) explicit
index, and (c) vector mapping conventions.

block diagram convention, shown in Fig-1.3(a), a set of input and output
variables are represented implicitly by am and xn respectively, as is the

8 ITERATIVE DETECTION

convention in much of the signal processing and communications litera-
ture. Each element of the input and output sequences is shown explicitly
in the explicit index convention of Fig-1.3(b). These explicit index block
diagrams are the graphical system models adopted in Chapter 2. In the
third convention, the system in viewed as a mapping from the input vec-
tor aM−1

0 to the output vector xN−1
0 . The following provides a simple

system example which is expanded upon through much of this chapter.

Example 1.2.
Consider bit-labeling of a non-binary signal set. In this context, the M
binary symbols am provide a bit label that uniquely corresponds to a
signal x(aM−1

0) in an 2M -ary signal set. As a specific example, we con-
sider the case of M = 2 and the simple (pulse amplitude modulation or
PAM) signal set. This convention is shown in Fig-1.4. Note that, since

H0 H1 H3 H2

00 01 11 10a1a0

−3A A 3A−A

Figure 1.4. Bit labeling of a 4-PAM signal set used as a simple example of a system.

there is only one output signal, the form in Fig-1.3(b) is a natural way
to represent this system.

End Example

With this fairly general system model, MAP detection of either a(ζ)
or am(ζ) for each value of m may be considered. The former, is an
|A|M -ary decision between sequences and is referred to as MAP Se-
quence Detection (MAP-SqD). The latter is an |A|-ary decision between
symbols and is referred to as MAP Symbol Detection (MAP-SyD). It
is important to note that any sequence decision rule implies a set of
symbol decision rules (i.e., one for each time index) and vice-versa since
there is a one-to-one correspondence between a set of symbol hypotheses
and sequence hypothesis. Thus, both the symbol and sequence decision
rules associated with MAP-SyD and MAP-SqD can be considered. In
the following, we develop these rules with an emphasis on their common
traits.

MAP Sequence Detection (MAP-SqD) Denoting the decision
for a(ζ) by â, for the MAP-SqD case, we obtain

â = arg max
a

pz(ζ)|a(ζ)(z|a)pa(ζ)(a) (1.13)

Overview of Non-Iterative Detection 9

The MAP-SqD decision rule implies a decision rule for am defined by

âm = arg max
am

P[am] (1.14a)

P[am] = max
a:am

pz(ζ)|a(ζ)(z|a)pa(ζ)(a) (1.14b)

where the notation u : v means all u consistent with v (i.e., it may be
read as “all u with v fixed”). While (1.14) simply says that the max-
imization of (1.13) can be performed in two stages, it is intended to
emphasize that the symbol decision under the MAP-SqD criterion may
be obtained by thresholding (maximizing) the soft information P[am].
The notation P[·] is used to denote some form of soft information such
as probability or likelihood. In fact, this corresponding symbol deci-
sion rule is a p-generalized MAP decision rule with nuisance parameter
{ai(ζ)}i�=m.

MAP Symbol Detection (MAP-SyD) The MAP-SyD is obtained
by the MAP rule for am(ζ) based on a realization of z(ζ). Specifically, the
MAP-SyD decision for am(ζ) is obtained by maximizing pam(ζ)|z(ζ)(am|z)
over all am ∈ A. Since pam(ζ)|z(ζ)(am|z) ≡ pz(ζ),am(ζ)(z, am) this may be
expressed as

âm = arg max
am

P[am] (1.15a)

P[am] =
∑
a:am

pz(ζ)|a(ζ)(z|a)pa(ζ)(a) (1.15b)

It should be noted that the symbol decision rules implied by the MAP
symbol and the MAP sequence optimality criteria may be written in
similar forms with the only difference being the manner in which the
joint information p(z,a) is converted to marginal information on am.
Specifically, this marginalization is accomplished by maximization and
summation over all other symbols at locations other than m for the
MAP-SqD and MAP-SyD cases, respectively. This may be viewed as
an example of the generalized and average likelihood computation for
(1.14b) and (1.15b), respectively, with nuisance parameter set Θ(ζ) =
{ai(ζ)}i�=m.

The form of the sequence decision rule implied by the set of MAP-
SyD rules for each symbol is less clear initially. It is straightforward,
however, to show that the |A|M -ary sequence decision rule implied is
that which minimizes the average number of symbol errors associated
with the sequence decision. To show this, let C(ã,a) denote the cost
associated with deciding a(ζ) = ã when the true sequence is a so that

10 ITERATIVE DETECTION

(1.2) specializes to

C(ã|z) ≡
∑
a

C(ã,a)pz(ζ)|a(ζ)(z|a)pa(ζ)(a) (1.16)

By comparison, the sequence decision implied by the MAP-SyD criterion
may be written as a sequence decision using the indicator function I{·}
as

â = [arg max
ã0

∑
a:ã0

p(z,a), . . . , arg max
ãM−1

∑
a:ãM−1

p(z,a)]T (1.17a)

= [arg max
ã0

∑
aI{a0=ã0}p(z,a), . . . , arg max

ãM−1

∑
aI{aM−1=ãM−1}p(z,a)]T

= arg max
ã

∑
a

[
M−1∑
i=0

I{ai=ãi}

]
p(z,a) (1.17b)

= arg min
ã

∑
a

dH(a, ã)p(z,a) (1.17c)

Each term inside the brackets in (1.17a) corresponds to P[am] in (1.15b)
and the maximization can be decoupled and performed on each term
independently yielding the MAP-SyD on each symbol as defined in
(1.15a). For a given a, the term p(z|a)p(a) will occur in a number
of the summations in (1.17a). Specifically, using the indicator func-
tion for the condition that am = ãm, I{am=ãm} (1.17b) is obtained.
Finally, with dH(ã,a) denoting the number of symbol disagreements
in a and ã (i.e., the Hamming distance), (1.17c) follows from the fact
that

∑M−1
m=0 I{am=ãm} = M − dH(a, ã). Comparing (1.16) and (1.17), it

is apparent that MAP-SyD yields the Bayes sequence decision associ-
ated with C(ã,a) = dH(ã,a). More precisely, minimization of C(ã|z)
in (1.16) with C(ã,a) = dH(ã,a) is equivalent to maximization shown
in (1.17). Furthermore, it follows from (1.16) that this choice of cost
coefficients yields a sequence decision rule that minimizes the average
number of symbol errors. In summary, the sequence decision rule in-
duced by MAP-SyD for each symbol is a (non-MAP) Bayes rule with
costs proportional to number of symbol differences between two hypoth-
esized and potential decision sequences.

The above development does not exploit the assumptions about the
source and the channel. The independent symbol sequence assumption,
implies the factorization pa(ζ)(a) =

∏
m pam(ζ)(am). Also, the memory-

less channel assumption implies that

pz(ζ)|a(ζ)(z|a) = pz(ζ)|x(ζ)(z|x(a)) =
N−1∏
n=0

pzn(ζ)|xn(ζ)(zn|xn(a)) (1.18)

Overview of Non-Iterative Detection 11

where the notation xn(a) denotes the value of xn(ζ) arising when a(ζ) =
a. The only assumption on the structure of the system is that specifying
the input a uniquely determines the output x, denoted by x(a).

In summary, we have that MAP-SqD and MAP-SyD are both optimal
under different criteria and both may be expressed as symbol decision
rules in terms of the marginal channel likelihoods and the a-priori prob-
abilities:

âm = arg max
am

[
max
a:am

p(z|x(a))p(a)
]

(MAP-SqD) (1.19a)

âm = arg max
am

[∑
a:am

p(z|x(a))p(a)

]
(MAP-SyD) (1.19b)

p(z|x(a))p(a) =
N−1∏
n=0

p(zn|xn(a))×
M−1∏
m=0

p(am) (1.19c)

Example 1.3.
Continuing with the Example 1.2, we consider MAP detection of a1

0
(i.e., MAP-SqD) and MAP detection of each am individually (i.e., MAP-
SyD). It may seem odd to view detection of am as “symbol detection”
in this case since it may be most natural to refer to x as the symbol
and {am} as bits. However, this is a consequence of the simplicity of
this system and the current context. Consider the case where z(ζ) =
x(a(ζ))+ w(ζ), and w(ζ) is a mean zero Gaussian random variable with
variance N0/2 (i.e., pw(ζ)(w) = N (w; 0;N0/2)) which is independent of
the input symbols. In this case

pz(ζ)|x(ζ)(z|x(a))pa(ζ)(a) = N (z;x(a);N0/2))p(a) (1.20a)

=
p(a0)p(a1)√

πN0
e

−[z−x(a1,a0)]2

N0 (1.20b)

Thus, MAP-SqD is achieved by a 4-ary maximization

â⇐ max
[
pa1(ζ)(0)pa0(ζ)(0)e

−(z+3A)2

N0 , pa1(ζ)(1)pa0(ζ)(0)e
−(z−3A)2

N0 ,

pa1(ζ)(1)pa0(ζ)(1)e
−(z−A)2

N0 , pa1(ζ)(0)pa0(ζ)(1)e
−(z+A)2

N0

]
(1.21)

If the input symbols are uniformly distributed so that p(a0)p(a1) = 1/4,
this reduces to the rule

â = arg max
a0,a1

e
−[z−x(a1,a0)]2

N0 = arg min
a0,a1

1
N0
|z − x(a1, a0)|2 (1.22)

12 ITERATIVE DETECTION

00 01 11 10a1a0

H0 H1 H3 H2

(b)

−3A −A A 3A

(a)

(c)

T−T

Figure 1.5. Decision regions for MAP-SqD in the 4-PAM example: (a) for a(ζ), (b)
for a1(ζ), and (c) for a0(ζ) with T = 2A.

the latter of which is the familiar minimum distance rule. The decision
regions for this case are illustrated in Fig-1.5(a). It is apparent that
the decision region for selecting â1 = 0 is (−∞, 0] with â1 = 1 selected
otherwise. Similarly, â0 = 0 is selected iff |z| > 2A.

For the MAP-SyD case, first consider detection of a1(ζ) via

â1 = arg max
a1

P[a1] (1.23)

P[a1 = 1] = pa1(ζ)(1)pa0(ζ)(0)e
−(z−3A)2

N0 + pa1(ζ)(1)pa0(ζ)(1)e
−(z−A)2

N0

P[a1 = 0] = pa1(ζ)(0)pa0(ζ)(0)e
−(z+3A)2

N0 + pa1(ζ)(0)pa0(ζ)(1)e
−(z+A)2

N0

For the special case of uniform a-priori probabilities on the inputs, this
can be simplified to

e
−(z−3A)2

N0 + e
−(z−A)2

N0

â1 = 1
>
<

â1 = 0

e
−(z+3A)2

N0 + e
−(z+A)2

N0 (1.24)

Note that the left side of (1.24) is obtained by negating the z argument
in the right side of (1.24). It follows that there is a tie condition at z = 0
and that the decision rule is a partition into positive and negative values
of z. Clearly, for z < 0, P[a1 = 0] > P[a1 = 1], so the rule is â1 = 1 iff
z > 0. This is the same as that implied by the MAP-SqD rule.

The MAP-SyD rule for a0(ζ) with uniform a-priori probabilities does
not reduce to that implied by the MAP-SqD rule. Specifically, following
similar steps as above and using the fact that cosh(z) = cosh(−z), we
obtain

exp
(
−4A2

N0

)
cosh

(
6A
N0
|z|
) â0 = 0

>
<

â0 = 1

exp
(

4A2

N0

)
cosh

(
2A
N0
|z|
)

(1.25)

Overview of Non-Iterative Detection 13

0.2

0.4

0.6

0.8

1

2A2/N0 (dB)

ε(N0/2)−1/2

−40 −20−30 −10 0
0

10

Figure 1.6. The deviation of the threshold for MAP-SyD a0 from that associated with
the MAP-SqD in the 4-PAM example. Note that this deviation is approximately zero
over the entire range of useful SNR.

The hyperbolic cosine is strictly monotonically increasing function
(SMIF) for non-negative arguments, so this may be written as

|z|
â0 = 0
>
<

â0 = 1

T =
(

N0

2A

)
f−1

(
exp

[
8A2

N0

])
(1.26)

where f(x) = cosh(3x)/ cosh(x) is invertible for x > 0 by the SMIF
property of the cosh(·). Notice that this test is of the same form as
the MAP-SqD rule. However, the threshold T for the MAP-SqD rule
is T = 2A, while for this MAP-SyD rule the threshold is a function of
the parameters A and N0. At moderate to high SNR (i.e., proportional
to A2/N0), we expect the rules to be approximately the same. In fact,
note that f(x) ∼= e2x for large x so that T tends toward 2A for large
SNR. This motivates expressing T in (1.26) as T = 2A + ε. The factor
ε/
√

N0/2 is plotted against SNR in Fig-1.6. Notice that ε/
√

N0/2 tends
toward a value of 1 as N0 → ∞ and tends toward zero for large SNR.

End Example

In order to further develop the commonality of the MAP sequence
and symbol detectors, it is instructive to consider both operating in the
“metric” domain. Specifically, given a probability or likelihood on a
quantity v, we define the associated metric as − ln[p(v)]. Note that the
equivalence operation in the “probability” domain is multiplication by
any positive constant which translates to addition of any finite-valued
constant in the metric domain. Specifically, − ln p′(v) ≡ − ln p(v) + h
where h is any finite constant. Using these conventions, the MAP-SqD

14 ITERATIVE DETECTION

relations in (1.19a) can be expressed directly in the metric domain as

âm = arg min
am

[
min
a:am

(− ln p(z|x(a)) − ln p(a))
]

(MAP-SqD) (1.27a)

− ln p(z|x(a)) − ln p(a)=−
N−1∑
n=0

ln p(zn|xn(a))−
M−1∑
m=0

ln p(am) (1.27b)

which follows directly using the fact that the − ln p(·) and max(·) oper-
ations commute.

Expressing the MAP symbol decision rule in the metric domain is
complicated by the fact that the − ln p(·) and summation operations do
not commute. However, defining the min∗(·) operator [RoViHo95] as
(see Problem 1.2)

min∗(x, y) ∆= − ln
(
e−x + e−y

)
(1.28a)

= min(x, y)− ln(1 + e−|x−y|) (1.28b)

min∗(x, y, z) ∆= − ln
(
e−x + e−y + e−z

)
(1.28c)

= min∗(min∗(x, y), z) (1.28d)

we can also express the MAP-SyD rule in the metric domain. Notice
that min∗(x, y) is neither x nor y in general. Also, when |x− y| is large
min∗(x, y) ∼= min(x, y). Using this definition, the MAP-SyD rule in
(1.19b) is obtained in the metric domain as

âm = arg min
am

[
min
a:am

∗ (− ln p(z|x(a)) − ln p(a))
]

(MAP-SyD) (1.29)

where − ln p(z|x(a)) − ln p(a) may be computed as in (1.27b).

Example 1.4.
The process described in Example 1.3 can be be carried out in the metric
domain using the development above. For example, the second expres-
sion in (1.22) is already in the metric domain. Furthermore, (1.24) and
(1.25) can be expressed, respectively, in the metric domain as

min∗
(

[z − 3A]2

N0
,
[z −A]2

N0

) â1 = 1
>
<

â1 = 0

min∗
(

[z + 3A]2

N0
,
[z + A]2

N0

)
(1.30)

8A2

N0
+ min∗

(
−6A
N0
|z|, 6A

N0
|z|
) â0 = 0

>
<

â0 = 1

min∗
(
−2A
N0
|z|, 2A

N0
|z|
)

(1.31)

To obtain the ML-SyD rule for a1 directly from (1.30), see Problem 1.11.
End Example

Overview of Non-Iterative Detection 15

1.2.1 The General Combining and Marginalization
Problem and Semi-Ring Algorithms

Expressing the MAP symbol and MAP sequence decision rules as
thresholded1 versions of some soft information on the conditional sym-
bol value am has been accomplished in both the probability and metric
domains. Inspecting (1.19a), (1.19b), (1.27a) and (1.29), four marginali-
zation operators are identified: max,

∑
, min, and min∗, respectively.

Each of these marginalization operators converts joint soft information
on input-output pair (a,x(a)) to marginal soft information on the con-
ditional values of the symbols {am(ζ)}. Furthermore, the combining
operators used in the probability and metric domains are

∏
and

∑
,

respectively. Note that these combining operators combine marginal
soft information on am and xn(a) to obtain soft information on the
input-output pair (a,x(a)) by either summing metrics or multiplying
probabilities and/or likelihoods.

With this interpretation, it is useful to formally name the soft in-
formation that is thresholded to obtain the MAP-SqD and MAP-SyD
solutions in the previous development. Specifically, let u be any quantity
derived from the input-output pair (a,x(a)), then2

APP[u] ∆≡
∑
a:u

p(z|a)p(a) (A-Posteriori Prob.) (1.32a)

M∗SM[u] ∆≡ min
a:u

∗[− ln p(z|a)p(a)] (Min∗ Sum Metric) (1.32b)

GAP[u] ∆≡ max
a:u

p(z|a)p(a) (Generalized APP) (1.32c)

MSM[u] ∆≡ min
a:u
− ln [p(z|a)p(a)] (Min. Sequence Metric) (1.32d)

where ∆≡ denotes definition to an equivalent quantity. For the case
of u = am the quantities in (1.32) give soft information on am which
is thresholded in (1.14a) and (1.27a) for MAP-SqD and in (1.15a) and
(1.29) for MAP-SyD, respectively. Furthermore, the joint quantities that
are marginalized in (1.32) are obtained via the combining operations in
(1.19c) and (1.27b) for the probability and metric domains, respectively.
This is summarized in Table 1.1. The terminology arises from the fact

1Thresholding is a maximization in the probability domain and a minimization in the metric
domain. This will be implicit in the following.
2These and related quantities are referred to in the literature using different terms. For
example, what we refer to as an APP algorithm is often called a “MAP” algorithm. Similarly,
an algorithm producing the negative of the MSM is referred to as a “log-max-MAP” algorithm
by some authors.

16 ITERATIVE DETECTION

that GAP[am] = p(am)g(z|am) where g(z|am) is the generalized likeli-
hood of (1.8) with Θ(ζ) = {ai(ζ)}i�=m. Similarly, the APP in (1.32a)
for u = am is the product of the a-priori probability and the average
likelihood over this nuisance set. These associated likelihood quantities
are also listed in Table 1.1.

Marg. Combining Reliability Measure Associated Likelihood

sum product APP average likelihood (AL)

min∗ sum neg-log-APP (M∗SM) neg-log AL

max product generalized APP generalized likelihood (GL)

min sum MSM neg-log GL

Table 1.1. Summary of marginal soft information resulting from various combining
and marginalization operators.

While the notation is a bit cumbersome, we carry it to emphasize
the general nature of the soft information quantities defined and to en-
courage the development of intuition. The MSM soft information mea-
sure is especially intuitive. Specifically, MSM[u] is the metric associated
with the best sequence a that is consistent with the conditional quan-
tity u. Thus, MSM[u] is found by solving a constrained shortest-path
problem. This concept is illustrated in Fig-1.7 for u = ak. We have

paths paths
|A|K−k−1|A|k

marginalize
over |A|K−1 paths

constraint on quantity ak

Figure 1.7. Soft information on a quantity corresponds to a marginalization of the
joint soft information over all possible paths a.

defined these quantities in terms of a general quantity u to allow fu-
ture use in the most general sense. For example, one may consider the
MSM[xn] – i.e., the metric of the best sequence that is consistent with
the output xn(ζ) = xn. Similarly, this allows one to directly solve MAP
decision problems on quantities related to (a,x(a)). For example, the
MAP decision on u(ζ) = (am(ζ), am+2(ζ)) is obtained by maximizing
APP[am, am+2] with respect to (am, am+2). Similarly, the decision on

Overview of Non-Iterative Detection 17

(am, am+2) consistent with MAP-SqD is obtained by thresholding the
corresponding MSM.

Another important reason to carefully identify the soft-out that is
produced is that if one can confirm that two algorithms are producing the
same soft-output, then those two algorithms are equivalent. We will see
that for many systems, one can avoid the exhaustive marginalization and
combining implied in the above equations by exploiting local structure
of the system. Furthermore, it will become clear that different methods
for exploiting this structure can be followed which eventually produce
the same soft information.

It is worth noting that the definitions in (1.32) are valid even in cases
more general than the example system being considered. Specifically,
only two components are required: the a-priori probability of the hypoth-
esis or composite hypotheses, and the complete statistical description of
the observation conditioned on the hypotheses. However, for the case of
interest where a(ζ) affects z(ζ) only indirectly through x(ζ) = x(a(ζ)),
it is convenient to view the likelihood pz(ζ)|x(ζ)(z|x(a)) as soft informa-
tion on x(ζ) = x(a). Specifically, denoting soft information on u(ζ) in
the probability domain as P[u] the combining in (1.19c) translates to

P[a,x(a)] ≡ pz(ζ)|x(ζ)(z|x(a))pa(ζ)(a) = P[x(a)]P[a] (1.33a)

≡
N−1∏
n=0

PI[xn(a)]
M−1∏
m=0

PI[am] (1.33b)

where the notation PI[·] is used to denote marginal soft-in information
in the probability domain: PI[am] ≡ p(am) and PI[xn] ≡ p(zn|xn). Simi-
larly, letting M[·] denote soft information in the metric domain, and MI[·]
denote marginal soft-in metrics, the combining operation in (1.27b) may
be written as

M[a,x(a)] ≡ − ln p(z|x(a)) − ln p(a) = M[x(a)] + M[a] (1.34a)

≡
N−1∑
n=0

MI[xn(a)] +
M−1∑
m=0

MI[am] (1.34b)

MI[am] ≡ − ln p(am) (1.34c)
MI[xn] ≡ − ln p(zn|xn) (1.34d)

Note that the explicit dependence on the observation is lost in this no-
tation. When important, we will stress the observation set using, for
example, Pj

i [am] to denote soft information based on zj
i .

The above relations make the correspondence between different de-
cision criteria, executed in either probability or metric domain, clear.

18 ITERATIVE DETECTION

Each involves a combination of marginal soft information on the inputs
and the outputs of the system to obtain joint soft information, and a
marginalization of this information over the structure of the system.
Next we describe this similarity more formally.

1.2.1.1 Relations Between Soft Information
Let S[u] and S′[u] denote general soft measures on a quantity u(ζ)

derived from the input-output pair (a(ζ),x(a(ζ))) – i.e., S[·] may be
in the metric, probability domain or even another domain. We define
the following characteristics of a soft measure. First, we continue with
the same use of the term equivalent. Specifically, P[u] ≡ P′[u] in the
probability domain if P[u] = cP′[u] ∀u for some c > 0, and in the
metric domain if M[u] = M′[u] + h ∀u for some finite h. Essentially, two
equivalent soft measures contain the same information and represent
it in a compatible manner which implies that they are combined and
marginalized using the same operations.

Second, two soft measures are isomorphic if there exists an invertible
mapping from one measure to the other. More precisely, if one can al-
ways determine the equivalent of S[u] from S′[u] for all values of u and
vice-versa, the measures are isomorphic. Isomorphic soft measures con-
tain the same information, but may express this information in different
forms. For example, the APP and −APP are isomorphic, with each
using sum-product combining and marginalization, but with threshold-
ing defined by max(·) and min(·), respectively. Similarly, the GAP and
MSM are isomorphic via the − ln p(·) mapping which changes not only
the thresholding operation, but the marginalization and combining op-
erations as well. Clearly, equivalent soft measures are isomorphic, but
the converse does not hold in general.

Finally, S[u] and S′[u] are threshold-consistent if they both provide the
same hard decisions when thresholded. Two isomorphic soft-outputs are
threshold-consistent, but the converse does not hold. In fact, threshold-
consistency is a very weak condition and says little about the relative
quality of the soft information measures. For example, if âm is the
MAP-SyD, then the soft measure

P[am] =

{
1− ε(|A| − 1) am = âm

ε am �= âm
(1.35)

is threshold-consistent with APP[am] for any ε ∈ [0, 1/|A|). However,
for small ε, the soft information in (1.35) provides little value beyond
knowledge of âm.

Overview of Non-Iterative Detection 19

Example 1.5.
From Example 1.3 we see that, for the specific 4-PAM case, MSM[a1]
and APP[a1] are threshold-consistent, but MSM[a0] and APP[a0] are
not. Note that MSM[a1] and APP[a1] are not isomorphic – i.e., they
contain distinct soft information.

End Example

1.2.1.2 Semi-Ring Algorithms
Since MAP-SqD and MAP-SyD generally provide different decisions

on am(ζ), the APP and M∗SM soft measures are not isomorphic to the
MSM and GAP (i.e., they are not even threshold-consistent). However,
there is typically a correspondence between algorithms that compute the
APP and, for example, the MSM. Specifically, as long as the marginali-
zation and combining rules satisfy some properties, one need usually
only derive one version of an algorithm and that algorithm can be con-
verted to any other version by simply exchanging the marginalization
and combining operations and modifying some initialization conditions.
We refer to this as the duality principle between algorithms. Fortunately,
the meaningful marginalization and combining operators in Table 1.1
satisfy these conditions. This duality principle is a powerful tool for two
reasons: (i) only one version of an algorithm need typically be derived
and specified; all other algorithms are implicitly specified, and (ii) one
has flexibility to work with the most convenient set of marginalization
and combining operations for the specific task.

The above advantages will become more clear as we develop algori-
thms and architectures in the following chapters. However, it is gener-
ally found that the APP (“sum-product”) version is most useful when
attempting to derive an algorithm based on formulas. Alternatively, the
MSM (“min-sum”) version can be used very effectively in deriving algori-
thms and architectures based on intuition. This intuition can then be
formally verified using, for example, the APP version. Finally, for imple-
mentation, the metric domain is preferred for numerical stability. Thus,
in simulation and implementation the min-sum and min∗-sum versions
are preferred and one is easily altered to provide the other.3

The condition underlying this duality principle is that the marginali-
zation and combining operators considered (©c , ©m), together with the
ranges for the associated soft information (F), form a commutative

3In software simulation this is as simple as selecting between two macros that define the min
and min∗ operations.

20 ITERATIVE DETECTION

semi-ring [AjMc00]. Specifically, (F , ©c , ©m , Ic, Im) forms a commuta-
tive semi-ring if

(SR1) ©m and ©c are associative and commutative on F

(SR2) Identity elements: ∃ Ic, Im ∈ F such that f©c Ic = f and
f©m Im = f for all f ∈ F

(SR3) Distributive Law: f©c (g©m h) = (f©c g)©m (f©c h)

Note that, in general, there is no inverse for the marginalization or com-
bining operator. However, for most cases of practical interest, the com-
bining operation is invertible. Thus, throughout this book, we assume
another property, namely

Combining Inverse: ∀ f ∈ F and f �= Im, there exists f̄ ∈ F such
that f©c f̄ = Ic. We denote g©c f̄ by g©c −1f .

We use the inverse combining operator only to simplify the presentation
of some operations. Furthermore, this operator is only applied in the
form (f©c g©c h)©c −1f – i.e., where it can be interpreted as operator
that specifies a term be excluded from a stated combination.

The correspondence between the specific cases discussed and this gen-
eral setting is summarized in Table 1.2. Since the combining operators

S(·) F ©m ©c Im Ic f̄ ©c −1
Threshold operation

APP [0,∞) + × 0 1 1/f ÷ arg max

M∗SM (−∞,∞] min∗ + ∞ 0 −f − arg min

GAP [0,∞) max × 0 1 1/f ÷ arg max

MSM (−∞,∞] min + ∞ 0 −f − arg min

Table 1.2. Parameters of the semi-ring for each of the marginalization combining
schemes discussed. The threshold operation is the method used to convert the given
soft measure into a hard decision.

are associative and commutative, we use the notation

K−1

©c
k=0

S[uk] = S[u0]©c S[u1] · · · ©c S[uK−1] (1.36a)

K−1

©m
k=0

S[uk] = S[u0]©m S[u1] · · · ©m S[uK−1] (1.36b)

Overview of Non-Iterative Detection 21

We can summarize all variations discussed thus far as a general com-
bining and marginalization (CM) problem:

S[x(a),a] = S[x(a)]©c S[a] (1.37a)

= (
N−1

©c
n=0

SI[xn(a)])©c (
M−1

©c
m=0

SI[am]) (1.37b)

S[am] = ©m
a:am

S[x(a),a] (1.37c)

where SI[·] has been used to denote input soft information (“soft-in”)
to distinguish it from the marginalized soft information (e.g., S[am]).
Specifically, it is straightforward to verify that computation of the four
soft measures in (1.32) can be accomplished using (1.37) and the infor-
mation in Table 1.2. This generality has been noted elsewhere. For ex-
ample, based on the notion of min-sum processing, the problem of com-
puting S[am] in (1.37c) with the structure of (1.37c) is referred to as the
generalized shortest-path problem [CoLeRi90, Sec. 26.4] or a digital least
metric problem [ChChOrCh98]. Wiberg also noted the duality principle
between certain min-sum and sum-product algorithms. Similarly, based
on the sum-product intuition, the general CM problem has been called
the marginalized product function (MPF) problem in [Aj99, AjMc00]
with the commutative semi-ring properties of the marginalization and
combining rules called the generalized distributive law (GDL). A simi-
lar development may be found in [KsFrLo00]. The semi-ring property of
the “max-sum” (i.e., −min-sum) was identified and exploited to develop
parallel architectures for the Viterbi Algorithm in [FeMe89].

We use the term semi-ring algorithm to describe an algorithm that
solves (1.37) using only the semi-ring properties of the marginalization
and combining operators. As such, a given semi-ring algorithm can
be executed with different marginalization and combining operators to
produce different marginal soft information. This is the duality principle
referred to above. For example, if one has specified a min-sum semi ring
algorithm to compute MSM[am], then there is a corresponding APP
algorithm that is defined by replacing all sums by products, all min
operations by sums, and all occurrences of Ic = 1 by Ic = 0, and all
occurrences of Im = 0 by Im =∞. Thus, we may state a given semi-ring
algorithm in any specific marginalization and combining semi-ring, or in
the general notation used above.

Warning! Care must be exercised in applying the duality principle.
First, there are some meaningful combining and marginalization oper-

22 ITERATIVE DETECTION

ations that do not satisfy the semi-ring property (e.g., see [ChDeOr99]
and Problem 1.6). Second, some algorithms based on semi-ring mar-
ginalization and combining operators may exploit characteristic of these
operators that are beyond those guaranteed by the semi-ring property.
For example, in the sum-product semi-ring there is an inverse under
marginalization (subtraction) – i.e., if z = x + y, then y = z − x. How-
ever, generally, there is no such inverse in a semi-ring and the min-sum
semi-ring is an example of a semi-ring without a marginalization inverse
– i.e., if z = min(x, y), then y cannot be obtained from z and x. See
Problem 1.10 for an non-semi-ring APP algorithm that has no corre-
sponding MSM dual. Conversely, the Viterbi Algorithm, discussed in
Section 1.3.2.1, is an MSM-based algorithm without an APP dual.4 A
commonly used non-semi-ring operation is the discarding of multiplica-
tive constants in some min-sum algorithms. This point is illustrated in
the next example and expounded upon in Section 2.4.1.

Example 1.6.
From Examples 1.3 and 1.4 we may express the ML-SqD decision for
a0(ζ) as

â0 = arg min
a0

MSM[a0] (1.38a)

MSM[a0] = min
a1

[
|z − x(a1, a0)|2

N0
− ln p(a1)− ln p(a0)

]
(1.38b)

=
mina1

[
|z − x(a1, a0)|2 −N0 ln p(a1)−N0 ln p(a0)

]
N0

(1.38c)

The operations in (1.38b) and (1.38c) may be viewed as comprising a
min-sum algorithm. It is tempting to simply replace the min(·) operator
in (1.38c) by the min∗(·) operation. However, min∗(cx, cy) �= cmin∗(x, y)
in general. Thus, as expressed in (1.38c), this is not a semi-ring algorithm
operating on the marginal soft-in information |z−x(a1,a0)|2

N0
, − ln p(a0),

and − ln p(a1). In fact, the corresponding min∗-sum algorithm is

â0 = arg min
a0

M∗SM[a0] (1.39a)

4The term semi-ring algorithm and GDL algorithm can basically be used interchangeably.
However, we seek to emphasize the potential for a non-semi-ring algorithm based on mar-
ginalization and combining operators that form a semi-ring and thus, use this terminol-
ogy to avoid inadvertently extending the term “GDL algorithm” in a manner not described
in [AjMc00].

Overview of Non-Iterative Detection 23

M∗SM[a0] = min
a1

∗
[
|z − x(a1, a0)|2

N0
− ln p(a1)− ln p(a0)

]
(1.39b)

�= 1
N0

min
a1

∗ [|z − x(a1, a0)|2 −N0 ln p(a1)−N0 ln p(a0)
]

(1.39c)

Note that the factor 1/N0 in (1.38c) can be dropped for the purposes
of making hard decisions. Moreover, if the a-priori probabilities are
uniform, the ML-SqD rule does not require knowledge of N0. In contrast,
the ML-SyD rule does require knowledge of the noise variance.

End Example

1.2.2 Detection with Imperfect CSI
When perfect channel state information (CSI) is not available at the

receiver, i.e., when the conditional observation depends on some addi-
tional parameter Θ, composite hypothesis tests can be formulated for
the problem of sequence detection. The detection rule that minimizes
the probability of sequence error for the case of a random parameter
Θ(ζ) is given by

â = arg max
a

p(z,a) = arg max
a

EΘ(ζ) {p(z,a|Θ)} (1.40)

On the other hand, when a statistical description of Θ is not available,
generalized tests can be used

â = arg max
a

max
Θ

p(z,a; Θ) (1.41)

1.2.2.1 Deterministic Parameter Model
It was mentioned in Section 1.1.2 that the problem in (1.41) can be

solved in two steps: first, conditioned on a hypothesized sequence a, an
appropriate estimate Θ̃(a) is formed, and then, p(z,a; Θ̃(a)) is maxi-
mized over all hypotheses, i.e., all sequences a. We are interested in the
following special case for the observation

z(ζ) ∆=

 zK−1(ζ)

...
z0(ζ)

 =

 xK−1(a(ζ),Θ)

...
x0(a(ζ),Θ)

+

 wK−1(ζ)

...
w0(ζ)

= x(a(ζ),Θ) + w(ζ) (1.42)

where wk(ζ) is a complex circular AWGN with variance N0. For this
model, MAP-SqD simplifies to

â = arg min
a

min
Θ

[
− ln p(a) +

1
N0
||z− x(a,Θ)||2

]
(1.43)

24 ITERATIVE DETECTION

The inner minimization over the parameter Θ results in an estimate
Θ̃(a), which in turn implies an estimate x̃(a) = x(a, Θ̃(a)). In the
following example we further specialize the model in (1.42) and demon-
strate that under this special case, the MAP sequence detector has a
special structure, known as the Estimator-Correlator (EC) structure.

Example 1.7.
In this example, the unknown parameter Θ is assumed to be an unknown
constant vector (Θ = f) of length L + 1. Furthermore, the mapping
x(a, f) is assumed to be decomposed as x(a, f) = Q(a)f , where the
K × (L + 1) matrix Q(a) represents an arbitrary mapping of the input
sequence. The observation model in (1.42) can be written as

z(ζ) = Q(a(ζ))f + w(ζ) =

 qK−1(a(ζ))T

...
q0(a(ζ))T

 f + w(ζ) (1.44)

and the sequence detection problem in (1.43) simplifies to

â = arg min
a

min
f

[
− ln p(a) +

1
N0
||z−Q(a)f ||2

]
(1.45)

The inner minimization over f is a standard Least Squares (LS) problem,
and the LS estimate of f is given by f̃ = QIz, where QI is the left
pseudo-inverse of Q, which for a full rank matrix Q is given by QI =
(QHQ)−1QH . This estimate implies an LS estimate of x of the form
x̃ = Qf̃ = Q(QHQ)−1QHz = Pz, where P = Q(QHQ)−1QH is the
matrix that projects to the column space of Q. We note that the matrix
Q, and subsequently the quantities x̃ and P, depend on the hypothesized
sequence a. Substituting the last result back in (1.45), yields a quantity
that explicitly involves only the data sequence

â = arg min
a

[
− ln p(a) +

1
N0
||z −P(a)z||2

]
(1.46)

where the dependence on the data sequence is shown explicitly. Minimiz-
ing the projection error length is equivalent to maximizing the projection
length, thus the above results in

â = arg max
a

[
ln p(a) +

||P(a)z||2
N0

]
= arg max

a

[
ln p(a) +

zH x̃(a)
N0

]
(1.47)

where we have used the fact that an orthogonal projection matrix P sat-
isfies P = PH and PP = P. The last term in (1.47) is exactly the EC

Overview of Non-Iterative Detection 25

structure, with correlation being the inner product operation zH x̃(a).
End Example

It is now demonstrated that for the special case mentioned above, the
EC can be implemented in an efficient forward recursive form. The only
additional assumption required here is a causality condition for qk(a),
i.e., qk(a) = qk(ak

0). The metric in (1.45) is slightly generalized by
introducing an exponentially decaying window with forgetting factor ρ.
This weighting provides increased numerical stability as well as the abil-
ity to track slow parameter variations. Minimization of this generalized
metric over the unknown parameter f , is equivalent to evaluating the
following metric

MK−1
0 [a,q(a)] = min

f

{
K−1∑
m=0

[
|zm − qT

mf |2
N0

− ln p(am)
]

ρK−1−m

}
(1.48)

By observing that the above quantity is the residual squared error of a
weighted LS problem, a forward recursion can be derived as in [Ch95,
Ha96]

Mk
0 [a

k
0,q

k
0(ak

0)] = ρMk−1
0 [ak−1

0 ,qk−1
0 (ak−1

0)]− ln p(ak)+

ρ

ρ + qT
k P̃k−1q∗

k

|zk − qT
k f̃k−1|2

N0
(1.49a)

rk =
P̃k−1q∗

k

ρ + qT
k P̃k−1q∗

k

(1.49b)

f̃k = f̃k−1 + rk(zk − qT
k f̃k−1) (1.49c)

P̃k =
1
ρ
(I− rkqT

k)P̃k−1 (1.49d)

The method suggested by this set of equations, which have the form of
a forward recursive Estimator-Correlator, with per-path recursive least
squares (RLS) parameter estimators, i.e., (1.49b)-(1.49d), is illustrated
in Fig-1.8 and can be described as follows. Starting at time 0 a forward
|A|-ary tree is built, each node of which represents a sequence path.
The quantity Mk−1

0 [ak−1
0 ,qk−1

0 (ak−1
0)], together with f̃k−1 and P̃k−1 of

that path are stored in each node. At each time k, the tree is expanded
forward and the metrics corresponding to the newly generated branches
are calculated using (1.49). In the context of the general soft quantities

26 ITERATIVE DETECTION

0 k K − 1

|A|K metrics

Figure 1.8. Forward recursive Estimator-Correlator structure

of (1.37), the MAP-SqD problem can be expressed as

âk = arg max
ak

M[ak] (1.50a)

M[ak] =
∑
a:ak

M[a,q(a)] (1.50b)

where the quantity M[a,q(a)] is evaluated recursively by

M[ak
0 ,q

k
0(a

k
0)] = ρM[ak−1

0 ,qk−1
0 (ak−1

0)] + MI[ak] + MI[qk(ak
0)] (1.50c)

Since we have a deterministic model for the nuisance parameter f , and
we operate in the logarithmic domain, the appropriate interpretation for
the soft quantity M[ak] is that of MSM[ak].

We note that the innovations term in (1.49a) depends on the entire
path history through the RLS recursions. This is the exact reason why
sequence detection requires a maximization procedure over the entire
path tree. This issue will be further discussed in 1.3.3.1.

1.2.2.2 Stochastic Parameter Model
It was mentioned that the MAP-SqD problem in (1.41) can be solved

using a two step process. First, an estimate Θ̃(a) is obtained for each
hypothesized sequence a and then p(z,a; Θ̃(a)) is maximized over all
hypotheses. However, when a stochastic model for Θ is assumed, i.e.,
Θ = Θ(ζ), the above two-step process is not applicable. This is due
to the fact, that it is not always true that for each hypothesized se-
quence a there exists an estimate Θ̃(a), such that EΘ(ζ) {p(z,a|Θ)} =
p(z,a|Θ̃(a)). It can be shown though, that for an observation model sim-
ilar to the one assumed in Example 1.7 (i.e., z(ζ) = Q(a(ζ))f(ζ)+w(ζ))
and under the assumption of joint Gaussian random vectors f(ζ) and
w(ζ), an Estimator-Correlator structure exists (see Problem 4.1).

Overview of Non-Iterative Detection 27

We now specialize to a linear observation model, similar to the one
assumed in Example 1.7

z(ζ) =

 qK−1(a(ζ))T fK−1(ζ)

...
q0(a(ζ))T f0(ζ)

+ w(ζ) (1.51)

where the only difference between the above and (1.44) is a time varying
random vector fk(ζ) instead of the constant f . In addition, a first-order
Gauss Markov (GM) random process {fk(ζ)} is assumed. This model is
quite general, since it can describe higher order GM, as well as ARMA
processes [AnMo79]. Assuming a time-invariant GM model for nota-
tional and expositional simplicity, the vector GM process {fk(ζ)} evolves
in time according to the equations

fk(ζ) = Ffk−1(ζ) + uk(ζ) (forward) (1.52a)

fk(ζ) = Fbfk+1(ζ) + vk(ζ) (backward) (1.52b)

where uk(ζ), vk(ζ) are zero-mean Gaussian vectors with covariance
Ku(m) = Kuδm and Kv(m) = Kvδm, respectively, where δk denotes the
Kronecker delta function. The quantities F,Fb,Ku, and Kv are selected
such that the process is wide-sense stationary, with E

{
fk(ζ)fk(ζ)H

}
=

Kf (see Problem 1.29).
It is now shown that the MAP-SqD problem for the GM model above

can be efficiently solved using a forward recursive Estimator-Correlator
structure. Efficient evaluation of p(zK−1

0 ,aK−1
0) for each of the |A|K

input sequences can be based on the fact that the above joint density
can be computed recursively as in [Il92]

p(zk
0 ,a

k
0) = p(zk|zk−1

0 ,ak
0)p(ak)p(zk−1

0 ,ak−1
0) (1.53a)

p(zk|zk−1
0 ,ak

0) = N cc(zk;qT
k f̃k|k−1;N0 + qT

k F̃k|k−1q
∗
k) (1.53b)

rk =
F̃k|k−1q∗

k

N0 + qT
k F̃k|k−1q∗

k

(1.53c)

f̃k|k = f̃k|k−1 + rk(zk − qT
k f̃k|k−1) (1.53d)

F̃k|k = (I− rkqT
k)F̃k|k−1 (1.53e)

f̃k+1|k = Ff̃k|k (1.53f)

F̃k+1|k = FF̃k|kF
H + Ku (1.53g)

where N cc(z;m;σ2) denotes the probability density function of a com-
plex circular Gaussian random variable with mean m, and variance σ2/2

28 ITERATIVE DETECTION

for the real and imaginary part, while f̃k|k−1 and F̃k|k−1 are the channel
one-step prediction and corresponding covariance matrix updated by a
sequence-conditioned Kalman filter (KF), i.e., (1.53c)-(1.53g). This set
of equations has an Estimator-Correlator structure similar to (1.49).

Again, the above processing can be put in the more generic notation
of (1.37). Since we have a stochastic model for the nuisance parameter,
we are able to find an exact expression for the quantity P[a,q(a)] ≡
p(z,a) = Ef(ζ) {p(z,a|f)}, by averaging over {fk(ζ)}. Therefore, mar-
ginalization of P[a,q(a)] with respect to the nuisance sequence param-
eters {ai}i�=k, results in the exact GAP[ak].

1.3 Data Detection for an FSM in Noise
In this section we consider the application of the preceding develop-

ment to the important problem of data detection for systems that can
be modeled as finite state machines (FSMs). This includes specializa-
tion of the MAP detection algorithms for perfectly known channels and
extension to the case of imperfect CSI.

1.3.1 Generic FSM Model
We consider a system with input ak and output xk defined on the same

time scale (i.e., a synchronous system). For simplicity of the exposition,
we assume that this is a causal system so that xk(a) = xk(ak

0). At
any time k, the next output of the system xk is determined by the
current input ak and the current system state sk. For an arbitrary
synchronous system, the state could be defined as all the previous inputs
(i.e., sk = ak−1

0) but the number of states will grow exponentially with
k. Thus, on a finite time interval, an arbitrary synchronous system can
be represented by a degenerate case of a finite state machine, where sk

takes on |A|k values for k = 0, 1, . . . (K − 1). However, the FSM term is
typically reserved for the case when the number of states is bounded by a
finite constant, on the index set k = 0, 1, 2, . . . – i.e., the system can only
be in a finite number of states even when driven by an input sequence of
indefinite length. Thus, while an arbitrary synchronous system can be
represented by a tree, for an FSM, this tree folds into a trellis with nodes
at depth k representing the conditional values of sk. This is illustrated
in Fig-1.9.

There are several equivalent representations of a given FSM, each of
which characterizes the relations

xk = xk(ak, sk) = outk(ak, sk) (Output) (1.54a)
sk+1 = sk+1(ak, sk) = nsk(ak, sk) (Next State) (1.54b)

Overview of Non-Iterative Detection 29

ak−3

ak−2
ak−1

ak

ak

...

...

Figure 1.9. For an FSM, the tree of sequence hypotheses folds onto a trellis (shown
for a memory 2 simple FSM with binary inputs).

Unless specified otherwise, we assume that the next-state and output
functions are time invariant and that the number of possible states does
not change with k. Thus, the FSM structure may be characterized by
next-state and output tables, or an appropriately labeled state transition
diagram. The trellis diagram is the latter with the time axis shown
explicitly. We denote a state transition by tk = (sk, ak, sk+1).5 Note
that, in addition to aK−1

0 , the FSM has the initial state s0 as another
implicit input. In the following, we may use ak

0 to implicitly represent
{s0, a0, . . . ak} for compactness.

This general FSM model, admits parallel transitions and complicated
relationships between the state and the input sequence. Parallel transi-
tions are transitions tk that correspond to the same states sk and sk+1,
but different inputs ak. By “complicated” relations between the input
and the state, we mean that at first glance the most efficient state rep-
resentation for an FSM may not be clear. We refer to FSMs with no
parallel transitions and sk = ak−1

k−L as simple FSMs. For a simple FSM,
the transition is uniquely specified by (sk, sk+1) and the previous L sym-
bols can be extracted from the state.

Example 1.8.
An equivalent discrete time model for a finite impulse response intersym-
bol interference (ISI) channel is a simple FSM. Specifically, the output
is xk = ak �fk =

∑L
m=0 fmak−m, where L is the memory (length) of the

5The transition is fully specified by (sk, ak), but we adopt the definition of tk = (sk , ak , sk+1)
to make the notation tk : sk+1 more natural.

30 ITERATIVE DETECTION

−1 + 1(2)

−1− 1(3)

+1 + 1(0)

ak = +1(0)

akak−1

+1 + 1(0)
ak−1ak−2

+1− 1(1)

−1 + 1(2)

−1− 1(3)

+1− 1(1)
ak = −1(1)

sk sk+1

0 input 1 input
current state next state output next state output

0 0 0 2 4
1 0 1 2 5
2 1 2 3 6
3 1 3 3 7

Figure 1.10. Representing a 4-state FSM with a trellis diagram and next-state and
output index tables.

channel. The trellis diagram for a 3-tap (L = 2) ISI channel with BPSK
input symbols (i.e., ak ∈ {−1,+1}) is illustrated in Fig-1.10. Note that,
for this simple FSM, the state may be viewed as the contents of a shift
register with inputs added on the left-hand side. Also, the value of the
input ak associated with a given transition is represented by the line
style. We use this convention throughout.

It is also natural to represent the FSM by indexing the finite number
of inputs, states, and outputs. For example, it is natural to consider
ak = (−1)bk to be the result of BPSK modulation of the information bits
bk ∈ {0, 1}. Similarly, the states can be indexed naturally, as denoted
in Fig-1.10. In some cases it is simpler to describe the FSM in terms
of these indices while in others, it is easier to use the real (or complex)
valued quantities. For example, in software implementation, indexing
every variable starting from zero is most natural. Thus, the table shown
in Fig-1.10 may be useful for describing an FSM in software with an
additional table translating between the index and the numerical value
of the variable (i.e., see Problem 1.22). Note that, as shown, the output
of the system is taken as the index of the transition. More generally,
the number of outputs |X | may be much smaller than the number of
transitions |T | = |A| × |S|. For example, if f0 = f2 = 1 and f1 = 2 in
the current example, there are only 5 distinct outputs.

Thus, one can describe an FSM as a system with integer-valued inputs,
states, transitions, and outputs, followed by a mapper, or alternatively
by the physical real-valued (or complex-valued) quantities that they rep-

Overview of Non-Iterative Detection 31

resent. We do not introduce a notation to describe indexing of variables,
which would require explicit mappers to be shown in the block diagrams,
rather we use the convention that is most natural in the given context.
It will be clear from the context when the indexing convention is being
used.

End Example

An FSM model for a system is not unique. For example, many trellis
coded modulation (TCM) encoders are most efficiently modeled as an
FSM with parallel transitions, but a model with more states and no
parallel transitions is possible (see Problem 1.14). Methods for obtaining
FSM models or minimal state realizations are described in the literature
(e.g., [Gi62, BaCoJeRa74, BiDiMcSi91]) and are not addressed here.

When the structure of the FSM is described, in part, by some param-
eter set Θ, we may either view the parameter as part of the FSM, or add
a mapper to map the FSM transitions to the real values. For example
if the channel coefficients in Example 1.8 were unknown to the receiver,
we may either model this internal to the FSM, or consider the FSM out-
put to be ak

k−2 which is the input to a mapper producing xk = fTak
k−2.

Again, the parameters may be modeled statistically, with a deterministic
model, or with a mixture of these.

1.3.2 Perfect Channel State Information
Consider the special case of an FSM system in the development of

Section 1.2. Specifically, assume that the output of an FSM drives a
memoryless channel characterized by pzk(ζ)|xk(ζ)(zk|xk). It follows that
p(zK−1

0 |tK−1
0) factors into

∏
k p(zk|tk) where tK−1

0 is a (valid) transition
sequence. Thus, for the special case of the FSM system, the combining
rule in the probability domain may be written as

p(zK−1
0 |aK−1

0 , s0)p(aK−1
0 , s0) = p(zK−1

0 |tK−1
0)p(tK−1

0) (1.55a)

=
K−1∏
k=0

p(zk|tk)
K−1∏
k=0

p(tk|tk−1) (1.55b)

=
K−1∏
k=0

[p(zk|xk(tk))p(ak)]p(s0) (1.55c)

where we use the one-to-one relation between the input sequence and
the associated sequence of state transitions and p(t0) = p(a0)p(s0). In
the following, this convention is used implicitly. Thus, as before, the

32 ITERATIVE DETECTION

soft-in information on xk and ak is

Pk[tk]
∆≡ PI[xk(tk)]PI[ak] (1.56a)

PI[xk(tk)]
∆≡ p(zk|xk(tk)) and PI[ak]

∆≡ p(ak) (1.56b)

In the metric domain (1.56) becomes

Mk[tk]
∆≡MI[xk(tk)] + MI[ak] (1.57a)

MI[xk(tk)]
∆≡ − ln p(zk|xk(tk)) and MI[ak]

∆≡ − ln p(ak) (1.57b)

Notice that Pk[tk] and Mk[tk] include a term for the soft-in information
of ak that is implied by tk. In cases where we wish to emphasize this
relation, we will use ak(tk). The sequence (path) metric is

Mk1
k0

[ak1
k0

,xk1
k0

(a)] = Mk1
k0

[tk1
k0

] =
k1∑

k=k0

Mk[tk] (1.58)

where the term MI[s0] ≡ − ln p(s0) is implicitly included in M0[t0]. Next
we state two celebrated algorithms that exploit the fact that SI[xk] de-
pends only on tk and not the entire hypothesized transition sequence.

1.3.2.1 The Viterbi Algorithm
The recursive form of the path metric in (1.58) immediately leads to

a recursive algorithm for computing the MSM of sk+1 based on zk
0 (i.e.,

the forward state MSM). Specifically,

MSMk
0 [sk+1] = min

tk
0 :sk+1

k∑
i=0

Mi[ti] (1.59a)

= min
tk :sk+1

[
MSMk−1

0 [sk] + Mk[tk]
]

(1.59b)

which is often referred to as a forward add-compare-select (ACS) com-
putation. Furthermore, because the min(·) marginalization operator has
the property that z = min(x, y) =⇒ z = x or z = y, the minimizing
values of the transitions tk or ak can be stored as this forward recursion
proceeds. In other words, one can store the survivor sequence for state
sk+1 which is the sequence ǎk

0(sk+1) with smallest metric entering that
state

ǎk
0(sk+1) = arg min

tk
0 :sk+1

Mk
0 [a

k
0 ,x

k
0] (1.60)

Mk
0 [ǎ

k
0(sk+1),xk

0(ǎk
0(sk+1))] = MSMk

0 [sk+1] (1.61)

Overview of Non-Iterative Detection 33

Running the ACS recursions up to time k1 and storing the survivors
allows one to trace back to determine the ak that minimizes Mk1

0 [·], which
is for k1 = K − 1, by definition, the estimate of ak(ζ) implied by the
MAP-SqD criterion. More specifically, one should trace back on the best
survivor sequence – i.e., the survivor that minimizes MSMK−1

0 (sK) over
all final states. It is also possible to modify this algorithm to perform a
traceback after each forward ACS recursion. Specifically, suppose that
the survivor sequences are stored only for D symbols in the past. Thus,
after the ACS step that uses zk+D, one has access to MSMk+D

0 (sk) so
that the best path can be traced-back on yielding the MAP-SqD decision
based on zk+D

0 . We refer to algorithms that utilize zK−1
0 and zk+D

0 to
obtain information on uk (e.g., uk is ak or possibly some other quantity
defined by tk) as fixed-interval and fixed-lag algorithms, respectively. The
above procedure defines the Viterbi algorithm (VA) and is illustrated in
the following example.

Example 1.9.
Consider the linear ISI-AWGN channel

zk(ζ) =
L∑

m=0

fmak−m(ζ) + wk(ζ) (1.62)

where ak(ζ) is the independent input sequence, {fm}Lm=0 are the known
equivalent discrete time channel coefficients, and wk(ζ) is AWGN. In this
example, we consider BPSK modulation (i.e., A = {+1,−1}) and real
channel coefficients so that the mean zero noise has E{[wk(ζ)]2} = N0/2.
Furthermore we consider an interval of length K = 12 and pak(ζ)(−1) =
p = 0.7 – i.e., unequal a-priori probabilities for a stationary ak(ζ). It
follows that the transition metric defined in (1.57) is

Mk[tk] = [zk − xk(tk)]2/N0 + ln
√

πN0 − ln p(ak) (1.63a)

= [zk − fTak
k−2]

2/N0 + ln
√

πN0 − ln p(ak) (1.63b)

with the MI[ak = −1] = − ln(0.7) = 0.357 and MI[ak = +1] = − ln(0.3)
= 1.20. The FSM is started and terminated in the zero state. This
has two implications. First, MI[s0 = (0)] = 0 and MI[s0 �= (0)] = ∞
initialize the ACS recursion. Second, since it is known to the detector
that the FSM was terminated into state s12 = (0), a10 and a11 are
both known to be +1 (i.e., index 0). This implies, for example, that
MI[a10 = −1] =∞.

A realization of zk(ζ) was generated using fT = [0.5 0.707 0.5] and
N0 = 2. Since ‖f‖ = 1 and ak = ±1, this is equivalent to a value of

34 ITERATIVE DETECTION

decision error

4.4 6.8 9.7

5.1 6.7 8.2 9.8

4.4 5.7 8.1

2.2

∞

1.4

∞∞

∞

∞

0

11.4 13.3 15.4 20.1 20.4

6.6 7.0 7.0 8.3 12.2 14.6 14.6 16.4 17.7

forward VA traceback path
noisy observations

transimitted path

11.2 14.0 15.9 18.7 18.6

∞

∞

∞∞

∞

13.6 11.9 13.5 17.1 23.9 22.7 22.1 20.4

19.0

1 1 −1 −1 1 −1 −1 −1 −1 (1) (1)1

10.6

1.258 2.069 0.923 −0.608−1.852 0.606 1.229 −0.729−2.706−1.261−1.542−0.307

3-tap ISI channel f = [0.5, 0.707, 0.5], AWGN with N0 = 2, p = 0.7

1 1 −1 −1 −1 1 −1 −1 −1 −1 (1) (1)

10 2 3 4 5 6 7 8 10 119
transmitted sequence sequence terminating bits

MAP-SqD by the forward VA

Figure 1.11. The Viterbi algorithm run in Example 1.9. The forward state metrics
are shown under each state.

Eb/N0 = 1/2 or −3 dB. This is an extremely low SNR, but the a-priori
bias is also fairly strong. The realization of z and a along with the
execution of the Viterbi algorithm for this example is shown in Fig-1.11
using the standard trellis convention in Fig-1.10. To give a concrete
example of the ACS step, consider obtaining MSM5

0[s6 = (0)] = 11.9, in
Fig-1.11.

There are two transitions t5 that are consistent with s6 = (0); namely
t5 = (s5, a5, s6) of ((0),+1, (0)) and ((1),+1, (0)). These transitions have
associated xk values of +f0 + f1 + f2 = 1.707 and +f0 + f1− f2 = 0.707,
respectively. It follows that MI[xk] = [zk − xk(tk)]2/2 takes the value
0.606 for the transition emanating from s5 = (0) and 0.0051 for the
transition starting from s5 = (1). Since both of these correspond to a5 =
+1, the transition metric is obtained by adding 1.2 + ln(

√
πN0) = 2.12

to each. The ACS for s6 = (0) therefore compares (13.6+0.606+2.12) =
16.3 (coming from s5 = (0)) against (9.8+0.0051+2.12) = 11.9 (coming
from s5 = (1)) to select the survivor. Specifically, since the path coming
from s5 = (1) has smaller metric, the survivor entering s5 = (1) is
extended by ǎ5(s6 = (0)) = +1 to become the survivor entering s6 = (0).
The state metric MSM5

0[s6 = (0)] is set to the metric of the survivor,
namely 11.9.

The procedure is repeated for each conditional state value at each
time. The survivors at each step are shown in Fig-1.11. Since the last
two bits are known with certainty, the incompatible transition metrics

Overview of Non-Iterative Detection 35

are infinite which yields infinite survivor metrics for all final states other
than the zero state. The traceback is therefore conducted from this
state yielding the decision shown below the trellis in Fig-1.11. Note
that this results in an error of the form â4 = +1 when, in reality, a4 =
−1. The path in the trellis that indicates the transmitted sequence
differs from that associated with â over other locations, but the only
error on the associated data value is at k = 4. More specifically, the
transition sequences associated with the true sequence a and the MAP-
SqD decision â disagree for k = 4, 5, 6, but âk �= ak only for k = 4.

There are several other notable properties shown in this example. No-
tice that survivor path merging occurs so that early decision can be made.
Specifically, note that, after performing the ACS that incorporates z4,
all four survivors agree on ǎ2

0. Thus, after, k = 4, further channel ob-
servations will not change the decision on a0, a1, and a2. While this
merging is a probabilistic event, a rule of thumb is that for a binary trel-
lis associated with a simple FSM, a decoding lag of approximately 5L
to 7L is sufficient to obtain performance near that of the fixed-interval
Viterbi algorithm [HeJa71]. A similar result can be justified for arbi-
trary trellises as well (i.e., see Problem 1.15). Also, notice the results
remain unchanged if the term ln(

√
πN0) is subtracted from each metric.

End Example

The Viterbi algorithm is not a semi-ring algorithm because the trace-
back operation uses a property of the min(·) marginalizing operator that
is not part of the semi-ring. The sum-product recursion corresponding
to the forward ACS in (1.59b) is meaningful (i.e., it produces the APP
of sk+1 based on zk

0), however, there is no survivor sequence associated
with the sum-product (min∗-sum) version. A min-sum semi-ring algo-
rithm that is very closely related to the Viterbi algorithm is constructed
from a forward and backward ACS recursion. The next example builds
intuition on the latter.

Example 1.10.
Notice that, while the FSM has a sense of temporal direction (i.e., it is
causal), the min-sum recursion, and the Viterbi algorithm in general,
can be executed in the backwards direction. Specifically, the backward
ACS recursion is defined as

MSMK−1
k [sk] = min

tK−1
k :sk

K−1∑
i=k

Mi[ti] (1.64a)

= min
tk :sk

[
MSMK−1

k+1 [sk+1 + Mk[tk]
]

(1.64b)

36 ITERATIVE DETECTION

decision error
MAP-SqD by the backward VA

transimitted pathbackward VA traceback path

1 1 −1 −1 1 1 −1 −1 −1 −1 (1) (1)

1.46.45.819.1 16.7 15.8 14.2 9.6 8.7 8.3∞

1.02.74.15.922.7 19.3 15.3 13.4 12.5 12.7 7.6∞

1.14.04.17.320.4 17.9 14.7 14.4 11.7 10.8 7.1∞

0

0

0

2.99.17.220.4 18.2 16.0 16.6 16.3 11.2 8.5 9.7 11.2 0

10.6

Figure 1.12. The backward Viterbi algorithm run used in Example 1.9. The forward
state metrics are shown under each state.

Thus, the same dynamic programming principle that underlies the for-
ward ACS recursion underlies the backward ACS and the implicit re-
cursive solution to the shortest path problem. Notice that the transi-
tion metrics are identical in the forward and backward recursions. The
backward Viterbi algorithm execution is shown in Fig-1.12 for the same
scenario considered in Example 1.9.

For a concrete example, consider the backward ACS that incorporates
the 5-th observation with a focus on s5 = (1). There are two transitions
consistent with this value of s5; namely t5 = ((1),+1, (0)) and t5 =
((1),−1, (2)). From Example 1.9, we know that the metric of the latter
transition is 2.1. It follows that the path extending backward from
s6 = (0) to s5 = (1) has metric M11

5 [·] = 8.5+2.1 = 10.6. The transition
metric of the t5 = ((1),−1, (2)) is 1.68 (including the − ln(0.7) term),
so that the comparison is between 10.6 and 10.8 + 1.68 = 12.5. So, as
shown, the backward survivor corresponds to the backward transition
from s6 = (0) to s5 = (1).

Notice that, as in the forward version, merging can occur in the back-
ward Viterbi algorithm. In this particular realization, after processing
the observation z5, merging occurs such that the decisions on ak for
k ≥ 7 are finalized. The way that the backward Viterbi algorithm han-
dles edge effects is also slightly different. Specifically, since (1.55a) is
obtained by conditioning on the past, there is no a-priori term associ-
ated with sK . In fact, a careful consideration of (1.55a) implies that
the backward state metrics should be initialized to zero (e.g., or equiva-
lently, any finite constant). The edge information is enforced by MI[a10]
and MI[a11] which are both infinite for the conditional −1 value. The
input metric for s0, however, must be included in the final backward
step, which kills all survivors not consistent with s0 = (0). Once this

Overview of Non-Iterative Detection 37

left edge is reached the backward “traceback” (trace-left) operation can
be performed. Note that, as it must, this yields the same final decision
as the forward version.

End Example

1.3.2.2 The Forward Backward Algorithm
The total MSM of a transition tk (i.e., the metric based on all obser-

vations) can be obtained by marginalizing out over all other transitions
ti consistent with tk. However, this consistency can be enforced by
marginalizing over all tk−1

0 consistent with sk(tk) and tK−1
k+1 consistent

with sk+1(tk). In other words, one can decouple the shortest path (MSM)
problem into two such problems conditioned on the states: (i) from the
initial time to each conditional value of sk, yielding MSMk−1

0 [sk], and
(ii) from the final time (backwards) to each conditional value of sk+1,
yielding MSMK−1

k+1 [sk+1]. Together with the transition metric Mk[tk],
this yields the MSM of tk based on the entire observation record

MSMK−1
0 [tk] = MSMk−1

0 [sk(tk)] + Mk[tk] + MSMK−1
k+1 [sk+1(tk)] (1.65)

This concept is illustrated in Fig-1.13. More formally we have

0

1

2

3

0

1

2

3

s0 sK

1

2

3

1

2

3

0 0

sk+1sk

Mk[tk]
MSMK−1

k+1 [sk+1]MSMk−1
0 [sk]

Figure 1.13. The MSM for a given transition may be computed by summing the
transition metric and the forward and backward state metrics.

MSMK−1
0 [tk] = min

tK−1
0 :tk

K−1∑
i=0

Mi[ti] (1.66a)

= min
tK−1
0 :tk

[
k−1∑
i=0

Mi[ti] + Mk[tk] +
K−1∑

i=k+1

Mi[ti]

]
(1.66b)

38 ITERATIVE DETECTION

= min
tk
0 :tk

k−1∑
i=0

Mi[ti] + Mk[tk] + min
tK−1
k+1 :tk

K−1∑
i=k+1

Mi[ti] (1.66c)

= MSMk−1
0 [sk(tk)] + Mk[tk] + MSMK−1

k+1 [sk+1(tk)] (1.66d)

where we have used sk(tk) and sk+1(tk) to emphasize that these states
are determined by the conditional transition. Note that the term Mk[tk]
can be brought outside the minimization because it is a constant under
the fixed tk constraint. It is also worth noting that tK−1

0 : tk implies
minimization over all valid transitions sequences or, equivalently, that
transitions not admitted by the FSM have infinite metric.

As a specific example, using the results from Examples 1.9 and 1.10,
the MSM of t5 = ((1),+1, (0)) is 9.8 + 2.1 + 8.5 = 20.4 (i.e., forward-
MSM plus transition metric plus backward MSM). By definition this is
the metric of the best path passing through this conditional transition.
Since this transition is on the MAP-SqD decision path, this must be
the smallest metric of any path – i.e., MSMK−1

0 = mintk MSMK−1
0 [tk].

Similarly, any quantity ûk associated with this MAP-SqD path will also
have a total MSM of 20.4. The key realization, however, is that the MSM
of any quantity uk derived from tk can be computed by marginalizing
over MSMK−1

0 [tk].

MSMK−1
0 [uk] = min

tk :uk

[
MSMk−1

0 [sk] + Mk[tk] + MSMK−1
k+1 [sk+1]

]
(1.67)

We call the operation in (1.67), which may be interpreted as a bi-
directional ACS, the completion operation. A specific example of interest
is the uk = ak since thresholding MSMK−1

0 [ak] yields the MAP-SqD de-
cision for ak. This is described for continuation of the Viterbi algorithm
example.

Example 1.11.
The total MSM of the states sk can be found by marginalizing the total
MSM of the transition tk over the right edge (sk+1). Specifically,

MSMK−1
0 [sk] = min

tk:sk

[
MSMk−1

0 [sk] + Mk[tk] + MSMK−1
k+1 [sk+1]

]
(1.68a)

= MSMk−1
0 [sk] + min

tk:sk

[
Mk[tk] + MSMK−1

k+1 [sk+1]
]

(1.68b)

= MSMk−1
0 [sk] + MSMK−1

k [sk] (1.68c)

which may be interpreted as simply adding the forward and backward
state metrics for sk. So, for example for s5 = (1) in Examples 1.9-1.10,
we know that MSM11

0 [s5 = (1)] = 9.8 + 10.6 = 20.4.

Overview of Non-Iterative Detection 39

20.4 20.4

21.9

20.4

21.8

22.4

25.8

23.4

22.5

20.4

22.4

26.0

22.4

22.5

20.4

24.9

20.4

22.4

20.8

20.4

20.8

22.2

24.9

23.1

22.7

20.4

22.2

28.4

24.3

22.7

20.4

31.1

24.5

24.3

20.4

31.9

25.0

24.5

20.4

25.0

20.4

20.4

decision error
MAP-SqD by thresholding the soft output of FI-MSM

∞∞∞ ∞

∞∞∞

∞∞ ∞

1 1 −1 −1 1 1 −1 −1 −1 −1 (1) (1)

Figure 1.14. The total MSMs for the states for the realization in Examples 1.9-1.10.

The state MSMs have been computed for all states in the example
realization and are shown in Fig-1.14. Notice that the best path can
be identified by the constant MSM of 20.4. Because this example FSM
is simple, the MSM of ak can be obtained from sk+m for m = 1, 2
– i.e., the state MSM can be marginalized in place of the transition
MSM as in (1.67). For example, MSM11

0 [a3] may be obtained from the
corresponding MSM of s4 or s5. Specifically, consider the conditional
value a3 = +1, which is consistent with s4 = (0), (1) so that MSM11

0 [a3 =
+1] = min(26.0, 22.4) = 22.4. The condition a3 = +1 is also consistent
with s5 = (0), (2), so that MSM11

0 [a3 = +1] = min(24.9, 22.4) = 22.4.
Notice that the MSM11

0 [a3 = −1] = 20.4, so that thresholding, yields
â3 = −1.

As another example, consider computing the metric of the shortest
path consistent with xk = 0.707. There are two values of tk consistent
with this output value: from sk = (1) to sk+1 = (0) and from sk = (0)
to sk+1 = (2). Thus, minimizing over these two transition MSMs yields
th desired quantity. For a specific example, consider x7 = 0.707. This
cannot be computed directly from the total state MSMs, but applying
(1.67), yields the result MSM11

0 [x7 = 0.707] = 23.1.
End Example

While the Viterbi algorithm is not a semi-ring algorithm, the above
forward-backward algorithm is a semi-ring algorithm. As a consequence,
for example, there is a corresponding APP algorithm that performs sum-
product operations. In fact, this APP forward-backward algorithm is
generally more heavily referenced in the literature. The APP-version
was discovered by a number of researchers in the late 1960s and early
1970s. Specifically, Chang and Hancock [ChHa66], Bahl, Cocke, Jelinek,
and Raviv (BCJR) [BaCoJeRa74], McAdam [McWeWe72, Mc74] all de-

40 ITERATIVE DETECTION

veloped a version of this APP algorithm. This is also a component of
the Baum-Welch algorithm (e.g., [Ra89]).

Based on the duality principle, the completion operation in the sum-
product algorithm must compute APPK−1

0 [uk] ≡ p(zK−1
0 , uk) by sum-

ming APPK−1
0 [tk] ≡ p(zK−1

0 , tk) over all transitions consistent with uk.
While a good deal of effort has been spent to convince the reader that
derivation of the sum-product version is not required with the min-sum
semi-ring version in place, we provide a direct derivation for this case
because this is a very important example. Using basic conditional prob-
ability relations, we obtain

p(zK−1
0 , tk) = p(zK−1

k+1 |tk)p(zk
0 , tk) (1.69a)

= p(zK−1
k+1 |tk)p(zk, ak|sk)p(zk−1

0 , sk) (1.69b)

= [p(zk−1
0 , sk)][p(zk|xk(tk))p(ak)][p(zK−1

k+1 |sk+1)] (1.69c)

The three terms in (1.69c) correspond to APPk−1
0 [sk], Pk[tk], and

APPK−1
k+1 [sk+1], respectively. For any quantity uk derived from tk, the

APP can be obtained by summing over all tk consistent with uk (i.e., the
completion operation). According to the duality principle, the forward
and backward state APPs should satisfy the sum-product dual of the
ACS operations in (1.59b) and (1.64b), respectively. This fact is simple
to verify directly yielding

p(zk
0 , sk+1) =

∑
tk :sk+1

[
p(zk−1

0 , sk)p(zk|xk(tk))p(ak)
]

(1.70a)

p(zK−1
k |sk) =

∑
tk :sk

[
p(zK−1

k+1 |sk+1)p(zk|xk(tk))p(ak)
]

(1.70b)

Many authors use the notation α(sk), β(sk+1), and γ(tk) to denote the
forward state APP, the backward state APP, and the transition proba-
bility. It may seem somewhat strange to refer to p(zK−1

k+1 |sk) as an APP
– more precisely, it is a likelihood. This is actually the case in the MSM
version as well (i.e., MSMK−1

k+1 [sk+1] is the generalized likelihood of sk+1

based on zK−1
k+1). Furthermore, sk is a “hidden variable,” meaning that

it is not an input or output of the FSM. It will become clear in Chap-
ter 2 that one can always assume uniform a-priori information on such
hidden variables. Furthermore, the backward recursion is initialized by
the relation

p(zK−1
K−1|sK−1) = p(zK−1|sK−1) (1.71a)

=
∑

tK−1:sK−1

p(zK−1|tK−1)p(tK−1|sK−1) (1.71b)

Overview of Non-Iterative Detection 41

=
∑

tK−1:sK−1

p(zK−1|tK−1)p(aK−1) (1.71c)

which is the standard backward recursion with the interpretation that
p(zK−1

K |sK) = 1 for all sK .

Example 1.12.
The min∗-sum version of the forward-backward algorithm was run for
the same realization used in Examples 1.9-1.11 with the result shown in
Fig-1.15. For this realization, the APP version yields the same final de-

1.00 4.95e-9
0.25

9.15e-104.28e-101.08e-1 1.21e-2 1.76e-3 7.58e-5 1.98e-6 1.03e-5 3.81e-6 8.78e-8 1.53e-10

1.24e-9

0.00
0.25

0.00

0.00
0.25
0.00

0.00
0.25

(1) (1) (1)

0.00

2.66e-5 1.31e-21.24e-9 9.47e-9 6.72e-8 2.97e-8 2.72e-8 5.97e-6 5.31e-5 1.63e-5 3.32e-6 1.78e-4
1.20e-111.14e-141.24e-9 1.02e-9 8.15e-10 5.17e-11 2.06e-12 1.18e-11 5.48e-10 6.20e-11 2.92e-13 2.71e-14

20.5 20.7 20.9 23.7 26.9 25.2 21.3 23.5 28.9 31.2 32.1 25.1 20.5

2.05e-82.87e-80.00 0.00
1.05e-9 5.96e-24.17e-43.48e-9

5.93e-3
3.50e-8

1.22e-3
6.72e-8

4.34e-4
2.30e-7

8.57e-5
8.00e-6 2.02e-5

2.59e-5 1.51e-6
4.16e-5

4.31e-7
6.13e-5

2.48e-8
7.72e-4

0.001.92e-110.00 2.12e-10 2.09e-10 9.71e-10 1.31e-10 9.00e-11 1.49e-10 1.01e-9 1.25e-10 2.67e-11

0.007.18e-80.00
9.2e-26.07e-11 8.96e-11

1.42e-3
3.42e-9

8.96e-4
1.47e-7

1.28e-3
7.86e-7

4.30e-4
1.05e-6 1.27e-6

1.26e-5 7.56e-7
1.35e-4

1.47e-6
7.39e-4 4.29e-3

2.78e-7
1.67e-2

0.00

0.000.00 0.00 1.00e-91.32e-104.86e-12 4.49e-10 1.62e-11 1.02e-10 1.09e-9 1.19e-9 1.21e-9

0.004.34e-90.00
4.41e-3 8.33e-22.65e-10 8.86e-10

2.40e-1 1.19e-2
1.75e-8

4.10e-3
2.37e-7

5.31e-4
2.48e-7

3.67e-5
2.45e-6 9.01e-6

1.65e-5 4.79e-6
2.11e-4

7.62e-7
1.63e-4 4.04e-3

6.61e-9

1 1 −1 −1 1 1 −1 −1 −1 −1

26.0 22.7 20.7 21.5 24.9 23.0 20.6 20.5 20.5

22.3 22.3 20.8 22.8 23.1 22.6 20.7 22.8 24.3 24.7

22.3 23.2 23.0 21.1 21.4 23.5 24.4 24.7 25.1 20.5

1.22e-91.19e-110.000.00 2.07e-10 8.18e-11 9.98e-11 6.86e-10 5.23e-10 6.28e-11 2.64e-11 1.92e-11

∞

∞∞

∞ ∞ ∞

∞

∞

∞

∞

Figure 1.15. The APP forward-backward algorithm run on the realization from Ex-
amples 1.9-1.11. The value of M∗SM11

0 [sk] is shown below each state, with the values
of the forward, backward and total state APPs shown above the state (from top
down).

cision as the MSM-version (i.e., the MAP-SyD and MAP-SqD criterion
for ak yield the same results for this realization). The soft-information
provided is, however different. This is most apparent from the fact that
there is no common value of minsk

M∗SM11
0 [sk] – e.g., this is 20.8, 20.7,

21.1, . . . for k = 3, 4, 5 This is expected since there is no survivor
path (or best path) associated with the APP or M∗SM soft information
as these represent the average over all consistent paths. However, notice
that the values of M∗SMK−1

0 [sk] and MSMK−1
0 [sk] for each k are close

to each other. This is because min∗(x, y) ∼= min(x, y) when the SNR is
moderate to high. Even in this fairly low SNR environment, the differ-
ence is not very large.

End Example

42 ITERATIVE DETECTION

Other Efficient Architectures There are other structures for per-
forming MAP symbol and sequence detection for an FSM system. These
include fixed-lag algorithms and parallel tree-structured architectures.
All of these structures can be derived in a similar intuitive manner.
However, we postpone discussion of these structures until Chapter 2
since these algorithms play a key role in iterative detection.

One aspect that has not been considered in detail is the front-end
processing of conversion from continuous time observation to the discrete
time models assumed. In many cases, this is fairly straightforward (e.g.,
the 4-PAM example). In the next example, we present two methods of
obtaining metrics suitable for running the forward-backward or Viterbi
algorithms for a continuous time ISI-AWGN channel.

Example 1.13.
In this example we show two different methods of front-end processing
for linear ISI-AWGN channels. The Ungerboeck structure [Un74] leads to
colored noise discrete time model, but provides a suitable metric which
can be used for the Viterbi or forward-backward algorithm. The Forney
structure [Fo72b] yields the white noise model in (1.62).

Consider the baseband equivalent, continuous-time observation model
for a known ISI channel with linear modulation given by

r(u, t) = y(t;a(ζ)) + n(u, t) t ∈ T (1.72)

y(t;a(ζ)) =
K−1∑
i=0

ai(u)h(t − iT) (1.73)

where the support of h(t) is assumed to be contained in [0, (L + 1)T).
The received signal is assumed to be observed for some interval of the
real line, T , which contains the support of y(t).6

By appealing to an orthogonal series expansion for the noise, the nega-
tive log-likelihood functional (e.g., [Va68]) for the a conditional sequence
a based on the observation {r(t) : t ∈ T } can be obtained. Including
the a-priori probabilities,7 the associated metric is

M[a] = − ln p(a)+
1

N0

[∫
T
|y(t;a)|2dt − 2�

{∫
T

r(t)y∗(t;a)dt

}]
(1.74)

6In other words T ⊇ [0, (L + K)T). In fact, we may assume that T = [0, (L + K)T) since
the observation outside this interval is irrelevant. This is not the case in colored noise.
7The initial state s0 = {ai}−1

i=−L is implicitly part of the hypothesized sequence and the

a-priori probability p(s0) is included. We do not explicitly show this dependence in the
following.

Overview of Non-Iterative Detection 43

Substituting the assumed structure of the noise-free channel output
yields

M[a] =
K−1∑
i=0

− ln p(ai) +
1

N0

K−1∑

i=0

K−1∑
j=0

aia
∗
jR(j − i)− 2�

{
K−1∑
i=0

a∗i ri

}
(1.75)

where R(m) is the T -spaced sampled correlation of h(t) and {ri} are the
matched filter outputs

R(m) = [h(t) � h∗(−t)]|t=mT (1.76a)

ri =
∫
T

r(t)h∗(t− iT)dt = r(t) � h∗(−t)|t=iT . (1.76b)

Note that, since the channel is FIR, the matched filter can be made
causal by introducing a finite delay.

Ungerboeck Structure The Ungerboeck metric [Un74], as defined
in (1.74), can be computed recursively using the fact that Hermitian
symmetric sequence R(m) is nonzero only for |m| ≤ L, which follows
from the FIR assumption on h(t). Specifically, the recursion is

Mk
0 [a

k
0]

∆=
k∑

i=0

− ln p(ai) +
1

N0

 k∑

i=0

k∑
j=0

aia
∗
jR(j − i)− 2�

{
k∑

i=0

a∗i ri

}
= Mk−1

0 [ak−1
0] + (− ln p(ak))

+
2

N0
�
{

a∗k

(
L∑

m=1

ak−mR(m) +
1
2
akR(0)− rk

)}

= Mk−1
0 [ak−1

0] +
2

N0
�{a∗k (ak � gk − rk)} − ln p(ak) (1.77)

where

gi =

0 i < 0, i > L
1
2R(0) i = 0
R(i) i ∈ {1, 2 . . . L}

(1.78)

Thus, the total path metric for ak
0 based on the matched filter outputs

rk
0 has been expressed as

Mk
0 [a

k
0] =

k∑
i=0

Mi[ti] (1.79a)

Mi[ti] = MI[ai] +
2

N0
�{a∗i (ai � gi − ri)} (1.79b)

44 ITERATIVE DETECTION

where ti is the state transition associated in the trellis with states si =
{ai−m}Lm=1.

The recursive form of (1.79) allows one to perform MAP-SyD or MAP-
SqD using the (min∗-sum) forward-backward algorithm or the Viterbi
algorithm, respectively. Also, the matched filter outputs clearly form
a set of sufficient statistics for detection of the data sequence based on
the observation waveform. However, the decision problem was never
reformulated in terms of ri, so there is no discrete-time system output
directly associated with transitions tk. More precisely, the stochastic
model may be reformulated in terms of ri(ζ) which yields

rk(ζ) = yk(a(ζ)) + nk(ζ) (1.80)

where yk(a(ζ)) and nk(ζ) are the matched filter outputs associated with
the signal and noise, respectively. It can be shown that

yk(a(ζ)) = yk(ak+L
k−L) = ak � R(k) (1.81)

E{nk+m(ζ)n∗
k(ζ)} = N0R(m) (1.82)

Notice that, because yk depends on ak outside the range corresponding
to tk, it is difficult to interpret the Mk[tk] − MI[ak] in (1.79) as input
metric information on yk.

Forney Structure Since R(m) is a non-negative definite sequence,
it may be factored into R(m) = fm � f∗

−m, where fm is nonzero only
for 0 ≤ m ≤ L. Assuming that f∗

−m is causally invertible (i.e., no nulls
in the Fourier spectrum), and denoting this inverse filter by f−H

m , we
obtain

zk(ζ) = rk(ζ) � f−H
m (1.83a)

= ak(ζ) � R(k) � f−H
m + nk(ζ) � f−H

m (1.83b)
= ak(ζ) � fk + wk(ζ) (1.83c)

where wk(ζ) is a circular AWGN sequence with E{|wk(ζ)|2} = N0. In
other words, the output of this front-end processing is the model in
(1.62).

Notice that both the Ungerboeck and Forney structure sample the
output of a filter matched to h(t). The Ungerboeck structure com-
putes the likelihood functions directly, while the Forney structure uses
a discrete-time whitening filter. The cascade of the T -spaced sampled,
matched filter and the noise whitening filter, is referred to as a whitened
matched filter. This is illustrated in Fig-1.16. Note that the value of the
transition metrics Mk[tk] are different for the two structures. However,

Overview of Non-Iterative Detection 45

hypothesized
input sequence

whitened matched filter

a-priori information

a-priori information

Ungerboeck
metric for tk

Forney
metric for tk

1/F ∗(ν)

input sequence
hypothesized

kT

r(t)

MI[ak]

kT

r(t)

MI[ak]

ak

(a)

(b) h∗(−t)

h∗(−t)

(·)∗ gk

2
N0
�{·}

zk

rk

−

−
1

N0
| · |2

fk

ak

Figure 1.16. Computation of transition (a) Ungerboeck metrics and (b) Forney met-
rics for a linear ISI-AWGN channel.

the sum of these metrics along any sequence is the same using either
convention.

The multiuser system example in Chapter 2 may be viewed as a vec-
tor input ISI channel. Inclusion of a time-varying whitening filter after
the correlators/matched-filters may be problematic in this application,
so the resulting trellis search algorithms are typically performed using
the Ungerboeck metrics (i.e., see Section 2.4.4).

End Example

1.3.3 Detection with Imperfect CSI
1.3.3.1 The Inapplicability of the Viterbi Algorithm

The application of the Viterbi Algorithm for the problem of MAP-SqD
is possible due to the special form of (1.55a). In particular, rewriting
(1.55a) as

p(zK−1
0 |aK−1

0 , s0)p(aK−1
0 , s0) = p(zK−1

0 |tK−1
0)p(tK−1

0)

= p(z0|t0)p(a0)p(s0)
K−1∏
k=1

p(zk|zk−1
0 , tk

0)p(tk|tk−1) (1.84)

it is observed that the application of the VA is enabled by the fact that

p(zk|zk−1
0 , tk

0) = p(zk|zk−1
0 , tk) (1.85)

The latter is usually referred to in the literature as the folding condi-
tion [Ch98], and in the case of memoryless channels is further simplified
to p(zk|zk−1

0 , tk) = p(zk|xk(tk)).

46 ITERATIVE DETECTION

Unfortunately, the innovation terms in (1.53), as well as in (1.49), do
not possess the folding property, thus the Viterbi algorithm is not ap-
plicable in these cases. In general there are two approaches in designing
suboptimal algorithms for MAP-SqD when folding does not hold.

In the first approach, an appropriate model for the unknown pa-
rameter is assumed, such that the innovation term depends only on
a finite number of past input symbols. The linear predictive receiver
in [LoMo90], and the innovations-based receiver in [YuPa95], follow ex-
actly this approach and can be regarded as the optimal receivers under
the assumed parameter model. In practice, this parameter model is
viewed as an approximation, and folding is accomplished by substitut-
ing the infinite memory parameter estimators (e.g., KF or RLS), by
finite memory estimators. We point out that the complexity of such
a suboptimal algorithm is determined by the memory of the estimator
(and the size of the original trellis), which also determines the quality of
the parameter estimate.

The second approach in constructing suboptimal MAP-SqD algori-
thms is based on the observation that, when folding does not hold, a
search over the entire sequence tree is required, as mentioned in Sec-
tion 1.2.2. The suboptimal receiver, referred to as the generalized Per-
Survivor Processing (PSP) [RaPoTz95] receiver, searches only part of the
tree, depending on the available resources. Many strategies are known
to prune the sequence tree [AnMo84]. One such algorithm is the Viterbi
algorithm, which maintains and updates – through the familiar ACS op-
erations – a fixed number of paths in such a way that they are forced to
have different recent paths. A KF (or RLS for deterministic modeling)
parameter estimate is kept and updated for every trellis state. We em-
phasize that the trellis on which this algorithm operates is not tightly
related to the FSM trellis. Its size is a design parameter that determines
the amount of pruning, and eventually, the complexity of the algorithm.

We note that the two approaches mentioned above are not mutu-
ally exclusive, but can be combined to further reduce complexity. For
instance, when the memory of the truncated estimator in the first ap-
proach results in a large trellis, PSP can be utilized to reduce the search
effort.

Example 1.14.
Consider the special case of a first order GM scalar process {fk(ζ)}
observed in no noise, i.e., zk = akfk, with {ak} being a memory-
less sequence. Equation (1.52) simplifies to fk(ζ) = αfk−1(ζ) + uk(ζ),
with E{|uk(ζ)|2} = σ2

u. For this special case, the forward filtered pa-
rameter estimate, and one step predictor are fk|k

∆= E{fk(ζ)|zk
0 ,ak

0} =

Overview of Non-Iterative Detection 47

zk/ak, fk|k−1
∆= E{fk(ζ)|zk−1

0 ,ak−1
0 } = αfk−1|k−1, respectively. The cor-

responding error variances are given by σ2
k|k = 0, and σ2

k|k−1 = σ2
u. The

innovations term of the forward recursive EC in (1.53b) becomes

p(zk|zk−1
0 ,ak

0)p(ak) = N cc(zk; akαzk−1/ak−1; |ak|2σ2
u)p(ak) (1.86)

The above equation shows that the innovation term depends only on the
symbols ak and ak−1, thus the problem of MAP-SqD can be solved using
the VA, operating on an |A|-state trellis.

End Example

1.3.3.2 The Forward-backward Estimator-Correlator
An alternative exact expression for the calculation of p(zK−1

0 ,aK−1
0)

for an FSM is now described for the GM parameter model (see Prob-
lem 4.4 for the deterministic case). As will be shown, these expressions
have the form of two ECs operating in the forward and backward direc-
tion, respectively, hence the name forward-backward EC. Based on these
expressions, several optimal and suboptimal practical algorithms will be
developed in Chapter 4 for obtaining soft decisions in the presence of
unknown parameters.

In evaluating p(zK−1
0 ,aK−1

0), we observe that due to the implicit pres-
ence of the parameter process {fk(ζ)}, future observations depend on
past observations conditioned on the state of the FSM. On the other
hand, by conditioning on the parameter fk as well, separation of the
future and past observations occurs, yielding [An99]

p(zK−1
0 ,aK−1

0) = p(zk
0 ,a

k
0)︸ ︷︷ ︸

past/present

p(zK−1
k+1 ,aK−1

k+1 |sk+1)︸ ︷︷ ︸
future∫

p(fk|ak
0 , z

k
0)p(fk|sk+1,aK−1

k+1 , zK−1
k+1)

p(fk)
dfk︸ ︷︷ ︸

binding bp(·)

(1.87)

The relation in (1.87) indicates that p(zK−1
0 ,aK−1

0) can be split into three
factors, of which the first two depend on the past/present and future,
respectively, while the third can be viewed as a weighting factor that
binds them together. Indeed, the third factor quantifies the dependence
of the future, present and past that is introduced due to the parameter
process {fk(ζ)} and in the absence of parametric uncertainty would be
eliminated. A closed form expression can be found for the binding factor
since it involves an integral of Gaussian densities (see Problem 4.2), and

48 ITERATIVE DETECTION

although the expression is fairly complicated (it involves inverse matrices
and matrix determinants), we emphasize that it does not require any re-
processing of the observation record. The closed form expression for the
binding factor is given by

bp(f̃k|k, F̃k|k, f̃
b
k|k+1, F̃

b
k|k+1) =

|Kf ||P|
|F̃k|k||F̃b

k|k+1|
exp(βHP−1β − γ) (1.88a)

with

P−1 = F̃−1
k|k + (F̃b

k|k+1)
−1 −K−1

f (1.88b)

β = F̃−1
k|k f̃k|k + (F̃b

k|k+1)
−1f̃ b

k|k+1 (1.88c)

γ = f̃H
k|kF̃

−1
k|k f̃k|k + (f̃ b

k|k+1)
H(F̃b

k|k+1)
−1f̃ b

k|k+1 (1.88d)

where f̃k|k, f̃ b
k|k+1 are the sequence-conditioned forward channel estimate,

the one-step sequence-conditioned backward channel predictor and F̃k|k,
F̃b

k|k+1 are the corresponding covariances. The first factor in (1.87) is
recursively evaluated using (1.53), while the second is calculated through
a similar backward recursion.

p(zK−1
k+1 ,aK−1

k+1 |sk+1) = p(zk+1|zK−1
k+2 , sk+1,aK−1

k+1)

p(ak+1)p(zK−1
k+2 ,aK−1

k+2 |sk+2)

= N cc(zk+1;qT
k+1f̃

b
k+1|k+2;N0 + qT

k+1F̃
b
k+1|k+2q

∗
k+1)

p(ak+1)p(zK−1
k+2 ,aK−1

k+2 |sk+2) (1.89)

The scheme suggested by this forward-backward EC is illustrated in
Fig-1.17 and can be described as follows: Starting at time 0 a forward
|A|-ary tree is built, exactly as in the case of forward EC. Similarly,
starting at time K − 1 a backward tree is expanding according to the
recursion (1.89), with the relevant channel estimates provided by a per-
path backward running KFs. After k+1 forward and K−k−1 backward
steps, the two trees meet each other. The metric p(zK−1

0 ,aK−1
0) of each

sequence aK−1
0 can now be evaluated as indicated by (1.87). The |A|k+1

metrics corresponding to the nodes of the forward tree are combined
with the |A|K−k−1 metrics corresponding to the nodes of the backward
tree (future) and weighted by the binding factor in (1.88). Note that
the choice of k, the particular point in time when the past and future
metrics are combined, is completely arbitrary. In fact, the two extreme
values k = K − 1 and k = 0 correspond to a single forward or a single
backward tree. Thus, while it may seem redundant to store and update

Overview of Non-Iterative Detection 49

Forward

Backward

k0 K − 1

|A
|K

m
et

ri
cs

|A|K metrics
|A
|K

m
et

ri
cs

|A|k+1

|A|K−k−1

binding

Figure 1.17. Metric evaluation using a forward-backward estimator-correlator.

both a forward and a backward tree (i.e., same result can be accom-
plished with a single forward tree), the fact that the two trees can be
pruned independently, will result in practical algorithm, as discussed in
Chapter 4.

1.4 Performance Bounds Based on Pairwise Error
Probability

Consider an arbitrary deterministic decision rule for deciding among
|H| hypotheses Hm based on some measurement z ∈ Z. Such a rule
introduces a partition of the observation space as shown in Fig-1.2

decide Hm ⇐⇒ z ∈ Zm (1.90)

For example, MAP detection for the |H|-ary problem results in

Zm = {z : p(z|Hm)p(Hm) > p(z|Hj)p(Hj), ∀ j �= m} (1.91)

The conditional probability of error is given by

P (E|Hm) = Pr {z(ζ) �∈ Zm|H(ζ) = Hm} = Pr {z(ζ) ∈ Zc
m|H(ζ) = Hm}

(1.92)

50 ITERATIVE DETECTION

Many useful bounds can be constructed by expressing Zc
m in specific

ways. For example, it is clear that

Zc
m = Z − Zm =

|H|−1⋃
j=0,j �=m

Zj (1.93)

An expression that is typically more useful is obtained by constructing
Zm from pairwise decision regions ZPW

m (j), defined as the region where
Hm would be selected over Hj in a pairwise (binary) decision. For
example, in the case of MAP |H|-ary decisions,

ZPW
m (j) = {z : p(z|Hm)p(Hm) > p(z|Hj)p(Hj)} (1.94)

Comparing the definitions of the global decision region and the pairwise
regions (i.e., (1.91) and (1.94)) it is apparent that

Zm =
|H|−1⋂

j=0,j �=m

ZPW
m (j) (1.95)

The complement of this region is obtained by applying DeMorgan’s Law
yielding

Zc
m =

|H|−1⋃
j=0,j �=m

[
ZPW

m (j)
]c

=
|H|−1⋃

j=0,j �=m

ZPW
j (m) (1.96)

where the fact that
[
ZPW

m (j)
]c = ZPW

j (m) has been used.
Bounds can be constructed using simple Union Bounds and related

techniques. Specifically, let {Bi} be a set of events, then it follows that

max
i

P (Bi) ≤ P

(⋃
i

Bi

)
≤
∑

i

P (Bi) (1.97)

where the lower bound is constructed by obtaining the largest lower-
bound from a family (i.e., P (Bi) is a lower bound for each value of
i). Upper and lower bounds for the conditional error probability can
then be constructed using either the union in (1.93) or (1.96). However,
evaluation of Pr {z(ζ) ∈ Zc

m|Hm} is typically difficult (i.e., if it can be
obtained, then an exact expression for the error probability can be ob-
tained), so a bound constructed from pairwise errors is more generally
applicable. In this case, applying (1.97) using the expression in (1.96)
yields

max
j

PPW (j|Hm) ≤ P (E|Hm) ≤
|H|−1∑

j=0,j �=m

PPW (j|Hm) (1.98)

Overview of Non-Iterative Detection 51

where the pairwise error probability is

PPW (j|Hm) = Pr
{
z(ζ) ∈ ZPW

j (m)|Hm

}
(1.99)

1.4.1 An Upper Bound using Sufficient Neighborhood
Sets

In practice the expression for Zc
m in (1.96) is overly conservative

owing to the fact that a subset of terms in the union may actually
fully define the complement of the decision region. Suppose that a set
Fm ⊂ {0, 1, . . . |H| − 1} defines the region Zc

m in the sense that

Zc
m =

|H|−1⋃
j=0,j �=m

ZPW
j (m) =

⋃
j∈Fm

ZPW
j (m) (1.100)

We refer to any such set as a sufficient set and the corresponding pairwise
error events as sufficient pairwise error events. There are many such
sufficient sets with smaller sets yielding tighter upper bounds. A key
property of such sets is that if a global error occurs, then some sufficient
pairwise error event must have occurred. One may view the sufficient
set as a set of “nearest neighbors” that determine the decision region;
this concept is illustrated in Fig-1.18 for the case of minimum distance
decisions. As a result, the upper bound in (1.98) can be tightened by
replacing the sum over j �= m with the sum over j ∈ Fm.

global decision

transmitted point x

received point z

sufficient set for
transmitted point

Figure 1.18. An example of a sufficient set for a given signal space. Note that a
global error cannot occur without a sufficient pairwise error event occurring.

Bounds on the unconditional error probability can then be obtained
by averaging these conditional bounds over p(Hm) yielding

P (E) ≥
|H|−1∑
m=0

p(Hm)
[
max

j
PPW (j|Hm)

]
(1.101a)

52 ITERATIVE DETECTION

P (E) ≤
|H|−1∑
m=0

p(Hm)
|H|−1∑
j∈Fm

PPW (j|Hm) (1.101b)

Example 1.15.
There are four hypotheses for the PAM sequence detection examples 1.2-
1.6. Denote these by the shorthand (a1, a0) ⇐⇒ Hm with m = 2a1 +a0

(i.e., the decimal value of the corresponding bit labels). For equal a-
priori probabilities and ML-SqD, it follows from Fig-1.4 that sufficient
sets are F0 = {1}, F1 = {0, 3}, F2 = {3}, and F3 = {1, 2}. In this
decision problem, the global decision regions have the unique property
that, for each hypothesis Hm, the pairwise decision regions comprising
Fm are disjoint.

Alternately, one may view detection of the two symbols a1 and a0

separately (under either the MAP-SyD or MAP-SqD criterion) as a bi-
nary test. One can consider the probability of sequence error P (Q) =
Pr {â(ζ) �= a(ζ)} and/or the probability of symbol error at location n
P (Yn) = Pr {ân(ζ) �= an(ζ)} for any rule. Clearly, an error in any sym-
bol location implies a sequence error – i.e., Q =

⋃
n Yn.

End Example

1.4.1.1 Special Cases for AWGN Channels
A common special case for the application of the bounds developed

above is that of a-priori equally-likely signaling over an AWGN channel
where z(ζ) = sm+w(ζ) under Hm with w(ζ) being AWGN. In this case,
the MAP detection rule is the minimum distance rule and the pairwise
error is

PPW (j|Hm) = Q

√d2(j,m)

2N0

 (1.102a)

d(j,m) = ‖sj − sm‖ (1.102b)

Q(x) ∆=
∫ ∞

x
N (z; 0; 1)dz =

1√
2π

∫ ∞

x
exp(−z2

2
)dz (1.102c)

In this case, the bound simplifies to

1
|H|

|H|−1∑
m=0

Q

√

d2
min(m)
2N0

 ≤ P (E) ≤ 1

|H|

|H|−1∑
m=0

∑
j∈Fm

Q

√d2(j,m)

2N0

(1.103)

Overview of Non-Iterative Detection 53

where
dmin(m) = min

j �=m
d(j,m) (1.104)

A simple set of bounds can be obtained in terms of the global minimum
distance

dmin = min
m

dmin(m) (1.105)

Specifically, using all other hypotheses as the sufficient set for the upper
bound and constructing the lower bound by taking only a single term
from the sum yields

1
|H|Q

√

d2
min

2N0

 ≤ P (E) ≤ (|H| − 1)Q

√

d2
min

2N0

 (1.106)

which implies that at high SNR, the error probability must decay pro-
portionally to Q(

√
d2

min/(2N0)) – i.e., the error probability of a binary
test with only the nearest neighbor.

With some book-keeping, these bounds can be improved. Specifi-
cally, consider the distance spectrum of the signal set – i.e., the values
of d(m, j) that can occur for the specific set of signals. Order these dis-
tances so that dmin = d1 < d2 < d3 Let Ni({Fm}) be the number
of times that di occurs in a listing of all sufficient pairwise error events.
Let Ki be the number of hypotheses for which dmin(m) = di. The basic
bound in (1.103) then simplifies to

∑
i

Ki

|H|Q

√

d2
i

2N0

 ≤ P (E) ≤

∑
i

Ni({Fm})
|H| Q

√

d2
i

2N0

 (1.107)

Note that one could use any single term from the lower bound in (1.107)
as a lower bound. This may be much easier to compute and only slightly
looser. For example, this yields a lower bound in dmin of the form

P (E) ≥ K1

|H|Q

√

d2
min

2N0

 (1.108)

Note that, depending on the SNR, this may not be the best single-term
lower bound. For example, the analogous bound based on d2 may be
larger at low SNR if K2 > K1. This motivates the lower bound

P (E) ≥ max
i

Ki

|H|Q

√

d2
i

2N0

 (1.109)

54 ITERATIVE DETECTION

At moderate to high SNR, the dmin term in the upper bound dominates
and may be used as an approximation to the error probability.

Example 1.16.
Continuing with the 4-PAM example, consider analysis of the MAP-SqD
rule with equal a-priori probabilities. To emphasize the decision criterion
used, we use PSq(·) in denoting the symbol and sequence error probabil-
ities – i.e., PSq(·) and PSy(·) will be used to denote error probabilities
under the MAP-SqD and MAP-SyD criteria, respectively.

For probability of sequence error PSq(Q), we consider the 4-ary ML-
SqD rule. The expressions in (1.106) and (1.103)/(1.107) both yield
bounds of the form

CLQ (γ) ≤ PSq(Q) ≤ CUQ (γ) (1.110)

where γ =
√

2A2/N0. Specifically, (1.106) yields (CL, CU) = (1/4, 3)
and (1.103)/(1.107) yield the tighter bounds (CL, CU) = (1, 3/2). Note
that, for this example dmin(m) = dmin = 2A – i.e., each signal has its
closest neighbor at distance 2A.

Because of the special disjoint structure of the pairwise decision re-
gions in Fm, the upper bound from (1.107) coincides with the exact
value of PSq(Q). The symbol error probabilities for the ML-SqD can
also be found exactly as

PSq(Y0) = Q (γ) +
1
2
Q (3γ)− 1

2
Q (5γ) (1.111a)

PSq(Y1) =
1
2
Q (γ) +

1
2
Q (3γ) (1.111b)

End Example

1.4.2 Lower Bounds Based on Uniform Side
Information

A simple lower bound for any problem can be obtained using side in-
formation. This is often described as a “genie” that aids a receiver. The
reasoning is that the optimal genie-aided receiver must perform at least
as well as the non-aided receiver. Thus, by choosing the genie’s rules
carefully, one can obtain a good lower bound that is easy to evaluate.

To formalize this notion, denote the side information by V(ζ). Let us
focus on the case where a lower bound is desired for P (E) for an |H|-ary
decision when the MAP |H|-ary decision rule is used. In that case, the
decision rule of a genie-aided receiver is

max
m

p(z,V|Hm)p(Hm) ⇐⇒ max
m

p(z|Hm)p(V|Hm)p(Hm) (1.112)

Overview of Non-Iterative Detection 55

where it has been assumed that z(ζ) is independent of V(ζ) given the hy-
pothesis. Consider the special case where the genie provides the receiver
with the index of the correct hypothesis and some other hypotheses ac-
cording to a given probability. For example, if Hm is the true hypothesis,
the genie will provide the receiver with Vi,j,m = {i, j,m} with probabil-
ity p(Vi,j,m|Hm). The genie never gives incorrect information – e.g., the
genie will never reveal V3,4 = {3, 4} if H2 is correct.

We define a special type of side information scheme as uniform side
information (USI) which has the property that

pV(ζ)|H(ζ)(V|Hm) =

{
b(V) m ∈ V
0 m �∈ V

(1.113)

where b(V) > 0 is a constant for a given side information realization. As
a consequence, the genie-aided MAP detector executes

max
m∈V

p(z|Hm)p(Hm) (1.114)

which is simply a MAP decision rule over the subset of the hypotheses
revealed by the side information. Notice that the p(V|Hm) terms have
been canceled due to the USI property.

A pairwise uniform side information scheme reveals either one or two
elements. That is, when H(ζ) = Hm, the genie reveals either Vm = {m}
or Vj,m = {j,m}. In the former case, the error probability is zero since
p(Vm|Hj) = δj,m. In the latter case, the MAP rule in the presence of the
side information is a binary MAP test between Hm and Hj. Thus, the
conditional probability of error for a USI scheme is the error probability
of a MAP detector that must select only between Hj and Hm – i.e.,

P (E|V = {m, j},Hm) = PPW (j|Hm) (1.115)

An example of how this may be used is to reveal pairs that correspond
to signals at a given distance, thus obtaining a bound similar to that in
(1.109).

Example 1.17.
To illustrate the subtleties associated with development of lower bounds
based on side information, consider obtaining a lower bound on the
sequence error probability associated with the MAP-SqD PSq(Q) when
the a-priori probabilities are uniform. Table 1.3 shows three different
side-information schemes, each revealing a single hypothesis or a pair of
hypotheses. Schemes A and B are USI schemes, but scheme C is not. The
pairwise USI schemes provide lower bounds immediately. For example,

56 ITERATIVE DETECTION

(a1, a0) x(a1, a0) Hm (A) V(ζ) (B) V(ζ) (C) V(ζ)

(0, 0) −3A H0 V0,1 wp 1 V0 wp 1 V0,1 wp 1

(0, 1) −A H1 V0,1 wp 1 V0,1 wp 1 V0,1 wp 0.5
V1,3 wp 0.5

(1, 1) +A H3 V2,3 wp 1 V2,3 wp 1 V1,3 wp 0.5
V2,3 wp 0.5

(1, 0) +3A H2 V2,3 wp 1 V2 wp 1 V2,3 wp 1

Table 1.3. Three different side-information schemes for the 4-PAM sequence detec-
tion problem (“wp” is “with probability”). The notation Vi,j is used to denote the
set with x under Hi and Hj . For example, V2,3 = {+3A, +A} and V2 = {+3A}.

consider the MAP-SqD rule given z and the V(ζ) = {−3A,−A} = V0,1

under scheme A. In this case pV(ζ)|H(ζ)({−3A,−A}|Hm) = 0 for m �∈
{0, 1}. Thus, the MAP rule in (1.112) reduces to

p(z|H0)p(V0,1|H0)p(H0)
H0
>
<
H1

p(z|H1)p(V0,1|H1)p(H1) (1.116)

Since the a-priori probabilities are uniform and the scheme is USI, this
reduces to a pairwise ML test between H0 and H1 so that

P
(A)
Sq (Q|H0,V0,1) = P

(A)
Sq (Q|H1,V0,1) = Q (γ) (1.117)

Considering the same exact situation under side-information scheme
C, the rule in (1.116) reduces to

p(z|H0)× (1)
H0
>
<
H1

p(z|H1)× (1/2) (1.118)

since p(V0,1|Hm) is 1 and 1/2 for m = 0, 1, respectively. Thus, MAP-
SqD in the presence of this nonuniform side-information must take into
account the statistics of the side information (i.e., the “genie” is biased).
The conditional error probabilities for the binary MAP test in (1.118)
are (see Problem 1.7)

P
(C)
Sq (Q|H0,V0,1) = Q

(
γ + γ−1 ln(2)

)
(1.119)

P
(C)
Sq (Q|H1,V0,1) = Q

(
γ − γ−1 ln(2)

)
(1.120)

Regardless of the (accurate) side information scheme considered, the
MAP-SqD rule in the presence of this additional information can perform

Overview of Non-Iterative Detection 57

no worse than the MAP-SqD rule without access to the side information.
Thus, after considering all possible conditional values on the sequence
and side information and averaging over p(V|Hm)p(Hm), a lower bound
is obtained for each scheme considered. For the schemes listed in Ta-
ble 1.3, we obtain the error probabilities of the aided receivers

P
(A)
Sq (Q) = Q (γ) (1.121a)

P
(B)
Sq (Q) =

1
2
Q (γ) (1.121b)

P
(C)
Sq (Q) =

3
4

[
2
3
Q
(

γ +
ln 2
2γ

)
+

1
3
Q
(

γ − ln 2
2γ

)]
+

1
4
Q(γ) (1.121c)

The bound associated with scheme C has been written in a form such
that it is apparent that it is looser than the lower bound obtained by
scheme A (see Problem 1.7). In general, for equally likely hypotheses,
a tighter lower bound will be obtained by revealing as little information
as possible. For pairwise side-information, this means a good scheme
is a USI scheme that reveals the true hypothesis with certainty as in-
frequently as possible (see Problem 1.8). For example, scheme A is
preferred over scheme B because H0 and H2 are revealed with certainty
in scheme B whenever they are true. However, the main advantage of a
USI scheme is that the evaluation of the resulting bound is substantially
simplified.

End Example

Obviously the PAM example is not representative of a practical ap-
plication of the bounding techniques because the exact error analysis
can be obtained directly. A common practical application is the use of
the upper-bounding techniques applied to the MAP-SqD and the USI-
based lower bounds to the MAP-SyD. Together, these provide lower and
upper bounds on the symbol error probability (SEP) using either MAP
sequence or symbol detection rules. Specifically, a lower bound on the
SEP for MAP-SyD is a valid lower bound for any receiver and the upper
bound on SEP for the MAP-SqD is also valid for the MAP symbol de-
tector. The next example concludes the 4-PAM example and illustrates
this typical use.

Example 1.18.
Since the ML-SqD and ML-SyD rules are identical for a1(ζ), we focus
on the analysis of the MAP-SyD rule for a0(ζ) with equal a-priori prob-
abilities. In this case, the exact error probability can be found based in

58 ITERATIVE DETECTION

terms of the parameter ε defined in Example 1.3 as

PSy(Y0) =
1
2

[
Q(γ − ε

√
N0/2) + Q(γ + ε

√
N0/2)

]
+

1
2
Q(3γ + ε

√
N0/2)− 1

2
Q(5γ + ε

√
N0/2) (1.122)

which still requires solving a transcendental equation for ε.
A pairwise USI scheme can be designed so that MAP-SyD of a0 in the

presence of the side information is an ML binary test. Specifically, when
a hypothesis Hm in the 4-ary problem is true, the genie should reveal
Hj where the value of a0(ζ) associated with Hm and Hj are different.
In fact, the scheme A from Table 1.3 has this property. The MAP-SyD
receiver for a0(ζ) based on z and the side information from scheme A
always performs a minimum distance test between two signals at distance
dmin so that

PSy(Y0) ≥ P
(A)
Sy (Y0) = Q(γ) (1.123)

A lower bound on PSy(Y1) can be found using a pairwise USI scheme
that coincides with the exact SEP (see Problem 1.9).

The exact expressions for the SEP associated with MAP-SyD and
MAP-SqD for both bit labels is plotted in Fig-1.19. Also shown is the
lower bound in (1.123). Notice that the only noticeable difference be-

B
it

E
rr

or
P

ro
ba

bi
lit

y

0.1

0.2

0.3

0.4

0.5

0.6
a0: MAP-SqD

a0: MAP-SyD

a1 (MAP-SyD and MAP-SqD)

a0: lower bound on MAP-SyD

−40 −20−30 −10
1/σ2 (dB)

0
0

10

Figure 1.19. Performance comparison for various decision rules for the 4-PAM ex-
ample.

tween the SEP associated with the two detectors for a0 occurs at very
low SNR as implied by Fig-1.6. Furthermore, the simple lower bound in
(1.123) is relatively tight for all reasonable values of the SNR.

End Example

Overview of Non-Iterative Detection 59

1.4.3 An Upper Bound for MAP-SqD
An upper bound on the probability that the MAP-SqD decision is

in error at location k can be obtained using the methods introduced in
Section 1.4.1 by properly defining the global error event and a sufficient
set of pairwise error events. This may be done by conditioning on the
transmitted sequence being a(ζ) = a. Let Gk(a) be the set of all valid
input sequences that differ from a at position k. There are two different
error events of interest for a given transmitted sequence a and another
allowable sequence ã ∈ Gk(a). The global error event Ê(â|a) occurs if and
only if â ∈ Gk(a) and M[â] ≤ M[ã] for all ã, where we are using M[a]
as shorthand for the sequence metric M[a,x(a)] in (1.34). In words,
Ê(â|a) is the event that the MAP-SqD decision â(ζ) = â disagrees with
the transmitted sequence a(ζ) = a at location k. The pairwise error
event EPW (ã|a) is the event that ã ∈ Gk(a) is more likely than the
transmitted sequence a – i.e., M[ã] < M[a]. Note that a symbol error
occurs at location k when a is transmitted if and only if Ê(â|a) occurs,
but the occurrence of a pairwise error EPW (ã|a) does not necessarily
mean that there will be a symbol error at location k.

Assuming a unique tie-breaking strategy is employed for the MAP-
SqD rule, the error events {Ê(ã|a)} are disjoint for different ã ∈ Gk(a).
Thus, the symbol error probability, given a is transmitted, is the prob-
ability of Ê(a), defined as

Ê(a) ∆=
⋃

ã∈Gk(a)

Ê(ã|a) (1.124)

More precisely, the conditional SEP is PSq(Yk|a) = P (Ê(a)).
An upper bound may be obtained, as in Section 1.4.1, by identifying

a set of sufficient pairwise error events. Specifically, a sufficient set of
sequences Fk(a) is defined by the property

Ê(a) ⊆
⋃

ã∈Fk(a)

EPW (ã|a) (1.125)

or, as before, a global error implies at least one pairwise error with
a member of the sufficient set. An upper-bound on the symbol error
probability at index k for the MAP-SqD is then

PSq(Yk|a) ≤
∑

ã∈Fk(a)

P (EPW (ã|a)) =
∑

ã∈Fk(a)

PPW (ã|a) (1.126)

for any sufficient set Fk(a). The pairwise error probability PPW (ã|a) is
implicitly defined in (1.126) as P (EPW (ã|a)).

60 ITERATIVE DETECTION

The most commonly used sufficient set is the set of simple sequences
Sk(a) [Ve87]. A simple sequence ã ∈ Sk(a) is one in Gk(a) with as-
sociated state sequence s̃ that differs from that associated with a in a
connected pattern.8 In other words, the paths in the trellis defined by
the transmitted sequence a and the associated simple sequence ã may
remerge to the left or right of the location k at most once. Note that
since Sk(a) ⊆ Gk(a), the sequences differ at index k (i.e., ak �= ãk) so
that the associated transitions also differ at this location (i.e., tk �= t̃k).
Moreover, for any sequence ã ∈ Gk(a) we define its simple component
ãS . Specifically, let the k0 ≤ k and k1 + 1 > k be the locations closest
state agreements between the paths ã and a to the left and right of k,
respectively, and Xk = {k0, . . . k . . . k1}, then

ãS,n =

{
ãn n ∈ Xk

an n �∈ Xk
(1.127)

Note that k0 (k1) may extend to the left (right) edge of the observation
interval. For example, referring to Fig-1.20, the simple component of
the MAP-SqD decision â is shown.

sk+1 sk1+1

tranmitted a

MAP-SqD â

sksk0

âS

Xk

âSc

Figure 1.20. The MAP-SqD decision must be the best path between any two states
through which it passes. Thus, aS is more likely than the transmitted sequence a.

It follows that the set of all simple sequences Sk(a) is sufficient be-
cause, referring to Fig-1.20, it is not possible that â is the globally short-
est path, yet a is more likely than âS . Specifically, the MAP-SqD must
be the shortest path through any two states that it passes. If this were
not the case, another sequence âSc could be constructed which would be
more likely than â by replacing that segment.

More formally, we claim that Ê(â|a) ⊆ EPW (âS |a). This may be
shown by contradiction. Specifically, assume that Ê(â|a) has occurred

8When referring to the input sequence a to an FSM, we adopt the convention that the initial
state is also included in this sequence.

Overview of Non-Iterative Detection 61

and EPW (âS |a) has not. This means that M[âS] > M[a]. Since the tran-
sitions associated with âS and a agree on X c

k , it follows that MXk
[âS] >

MXk
[a] holds. Recall that MJ [·] corresponds to the sequence metric

summed over indices in J . However, MXk
[âS] = MXk

[â] since the tran-
sitions of âS and â agree on Xk. Thus, a sequence âSc that agrees
with a on Xk and â on X c

k will have smaller total metric than â – i.e.,
M[âSc] < M[â] – contradicting the assumption that Ê(â|a) occurred.

The unconditional upper bound may then be expressed as

PSq(Yk) ≤
∑

ã∈Sk(a)

PPW (ã|a)pa(ζ)(a) (1.128)

Note that the proof of the upper bound relies only on the fact that the
metric decouples (i.e., as in (1.85)) so the bound is valid whenever the
Viterbi algorithm or forward-backward algorithm apply. Thus, this ap-
plies to non-uniform a-priori probabilities on the symbols, time-varying
systems, systems with terminated initial and final states, etc.

A common special case of (1.128), however, is for a simple, linear,
time-invariant FSM, driven by an iid sequence, and observed in AWGN.
For this special case, (1.128) is typically simplified in a manner similar to
the that in Section 1.4.1.1. Specifically, if zk = x(tk)+wk is the observed
realization where wk(ζ) is an AWGN (complex circular) sequence with
variance N0/2 per dimension, and x(tk) = fTak

k−L, then the pairwise
error probability simplifies to

PPW (ã|a) = Q

√d2(e)

2N0

 (1.129a)

d2(e) = ‖x(ã)− x(a)‖2 = ‖x(ã− a)‖2 (1.129b)

= ‖x(ẽ)‖2 =
∑
n

|xn(ẽ)|2 (1.129c)

Thus, one can translate the sum over sequences ã ∈ Sk(a) in (1.128) into
a sum over associated error sequences. Specifically, error sequences are
digital sequences with elements in the difference set ∆A, which contains
all possible values obtained by differences of the elements in A. For
example, if A = {+1,−1}, then the error alphabet is ∆A = {−2, 0,+2}.
The set of simple error sequences associated with {Sk(a)}a are those
with ek �= 0 and all nonzero elements separated by no more than L− 2
zero entries.9

9Thus, a single simple error sequence corresponds to multiple pairs of a and ã ∈ Sk(a).

62 ITERATIVE DETECTION

It is common to focus on a location k that is near the center of a long
sequence and assume that all error sequences with significant pairwise
error probability may occur for that location. Under that assumption,
the SEP is not a function of k for those points sufficiently far from the
edges of the observation interval. Collecting terms, it is then possible to
express (1.128) as

PSq(Y) ≤
∑
d∈D

KUB(d)Q
(√

d2/(2N0)
)

(1.130a)

KUB(d) =
∑

ẽ∈S:d(ẽ)=d

PC(ẽ)w(ẽ) (1.130b)

where D is the distance spectrum of the FSM. The set S is the set of all
simple error patterns with all shift equivalences removed – i.e., if ẽk is in
S, then ẽk−n for n �= 0 is not in S. The number of nonzero elements in
ẽ or weight is denoted by w(ẽ). The inclusion of w(ẽ) accounts for not
counting different shift equivalent sequences. The term PC(ẽ) accounts
for the sum of a-priori probabilities of all transmitted sequences con-
sistent with the error sequence ẽ. This factors into a product of terms
PC(ẽk) which is the sum of the probabilities of all the values ak ∈ A that
could yield ẽk. Thus, for example, since all transmitted sequence values
are consistent with ẽk = 0, PC(0) = 1. For the case of A = {+1,−1},
the error value +2 can only be achieved if ak = −1 (and ãk = +1), so
PC(+2) = 1/2. Similarly, PC(−2) = 1/2. Thus, PC(ẽ) = 2−w(ẽ) for this
special case. This is further illustrated in the following example.

Example 1.19.
Consider the QPSK alphabet A = {+1,+j,−1,−j}. The associated
difference set can be obtained by forming ãk − ak for all possible values
of ãk, ak ∈ A, as shown in Table 1.4. It follows from this table that

ak

+1 +j −1 −j

+1 0 +1 − j +2 +1 + j
ãk +j −1 + j 0 +1 + j +2j

−1 −2 −1 − j 0 −1 + j
−j −1 − j −2j +1 − j 0

Table 1.4. The difference alphabet for QPSK signaling

∆A = {0,+2,−2,+(1 + j),−(1 + j),+(1− j),−(1− j)}. Summing over
all values of ak consistent with ẽk and noting that pak(ζ)(ak) = 1/4 for
all conditional values, we can obtain the PC(ẽk) terms. Specifically, this
yields PC(0) = 1, PC(+2) = PC(−2) = PC(+2j) = PC(−2j) = 1/4, and

Overview of Non-Iterative Detection 63

PC(+1 + j) = PC(−1− j) = PC(+1− j) = PC(−1 + j) = 1/2.
End Example

Error analysis of the form presented in this section dates back to
the introduction of the Viterbi algorithm [Vi67]. Forney stated the
bound in the form of (1.130) in [Fo72]. Foschini noted some errors in
the development of [Fo72] and proved that the upper bound in (1.130)
converged [Fo75]. Foschini’s proof of the upper bound, however, is
also flawed (see [ChAn00] and Problem 1.24). The development above
is similar to that of Mazo [Ma75] and Verdú [Ve87], and Sheen and
Stüber [Sh91, St96], slightly generalized. For the linear FSM chan-
nel, Verdú [Ve87] also introduced a set of sufficient sequences that is
strict subset of simple sequences, thus tightening the bound (see Prob-
lem 1.25).

Evaluation of the upper bound can be approximated by searching
simple sequences up to some maximum length. For linear convolutional
codes, the upper bound can be evaluated by determining the graph de-
terminant for an error state diagram [ViOm79, LiCo83]. This extends
conceptually to more general linear FSMs, but the evaluation becomes
tedious [ViOm79]. A branch and bound algorithm for evaluation of the
upper bound is given in [Ve87].

At moderate to high SNR, the union bound sum is dominated by
the value associated with the maximum pairwise error probability. For
the special case of (1.130), this corresponds to the minimum distance
term. The normalized minimum distance is the minimum distance un-
der the normalization convention E{|ak(ζ)|2} = 1 and ‖f‖ = 1. For
example, with BPSK signaling, the pairwise error term associated with
the minimum distance is Q(

√
2Eb/N0dmin). It may be shown that the

normalized minimum distance for linear FSM channels is no more than
one (see Problem 1.26). Thus, dmin is a measure of the degradation in the
SNR associated with ISI. Finding the value of dmin may be viewed as a
special case of the CM problem. Specifically, dmin is found by minimizing

M[e] =
∑

k

Mk[ek
k−L] =

∑
k

|x(ek
k−L)|2 =

∑
k

|fk � ek|2 (1.131)

with the condition that one location in e is nonzero. Thus, the minimum
distance is the overall associated metric of the best nonzero error path
through a trellis with |∆A|L states. This may be found in most cases
by running the Viterbi algorithm on this trellis using the metric defined
in (1.131), initialized to the all-zero error state, with the first transition
forced to correspond to a nonzero error symbol.

64 ITERATIVE DETECTION

The minimum distance can be found more efficiently by checking only
a small subset of simple error sequences. This is shown in [AnFo75] with
some insight to these clever observations given in Problem 1.27.

1.4.4 A Lower Bound for MAP-SyD
Lower bounds on the SEP associated with MAP-SyD can be con-

structed using the method of uniform side information as described in
Section 1.4.2. Since it is usually relatively simple to evaluate pairwise
error probabilities, the most common approach is to reveal pairs of se-
quences in a USI manner. The performance of the MAP-SyD receiver
aided by this USI is a lower bound on the SEP for any receiver. A sim-
ple scheme is to group sequences associated with a given pairwise error
probability – i.e., a consistency set. For transmitted sequences not in
that set, the transmitted sequence is revealed. For sequences in that con-
sistency set, the transmitted sequence is revealed with another sequence
which yields the specific pairwise error probability. If this is done in a
USI manner, a lower bound is obtained which is simply the given pair-
wise error probability times the probability of the consistency set. In
the following, we demonstrate this for the linear ISI-AWGN channel, for
which the distance is a proxy for the pairwise error probability.

Let Ck(d) be the set of all possible sequences a, that are consistent
with an error sequence ẽ = ã − a having ẽk �= 0 and distance d (i.e.,
‖x(ã−a)‖ = d for some valid input sequence ã). Let Bk(d) ⊆ Ck(d) have
a pairwise USI scheme defined. Specifically, the side information V(ζ)
is defined as follows. For transmitted sequences not in Bk(d), reveal the
transmitted sequence

p(V = {a}|a) = 1 for a /∈ Bk(d) (1.132)

For transmitted sequences in Bk(d), reveal the transmitted sequence
along with one other sequence in Bk(d) in a USI manner. With this,
errors are only made when sequences in Bk(d) are transmitted and it
follows that the lower bound is

PSy(Yk) ≥ P
(aided)
Sy (Yk) = P (Bk(d))Q

(√
d2/(2N0)

)
(1.133)

where P (Bk(d)) is shorthand for Pr {a(ζ) ∈ Bk(d)}. Note that if a pair-
wise partitioning of the set Bk(d) exists, then there is a natural pairwise
USI scheme defined. Specifically, for each sequence a ∈ Bk(d), define the
associated sequence a(si) ∈ Bk(d) (superscript (si) denotes side informa-
tion) in such a way that each sequence in Bk(d) is paired with exactly
one other sequence in Bk(d). Then the pairwise USI scheme is simply to

Overview of Non-Iterative Detection 65

reveal V = {a,a(si)} if and only if either a or a(si) is transmitted – i.e.,

p(V = {a,a(si)}|a) = p(V = {a,a(si)}|a(si)) = 1 (1.134)

and p(V = {a,a(si)}|ã) = 0 for all other values of ã. In most cases
of interest, again, the index k can be dropped by the assumption of a
sufficiently large observation record.

A lower bound based on a pairwise partition of a subset of Ck(dmin)
was suggested by Mazo [Ma75b]. A more well-referenced lower bound is
that suggested by Forney [Fo72b] which is P (Ck(dmin))Q(

√
d2

min/(2N0)).
The development of this claim is, however, not correct. Specifically,
the “genie” used in the derivation of [Fo72b] operates as follows. If the
transmitted sequence has no dmin neighbor, then it is revealed. If the
transmitted sequence a is in Ck(dmin), then it is revealed along with an-
other sequence that is randomly (uniformly) selected from all sequences
dmin away from a. This is not a USI scheme, and therefore does not yield
the bound claimed. This is illustrated by reinterpreting Example 1.17
as in the next example.

Example 1.20.
Consider detection of a 4-PAM symbol sequence that has been corrupted
by an ISI channel and AWGN. Specifically, consider the trivial ISI chan-
nel (i.e., no ISI) so that zk = xk + wk where xk is a sequence of 4-PAM
symbols uniformly distributed over the 4-ary constellation of Fig-1.4,
and wk is AWGN with variance N0/2. Note that, in this context, the
symbols xk are the symbols and x is the sequence. The minimum dis-
tance for this problem is dmin = 2A and every transmitted sequence is in
C(dmin). A USI scheme is to reveal V = {a, ã} with probability one when
a is transmitted, where ã agrees with a in all locations except k. At lo-
cation k, the scheme is defined as genie A in Example 1.17. Specifically
at location k, the side information is V = {−3A,−A} if ak ∈ {−3A,−A}
and V = {+A,+3A} otherwise. This yields a lower bound on the 4-PAM
symbol error probability of Q(γ) (recall γ =

√
(2A2)/(N0)).

The side information scheme of [Fo72] applied to this trivial problem
yields a lower bound on the 4-PAM SEP the expression in (1.121c). The
lower bound stated in [Fo72], however, reduces to Q(γ) in this case.

End Example

Example 1.20 shows that the development of Forney’s lower bound
is flawed. However, the bound claimed in [Fo72], is, in fact, valid for
this example (i.e., it was obtained using the pairwise USI scheme). An-
other such example is given in [Ve98, Problem 4.24]. In general, the

66 ITERATIVE DETECTION

bound stated in [Fo72] itself is invalid [ChAn00] (i.e., see Problem 1.28),
although it appears to hold for most cases of practical interest.

Note that the set Bk(d) may be any subset of Ck(d) for which a USI
scheme is properly defined. Thus, in practice, one need not find the
entire distance spectrum to obtain a useful lower bound. Useful lower
bounds can be based on incomplete searches of error sequences. Also,
the value of d was never specified, so lower bounds can be constructed
based on any distance in the distance spectrum. If a search has been
performed to obtain the sets Bk(di) for different di, each of which has
a pairwise USI scheme defined on it, then a valid lower bound of the
form in (1.133) can be obtained for each value of di. Which of these
lower bounds is tightest depends on the SNR. Thus, for a given SNR,
the lower bound can be taken as

PSy(Yk) ≥ max
i

P (Bk(di))Q
(√

d2
i /(2N0)

)
(1.135)

This may be useful, for example, when the minimum distance error
sequences have large weight. In this case, P (Bk(dmin)) will be small,
making it useful at high SNR but very loose at low SNR. In a similar
manner, if the sets {Bk(di)} are designed such that they are disjoint,
then a multi-d bound can be obtained

PSy(Yk) ≥
∑

i

P (Bk(di))Q
(√

d2
i /(2N0)

)
(1.136)

An algorithm for constructing such a multi-d bound was described in
[MoAu99].

The USI scheme does not need to reveal only pairs. The next example
illustrates how the USI scheme can be useful for establishing an intuitive
lower bound for ISI channel.

Example 1.21.
Consider the linear ISI-AWGN channel with zn(ζ) = fTan

n−L(ζ)+wn(ζ)
where wn(ζ) is (complex circular) AWGN with variance N0/2 in each
dimension. A USI scheme is defined as follows. When the sequence a is
transmitted, reveal a set of |A| sequences with probability one. These
sequences are those that agree with a at all locations other than k, with
each of the |A| sequences corresponding to a different conditional value of
ak(ζ). At the receiver, using the side information, construct a sequence
x̄n by convolving the channel with a sequence that is an at all locations
except n = k, for which it is zero. Subtracting the sequence x̄n from zn,

Overview of Non-Iterative Detection 67

we obtain the sufficient statistic yn which has the model

yn(ζ) =

wn(ζ) n < k

ak(ζ)fn−k + wn(ζ) n = k, k + 1, . . . k + L

wn(ζ) n > k + L

(1.137)

Because the noise is white, a set of sufficient statistics is provided by
{yn}k+L

n=k or, in vector form yk+L
k = akf + wk+L

k . This can further be
reduced without loss of sufficiency by forming r = (fTyk+L

k)/‖f‖ which
has the simple model r(ζ) = ak(ζ)‖f‖ + n(ζ), where n(ζ) is a circular
complex Gaussian random variable with variance N0/2 in each dimen-
sion.

Thus, this example shows that a lower bound for the SEP of a linear
ISI-AWGN channel is the SEP for an ISI-free channel with equivalent
signal energy. In other words, linear ISI can never improve the minimum
achievable SEP (i.e., the performance of a MAP-SyD receiver).

End Example

1.5 Chapter Summary
In this chapter we have summarized data detection for fairly general

systems and memoryless channels. Effort has been taken to present
the most commonly used optimality criteria in a common framework.
For example, regardless of the exact system structure MAP-SyD and
MAP-SqD may be viewed as special cases of the general Combine and
Marginalize (CM) problem. Upper and lower bounds for MAP detection
can be constructed from pairwise error probabilities using sufficient sets
of neighbors and uniform side information schemes, respectively.

The important special system of a Finite State Machine was consid-
ered in detail. With perfect channel state information, the forward-
backward algorithm provides MAP sequence or symbol decisions. For
MAP sequence detection, the backward recursion can be replaced by
a store and trace-back operation which yields the Viterbi algorithm.
The Viterbi algorithm produces exactly the same decisions as the min-
sum forward-backward algorithm, but it does not explicitly compute
the input symbol MSM and then threshold it. In Chapter 2, we seek
algorithms to compute soft information and, instead of thresholding that
information, pass it on to other subsystem detectors for further refine-
ment.

For channels with nuisance parameters (i.e., imperfect CSI), the FSM
structure does not yield an efficient MAP detector structure. In fact,
even for very simple systems with imperfect CSI, the optimal detector is,

68 ITERATIVE DETECTION

strictly speaking, an exhaustive combining and marginalization proces-
sor. Fortunately, however, approximations to this prohibitively complex
processing perform well in practice. Our presentation of these practi-
cal receivers for imperfect CSI emphasized the view of a forced folding
approximation to the optimal processing. The bidirectional recursive
estimator-correlator developed in this chapter serves as the basis for the
practical adaptive iterative detection methods presented in Chapter 4.

1.6 Problems

1.1. Consider the system with zk(ζ) =
√

Esak(ζ)ejφ + wk(ζ), where
ak(ζ) is a PSK modulation sequence so that |ak|2 = 1 for all
ak ∈ A and wk(ζ) is AWGN.
(a) Assuming that φ is an unknown, deterministic constant in

[−π,+π), find the generalized likelihood of aK−1
0 based on

zK−1
0 .

(b) Assume a random model φ(ζ) which is uniform on [−π,+π).
Find both the generalized likelihood and the average likeli-
hood for this model.

(c) Compare your results and discuss the impact of the assump-
tion that |ak|2 is constant.

1.2. Verify that the computation of the min∗(·) operator defined in
(1.28a) and (1.28c) can be computed as shown in (1.28b) and
(1.28d). To show (1.28b), consider the cases x > y and x < y
separately.

1.3. Consider natural labeling of a PSK constellation. Specifically, let
x(bK−1

0) =
√

Es exp[jθ(bK−1
0)], where

θ(bK−1
0) =

1
2π

2−K
K−1∑
k=0

bk2k

and each bk takes on values in {0, 1}. In this problem, we compare
the ML-SqD and ML-SyD decision rules. Specifically, assume
that bk(ζ) is an iid sequence with each equally likely to take 0 or
1, and that the observation is zk = x(bK−1

0) + w, where w is a
realization of a circular complex Gaussian random variable with
mean zero and E{|w(ζ)|2} = N0.
(a) For K = 2 (i.e., QPSK), show that the ML-SqD and ML-SyD

rules are the same.
(b) For K = 3 (i.e., 8PSK), show that the ML-SqD and ML-SyD

rules are the same.

Overview of Non-Iterative Detection 69

(c) Can you find a labeling for which the two criteria yield dif-
ferent decisions?

1.4. Show that, in an AWGN channel, the ML-SyD decision regions for
naturally labeled 2K-PSK are identical (modulo 2π/2K) to those
for a Gray indexed 2K-PSK. Hint: the Gray labeling can be
obtained from the natural labeling via the mapping b1b2 · · · bl →
(b1 ⊕ b2) · · · (bl−1 ⊕ bl)bl.

1.5. Define a soft information measure as V[x] = −I−1
0 (P[x]), where

I0(·) is the modified Bessel function of the first kind. Is there a
combining and marginalizing semi-ring for this soft information
measure? If so, identify the associated elements in Table 1.2, if
not, explain why.

1.6. [ChDeOr99] Consider the soft information measure that computes
the marginal metric M[ak] using sum combining with marginal-
izing defined as follows. Let â be the path with shortest path
and ā(ak) be the same sequence with âk replaced by ak, then
M[ak] = M[ā(ak)]−M[â].

(a) Show that this soft output is threshold consistent with the
Viterbi algorithm with appropriately defined metrics.

(b) If ak is the input to a simple FSM with output xk, give a
simple algorithm to augment the Viterbi algorithm to produce
this soft information.

(c) Consider the case where yk is the input to a quantizer and
ak(y) is the output. When the inverse quantizer is driven by
ak, the reconstructed estimate of yk is xk(a). In this case, if
M[a] =

∑
k M[yk, xk(a)] represents the reconstruction distor-

tion associated with quantizing y to a, what does the marginal
soft-information computed represent?

1.7. Consider a binary hypothesis test defined by z = sm+w(ζ) under
Hm, with m = 0, 1. The noise w(ζ) is AWGN. Show that the error
probability for the MAP test is

P (E) = p1Q
(

d

2
+

ln(p1/p0)
d

)
+ p0Q

(
d

2
− ln(p1/p0)

d

)
(1.138)

where pm = p(Hm) and

d =

√
‖s1 − s0‖2

N0/2
(1.139)

Show that this is maximized when the priors are equal.

70 ITERATIVE DETECTION

1.8. Reconsider the lower bound development for the 4-PAM example
with the a-priori probabilities: pa0(0) = 2/3, pa1(0) = 1/2. Does
scheme C yield a tighter lower bound?

1.9. Consider the 4-PAM example. Find the lower bound on the SEP
for a1 based on the side information scheme: p(V0,3|H0) = 1,
p(V0,3|H3) = 1, p(V1,2|H1) = 1, and p(V1,2|H1) = 1. Show that
this lower bound coincides with the exact value of the SEP in this
example. Generally, under what conditions will a pairwise USI
scheme yield the exact SEP?

1.10. [Ch99] Consider computing the soft-information APPk+D
k+1 [sk+1]

that is the output of the backward recursion of the forward-
backward algorithm started at observation zk+D. Denote the
|S| × 1 vector of these state APPs by bk+D

k+1

(a) Show that sum-product backward recursion can be written as
a matrix multiplication of the form bk+D

k = Pkbk+D
k+1 . Identify

the elements of Pk.
(b) Show that bk+D

k+1 = Pk+1Pk+2 · · ·Pk+D1, where 1 is the all
one’s vector.

(c) Describe the details of a fixed-lag APP algorithm computing
p(ak|zk+D) using the standard sum-product forward recursion
and competition operation, but with the backward recursion
replaced by bk+D−1

k = PkG[Pk+D+1]−1. Identify G.
(d) Is this algorithm a semi-ring algorithm? If so, state the min-

sum version. If not, explain why. Is there a min∗-sum version?
(e) Consider applying the above backward operation to the 4-

state trellis in Fig-1.10. Can you exploit the sparse connec-
tions between states to implement the matrix inversion in a
simple form?

1.11. Give a sufficient condition on x0 and y0 so that min∗([z−x0]2, [z−
y0]2) ≡ min([z − x0]2, [z − y0]2) for all z. Generalize this to real-
valued vectors.

1.12. Consider a binary sequence b that labels a signal set via the
mapping x(b). Let b̄m denote b with the m-th element comple-
mented. Assume that the signal set satisfies x(b̄m) = −x(b) for
all b and all m. Use the result of Problem 1.11 to show that
MAP-SyD and MAP-SqD yield the same decisions for this case.

1.13. Consider a binary convolutional code with input bk and outputs
ck(0) and ck(1) defined by

ck(0) = bk−1 ⊕ bk−2 (1.140a)
ck(1) = bk ⊕ bk−1 ⊕ bk−2 (1.140b)

Overview of Non-Iterative Detection 71

where ⊕ represents modulo two addition and all variable are in
{0, 1}.
(a) Sketch a block diagram of the encoder using two delay ele-

ments and two adders.
(b) Show that this system is an FSM that can be represented by

the trellis diagram in Fig-1.10.

1.14. Consider the TCM scheme illustrated in Fig-1.21 where the con-
volutional code is the toy code from Problem 1.13. The 8PSK con-

rate 1/2bk(1)

bk(0)
bm

ak(1)

ak(0)(a)

(b)

v(0; 00)

v(1; 00)

v(0; 11)

v(1; 10)

v(1; 01)

v(0; 01)

v(0; 10)

v(1; 11)

xk
8PSK

code
convolutional

point selection

subset selection

Figure 1.21. The (a) toy TCM encoder for Problem 1.14 with the (b) bit labeling
convention

stellation is labeled according to the principle of Ungerboeck set-
partitioning. Specifically, let xk =

√
ESv(bk(0); a

(0)
k a

(1)
k) where

v(·) ∈
{
exp

[
π
4 m
]}7

m=0
is as illustrated in Fig-1.21(b). Draw the

trellis diagram based on:

(a) a state definition of sk = (bk−1(1), bk−2(1)).
(b) a state definition of sk = (bk−1(0); bk−1(1), bk−1(1)).
(c) the simple FSM resulting from the 4-ary input vector bk =

[bk(0) bk(1)].

1.15. Consider the standard trellis representing a simple |A|-ary in-
put FSM which has |A|L states, and |A| transitions leaving and
entering each state. Consider a Viterbi-like algorithm performs
the ACS in a completely random manner – i.e., the survivor is
selected randomly from the |A| paths entering the state. Find
an expression for the probability of all paths merging after D
trace-back steps. You may want to consider the L-step trellis to

72 ITERATIVE DETECTION

simplify the computation. Do you expect the merging for this
algorithm to be sooner or later than the Viterbi algorithm?

1.16. Confirm that MSM11
0 [x7 = 0.707] = 22.9 in Example 1.11.

1.17. Based on the information in Fig-1.15, compute the M∗SM version
of all MSM quantities considered in Examples 1.9-1.12.

1.18. Let z(ζ) = fk(ζ)ak(ζ) be an observation sequence where ak(ζ)
is an independent data sequence and fk(ζ) is a complex circular
Gaussian process. Furthermore, assume that fk(ζ) is a stationary
AR process of order P that is independent of the data.
(a) Show that this problem satisfies the folding condition (1.85).
(b) Describe the transition metrics used in the associated Viterbi

algorithm.
(c) Describe the forward backward APP algorithm for this special

case.
(d) Is the folding condition still satisfied if there is additional

AWGN which is independent of both the channel and data?
1.19. Consider an ISI-AWGN channel with an iid binary input sequence

bK
0 . Denote p[bk = 1] = p. Show that when the input binary

symbols are not uniformly distributed (i.e., p �= 0.5), the ML-
SqD obtained without the knowledge of p (i.e., assume p = 0.5)
asymptotically equals to the ML-SqD obtained with the perfect
knowledge of p as SNR→∞.

1.20. Consider an algorithm for performing data detection for the FSM
system and memoryless channel case. Specifically, the algorithm
runs a forward sum-product recursion of the form in (1.70b). For
each state sk+1, the algorithm notes the value tk that maximizes
p(zk|xk(tk))p(ak)p(zk−1

0 , sk) – i.e., contributes most to the sum.
It stores this sequence of transitions ťi(si+1) for i = 0, 1, 2, . . .
(K−1). At the end of the trellis, a traceback is done for the state
sK−1 with maximum APP to infer âk. Is this a MAP algorithm?
Is this a semi-ring algorithm? Do you expect this algorithm to
perform well?

1.21. Consider an arbitrary time-invariant channel. Given the trans-
mitted sequence ǎ, we observe z through this channel.
(a) Show that if there exists a sequence ã such that P[ã|z] > 0.5,

the MAP-SqD based on z is equivalent to the MAP-SyD.
(b) Assume the channel is an ISI-AWGN (with variance σ2) chan-

nel. Show that P[z|ǎ]→ 1 in probability as σ2 → 0.
(c) Assume the channel is an ISI-AWGN (with variance σ2) chan-

nel. Show that for a �= ǎ, P[z|a]→ 0 in probability as σ2 → 0.

Overview of Non-Iterative Detection 73

(d) Show that for an ISI-AWGN channel the MAP-SqD is equiv-
alent to the MAP-SyD in probability as σ2 → 0.

1.22. This problem is aimed at software implementation of the forward-
backward algorithm (e.g., in C or C++).

(a) Create a data structure for a generic FSM – i.e., type FSM.
This should have the next-state and next-out tables in terms
of symbols indices. Make the values of |A|, |S|, |X | part of
the data structure so that they may be read at run time.
In addition, you may want to create a previous-state table,
sk = ps(uk, sk+1) with uk having |U| = |A|.

(b) Write subroutines to read-in the defining size and table vari-
ables for the FSM data type. This routine should allocate the
appropriate memory. Also, write a subroutine that can free
the memory allocated.

(c) Write a subroutine that executes the forward-backward algo-
rithm. Make the subroutine accept pointers to MI[ak], MI[xk],
and M[ak] as well as a pointer to an FSM-type variable. Use
a #define statement to create a mymin (x,y) macro that
can be easily toggled between the standard min(x, y) and
min∗(x, y).

(d) Use the numerical values given in Examples 1.9-1.12 to verify
your code.

1.23. Consider an ISI channel with

h(t) =

{
e−t/T t ∈ [0, 3T)
0 otherwise

(1.141)

(a) Plot h(t) and Rh(τ) = h(t) � h(−t).
(b) Determine and plot R(m), the whitening filter, and the equiv-

alent channel fk.
(c) Consider the design of an approximate whitening filter based

on an FIR predictor. Specifically, if the colored noise nk(ζ) is
predicted (i.e., MMSE) from {nk−m(ζ)}Nm=1 to obtain n̂(N)

k (ζ)
= pk � nk(ζ), then the show that the corresponding error
e(N)

k (ζ) = nk(ζ)− n̂(N)

k (ζ) = (δk−pk)�nk(ζ) is approximately
white. More precisely, as N → ∞, ek becomes AWGN, and
gk becomes an auto-regressive whitening filter. Perform this
design procedure for various values of N ; determine the out-
put noise correlation and the overall equivalent ISI channel
coefficients. Based on these results (in comparison with those
of part 1.23b), what is a reasonable choice for N?

74 ITERATIVE DETECTION

1.24. [AnCh00] Consider the upper bound development in Sec-
tion 1.4.3. Using a sketch similar to that in Fig-1.20, give ex-
amples to show the following:

(a) The MAP-SqD path based on all observations need not be
the best path on a partial interval. Given the scenario in Fig-
1.20, show another path that may have a smaller metric on
Xk than the MAP-SqD path. Hint: this better path cannot
go through the same states as the MAP-SqD at times k0 and
k1.

(b) A global error causing a symbol error at time k does not
imply a simple pairwise error with symbol error at time k.
Specifically, that for simple sequences, the relation in (1.125)
is not equality.

1.25. [Ve87] For the special case of a linear ISI-AWGN channel show
that a condition for a sufficient set Fi(a) ⊂ Si(a) is

∆M[a;a + êF] = ∆M[a + êFc ;a + e] + 2xT(êFc)x(êF)

≥ 2xT(êFc),x(êF) ≥ 0 (1.142a)

where ê = êF + êFc is the decomposition of ê = â − a into
a + eF ∈ Fi(a) and the remainder and ∆M[b, c] = M[b]−M[c].
Does this extend to nonlinear mappings x(a)?

1.26. Use the results of Example 1.21 to show that the normalized
minimum distance of a linear ISI channel is no more than one.

1.27. [AnFo75] Consider the problem of finding dmin for the special
case of a linear ISI-AWGN channel, i.e., zk = fTak

k−L + wk, with
||f || = 1. For an error sequence of length K, e = (. . . , 0, e0, e1, . . . ,
eK−1, 0, . . .) define the following quantities

d2(e, f) ∆=
K+L−1∑

k=0

|fTek
k−L|2 =

K+L−1∑
k=0

fHEkf = fHEf

d2
min(f)

∆= min
e

d2(e, f)

where Ek = (ek
k−L)∗(ek

k−L)T , E =
∑K+L−1

k=0 Ek, and the last min-
imization is over all simple error sequences.
(a) For a given error sequence e, show that if a subsequence of

length L is repeated (i.e., ej
j−L+1 = ±ei

i−L+1 for some i < j,)
then there exists an error sequence e′, such that d2(e′, f) ≤
d2(e, f). Thus, in finding dmin, the sequence e need not be
extended.

Overview of Non-Iterative Detection 75

(b) Define b(ek
k−L+1)

∆= [ek−L+1, . . . , ek]T . For a given error se-
quence e, show that if ej

j−L+1 = ±b(ei
i−L+1) for some i ≤ j,

then, in finding dmin no sequence with prefix ej
0 need to be

extended, except the one having ej+1
j−L+2 = ±b(ei−1

i−L), . . . ,
ei+j−1

i+j−L = ±b(e1
2−L).

(c) Given a simple error sequence e0 (with corresponding matrix
E0), show that, in finding dmin, there is no need to extend an
error pattern e (with corresponding matrix E) if the minimum
eigenvalue of E−E0 is positive.

1.28. [ChAn00] In this problem we demonstrate a case where the bound
stated in [Fo72] is invalid. Consider a binary antipodal length-3
sequence a = a2

0, ai ∈ {−1, 1} as the input to a linear time-
varying mapping producing the noise-free sequence x = x2

0 =
Fa = SRa, where R and S represent a rotation and a scaling,
respectively. Choose

R =
1√
6

√

2
√

2
√

2
−1 2 −1
−
√

3 0
√

3

 S =

 ∆ 0 0

0 1/
√

8 0
0 0 1/

√
8

with ∆ ≥ 2/
√

8 being a parameter that controls the stretching.
The resulting constellation is shown in Fig-1.22.

+ + −

− + +

− − +

− + −

− − −

+ + +

+ − ++ − −

− + +− + −
+ − +

+ − − − − −

− + +

+ − −

− + −

+ + + + + −− − +− − +− − − + + −

rotation scaling

+ − +

+ + +

Figure 1.22. Counter-example of Forney’s lower bound using a linear mapping of bit
triplets used in Problem 1.28.

(a) Show that the probability of error of the optimal ML-SqD
receiver for the middle bit a1 can be evaluated as

PSq(Y1) =
1
2π

∫ 2π/3

0
exp(− 1

8σ2 sin2 φ
)dφ + ε(∆)

where σ2 is the observation noise variance per dimension and
ε(∆)→ 0 as ∆→∞ for a fixed σ2.

(b) Show that the bound suggested by [Fo72] is based on a non-
USI scheme, resulting in P

(Fo)
Sq (Y1) = 6

8Q(1
2σ). Consider the

76 ITERATIVE DETECTION

limiting case of ∆→∞, such that ∆/σ2 →∞, and show that
there exists a noise variance and a large enough ∆, such that
P

(Fo)
Sq (Y1) > PSq(Y1), thus Forney’s lower bound is incorrect.

Verify the above claim using simulation with σ2 = 2dB and
∆ = 10.

(c) Show that the pairwise USI scheme suggested in [Ma75b] re-
sults in P

(Ma)
Sq (Y1) = 4

8Q(1
2σ). For the special case of ∆ = 10,

show that a tighter multi-d lower bound can be constructed
as in (1.136), resulting in PSq(Y1) ≥ 4

8Q(1
2σ)+ 4

8Q(d
2σ), where

d = 23.1 is the distance between [+ + +] and [+−−] and the
distance between [− −−] and [−+ +].

1.29. A zero-mean Gauss Markov vector process {fk(ζ)} is described
by the equation

fk(ζ) = Ffk−1(ζ) + uk(ζ)

where uk(ζ) is a zero-mean Gaussian vector with covariance
Ku(m) = Kuδm.

(a) Show that a necessary and sufficient condition for stationarity
of {fk(ζ)} is that the covariance matrix of fk(ζ) satisfies the
equation

Kf
∆= E{fk(ζ)fk(ζ)H} = FKfFH + Ku

(b) Show that the time-reversed process {f−k(ζ)} is also a GM
process, described by the backward equation

fk(ζ) = Fbfk+1(ζ) + vk(ζ)

where vk(ζ) is a zero-mean Gaussian vector with covariance
Kv(m) = Kvδm. In particular, show that the matrices Fb

and Kv satisfy the equations

Fb = KfFHK−1
f

Kv = Kf −KfFHK−1
f FKf

Chapter 2

PRINCIPLES OF ITERATIVE
DETECTION

In this chapter we are concerned with detecting the input to a system
which is expressed as a concatenated network of subsystems. In par-
ticular, the goal is to mimic the implicit decomposition of the system
in the detector processing. First, we consider sufficient conditions for
when this detector comprised of subsystem-detectors yields the optimal
decision as defined in Chapter 1. Second, we summarize the subopti-
mal method of iterative (turbo) detection which is often a very effective,
low-complexity approximation to the optimal detector. This description,
which is based on the block diagram system descriptions developed in
Chapter 1, consists of a simple subsystem “soft-inversion” process which,
given the system model, implies the iterative detector for the most part.
Several detailed application examples are given.

Viewing system block diagrams using explicit indexing as a method of
graphical system modeling, the various graphical modeling and iterative
detection methods in the literature are described. Finally, we conclude
by noting that system models are generally not unique and, when used to
imply an iterative detector, yield different performance and complexity.
We describe a set of guidelines for selecting among system modeling
options. All channel parameters are assumed to be known in this chapter
unless otherwise specified.

2.1 Optimal Detection in Concatenated Systems
Consider a system comprising a concatenated network of subsystems

as illustrated in Fig-2.1. In such a system, the output of each subsystem
(except H) is the input to another subsystem. The only assumptions
made about the subsystem structure are those from Chapter 1. Namely
that all inputs/outputs are digital, and that the sequence of inputs to a

77

78 ITERATIVE DETECTION

C

GF

am xn
D HEB

M

Figure 2.1. The block diagram of a generic concatenated network.

particular subsystem uniquely determines its output sequence. The con-
catenated network is assumed to have no explicit feedback loops. More
precisely, for a given subsystem (e.g., E), the output cannot be fed back
to another subsystem (e.g., B) that affects its input. The overall or global
system M is defined by the mapping from the sequence of inputs {am} to
the sequence of outputs {xn} as in Fig-1.3. Note that it is somewhat ar-
bitrary how one decomposes a given system into a concatenated network
of subsystems since many such representations that maintain the global
system structure are possible. Thus, given a concatenated network with
feedback, one can attempt to combine subsystems to eliminate the ex-
plicit feedback. For example, the subsystem E may actually represent
a grouping of several other subsystems between which there exist feed-
back loops. In many applications, however, a natural decomposition
exists because the global system is actually obtained by a particular
concatenation.

Based on the development in Chapter 1, optimal detection of am di-
rectly from the global structure is conceptually clear. For most concate-
nated systems of interest, however, this direct approach is prohibitively
complex. Thus, we consider the concatenated detector of Fig-2.2 in which
a network of soft-output algorithm (SOA) modules is constructed accord-
ing to the system network. At this point in the development, we do not
specify the exact form of the SOA and simply denote it as a shaded block
corresponding to the block diagram. We do assume, however, that the
SOA produces soft information on the inputs to the system as implic-
itly shown in the system block diagram. For example, since the block
diagram shown in Fig-2.1 is in implicit index form, the corresponding
SOA in the detection network in Fig-2.2 passes soft information on the
individual elements of the sequence, or marginal soft information. For
a concrete example, if the output of subsystem D is dk, then the soft in-
formation passed on the corresponding connection between SOA E and

Principles of Iterative Detection 79

âm

cut 1 cut 2 cut 5cut 3 cut 4

information
a-priori

B D

F G

E

C

H
p(zn|xn)

Figure 2.2. The concatenated detector structure considered for the system in Fig-
2.1. This structure is optimal if the soft information passed over the cut boundaries
comprises a set of sufficient statistics.

SOA D in the detector of Fig-2.2 is S[dk]. More precisely, for each value
of k, the SOA E produces |D| values to describe the reliability or belief
for each conditional value of dk(ζ) and the sequence of this marginal soft
information {S[dk]} is passed to the SOA D. This is the same as the ex-
plicit index form. However, if the same system is expressed in the vector
mapping convention of Fig-1.3(c), then the corresponding concatenated
detector would implicitly pass soft information on the entire sequence d.

The issue to be addressed is: under what conditions is the concate-
nated detector equivalent to the optimal detector based on the global
detector? The answer is fairly straightforward, and follows from two
simple facts. Consider the example in Fig-2.2. First, the soft informa-
tion delivered by SOA B must be a set of sufficient statistics for optimal
detection of am based on the observation z. Second, given some soft
information that does not provide a set of sufficient statistics, additional
processing of this soft information which is independent of the observa-
tion z cannot yield a set of sufficient statistics. Intuitively, this second
fact means that once sufficiency is lost, it cannot be recovered. This is
straightforward to show formally (see Problem 2.1). Together, these two
simple facts imply that the set of soft information that is input to SOA B
must also form a set of sufficient statistics for detecting am from z. Since
the boundaries between subsystems is only conceptual, one can cut the
concatenated detector into two distinct parts and the soft information
passing over this cut boundary must form a set of sufficient statistics for
deciding on am from the observation.

In general, therefore, the concatenated detector shown in Fig-2.2,
which implicitly passes marginal soft information, is suboptimal. The

80 ITERATIVE DETECTION

concatenated detector implied by the vector mapping system diagram
would pass soft information on the entire sequence d. While this is con-
siderably more complex, it is also generally suboptimal. This is because,
for example, in order to obtain sufficiency at cut 4, it may be neces-
sary that SOAs E and G perform joint processing. These subtleties are
illustrated in the examples that follow.

Two simple types of concatenated networks are the serial and par-
allel concatenations shown in Fig-2.3. For the serial concatenation in

yk
YX

am xn

(a)

yk
Y

X
xn

am

(b)

M
M

Figure 2.3. (a) Serial and (b) parallel concatenation of two systems.

Fig-2.3(a), the associated concatenated detector passes marginal soft in-
formation on xn which is generally suboptimal. However, for this simple
network, the concatenated detector based on vector mapping convention
of Fig-1.3(c) passes soft information on x which can be sufficient. For
example, p(z|x) for each of the |X |N possible values of x is a set of suffi-
cient statistics for detection of am. Moreover, this essentially decouples
the SOA for Y in the associated concatenated detector since S[x] (i.e.,
the soft information on the entire sequence) may be computed without
considering the structure of the system X. In other words, the soft in-
formation for each of |X |N possibilities can be computed even though
only |A|M values are possible. While optimal, this may be more complex
than necessary depending on the structure of the systems X and Y. This
is illustrated in the following example.

Example 2.1.
Consider the special case of Fig-2.3(a) where the system X is a mapping
of the independent binary sequence am onto a 4-PAM constellation as
described in Fig-1.4 and the system Y is a finite state machine. This
example is shown in Fig-2.4 in the three conventions introduced in Fig-
1.3. The concatenated detector implied by each is shown in Fig-2.5.
Consider performing MAP-SyD of am. Clearly, from the above general
discussion, the detector in Fig-2.5(c) provides optimal processing when
S[x] is equivalent to p(z|x). In this case, the soft information S[a] ≡
p(z|a) = p(z|x(a)) can be marginalized to p(am|z) using {p(ai)}.

Principles of Iterative Detection 81

4PAM
Labeling

xa

...
...

...

x0

x1

a0
a1

a2
a3

...

y0

y1

4PAM Labeling

aM−2
aM−1

xM/2−1 yM/2−1

am xn

4PAM
Labeling

FSM

FSM

FSM
X1

X0

XM
2 −1

yn

y

(a)

(b)

(c)

Figure 2.4. The specific example of the serially concatenated system in Example 2.1
shown in the conventions of (a) implicit index block diagram, (b) explicit index block
diagram, and (c) vector mappings. The left-most block in (a) is a serial to parallel
conversion that maps the bits am into non-overlapping blocks of length two.

4PAM
Labeling

4PAM
Labeling

FSM

FSM

...
...

...

4PAM Labeling

S[a] S[y]S[x]

S[x0]

S[x1]

S[a0]
S[a1]

S[a2]
S[a3]

(b)

(c)

(a) S[am] S[xn] S[yn]

S[aM−2]
S[aM−1]

S[xM/2−1]

...

S[y0]

S[y1]

S[yM/2−1]

FSM
X1

X0

XM
2 −1

Figure 2.5. The concatenated detectors implied by the models in Fig-2.4. The soft
information S[x] is extracted from the observation z.

82 ITERATIVE DETECTION

Since the implicit and explicit index block diagram notations are
equivalent, the associated concatenated detectors in Fig-2.5(a) and (b)
are also equivalent. The explicit index version makes the local mem-
ory structure of the PAM labeling clear. Specifically, it is clear from
Fig-2.4(b) that the PAM mapping can be decomposed into M/2 decou-
pled systems (i.e., denoted by Xn in Fig-2.4(b)) which make passing soft
information on the entire sequence x unnecessary. The concatenated
detectors in Fig-2.5(a)-(b) can be used to obtain optimal MAP-SyD de-
cisions if S[xn] is equivalent to p(z|xn). For example, consider detection
of a1(ζ) which can be based on p(z|x0) and p(am) for m = 0, 1. Specifi-
cally, the soft information on x0 can first be marginalized via

p(a1|z) ≡
∑
a:a1

p(z|x0(a))p(a) (2.1a)

=
∑
a1
0:a1

p(z|x0(a1
0))p(a1

0) (2.1b)

= p(a1)[p(z|x0(a1, a0 = 0))p(a0 = 0)+
p(z|x0(a1, a0 = 1))p(a0 = 1)] (2.1c)

Thus, for this simple example, the concatenated detector in Fig-2.5(a)-
(b) can be used for optimal detection. Furthermore, this structure is
substantially less complex than the detector shown in Fig-2.5(c). Note
that one can treat the a-priori information p(a1) separately by marginal-
izing the likelihood p(z|x0) to obtain the equivalent of p(z|a0) using the
a-priori information of the other symbols.

If the channel is memoryless so that p(z|yn) = p(zn|yn), then the re-
quired soft information p(z|xn) can be computed using the APP version
of the forward-backward algorithm with the assumption of uniform a-
priori information on xn. The equivalent processing can be performed
in the metric domain using a min∗-sum forward-backward algorithm
and replacing the sum marginalization operations in (2.1) by the min∗

operation of the corresponding metric quantities. Similarly, if the MAP-
SqD criterion is desired, one should use an MSM-version of the forward-
backward algorithm and use min marginalization of the soft information
on xn to obtain the MSM of am.

End Example

Example 2.1 shows that for a system with non-overlapping block mem-
ory one may marginalize “early” in a concatenated detector. For exam-
ple, while p(x|z) is always sufficient soft information for the serially con-
catenated system in Fig-2.3(a), the simple structure of the outer system
in Example 2.1 (i.e., the PAM labeling) allows this information to be

Principles of Iterative Detection 83

marginalized down to the corresponding soft information on xn without
loss of sufficiency. The next example shows that this property does not
extend to two finite state machines in serial concatenation.

Example 2.2.
Consider the serial concatenation shown in Fig-2.3(a) where both X and
Y are FSMs and the output is passed through a memoryless channel.
Thus, all sequences are on the same time scale (e.g., ak, xk, yk). Again,
the concatenated detector implied by the vector-mapping block diagram
is optimal when passing p(z|x) for all possible sequences x. However, the
concatenated detectors implied by the block diagram in Fig-2.3(a) (and
its explicit index version) is suboptimal. Specifically, the concatenated
detector will produce marginal soft information on xk (e.g., p(xn|z))
which is not sufficient. There is a detector with processing much simpler
than that associated with the vector-mapping concatenated detector.
Specifically, denoting the state of X (Y) as s(X)

k (s(Y)

k) the sufficient set of
statistics can be expressed as

p(z|a) =
∏
k

p(zk|yk(x)) (2.2a)

=
∏
k

p(zk|yk(xk, s
(Y)

k)) (2.2b)

=
∏
k

p(zk|yk(xk(ak, s
(X)

k), s(Y)

k)) (2.2c)

=
∏
k

p(zk|ak, s
(X)

k , s
(Y)

k) (2.2d)

The relation in (2.2) implies that the global system is also an FSM with
s(M)

k = (s(X)

k , s(Y)

k). Thus, the marginalization of the likelihood in (2.2)
can be executed efficiently using the forward-backward algorithm with
at most |S (X)| × |S (Y)| states.

Although the concatenated detector passing soft information on xk

is suboptimal, it is, intuitively at least, a reasonable receiver. More
precisely, suppose that the SOA for Y computes the soft information
p(z|xk) and passes it to a SOA that exploits the structure of X. One
may use p(z|xk) as the “soft-in” information on xk and run a forward-
backward algorithm based on the trellis describing X. This results in a
detector with complexity on the order of |S (X)|+ |S (Y)| since a forward-
backward algorithm is run separately on a trellis for X and a trellis for
Y. Thus, while suboptimal, the concatenated detector may be viewed
as a reduced-complexity approximation to the optimal receiver. Com-
puter simulations are typically required to characterize the associated

84 ITERATIVE DETECTION

performance degradation. This is performed for this type of serial con-
catenation in an upcoming example.

End Example

For the simple parallel concatenation in Fig-2.3(b) the detector pro-
cessing also does not generally decouple. Specifically, assume that a
memoryless channel maps the output sequence xn to zn(1) and a similar
memoryless channel maps yk to zk(2). Furthermore, assume that these
two parallel channels are independent. Then the sufficient statistic is
p(z|a), where z = {z(1), z(2)}. This can be obtained using the structure
of the constituent systems separately

p(z|a) = p(z(1), z(2)|a) = p(z(1), z(2)|x(a),y(a)) (2.3a)
= p(z(1)|x(a))p(z(2)|y(a)) (2.3b)

=
∏
n

p(zn(1)|xn(a))×
∏
k

p(zk(2)|yk(a)) (2.3c)

Thus, the combining of marginal soft-information from the channel can
be done separately. However, the marginalization of the joint soft in-
formation in (2.3) over a cannot be performed separately because ad-
dition (marginalizing) does not distribute over multiplication (combin-
ing). However, note that the concatenated detector implied by the vec-
tor mapping system model is optimal under the above assumptions. As
usual, however, considering explicit combining and marginalization over
all possible a is not typically a viable solution.

Example 2.3.
For the special case of two FSMs in parallel concatenation, the concate-
nated detector implied by Fig-2.3(b) is not optimal. However, like the
case of serial concatenation of FSMs, there is a relatively simple optimal
receiver. Specifically, in this case (2.3) can be expressed as

p(z|a) =
∏
k

p(zk(1)|xk(a))×
∏
k

p(zk(2)|yk(a)) (2.4a)

=
∏
k

p(zk(1)|xk(ak, s
(X)

k))×
∏
k

p(zk(2)|yk(ak, s
(Y)

k)) (2.4b)

=
∏
k

p(zk(1)|xk(ak, s
(X)

k))p(zk(2)|yk(ak, s
(Y)

k)) (2.4c)

Again, the overall system can be viewed as a single FSM with no more
than |S (X)| × |S (Y)| states.

End Example

Principles of Iterative Detection 85

In the next section, we develop some notational conventions that sim-
plify the exposition.

2.2 The Marginal Soft-Inverse of a System
For a given system M, which maps the sequences {am} to {xn} we

found that, for a memoryless channel, optimal detection of am can be
achieved, conceptually at least, by two steps. First the marginal soft-
in information on am and xn, {SI[am]} and {SI[xn]}, is combined to
obtain joint soft-information on the input-output pair S[a,x(a)]. Then,
this joint soft information is marginalized to obtain soft information
on am. This process, as summarized in (1.37), yields soft information
that, when thresholded, produces the MAP-SyD or MAP-SqD decision
for am with the proper choices for the marginalizing and combining
operators and soft-in information measures. For example, the measures
SI[am] ≡ − ln p(am) and SI[xn] ≡ − ln p(zn|xn) and min-sum processing
yields S[am] = MSM[am] which may be thresholded to obtain the optimal
MAP-SqD decision.

In order to describe concatenated detectors of the form in Fig-2.2
and the iterative variation described in the next section, it is useful to
slightly extend this general processing in two ways. First, instead of
producing the soft information shown in (1.37) we remove the direct
effects of SI[am] from S[am] to produce soft-output information. More
precisely, the soft-output produced is SO[am] ≡ S[am]©c −1SI[am]. Re-
ferring to Table 1.1, it is clear that this process converts the soft in-
formation S[am] into the corresponding likelihood quantity. For exam-
ple, in the MSM version, the soft-out information is MSM[am]-MI[am],
which is the negative-log of the generalized likelihood g(z|am) with nui-
sance parameters Θ(ζ) = {ai(ζ)}i�=m. Second, we produce the analogous
marginal soft-out information for the system output. The quantity S[xn]
is well-defined (e.g., APP[xn], MSM[xn], etc.), but since there is no direct
a-priori information on the random variable xn(ζ), the associated likeli-
hood quantity for the system output is more nebulous to define. How-
ever, this is done in the same manner – i.e., SO[xn] = S[xn]©c −1SI[xn]
where S[xn] is obtained via marginalization of S[a,x(a)].

We refer to the processing unit that performs the above operation as
the marginal soft inverse1 of the system M and denote this by M−s. In
the general (©m , ©c) semi-ring notation, this soft inverse is defined by

S[a,x(a)] = S[x(a)]©c S[a] (2.5a)

1We also use the term soft inverse for brevity.

86 ITERATIVE DETECTION

= (
N−1

©c
n=0

SI[xn(a)])©c (
M−1

©c
m=0

SI[am]) (2.5b)

SO[am] = (©m
a:am

S[a,x(a)])©c −1SI[am] (2.5c)

SO[xn] = (©m
a:xn

S[a,x(a)])©c −1SI[xn] (2.5d)

The marginal soft inverse takes in SI[am] and SI[xn] and produces SO[am]
and SO[xn] for all index values m and n, and for each conditional value
of am and xn. We use the convention shown in Fig-2.6(a) and (b) to
denote the soft-inverse for the implicit and explicit index block diagrams.
To emphasize processing in the metric (probability) domain, we will use
MI[·], MO[·], and M[·] (PI[·], PO[·], and P[·]) in place of general notation
SI[·], SO[·], and S[·].

...
...

...
...

a0

a1

x0

x1

SI[a0]

SI[a1]

SO[x0]

SO[x1]

SO[a0]

SO[a1] SI[x1]

SI[x0]

am xn

xN−1

SO[am] SI[xn]

SO[xn]SI[am]

SO[aM−1]
SI[aM−1]

SI[xN−1]
SO[xN−1]

(a)

(b)

aM−1

M M−s

M−sM

Figure 2.6. The marginal soft inverse of a system in the (a) implicit and (b) explicit
index block diagram conventions.

The marginal soft-inverse of a system is based on the implicit as-
sumption of independent inputs and a memoryless channel.2 The only
structure exploited in the process is the structure of the (sub)-system
(i.e., the allowable input output pairs). The soft output information
SO[·] is the soft information typically passed to other system soft in-
verses in a concatenated detector. Thus, SO[·] is often referred to as

2The soft-inverse notion also implicitly assumes that the combining and marginalization
operators form a semi-ring. This is not necessary – i.e., the soft inverse still simply combines
marginal soft-in information and then marginalizes this joint information to produce marginal
soft-out information.

Principles of Iterative Detection 87

extrinsic information while S[·] is referred to as intrinsic information
since it is used only internally in the soft inverse. The conversion from
intrinsic to extrinsic information is accomplished by the inverse com-
bining operation in (2.5c)-(2.5d). The use of likelihoods for extrinsic
information may be motivated by considering that, for example, the a-
priori information on am is available at the left side of the concatenated
detector in Fig-2.2 so that obtaining the likelihood information on am

is all that is required to obtain a reliable decision on am (see also Prob-
lem 2.2). The most reliable soft information is generally the intrinsic
information S[am] so that, while the extrinsic information is passed to
other soft inverse processors, final decisions are made based on the in-
trinsic information S[am] = SI[am]©c SO[am]. For the isolated system
in Fig-2.6, if the outputs xn are observed through a memoryless chan-
nel, the MAP-SyD (MAP-SqD) for am can be obtained by thresholding
S[am] = SI[am]©c SO[am] with properly defined, metric-domain, soft-in
information and min∗-sum (min-sum) processing.

The terminology we adopt for the remainder of the book is as follows.
A soft-output algorithm (SOA) is any algorithm producing any type of
soft information. The marginal soft inverse is an algorithm that com-
putes quantities equivalent to those in (2.5). A soft-in/soft-out (SISO)
module is any algorithm that computes any kind of marginal soft-out in-
formation for the system inputs and outputs in extrinsic form. Thus, we
may speak of a “sub-optimal” or ad-hoc SISO that is not the marginal
soft-inverse, or SISOs that are the soft inverses.3

Finally, the conversion to the extrinsic information can be done inside
of the marginalization and combining operation. Specifically, note that,
for example, am is fixed in the marginalization of (2.5c) so that the effect
of SI[am] can be removed in this process. Thus, the operations in (2.5)
are often written equivalently as

SO[am] = ©m
a:am

[(
N−1

©c
n=0

SI[xn(a)]

)
©c
(

M−1

©c
j=0,j �=m

SI[aj]

)]
(2.6a)

SO[xn] = ©m
a:am

[(
N−1

©c
i=0,i�=n

SI[xi(a)]

)
©c
(

M−1

©c
m=0

SI[am]

)]
(2.6b)

We will generally use the form in (2.5) for clarity with the understanding
that the conversion to extrinsic information can usually be done more
efficiently in a manner analogous to that in (2.6).

3The term SISO is often used in the literature as the soft-inverse of an FSM.

88 ITERATIVE DETECTION

The marginal soft inverse is the key concept in understanding iterative
detection techniques. Specifically, the remainder of this chapter, and it-
erative detection by implication, simply repeatedly applies this notion to
specific systems. For a given system or subsystem, it is desirable to avoid
direct evaluation of operations in (2.5), instead using local dependencies
between input and output variables whenever possible (e.g., much in the
manner used in the forward-backward algorithm). Finally, it is impor-
tant to keep in mind that the marginal soft inverse of a system is found
by determining the corresponding optimal soft-output algorithm (e.g.,
MSM for MAP-SqD, APP for MAP-SyD) assuming independent inputs
and a memoryless channel. Thus, once the system structure and the
optimality criterion is specified, the system soft-inverse can be specified.

2.2.1 Some Common Subsystems
For the implicit block diagram convention, Benedetto et. al. [BeDi-

MoPo98] defined the marginal soft inverse for a variety of systems com-
monly encountered. These are shown in Fig-2.7 with minor modification.

The interleaver is a system that reorders the components of aK−1
0

according to some known permutation so that the output is xk = aI(k)

where I(k) is the permutation. Considering (2.5), the soft-inverse of the
interleaver is trivial. Specifically, it is the interleaver/deinterleaver pair
shown in Fig-2.7 which sets SO[xk] = SI[aI(k)] and SO[ak] = SI[xI−1(k)].
The serial to parallel and parallel to serial converters also have trivial soft
inverses. The parallel to serial converter inputs I streams of information
{ak(i)}I−1

i=0 and outputs the sequence xnI+i = an(i) for n = 0, 1, 2
The soft-inverse simply rearranges the soft information to account for
the different time scales of the input and output.

The memoryless mapper maps the inputs {ak(i)}I−1
i=0 to a set of out-

puts {xk(j)}J−1
j=0 for a fixed index (time) k by some known function.

More precisely xk = f(ak) where f is a deterministic mapping from AI

to X J . The soft inverse of the mapper simply carries out the marginali-
zation and combining operations of (2.5) exhaustively over the structure
f(·). Note that this is different from exhaustive combining and mar-
ginalization over the entire set of input sequences {aK−1

0 (i)}I−1
i=0 . This is

illustrated by the next example.

Example 2.4.
Consider the generalization of the simple 4-PAM labeling described in
Example 1.2 where a sequence of bits am are converted to non-overlapp-
ing bit-pairs and then mapped into 4-PAM signals and sent across an
AWGN channel. This is illustrated in Fig-2.8(a). The optimal (MAP)
receiver may be viewed as a concatenated detector as illustrated in Fig-

Principles of Iterative Detection 89

SO[ak(0)]
SI[ak(0)]

SI[ak(1)]
SO[ak(1)]

SO[ak(I − 1)]
SI[ak(I − 1)]

SO[xk(0)]
SI[xk(1)]

SI[xk(J − 1)]
SO[xk(J − 1)]

SO[xk(1)]

SI[xk(0)]

SI[xk(0)]
SO[xk(0)]
SI[xk(1)]
SO[xk(1)]

SO[xk(J − 1)]
SI[xk(J − 1)]

FSM
ak xk

Finite State Machine

ak

I

xk(0)

xk(1)

xk(J − 1)

...

ak

xk(0)

xk(1)
...

xk(J − 1)

xk

Serial-to-Parallel

Parallel-to-Serial

..

.

...

am(0)

am(1)

am(I − 1)

xn

SO[am(0)]
SI[am(0)]
SO[am(1)]
SI[am(1)]

SO[am(I − 1)]
SI[am(I − 1)]

xn

am(0)

am(1)

am(I − 1)

SI[am(0)]
SO[am(0)]
SI[am(1)]
SO[am(1)]

SI[am(I − 1)]
SO[am(I − 1)]

ak(0)

ak(1)

ak(I − 1)

...

System

Memoryless Mapper

Broadcaster

Interleaver

SISO
SO[ak]

SI[ak]

SI[xk]

SO[xk]

SO[ak]

SI[ak]

SI[xk]

SO[xk]I

I−1

SO[ak]

SI[ak]

..

.
..
.

...

...

...

SI[xn]

SO[xn]

SI[xn]

SO[xn]

Marginal Soft Inverse

Figure 2.7. Several common systems and the associated marginal soft inverses in
implicit index block diagrams.

2.8(b). The soft output demodulator (SODEM) block represents the
translation from the observation zn to the soft information SI[xn]. For
example, in the metric domain this is MI[xn] = (zn − xn)2/N0. In some
cases we will implicitly assume this block by showing the soft-in on the
noise-free channel signals as the input to the detector. We also introduce
the convention of showing soft-out information ports that need not be
computed as terminating into a circle.

90 ITERATIVE DETECTION

âm

(b) SI[am]

4PAM

C SODEM

(a)

am

vn(0)

vn(1)
xn zn

wn

znSI[xn]
SO[am]

4PAM

Figure 2.8. (a) The mapping of a bit sequence to a 4-PAM sequence and (b) the
optimal detector using the blocks in Fig-2.7. Note that for a given bit-pair, the
mapper is defined as in Fig-1.4

For the special case of n ∈ {0, 1} only, the processing captures all of
the cases discussed in the Examples 1.3-1.6. In the notation of Fig-
2.8(b), however, it is implicit that n may range over a much larger
set. Due to the finite memory characteristic of the 4-PAM mapper, this
optimal detector is the concatenated detector which basically repeats
the “one-shot” detection described in Examples 1.3-1.6 for every two
input bits (i.e., similar to the description in Example 2.1).

The soft inverse of the 4-PAM bit labeling is determined by the MAP
detector for the system in isolation. For example, interpreting vn(0) and
vn(1) as a0 and a1 in the “one-shot” problem considered in the examples
of Chapter 1, it follows that

p(xn = −A|zn) = p(vn(0) = 0)p(vn(1) = 1)p(zn|xn = −A) (2.7a)

≡ p(vn(0) = 0)p(vn(1) = 1)e
−(zn+A)2

N0 (2.7b)

which implies that the sum-product marginal soft-inverse of the mapper
produces PO[xn = −A] = PI[vn(0) = 0]PI[vn(1) = 1]. Similarly, for
example,

p(vn(0) = 0|zn)
p(vn(0) = 0)

= p(vn(1) = 0)p(zn|xn = −3A) (2.8a)

+ p(vn(1) = 1)p(zn|xn = +3A) (2.8b)

≡ p(vn(1) = 0)e
−(zn+3A)2

N0 + p(vn(1) = 1)e
−(zn−3A)2

N0 (2.8c)

so that the soft inverse produces
PO[vn(0) = 0] = PI[vn(1) = 0]PI[xn = −3A]

+ PI[vn(1) = 1]PI[xn = +3A] (2.9)

End Example

Principles of Iterative Detection 91

The broadcaster simply reproduces the input am at each of the output
ports – i.e., xk(j) = ak for j = 0, 1, . . . J − 1. This important block is
often shown implicitly in block diagrams by simply splitting a signal line
to provide input to several parallel systems. For example, the parallel
concatenation of Fig-2.3(b) has an implicit broadcaster block where am

is sent to each of the two systems. The soft inverse of the broadcaster,
provided by the special case of (2.5), in the sum-product semi-ring is

P[x(ak), ak] =
J−1∏
j=0

PI[xk(j) = ak]× PI[ak] (2.10a)

PO[ak] = P[a,x(a)]/PI[ak] (2.10b)
PO[xk(j)] = P[x(ak), ak]/PI[xk(j)] (2.10c)

which can be simplified further as

PO[ak] =
J−1∏
j=0

PI[xk(j) = ak] (2.11a)

PO[xk(j)] =
∏
i�=j

PI[xk(i) = xk(j)]× PI[ak = xk(j)] (2.11b)

Thus, the soft-output for a given input or output is simply the com-
bination of soft-in information associated with other variables. For a
concrete example, if J = 2, and ak ∈ {0, 1}, then PO[ak = 0] =
PI[xk(0) = 0]PI[xk(1) = 0], PO[xk(0) = 0] = PI[xk(1) = 0]PI[ak = 0],
and PO[xk(1) = 0] = PI[xk(0) = 0]PI[ak = 0]. Note that if the soft-in in-
formation on ak is uniform in the J = 2 case, then PO[xk(0)] ≡ PI[xk(1)]
and PO[xk(1)] ≡ PI[xk(0)] so that on the right-hand side, the soft-
information is just switched.

The marginal soft-inverse of an FSM is an important special case since
many encoders and channels are modeled as FSMs. The most celebrated
method for carrying out the equivalent of the general soft inversion in
(2.5) is via the forward-backward algorithm. The algorithm described
in Section 1.3.2.2 need only be modified to provide soft information on
the FSM output as well as the FSM input, and to convert this soft
information into extrinsic form. Specifically, for the MSM version, the
soft outputs are

MO[ak] = MSMK−1
0 [ak]−MI[ak] (2.12a)

MO[xk] = MSMK−1
0 [xk]−MI[xk] (2.12b)

= min
tk :xk

MSMK−1
0 [tk]−MI[xk] (2.12c)

92 ITERATIVE DETECTION

where, the MSM of the transition MSMK−1
0 [tk] may be expressed in

terms of the forward and backward state MSMs, and the transition met-
ric Mk[tk] as in (1.67). In fact, since Mk[tk] = MI[xk] + MI[ak], we may
convert to extrinsic information by modifying the completion operation
in (1.67) in the spirit of (2.6)

MO[ak] = min
tk :ak

[
MSMk−1

0 [sk] + MI[xk(tk)] + MSMK−1
k+1 [sk+1]

]
(2.13a)

MO[xk] = min
tk :xk

[
MSMk−1

0 [sk] + MI[ak] + MSMK−1
k+1 [sk+1]

]
(2.13b)

Example 2.5.
Returning to the numerical example considered in Example 1.11, we
have that MSM11

0 [a3 = −1] = 20.4 and MSM11
0 [a3 = +1] = 22.4. Recall

that the two input values have different a-priori probabilities, so that,
in this case MI[a3 = −1] = 0.357 and MI[a3 = +1] = 1.20. In this
example, then, MO[a3 = −1] = 20.4− 0.357 = 20.0 and MO[a3 = −1] =
22.4− 1.20 = 21.2. Notice that the non-uniform a-priori information on
{ak(ζ)}k �=3 has been included in MO[a3] – i.e., this can be viewed as a
nuisance parameter with MO[·] representing the associated p-generalized
likelihood.

It is also stated in Example 1.11 that MSM11
0 [x7 = 0.707] = 22.9.

Since z7 = −0.729, the associated soft-in metric for x7 = 0.707 follows
from (1.57b)

MI[x7 = 0.707] =
(−0.729 − 0.707)2

N0
+ ln(

√
πN0) = 1.95 (2.14)

It follows that the extrinsic output metric is MO[x7 = 0.707] = 23.1 −
1.95 = 21.15.

End Example

Example 2.6.
With the block diagram conventions established, we may express the
optimal concatenated detectors for several of the previous examples in
this form. Specifically, for the serial concatenation in Example 2.1, the
optimal processing shown in Fig-2.4 may be expressed as shown in Fig-
2.9. The analogous parallel concatenation of a mapper with finite block
memory and an FSM has significantly different characteristics. This is
considered in Problem 2.3.

End Example

Principles of Iterative Detection 93

âm

SI[am]

SISO
C

SO[am] 4PAM
SI[yn]SO[xn]

Figure 2.9. The optimal concatenated detector for the system of Example 2.1 and
Fig-2.4 expressed in terms of the standard marginal soft inverse blocks.

2.2.1.1 Explicit Index Marginal Soft Inverse Blocks
Many of the standard blocks for the implicit index block diagrams

in Fig-2.7 are not meaningful for the explicit index convention. For ex-
ample, the parallel to serial conversion is meaningless since all of the
variables are denoted explicitly. The corresponding explicit index dia-
gram for the parallel to serial converter is shown in Fig-2.10. In the

a0(0)

a0(1)

a0(2)

a1(0)

a1(1)

a1(2)

x0

x1

x2

x3

x4

x5
...

...
...

...

SO[a0(0)]
SI[a0(0)]
SO[a0(1)]
SI[a0(1)]
SO[a0(2)]
SI[a0(2)]

SI[x0]
SO[x0]
SI[x1]
SO[x1]
SI[x2]
SO[x2]

SO[a1(0)]
SI[a1(0)]
SO[a1(1)]
SI[a1(1)]
SO[a1(2)]
SI[a1(2)]

SI[x3]
SO[x3]
SI[x4]
SO[x4]
SI[x5]
SO[x5]

(a)

(b)

am(0)

xnam(1)

am(2)

SI[xn]

SO[xn]

SO[am(0)]
SI[am(0)]
SO[am(1)]
SI[am(1)]
SO[am(2)]
SI[am(2)]

aM−1(0)

aM−1(1)

aM−1(2)

x3M−3

x3M−2

x3M−1

SO[aM−1(0)]
SI[aM−1(0)]
SO[aM−1(1)]
SI[aM−1(1)]
SO[aM−1(2)]
SI[aM−1(2)]

SI[x3M−3]
SO[x3M−3]
SI[x3M−2]
SO[x3M−2]
SI[x3M−1]
SO[x3M−1]

Figure 2.10. A (3 to 1) parallel to serial converter and the corresponding marginal
soft inverse in (a) implicit and (b) explicit index block diagrams.

explicit index convention, the simplicity of this system and its soft in-
verse becomes apparent – i.e., the system simply renames the variables.

94 ITERATIVE DETECTION

This shows the relative advantages of the two approaches: the implicit
index convention is more compact, but the explicit index convention
often reveals the system structure more clearly.

Only two of the modules in Fig-2.7 have useful counterparts in the
explicit index versions. These are the mapper and the broadcaster. In
other words, since all variables are denoted explicitly the only “systems”
worth denoting are those in which some variables are processed (map-
pers) or broadcast. The convention that we adopt, therefore is shown
in Fig-2.11 for the example of the parallel concatenation. Thus, we con-

SO[a0]

SI[a0]

SO[a1]

SI[a1]

...
Y

yK−1

y1

y0

a0

a1

...

...

...

x0

x1
X

aM−1

xN−1

...

...

...

...

SI[x0]

SI[x1]

SI[xN−1]

SO[aM−1]

SI[aM−1]

... ...

SI[y0]

SI[y1]

SI[yK−1]

(a)

(b)

Y−s

X−s

Figure 2.11. (a) The parallel concatenation of Fig. 2.3(b) and (b) the suboptimal
concatenated detector implied by this model, both shown in the implicit index con-
vention.

tinue to use round-edged blocks for single-index systems or “nodes” and
only denote the broadcaster node with the special block similar to the
symbol used for the implicit index version. In Fig-2.11 we also intro-

Principles of Iterative Detection 95

duce the convention of representing uniform soft-in information (e.g.,
zero metrics) by shaded circles.

2.3 Iterative Detection Conventions
A concatenated detector was determined to be optimal for several of

the examples in Sections 2.1 and 2.2. However, for many systems of prac-
tical interest, a concatenated detector based on marginal soft inverses is
not optimal. This may be the case, for example, if there is a subsystem
that has memory equal to the input symbol length. In this case, the
concatenated detector implied by the vector-mapping system diagrams
may be optimal, but still prohibitively complex. For example, consider
inserting an interleaver in the simple serial and parallel concatenations
shown in Fig-2.3, as shown in Fig-2.12. For the serial concatenation, an

I

FSM1

FSM2

FSM1 I FSM2
ak xkck dk(a)

ak

ak

ck

xk

yk

(b)

Figure 2.12. (a) Serial and (b) parallel concatenation of two FSMs with interleaving.

SOA for FSM2 would need to pass soft information equivalent to p(z|c)
back to the SOA for FSM1 in order to maintain sufficiency. Similarly,
for the parallel concatenated system, an optimal concatenated detector
would need to pass soft information of the form p(z|a) and p(z|c) from
the SOA associated with FSM1 and FSM2, respectively. For reasonably
sized interleavers, this is prohibitively complex. Thus, the interleaver
breaks up the structure of the relatively simple “super-trellis” thus dis-
allowing the relatively simple optimal processing.

As mentioned in Example 2.2, for the non-interleaved serial concate-
nation, a reasonable suboptimal detector could be based on passing
marginal soft-information on the intermediate symbols (i.e., xn in Fig-
2.3(a)). This could still be performed for the interleaved system in Fig-
2.12(a). Specifically, a SISO could produce marginal soft information on
dk based on the soft-in information on xk and the structure of FSM2,
which could then be deinterleaved and used as the soft-in on ck for a
second SISO (or hard-out detector such as the Viterbi algorithm) that
exploits the structure of FSM1. In fact, this is typically an effective
method since it allows the outer detector, which exploits the structure
of FSM1, to use some reliability information based on the structure of

96 ITERATIVE DETECTION

FSM2. This reliability information is insufficient, however, so that the
process is suboptimal.

This motivates the iterative detector shown in Fig-2.13(a) for the
interleaved, serially concatenated system shown in Fig-2.12(a) where
each SISO is the marginal soft-inverse. In this receiver, the processing

marginal soft
information on ck

SISO1

marginal soft
information on dk

marginal soft
information on ck

(a)

(b)

SI[ak]

SO[ak]

SI[ak]

SO[ak]

SISO2

SISO1

SISO2
I

SI[xk]

SI[xk]

SI[yk]

I−1

I

I−1

Figure 2.13. The iterative detectors associated with the parallel and serial concate-
nated system in Fig-2.12.

begins just as described above with SISO2 being activated to produce
marginal soft information on dk. This is then deinterleaved and used
as soft-in on ck. Next, SISO1 is activated, producing marginal soft-out
information on both the input ak and ck. Combining SI[ak] and SO[ak],
a final decision may be made. However, the soft-out information on ck

directly implies some beliefs on dk via the interleaver permutation. This
suggests executing SISO2 again, but with the SI[dk] set by the interleaved
versions of the soft-out on ck from SISO1. After this second activation of
SISO2, a new soft-out on dk is available, which can then be deinterleaved
and used as soft-in on ck for a second activation of SISO1. This process
can be continued with soft information on ck and dk continually refined.
After the iteration process is terminated by some stopping criterion,
a final decision may be made on ak by combining SI[ak] and SO[ak]
from SISO1. We refer to the sequence of activations of SISO2, the
interleaver/deinterleaver, and SISO1, and interleaver/deinterleaver as
one iteration. For the first iteration, all internal soft-in information
is set to uniform (e.g., zero in the metric domain). That is, on the
first iteration, the SI[dk] for SISO2 is uniform. Note that the soft-out
information on xk need not be computed in this example, nor does the
soft-out on ak except for the final iteration.

Note that the iterative detector in Fig-2.13(a) corresponds to the sys-
tem block diagram in Fig-2.12(a) with each subsystem replaced by the
corresponding marginal soft-inverse. This is the standard convention for
constructing iterative (or “turbo” detectors). For example, the iterative

Principles of Iterative Detection 97

detector associated with the interleaved, parallel concatenation is shown
in Fig-2.13(b) and is constructed according to this convention. The ac-
tivation schedule for this iterative decoder is not as obvious as that for
the iterative detector in Fig-2.13(b). For example, SISO1 and SISO2
can be activated in parallel, followed by the interleaver/deinterleaver,
then the soft inverse of the broadcaster; thus defining a single iteration.
An alternate activation schedule is SISO1→ the soft broadcaster → the
interleaver/deinterleaver → SISO2 → the soft broadcaster; defining an
iteration. While the first schedule may seem more reasonable at first
glance, in practice, it may be more complex and perform virtually the
same as the second schedule. To illustrate this more clearly, consider
the case where the a-priori information on ak is uniform. Then, since
the broadcaster only has two outputs and the soft-out on ak is not re-
quired until the final iteration, the soft inverse of the broadcaster can be
replaced by an exchange with a combining operation performed at the
end of the final iteration. This notion is illustrated in Fig-2.14.

C

marginal soft
information on ck

âk

I−1

SISO1

SISO2
Ifinal iteration

SI[xk]

SI[yk]

Figure 2.14. The iterative detector in Fig-2.13(b) shown for uniform a-priori infor-
mation on ak.

The two activation schedules suggested are illustrated in Fig-2.15
with the interleaver/deinterleaver and soft broadcaster activations shown
symbolically as an exchange between SISOs. In the serial schedule

SISO1 SISO1

SISO1

SISO2

SISO1

SISO2

SISO1

SISO2

SISO1

SISO2

· · ·

· · ·

· · ·

· · ·

(a)

(b)

SOBC

SOBC

SISO2SISO2

Figure 2.15. Two reasonable activation schedules for the iterative detector in
Fig. 2.13(b): (a) parallel activation, and (b) serial activation started by SISO1. One
iteration is shown in by the dashed box.

98 ITERATIVE DETECTION

shown, SISO1 begins the iteration and the final decision is made by
combining the most recent soft-out information on ak from the two
SISOs. Alternatively, this can be accomplished by combining the soft-in
and soft-out information on ak after the final activation of the inter-
leaver/deinterleaver as shown in Fig-2.14. There is of course another
serial schedule started by SISO2. Note that the parallel activation sched-
ule may be viewed as running these two serial activation schedules using
two separate iterative detectors which do not interact until the final it-
eration, after which the most recent soft-out on ak from each detector is
combined to make the final decision. The effectiveness of these schedules
depends on a number of factors including the sensitivity of the iterative
detectors to the initial conditions, the convergence rate, the structure of
the two FSMs, the stopping criterion, etc. The main point is that, even
after drawing the block diagram of the iterative detector, a number of
other parameters must be specified to fully define the algorithm. This
is summarized in the next section.

2.3.1 Summary of a General Iterative Detector
In this section we summarize the standard iterative detection tech-

nique as follows:

Given a system comprising a concatenated network of subsystems,
construct the marginal soft inverse of each subsystem. The marginal
soft inverse is found by considering the subsystem in isolation with
independent inputs and a memoryless channel. Specifically, adopting
either the MAP-SyD or MAP-SqD criterion and working in either
the probability or metric domain, the marginalizing and combining
operators are defined according to Table 1.1. Using these operators,
specify an algorithm to compute the extrinsic soft outputs for the
system inputs and outputs as defined in (2.5).
Construct the block diagram of the iterative detector by replacing
each subsystem by the corresponding marginal soft inverse and con-
necting these soft inverses accordingly. Specifically, each connection
between subsystems in the system block diagram is replaced by a
corresponding pair of connections in the iterative detector block dia-
gram so that the soft-out port of each is connected to the soft-in port
of the other.
Specify an activation schedule that begins by activating the soft in-
verses corresponding to some subsystems providing the global out-
puts and ends with activation of some soft inverses corresponding to
subsystems with global inputs.
Specify a stopping criterion.

Principles of Iterative Detection 99

(a-priori
information)

C

âm

SI[am]

D−s

F−s G−s

E−s

C−s

(from channel
soft demodulator)

SI[xn]

B−s H−s

Figure 2.16. The iterative detector implied by the Fig-2.1.

Take the soft-inputs on global output symbols as the channel like-
lihoods (metrics) obtained by appropriate soft-demodulation. The
soft-inputs for the global inputs are the a-priori probabilities (met-
rics) which are typically uniform.

At the activation of each subsystem soft inverse, take as the soft-in on
the digital inputs/outputs the soft-outputs from connected subsystem
soft inverses. If no soft information is available at the soft-in port,
take this to be uniform soft-in information (i.e., this applies to the
first activation of soft inverses that have inputs or outputs that are
internal or hidden variables).

A common stopping criterion is that a fixed number of iterations
are to be performed with this number determined by computer simula-
tion. For example, while formal proofs of convergence for complicated
iterative detectors do not exist, in most cases of practical interest, the
performance improvement from iteration reaches a point of diminishing
returns. Thus, one can select as the number of iterations the smallest
number that achieves the “full iteration gain.” Alternatively, perfor-
mance may be sacrificed to reduce the number of iterations. It is also
possible to define a stopping rule that results in variable number of iter-
ations. For example, if there is a test to see that further iterations will
not alter the final decisions, this may be used as a stopping criterion.

In most cases of practical interest, there is either a natural activa-
tion schedule, or different activation schedules produce similar results.
Thus, for the most part, the iterative detector is specified once the block
diagram is given and the subsystem soft inverses are determined. For
example, the iterative detector for the general concatenated system in
Fig-2.1 is shown in Fig-2.16.

100 ITERATIVE DETECTION

SO[a0]

SI[a0]

SO[a1]

SI[a1]

permuted
according to
the interleaver

a0

a1

...

...

...

x0

x1
X

...
Y

yK−1

y1

y0

...

...

...

SI[x0]

SI[x1]

aM−1

xN−1

SI[xN−1]

SO[aM−1]

SI[aM−1]

...

SI[y0]

SI[y1]

SI[yK−1]

X−s

Y−s

(b)

(a)

Figure 2.17. (a) The system block diagram and (b) the iterative detector for the
interleaved, parallel concatenation shown in Fig. 2.12(b) using the explicit index con-
vention.

2.3.2 Explicit Index Block Diagrams
While the emphasis thus far has been placed on implicit index block

diagrams and their associated iterative detectors, the same guidelines
apply to the explicit index version. For example, the explicit index block
diagram for the interleaved parallel concatenated system in Fig-2.12(b)
is shown in Fig-2.17 along with the associated iterative detector. Note
that the soft inverse of each of the FSMs can be implicitly computed
in an efficient manner using the forward-backward algorithm. In fact,
the explicit index convention can shed considerable light on this process.
We return to this topic and explicit index models in Section 2.6.

Principles of Iterative Detection 101

2.4 Iterative Detection Examples
Based on the principle described in Section 2.3, many interesting and

powerful applications of iterative detection can be demonstrated. In the
following subsections, we focus on several applications in detail. In some
of these examples, our focus is on the details of the algorithms, while in
others it is on the performance improvements and trade-offs. Since all
of the examples considered in this section are based on AWGN channels,
we first summarize some simplifications that can be made in MSM-based
iterative detectors for this special case.

2.4.1 Normalization Methods and Knowledge of the
AWGN Noise Variance

Examples 1.11-1.12 demonstrates that normalization may be desired
for numerical stability. There are a number of reasonable normalization
strategies. Specifically, recall that, in the probability domain, multipli-
cation by any positive constant produces an equivalent soft measure.
One reasonable choice is to normalize so that the soft-information sums
to one (i.e., we refer to this as sum-to-unity normalization).

P′[uk] =
P[uk]∑
ũk

P[ũk]
(2.15)

This may be applied to any algorithm operating in the probability do-
main (e.g., APP, GAP, etc.). Furthermore, it may be applied to any
intermediate soft-information. For example uk could be sk, xk, ak, etc.
Software or digital hardware implementations, however, are best im-
plemented in the metric domain. Implementation in the probability
domain requires frequent normalization of all soft-information quanti-
ties for numerical stability. It is possible to select the normalization
convention to reduce the storage requirements by one. For example,
if the normalization in (2.15) is used, then there is no need to store
P′[uk = 0] = 1−

∑
uk �=0 P′[uk].

In the metric domain, one may subtract any finite constant from the
|U| values of M[uk] and still maintain an equivalent soft measure. A
common scheme is to subtract the smallest of the |U| metrics from all
metrics. This ensures that the absolute value of the metrics is mini-
mized. If the metric of a particular conditional value is subtracted from
each value, then the storage requirements are again reduced by one.
Specifically, these two schemes are

M′[uk] = M[uk]−min
ũk

M[ũk] (2.16a)

M′[uk] = M[uk]−M[uk = 0] (2.16b)

102 ITERATIVE DETECTION

Under the convention of (2.16b), M′[uk = 0] = 0. Again, these con-
ventions may be mixed and matched in a particular iterative detector.
For example, in a metric-based iterative detector, the forward and back-
ward metrics in a SISO could be normalized every several recursions by
subtracting off the smallest metric (i.e., as in (2.16a)) and the MO[ak]
values could be normalized for each value of k via the convention in
(2.16b). Note that, for binary uk, the convention in (2.16b) requires
only one number to be stored for the soft information on uk (i.e., akin
to the negative log-likelihood).

For MSM-based algorithms, one can work with an isomorphic soft-
measure that often provides an important simplification. Specifically,
the soft information measure M(C)[uk] = CM[uk], where C is a fixed
positive constant can be used instead of M[uk] without affecting the
combining and marginalizing operations. This is because multiplication
by a positive constant commutes with the min(·) (or max(·)) operation.
An important application of this is to iterative detection on AWGN
channels. For this case, if the global system inputs ak(ζ) are uniformly
distributed over A, then knowledge of the noise power is not required if
one works with M(N0)[·]. This is not the case for sum-product (APP) or
min∗-sum (M∗SM) algorithms (e.g., see Problem 2.8).

To demonstrate this, recall that for a system with independent inputs
{am(ζ)} and outputs {xn(a(ζ))}, the joint soft information for an AWGN
channel is

P[a,x(a)] ≡ exp
(
−‖z− x(a)‖2

N0

)
p(a) (2.17a)

M[a,x(a)] ≡ 1
N0
‖z− x(a)‖2 + [− ln p(a)] (2.17b)

where one constant has been absorbed already. Considering the isomor-
phic joint metrics given by M(N0)[a,x(a)] = N0M[a,x(a)], the key is
that the min-sum processing yields equivalent marginal soft information
with the same correspondence. More precisely, consider MSM(N0)[an]
as the marginal soft-information obtained by min-marginalization of
M(N0)[a,x(a)]. Then it follows that

MSM(N0)[an] ∆= min
a:an

M(N0)[a,x(a)] (2.18a)

= min
a:an

N0M[a,x(a)] (2.18b)

= N0 min
a:an

M[a,x(a)] (2.18c)

= N0MSM[an] (2.18d)

Principles of Iterative Detection 103

As a result, a min-sum algorithm can be run using metrics M(N0)[·]
and the final marginal soft information measures are isomorphic to the
standard MSMs.

The key to this relation is that the mapping defining the isomorphism
commutes with the marginalizing operator. It is simple to verify that
the above argument does not hold for min∗(·) marginalization, or equiv-
alently, in general[∑

a:an

(P[a,x(a)])N0

]1/N0

�=
∑
a:an

P[a,x(a)] (2.19)

In summary, an iterative detector or soft-out algorithm using min-
sum processing can multiply all metrics considered by a single finite,
positive constant C and the output soft information is equivalent to
that produced by the standard MSM version multiplied by C. For an
AWGN channel one can use MI[xn(a)] = ‖zn − xn(a)‖2 and MI[am] =
−N0 ln p(am) with min-sum marginalizing and combining. For the case
of uniform global system inputs, MI[am] ≡ 0, the value of N0 is not re-
quired. Note that, since the marginal metric information on the global
system input is typically only used to obtain final decisions via thresh-
olding, the distinction between M[·] and M(N0)[·] is irrelevant in practice.
Thus, in the following, we do not distinguish between these two cases
and use multiplication of the metrics in min-sum algorithms by a single
positive constant without explicit notation.

It is worth emphasizing two details of the above development. First, if
p(an) is not uniform for the global system inputs, then the value of N0 is
required for min-sum algorithms. Second, for the case of uniform global
inputs, input metrics on subsystem inputs are implicitly normalized. In
other words, if uk is the input to a subsystem but not a global system
input, then during the iteration process MO[uk] from one soft inverse
will be used as MI[uk] for another soft inverse. This soft information
is passed without modification – i.e., do not multiply MI[uk] by N0 as
part of the soft inversion process. These details are illustrated in the
following example.

Example 2.7.
Consider an isolated ISI-AWGN system with independent, BPSK mod-
ulated input having p(ak = −1) = p and p(ak = +1) = 1 − p for all
k. The channel is the 5-tap ISI channel (

√
3/6, 1/2, 1/

√
3, 1/2,

√
3/6).

The MAP-SyD and MAP-SqD receivers are run using the estimate N̂0 for
the noise power. The impact of estimation error on the MAP-SyD and
MAP-SqD receivers is shown in Fig-2.18. Note that with the relatively

104 ITERATIVE DETECTION

B
it

E
rr

or
P

ro
ba

bi
lit

y

10−1

1

10−2

10−3

10−4

10−5

−10 −5 −16 −8

(a) (b)

10log10 σ̂/σ 10log10 σ̂/σ

1/σ2 (dB) 1/σ2 (dB)

FI-APP with p = 0.5 FI-MSM with p = 0.8

0 0−∞ 8

12 12

14 14

16 16

18
18

5

10

10

10

Figure 2.18. The impact of estimation error on the (a) MAP-SyD receiver (APP-
forward-backward) with p = 0.5, and (b) the MAP-SqD (MSM-forward-backward)
with p = 0.8. Note that σ2 = N0/2 and Eb/N0 = 2/σ2.

large a-priori bias (p = 0.8), the performance of the MSM algorithm
degrades quickly with overestimation of the noise power. However, un-
derestimation of N0 has virtually no impact on the performance. Thus,
in practice one may assume N0 → 0, or equivalently p = 0.5 without
significantly degrading the performance. The MAP-SyD receiver is sen-
sitive to both over and under estimation of the noise level. However,
the performance is fairly robust over an asymmetric interval around the
true value. Specifically, the APP algorithm is more robust to underesti-
mation of the noise variance than to overestimation. Also, this tolerance
interval is relatively constant for different SNRs.

An iterative example is shown in Fig-2.19. This is the performance
of the iterative row-column detector for the two-dimensional ISI-AWGN
channel as described in Section 5.4. The qualitative results in Fig-2.19,
however, are common to other iterative detection applications.

Comparing the results in Fig-2.18 and Fig-2.19, the impact of estima-
tion error on iterative detectors is similar but more severe. For the APP
case, there is a tolerance interval which is smaller than the correspond-
ing interval in Fig-2.18(a) and this interval varies with SNR. Moreover,
inside of this interval, the performance varies more than in the non-
iterative application. This is also true for the MSM case.

End Example

Principles of Iterative Detection 105

B
it

E
rr

or
P

ro
ba

bi
lit

y

10−1

1

10−2

10−3

10−4

10−5

10−6

−10 −10−5 −5

(a) (b)
10log10 σ̂/σ 10log10 σ̂/σ

1/σ2 (dB)

1/σ2 (dB)

2D FI-MSM-SISO

2D FI-APP-SISO
(p = 0.5)

(p = 0.8)

0 0−∞

12

1214

14
16

16

18

18

5 510 10

Figure 2.19. The impact of noise-power estimation error on the performance of an
iterative detector using forward-backward SISOs: (a) APP-based SISOs with p = 0.5
and (b) MSM-based SISOs with p = 0.8. All curves are obtained after 5 iterations
with no significant further gain achieved with further iteration. The noise variance
estimate is used without modification for all iterations.

2.4.2 Joint “Equalization” and Decoding
Coding and equalization4 are indispensable in TDMA cellular mobile

systems operating in frequency selective fadingfading channels. In ad-
dition, although this is not optimal from an information theoretic point
of view, interleaving is almost always used as a method to obtain time
diversity with reasonable complexity and delay in those slowly fading
channels. Due to the presence of the interleaver, the traditional receiver
consisting of a Viterbi equalizer/deinterleaver/hard-decision Viterbi de-
coder, performs poorly, the reason being that such a segregated receiver
does not jointly combine the time diversity of the code with the fre-
quency diversity of the channel [AnCh97]. In this section we describe
how iterative detection can be utilized in trellis-coded/interleaved sys-
tems transmitted over ISI static and frequency selective fading channels.

The communication system under consideration is shown in Fig-2.20,
with the transmitter consisting of a trellis coded modulation (TCM)
encoder and a symbol interleaver. The interleaved symbols are format-
ted in bursts and output to the inner ISI channel. Assuming perfect
channel state information (CSI) available at the receiver, the optimal
receiver front-end consists of a filter matched to the overall response of

4We emphasize that the term “equalization” is used here to denote ISI-mitigation, and does
not imply linear or decision feedback equalization.

106 ITERATIVE DETECTION

bk ck ak symbol-spaced
ISI channel

AWGN

inner SISOouter SISO
(decoder)

code
convolutional

(equalizer)

I

I

SODEMI−1

overall

Figure 2.20. TCM in ISI channel and the associated iterative detection network for
perfect-CSI

the channel and pulse shape, followed by symbol-spaced sampling and
whitening [Fo72]. The equivalent discrete-time observation model can
be written as

zk =
√

Es

L−1∑
n=0

f (k)
n ak−n + wk (2.20)

where f
(k)
n is the nth tap of the overall channel at time k, ak is the

coded and interleaved symbol and wk is a white complex Gaussian noise
with E{|wk|2} = N0. The code symbols and the channel taps are both
normalized to unit energy.

By realizing that the transmission system described above consists of
a serial concatenation of inner (ISI channel) and outer (encoder) FSMs
through an interleaver, the iterative receiver suggested in [PiDiGl97,
AnCh97] and shown in Fig-2.13 can be utilized for joint equalization
and decoding.

Example 2.8.
The communication system described above was simulated using the
following parameters. A binary input stream of length 1710 bits is en-
coded by a rate R = 1/2, 16-state convolutional code with generator
matrix G = [1 + D3 + D4 1 + D + D2 + D4]. Two interleaver structures
were examined: i) a block interleaver of size 57 × 30 = 1710 and ii) a
pseudo-random interleaver of length 1710. In both cases, the interleaved
symbols are mapped to a QPSK constellation using Gray coding and
transmitted to the channel in bursts of 57 symbols. A 3-tap channel was
considered, and the following four scenarios were simulated:

a. the worst-case static channel for uncoded systems with
fk = [0.5

√
0.5 0.5]T,

b. an equal-power complex Gaussian fading channel with independent
taps, constant over the 1710 symbol frame and frame-to-frame inde-
pendent,

Principles of Iterative Detection 107

c. an equal-power complex Gaussian fading channel with independent
taps, constant over each burst and burst-to-burst independent, and

d. an equal-power fading channel with independent taps, burst-to-burst
independent, and autocorrelation function given by the Clarke spec-
trum [Cl68]

Rf (m) = J0(2πνdm) (2.21)

where J0(·) is the zero-order Bessel function of the first kind and νd is
the normalized Doppler spread (νd = 0.005 is used in this example).
This last model corresponds to the wide sense stationary uncorrelated
scattering (WSSUS) assumption [Be63].

The SISO blocks at the receiver are both fixed interval algorithms ex-
changing APP-type extrinsic information.

Results are presented for the static channel (a) and for the first five
iterations in Fig-2.21. It is clear from this figure that iterative detec-

�������������������������������������
�������������������������������������

����
����

����
����

����
��������
����
����

����
��������

��������
��������
��������
����

���
100

10−1

10−2

10−3

10−4

10−5

11
2

2

2

3

3

3

4

4

4

5

5

5 6 7 8

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

block
pseudo-random

interleaving

number of
iterations

Figure 2.21. Iterative receiver performance with block and pseudo-random interleav-
ing for the worst 3-tap static channel (curves for the first five iterations are shown)

tion provides a significant gain over the first iteration; a fact that was
also pointed out in [PiDiGl97]. Contrary to the results presented in
[PiDiGl97] though, a slightly better performance is achieved here for
the pseudo-random interleaved system at each iteration. As an exam-
ple, a BER of 10−3 is achieved at 7 dB and 3.5 dB at the first and
fifth iteration with pseudo-random interleaving, while the corresponding
numbers from [PiDiGl97] are 7.5 dB and 4.3 dB respectively. This small
differences can be attributed to the different SISO algorithm utilized
herein.

108 ITERATIVE DETECTION

Furthermore, performance depends on the type of interleaver used:
with block interleaving, a 2 dB iteration gain is achieved, while pseudo-
random interleaving provides an additional 1.5 dB gain at the fifth iter-
ation. At least two possible reasons can be offered to explain this behav-
ior. Assuming that the entire system of encoder/interleaver/channel is
viewed as an overall code, it is conceivable that the code resulting from
the pseudo-random interleaving is more powerful than the one result-
ing from block interleaving. In addition, it is possible that the iterative
detection algorithm more accurately approximates the optimal detector
(i.e., MAP-SqD, or MAP-SyD) in the case of pseudo-random interleav-
ing. The two above mentioned mechanisms are not mutually exclusive.
Nevertheless, the fact that the performance enhancement is observed
only after the second iteration, lends credence towards the latter expla-
nation.

Performance curves are presented in Fig-2.22 for different channel
models for the two interleaving schemes and the first and fifth iteration.
The BER performance for case (b) with either interleaver is significantly

��

��
��

���

��

��

��
��

��

��
��
��

��

��

��

���

��

���

��
��

��

���

�������������������������������������
�������������������������������������
�������������������������������������
�������� ��������������������������������

��������������������������������
��������������������������������

���
���
���

���
���100

10−1

10−2

10−3

10−4

10−5

0 2 4 6 8 10 12

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

Iteration 1
Iteration 5

Case (b)
Case (b)

Case (c)
(instantenuous SNR)

block
pseudo-random

interleaving

Figure 2.22. Iterative receiver performance with block and pseudo-random inter-
leaving for different fading channel models (curves for the first and fifth iterations are
shown)

worse than all other cases. This was expected since in this situation,
there is no time diversity built into the system due to the interleaver
and consequently the presence of the code can only slightly – if at all –
increase the performance over an uncoded system. An additional inter-
pretation of this result stems from the fact that the performance repre-
sented by case (b) is the result of averaging the performance of static
channels (similar to case (a)) over an ensemble of channel shapes and
powers under an average power constraint E{

∑L−1
n=0 |f

(k)
n (ζ)|2} = 1.

Principles of Iterative Detection 109

In order to separate the effect of power averaging from that of shape
averaging, the same curves were also plotted versus the instantaneous
Eb/N0. Comparing these curves with the corresponding ones for the
static channel (a), it is evident that shape averaging is not detrimental.
In fact, the shape-averaged performance is slightly better since the static
channel represents the worst case performance (at least for an uncoded
system).

To further investigate the effect of channel shape in the overall per-
formance, statistics on the relative difference of errors due to the static
channel (a) and the different channel shapes (b) were collected. In par-

ticular, the quantity
�

i N i
a−N i

b�
i N i

a
× 100 was evaluated where N i

a and N i
b

represent the number of errors in the ith experiment for the case (a) and
(b) (channel power is always normalized to unity) respectively. Results
are presented in Table 2.1 for Eb/N0 = 5dB and for block and random in-
terleaving up to the fifth iteration. It is evident from these data, that the

iteration
1 2 3 4 5

block 96.8 96.8 96.8 94.4 95.7

random 95.9 95.9 46.7 34.7 36.0

Table 2.1. Percentage of channel shapes better than [0.5
√

0.5 0.5]T

static channel (a) is almost always worse than any other channel shape,
when block interleaving is present, regardless of the iteration. This ex-
plains the big difference in performance between cases (a) and (b) (when
presented versus the instantaneous SNR) for block interleaving (i.e., 1.5
dB at 10−4). On the other hand, when random interleaving is employed,
after a couple of iterations, only a small percentage of channels introduce
less errors than channel (a). In fact, only 36% more errors are due to
channel (a) in the fifth iteration, which explains the agreement between
the corresponding BER curves.

Performance curves for the quasi-independent channel model (c) are
also shown in Fig-2.22. The time diversity provided by the burst-to-burst
independence is evident from the slope of the curves. Nevertheless, iter-
ative detection provides a much smaller gain compared to that obtained
with the static channel – i.e., only 1.2 dB at 10−4 as compared to up
to 4 dB for the static channel. Moreover, the choice of interleaving does
not affect the performance. In addition, simulation results not presented
here, showed that the performance curves for the quasi-independent/fast
fading channel model (d) are almost identical with those for channel

110 ITERATIVE DETECTION

model (c), which means that almost all the time diversity of the system
is provided through the independent fading of the bursts. Note that the
similarity between cases (c) and (d) is only true when the receiver has
perfect CSI (refer to Chapter 4 for a treatment of the problem when
perfect CSI is not available at the receiver).

The results presented suggest that there is no significant difference be-
tween the average performance obtained with pseudo-random and block
interleaving for fading ISI channels. Furthermore, iteration provides
relatively small improvements in this average performance over fading
channels (e.g., approximately 1-2 dB for 5 iterations). However, signif-
icant gains in performance for a given channel realization are obtained
by using iterative detection and choosing a pseudo-random interleaver
over a block interleaver. If one were to average the performance over not
only the short-term fading statistics, but the user mobility profile (mo-
bility, shadowing, path-loss, etc) as well, significant improvement would
be expected. This may be reflected in, for example, a lower outage prob-
ability, especially for low-mobility users.

End Example

Example 2.9.
Iterative detection can also be used effectively when no interleaver is
present between the two subsystems. Consider the case of the 16-state,
rate 1/2, convolutional code with Gray-mapped QPSK modulation and
a 3-tap, fT = [1 2 1] ISI channel. This is a special case of the serial
concatenation considered in Example 2.2 so that the optimal detector
can be implemented on the joint, or super-trellis. According to the
development in Example 2.2, the optimal processing can be carried out
on a trellis with no more than |S(CC)| × |S(ISI)| = 24 × 42 = 256 states.
However, since both FSMs are simple, the joint trellis can be defined
based on the states bk−1

k−6. More precisely, a transition in the super-
trellis corresponds to bk

k−6 which uniquely determines ak
k−2 and thus,

the output of the ISI channel xk(ak
k−2).

Alternatively, an iterative detector can be used which operates the
same way as above, just omitting the interleaver/deinterleaver pair.
Specifically, the ISI and convolutional code SISOs operate on the respec-
tive FSM trellises and exchange soft information on the QPSK symbols.
Fig-2.23 shows the performance of several receivers for this serial con-
catenation without interleaving. The performance of the MAP sequence
detector for the global system is shown as is that of the min-sum iterative
receiver. The curve label HID is for a Viterbi detector for the ISI channel
and Hamming distance decoding of the convolutional code. Comparing

Principles of Iterative Detection 111

�����������������
�����������������

����
����

����
����

�����
�����
�����

�������
��������������
�������

100

10−1

10−2

10−3

10−4

10−5

10−6

0

1
1

4

5

6

10 15

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

ML-SyD

HID-HID

no
random

MSM-MSM

MSM-MSM

ML-SqD

interleaving

Figure 2.23. Joint equalization and decoding with and without an interleaver.

to the similar system with interleaving, we note that the iteration gain
is smaller and the difference between APP and MSM processing is larger
in this example. Also shown are the corresponding performance curves
when a pseudo-random interleaver is present. Note that it is not easy
to make quantitative comparisons between the two systems since the
interleaver changes the system structure (i.e., it may be thought of as
modifying the code, or as modifying the ISI channel). It is interesting,
however, to see that the performance gaps for each system is similar, es-
pecially in light of the fact that the optimal detector for the interleaved
system cannot be simulated.

End Example

2.4.3 Turbo Codes
2.4.3.1 Parallel Concatenated Convolutional Codes

The application that fueled the wide spread emergence of iterative
detection techniques is so-called “turbo coding” [BeGlTh93, BeGl96,
BeMo96, HeWi98, VuYu00]. These are codes comprising a parallel con-
catenation of convolutional codes separated by an interleaver. These
are also called Parallel Concatenated Convolutional Codes (PCCC).5

In this section we consider a particular PCCC which is similar to
the original turbo code described by Berrou, Glavieux, and Thitma-
jshima [BeGlTh93, BeGl96]. We also give a fairly detailed presentation

5Many use the term “turbo codes” to describe various members of a family of turbo-like codes
that have similar distance spectrum properties and may be decoded using iterative detection
principles. Thus, we use the more descriptive term PCCC.

112 ITERATIVE DETECTION

of a specific MSM-based iterative decoder. This decoder is the subject
of the case study implementation in Chapter 6.

The encoder, which is shown in Fig-2.24, consists of two 4-state con-
stituent encoders, a pseudo-random interleaver, and a puncture mapper.
The constituent encoders are recursive systematic convolutional codes

bK−2bK−1

aK−2aK−1

bk
0/1 to +1/-1

0/1 to +1/-1

xk(0)

xk(1)

modulate
puncture and

k odd

k even

a0a1 · · · aK−3

data bits
uncoded

b0b1 · · · bK−3

ck(1)
I

RSC1

RSC2

dk(0)

dk(1)

ck(0)

Figure 2.24. The PCCC encoder considered.

(RSCs). Thus, one of the code outputs is the uncoded input and the
other is a parity bit based on a feedback encoding procedure. The spe-
cific constituent encoders considered are 4-state RSCs, with the parity
bit generated by the generator polynomial

g(D) =
1 + D2

1 + D + D2
(2.22)

where D is the unit delay operator. A realization of this encoder is
shown in Fig-2.25, where all variables are in {0, 1} and the summers are
modulo two (other structures are also possible – e.g., see Problem 2.10).
The state of the encoder is defined as sk = (pk−1, qk−1), which are the

D D

vk(0)
vk(1)

qk qk−1 pk−1uk

Figure 2.25. The RSC encoder for the constituent codes of the PCCC example.

outputs of the two delay operators. Using the notation in Fig-2.25, the
output and next-state are computed via

sk+1 = (pk, qk) = (qk−1, pk−1 ⊕ qk−1 ⊕ uk) (2.23a)
vk(0) = uk (2.23b)
vk(1) = qk ⊕ pk−1 = qk−1 ⊕ uk (2.23c)

Principles of Iterative Detection 113

uk = 0 uk = 1
sk = (pk−1 qk−1) vk(0) vk(1) sk+1 = (pk qk) vk(0) vk(1) sk+1 = (pk qk)

0 = (0 0) 0 0 0 = (0 0) 1 1 1 = (0 1)

1 = (0 1) 0 1 3 = (1 1) 1 0 2 = (1 0)

2 = (1 0) 0 0 1 = (0 1) 1 1 0 = (0 0)

3 = (1 1) 0 1 2 = (1 0) 1 0 3 = (1 1)

Table 2.2. The next-state and output tables for the constituent codes of the PCCC
example.

3

2

1

0

3

0

1

2

sk
(vk(0)vk(1))

(00)

(11)

(01)(01)

(11)

(00)

(10)

(10)

sk+1

Figure 2.26. The trellis for the constituent codes of the PCCC example. Transitions
corresponding to zero inputs are shown dashed.

From these relations, the next-state and output tables are as shown in
Table 2.2 and the trellis structure is as shown in Fig-2.26.

Both constituent codes are started in the zero state and two tail bits
are used to terminate each RSC encoder into the zero state. More pre-
cisely, K − 2 input bits bK−3

0 are accepted from the source. The first
encoder encodes these bits along with two tail bits bK−2, bK−1 to pro-
duce the two output sequences ck(0) (systematic) and ck(1) (parity)
for k = 0, 1 . . . (K − 1). The bit sequence bK−3

0 is permuted to ob-
tain aK−3

0 according to a known interleaver rule – i.e., ak = bI(k) for
k = 0, 1, . . . (K − 3). Two tail bits aK−2, aK−1 are added to this se-
quence to terminate the trellis into the zero state. Since the RSC is a
recursive FSM, the tail bits required to terminate into the zero state
differ according to the value of sK−3, but are easily computed using the
information in Table 2.2. This is shown in Fig-2.27 where the effect of
the initial state being set to zero is shown. Note that the first and last
two transitions are restricted due to the initial state information and the
tail bits, respectively.

The systematic bit of RSC1 is always sent and the systematic bit of
RSC2 is never sent. The parity bit streams of each RSC are punctured

114 ITERATIVE DETECTION

sK−2 uK−2 uK−1

0 0 0
1 1 1
2 1 0
3 0 1

s0 s2 sK−2 sK

final zero state

k = 0 K − 1 K

initial zero state

K − 3 K − 21 2 3

Figure 2.27. Termination of the trellis for the constituent codes of the PCCC exam-
ple. Values shown for the constituent encoder inputs uk are those required to drive
the encoder to sK = 0 for a given state at time K − 2.

and multiplexed so that the overall code parity bit is ck(1) (the parity
from RSC1) and dk(1) (the parity from RSC2) for even and odd k,
respectively. Thus, the rate of the overall code is approximately 1/2
(i.e., accounting for the tail bits, it is 1

2 −
1
K). The two code output

bits are modulated using a BPSK scheme – i.e., xk = (−1)vk where
vk ∈ {0, 1} is a coded bit.

An AWGN channel is assumed so that the observation is

zk(i) =
√

Esxk(i) + wk(i) k = 0, 1 . . . (K − 1), i = 0, 1 (2.24)

where wk(0) and wk(1) are realizations of independent real-valued
AWGN sequences, each with zero mean and variance N0/2. The en-
ergy per coded symbol Es is set to Eb/2 under the assumption of fixed
transmit power and throughput (i.e., a bandwidth expansion of two). It
follows that the pdf of the received samples is

pzk(ζ;i)|xk(ζ;i)(zk(i)|xk(i)) =
1√
πN0

exp
(
−[zk(i)−

√
Esxk(i)]2

N0

)
(2.25)

A metric for xk(i) is therefore M[xk(i)] = [zk(i) −
√

Esxk(i)]2/N0 for
xk(i) = ±1.

Since all variables considered are binary-valued, it is reasonable to
store only the difference between metric values. We adopt the normal-
ization convention in (2.16b) so that the metric of vk = 0, for all binary
variables vk, is zero. This may be accomplished using

M[xk(i)] = ([zk(i) −
√

Esxk(i)]2 − [zk(i)−
√

Es]2)/N0 (2.26a)
M[xk(i) = +1] = 0 (2.26b)

M[xk(i) = −1] = 4
√

Eszk(i)/N0 (2.26c)

The metric in (2.26) is valid for either min-sum or min∗-sum processing.
In the following we focus on min-sum processing and multiple all metrics

Principles of Iterative Detection 115

by N0/(4
√

Es) to obtain6

M[xk(i) = +1] = 0 M[xk(i) = −1] = zk(i) (2.27)

The iterative decoder is shown in Fig-2.28 where the SISOs are the
marginal soft inverses of the RSCs implemented using the forward-back-
ward algorithm. The soft inverse of the modulation and puncture map-

SISO1

SISO2

M[ck(0)]

M[ck(1)]

M[dk(1)]
0

0

0

I I−1

b̂k M[bk]

M[ak]

last iteration zk(1)

zk(0)

soft inverse of
puncture and modulation

Figure 2.28. The MSM-based iterative decoder for the PCCC in Fig-2.24.

ping is a simple distribution of the channel metrics in (2.27) according
to the puncturing scheme. More precisely, the following input metric
information is assigned

MI[ck(0) = 1] = zk(0) (2.28a)

MI[ck(1) = 1] =

{
zk(1) k even
0 k odd

(2.28b)

MI[dk(0) = 1] = 0 (2.28c)

MI[dk(1) = 1] =

{
0 k odd
zk(1) k even

(2.28d)

Due to the structure of the soft inverse of the modulator and punc-
ture mapper, the assignment in (2.28) need only be done once (i.e.,
subsequent activation of the soft inverse of the puncture mapping does
nothing and is therefore not required). Final decisions on bk can be
made by thresholding the MI[bk] + MO[bk] after the final activation of
the interleaver/deinterleaver. Note that this corresponds to activation
of a soft inverse broadcaster as described in Section 2.3.

6This convention is adopted since the implementation study in Chapter 6 uses min-sum
processing. To run an M∗SM-based algorithm, one should replace zk(i) by 4

√
Eszk(i)/N0

everywhere in the following.

116 ITERATIVE DETECTION

0 0 0

1 1 1

2 2

3 33

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

2

odd k

SISO2: MIk =MI[ak = 1]

sk+1sk sk sk+1

sk+1sk+1sk skeven k

MIk

MIk MIk

MIkMIk

SISO1: MIk =MI[bk = 1] + zk(0)

MIk

MIk

MIk

MIkMIk

MIk

MIk

zk(1)zk(1)

zk(1)zk(1)

MIk + zk(1)

MIk + zk(1)

Figure 2.29. Transition metrics for the two SISOs in the PCCC example considered.

Notice that the output of RSC1 is (ck(0), ck(1)) so that the metrics
for each of these quantities should be added for each transition metric.
Many of the transition metrics in each of the SISOs are zero due to the
normalization scheme. Specifically, by the normalization in (2.26)-(2.27)
the input metric of ck(i) = 0 and dk(i) = 0 are always zero. Furthermore,
the puncturing and similar normalization of the metrics on ak and bk

imply that several other metrics will be zero. Specifically, we normalize
so that MI[bk = 0], MO[bk = 0], MI[ak = 0], and MO[ak = 0] are all zero.
With this assumption, the trellis for each of the two SISOs is shown in
Fig-2.29.

In order to ensure that the normalization convention that the metric
of a zero conditional value is zero, it must be enforced at each completion
operation. Specifically, let Fk−1[sk] and Bk+1[sk+1] be the forward and
backward state metrics in the forward-backward algorithm, then the
completion operation in (2.13) can be specialized to incorporate the
normalization convention. Specifically, for SISO1 and even k, this yields

MO[bk = 1] = min
tk :bk=1

(Fk−1[sk] + MI[ck(1)] + Bk+1[sk+1])

− min
tk :bk=0

(Fk−1[sk] + MI[ck(1)] + Bk+1[sk+1]) + zk(0) (2.29)

Principles of Iterative Detection 117

For SISO1 and odd k this simplifies to

MO[bk = 1] = min
tk:bk=1

(Fk−1[sk] + Bk+1[sk+1])

− min
tk:bk=0

(Fk−1[sk] + Bk+1[sk+1]) + zk(0) (2.30)

Similarly, for SISO2 and even k, the completion is

MO[ak = 1] = min
tk :ak=1

(Fk−1[sk] + Bk+1[sk+1])

− min
tk:ak=0

(Fk−1[sk] + Bk+1[sk+1]) (2.31)

and for odd k

MO[ak = 1] = min
tk :ak=1

(Fk−1[sk] + MI[dk(1)] + Bk+1[sk+1])

− min
tk:ak=0

(Fk−1[sk] + MI[dk(1)] + Bk+1[sk+1]) (2.32)

The edge information should be used when initializing the forward
state metrics. Specifically, for each SISO and for every iteration F−1[s0 =
0] = 0 and F−1[s0 �= 0] = ∞. As discussed in Examples 1.10 and 1.11,
the tail bits should be accounted for by setting MI[bk] and MI[ak] for
k = K−2,K−1 accordingly. In this case where the final state is known
and output metric information need be computed for the tail bits, this
may be accomplished by proper initialization of BK [sK]. Specifically, in
each SISO for every iteration BK [sK = 0] = 0 and BK [sK �= 0] = ∞.
Initializing to infinity may not be practical in many implementations.
This is discussed in Section 6.2. Alternatively, one can collapse the first
two transitions in either direction according to Fig-2.27 and initialize
F1[s2] and BK−2[sK−2] directly.

Simulation results for this example PCCC system are shown in Fig-
2.30 and Fig-2.31. The activation used is that shown in Fig-2.15(b). So,
one iteration is SISO1 → I/I−1 → SISO2 → I/I−1. The min-sum and
min∗-sum (using the metrics in (2.26)) iterative decoding algorithms are
compared for K = 1024. The improvement associated with APP-based
processing over MSM-based processing is greatest at low SNR and is less
than 0.5 dB over the SNR range of interest.

The effect of interleaver size K is illustrated in Fig-2.31. Also shown
is the performance of the rate 1/2, 128-state convolutional code with
largest minimum distance [LiCo83] using soft-in decoding, and a base-
line uncoded system which uses half of the channel bandwidth. Compar-
ing the approaches at a BER of 10−4, a PCCC with K = 512 provides
approximately one additional dB of coding gain relative to the tradi-
tional convolutional code. With a K = 16384 PCCC, this additional

118 ITERATIVE DETECTION

��
���
���

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1 2 3

B
it

E
rr

or
R

at
e

Eb/N0 (dB)
0.5 1.5 2.5

1,2,4,6,10,20 iterations

min∗-sum (APP-based)
min-sum (MSM-based)

Figure 2.30. The performance of min-sum and min∗-sum iterative decoding of the
example PCCC with K = 1024.

��
��
��

�������������������
�������������������

�������
�������

100

10−1

10−2

10−3

10−4

10−5

10−6

0 2 4 6 8

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

K =32
K =512
K =1024
K =16384

1 iteration
10 iterations
20 iterations

uncoded

convolutional code

turbo code

T
he

or
et

ic
al

L
im

it

Figure 2.31. The performance of min-sum iterative decoding of the example PCCC
for various K.

gain is approximately 2.2 dB. This is only approximately 1 dB from the
constrained channel capacity for the rate 1/2, BPSK-AWGN channel.

All interleavers used were selected at random and held fixed for all
simulations. Some improvement at low error rates can be obtained by
using a so-called semi-random (S-random) interleaver (e.g., [DoDi95,
FrWe99, DaMo99]). This alleviates the so-called “knee” in the PCCC
performance curve. While a detail explanation of why turbo codes are
good low-SNR codes is not the focus of this book, this knee effect is
evidence of the intuitive reason. Specifically, traditional codes are de-
signed to maximize the minimum distance of the code without regard to

Principles of Iterative Detection 119

the number of minimum distance neighbors. As the bound development
in Chapter 1 suggests, this is a good design metric for sufficiently high
SNR, but may not be the most effective at low SNR. At low SNR, the
coefficients multiplying the Q-functions in the bounds become more im-
portant than the minimum distance. Therefore, at low SNR, the distance
spectrum properties of the code are more important than the minimum
distance [PeSeCo96]. In fact, at sufficiently high Eb/N0, the traditional
convolutional code will outperform the PCCC because it has a larger
minimum distance. The transition region between these two regimes is
manifested by the knee in the PCCC curve. The S-random interleaver
is designed to alleviate this effect by carefully considering the effects of
the input sequences that produce minimum distance pairwise errors for
the PCCC (i.e., these are weight two input sequences).

There are a number of turbo-like codes that have similar distance
spectrum properties, impressive performance, and may be decoded us-
ing iterative detection principles. These include serially concatenated
convolutional codes [BeDiMoPo98b], low-density parity check (LDPC)
codes [Ga62, Ga63, Ma99], repeat-accumulate (RA) codes [Mc99], and
self-concatenated codes [Di97, DiPo97]. LDPCs, in particular, are an
attractive alternative to PCCCs for a number of reasons as described in
Section 2.6.3.

2.4.3.2 Serially Concatenated Convolutional Codes
Serially Concatenated Convolutional Codes (SCCCs) were introduced

in [BeDiMoPo98b] as an alternative to the original turbo codes, which
were PCCCs [BeGlTh93]. As shown in Fig-2.32, in an SCCC the se-

Inner

Inner

bk Outer
CC

Outer
SISO

ck dk

I−1

MOD
qk

SODEM
I

I
zk

nk

CC

SISO

Figure 2.32. Serial concatenation of CCs and iterative detection network for perfect
CSI.

quence of source bits bk is partitioned into blocks and convolutionally
encoded using a rate Ro outer CC, producing K coded symbols ck. These
symbols are fed to an inner CC of rate Ri through a pseudo-random

120 ITERATIVE DETECTION

symbol interleaver7 of length K. The output symbols are mapped to
the constellation complex symbols xk, resulting in an overall code rate
of R = RoRi log2 |Q| (bits per channel use). The complex symbols xk

are transmitted through an AWGN channel, resulting in the complex
baseband post-correlator model

zk =
√

Esqk + nk (2.33)

where nk is white complex circular Gaussian noise with E{|nk|2} = N0,
Es is the symbol energy, and the symbols qk are normalized to unit
energy. The structure of a SCCC is one of a serial concatenation of
two FSMs through an interleaver and therefore it permits the iterative
receiver shown in Fig-2.32.

Example 2.10.
The SCCC system under consideration consists of an outer 4-state, rate
1/2 RSC connected through a length K = 16384 symbol pseudo-random
interleaver to an inner 4-state, rate 2/3 RSC. The corresponding gener-
ator matrices are given by

Go(D) =
[

1 1+D2

1+D+D2

]
Gi(D) =

[
1 0 1+D2

1+D+D2

0 1 1+D
1+D+D2

]

The output symbols are mapped to an 8PSK constellation with Gray en-
coding, resulting in an overall code rate R = 1/2× 2/3× log2 8 = 1(bits
per transmitted symbol). The performance of the iterative receiver uti-
lizing APP- and MSM-type SISOs is shown in Fig-2.33. In these simu-
lation results fixed interval forward-backward SISOs are utilized in the
iterative receiver. We observe that an Eb/N0 loss of 0.35 dB is experi-
enced by the MSM-type SISO compared to the APP-type SISO, in the
10th iteration and at a BER level of 10−5, which might be crucial in this
application.

End Example

2.4.4 Multiuser Detection
In this application, we consider the detection of multiple data se-

quences that interfere with each other on a common channel. In partic-
ular, we consider a system of the form in Fig-2.34(a), where each user
data stream is coded, interleaved, and sent through a common chan-
nel. The soft inverse of the multiuser channel may be computed using

7In [BeDiMoPo98] it was shown that bit interleaving yields better performance with a slightly
more complicated decoder structure.

Principles of Iterative Detection 121

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1

B
it

E
rr

or
R

at
e

Eb/N0 (dB)
0.5 1.5

APP MSM

Figure 2.33. Performance of iterative detection receiver for the SCCC.

the forward-backward algorithm based on a generalization of the Unger-
boeck metrics derived in Example 1.13. Thus, first we concentrate on
the “inner channel” by temporarily ignoring the code structure in order
to derive the soft inverse of the multiuser channel.

Consider the case of M users, with the noise-free signal of user m
described as

ym(t; {ak(ζ;m)}K−1
k=0) =

K−1∑
i=0

ai(ζ;m)hm(t− iT) (2.34)

where ai(m) is an independent input sequence taking values in A(m)
and hm(t) is the overall channel impulse response for user m. Thus,
hm(t) captures the effects of all noise-free channel distortions and pulse-
shaping. In the multiuser detection literature, hm(t) is often referred to
as the signature waveform for user m. The total received signal is the
sum of these M signals corrupted by AWGN, specifically,

r(ζ, t) = y(t; {ak(ζ;m)}) + n(ζ, t) t ∈ T (2.35a)

y(t; {ak(ζ;m)}) =
M−1∑
m=0

ym(t; {ak(ζ;m)}K−1
k=0) =

K−1∑
i=0

aT
i h(t− iT)

(2.35b)

where ai and h(t) are the (M×1) vectors with components {ai(m)}M−1
m=0

and {hm(t)}M−1
m=0 , respectively. This is the inner channel in Fig-2.34(a).

122 ITERATIVE DETECTION

CC0

bk(0)

bk(M−1)

ck(M−1) ak(M−1)

ck(0) ak(0)

yM−1(t)

y0(t)

kT

kT

h∗
0(−t)rkM+m

(b)

(a)

h0(t)

hM−1(t)

Verdú Verdú
SISO SODEM

h∗
M−1(−t)

CCM−1

b̂k(M−1)

b̂k(0)

...
...

SISOM

n(t)

r(t)

...
...

...
...

...
...

r(t)y(t)

QPSK

QPSK

SISO1

I0

IM−1

S[bk(0)]

S[bk(M−1)]

S[ck(0)]

S[ck(M−1)]

I0

I−1
0

I−1
M−1

IM−1

Figure 2.34. (a) The multiuser system and (b) iterative detector considered.

The negative-log likelihood functional for all users data based on the
observation waveform may be expressed in terms of

∫
T

r(t)y∗(t; {ak(ζ;m)})dt =
K−1∑
i=0

aH
i ri (2.36a)

ri =
∫
T

r(t)h∗(t− iT)dt (2.36b)

∫
T
|y(t; {ak(ζ;m)})|2dt =

K−1∑
i=0

K−1∑
j=0

aH
j R(j − i)ai (2.36c)

R(j − i) =
∫
T

h∗(t− jT)hT(t− iT)dt (2.36d)

The expressions in (2.36) are simply the extensions of (1.75)-(1.76) to
the (M × 1) vector symbol/channel model in (2.35). In particular, ri

is the (M × 1) output of a bank of matched filters to the individual
user signature waveforms with ri(m) denoting the i-th output sample
of the matched filter for user m.8 Similarly, assuming that hm(t) is
nonzero only on [0, (L+1)T), we obtain the Ungerboeck metric recursion

8In the case of time-varying signature waveforms, such as in a long-code spread-spectrum
system, the correlations should be implemented directly in place of the matched filtering.
The following development may be easily generalized to this case. Also note that any user
delay information has been absorbed into the definition of hm(t).

Principles of Iterative Detection 123

analogous to that in (1.77)

Mk
0[{ai}ki=0]

∆=
1

N0

 k∑

i=0

k∑
j=0

aH
j R(j − i)ai − 2�

{
k∑

i=0

aH
i ri

}
+

K−1∑
i=0

− ln p(ai) (2.37a)

= Mk−1
0 [ak−1

0] + Mk[ak, {ak−m}Lm=1] (2.37b)

Mk[ak, {ak−m}Lm=1] =
2

N0
�
{

aH
k

[
1
2
R(0)ak − rk +

L∑
i=1

R(i)ak−i

]}

− ln p(ak) (2.37c)

where R(i) = 0 for |i| > L, which follows from the FIR assumption on
h(t), has been used.

The expression in (2.37c) means that the MAP receiver for detection
of ak, {ak}K−1

k=0 , or ak(m) can be implemented by processing on a trellis
with (|A|M)L = |A|LM states9 – i.e., the state is {ak−m}Lm=1. The most
celebrated example of this is the case where each hm(t) has duration
T , but where each user has been delayed by a different, known amount
τm – i.e., hm(t) has support in [τm, T + τm). This is often referred
to as the asynchronous multiuser channel. In this case, the processing
may be carried out on a trellis with |A|M states, with each transition,
corresponding to the k-th symbol of all M users, having metric defined
in (2.37c). However, in this case, ordering the users such that 0 ≤ τ0 <
τ1 < · · · τM−1 < T , the same results can be achieved using a trellis with
|A|M−1 states. To show this, we note two methods for computing the
quadratic form. First, one can sum down columns first via

vHQw =
N−1∑
i=0

N−1∑
j=0

v∗i qi,jwj =
N−1∑
i=0

v∗i

N−1∑

j=0

qi,jwj

 (2.38)

where qi,j is element of Q at row i and column j. Second, one can sum
the n-th row and column together

vHQw =
N−1∑
n=0

v∗nwnqn,n +

n−1∑
i=0

v∗i qi,nwn +
n−1∑
j=0

v∗nqn,jwj

 (2.39)

9For simplicity, we assume that all users employ the same modulation format so that |A(m)| =
|A|. The sets A(m) may differ, however, to account for different received signal energies.

124 ITERATIVE DETECTION

Applying (2.39) to the first two terms inside the real-part operator in
(2.37c) and (2.38) to the third, yields

Mk[ak,ak−1] =
M−1∑
m=0

Mk,m[{ak(i)}mi=0, {ak−1(i)}M−1
i=m+1] (2.40)

with

Mk,m[{ak(i)}mi=0, {ak−1(i)}M−1
i=m+1] = MI[ak(m)]

+
2

N0
�
{
a∗k(m)

[
1
2ak(m)rm,m(0)− rk(m)

+
∑m−1

j=0 rm,j(0)ak(j) +
∑M−1

j=m+1 rm,j(1)ak−1(j)
]}

(2.41)

The recursion in (2.41) uses the fact that ri,m(1) = 0 for i ≥ m, which
follows from the assumption on the order of the delays τk (i.e., see
Problem 2.15). Thus, by exploiting knowledge of the relative user de-
lays, the transition metrics Mk[·] can be computed in M steps. Fur-
thermore, the processing can be performed on a |A|M−1-state trellis
with state sk,m = {ak(i)}m−1

i=0 ∪{ak−1(i)}M−1
i=m+1, where m cycles through

0, 1, . . . (M − 1) for each value of k. The notation akM+m = ak(m) may
be used to denote this convention which is often explained in terms of
modulo M indexing for ai (e.g., see [Ve98]). In this form, each transition
in the trellis corresponds to the transmission of one symbol of one user
and incorporates one sample from one user’s matched filter. We refer to
this as the Verdú trellis with Verdú metric Mk,m[ak(m), sk(m)] after the
original description – i.e., Verdú showed that MAP-SyD and MAP-SqD
could be performed using this trellis [Ve84, VePo84, Ve86]. The relation
between these two trellises is illustrated in Fig-2.35.

The above development provides the definition of a multiuser channel
SISO. We consider the case of L = 1 with the assumption of known de-
lays ordered as described above. We therefore use a Verdú SISO based
on the |A|M−1-state trellis and the above Verdú metric. An iid binary
data sequence was generated for each user and encoded using the rate
1/2, 16-state convolutional code described in Section 2.4.2. A different
interleaver of size 1710 was selected at random for each user and used to
interleave the 4-ary output of the convolutional code (i.e., symbol inter-
leaving). The output of each interleaver was then mapped to a QPSK
modulation format using the Gray map. The initial and final states
of the code trellis are known to the receiver and no edge information
was assumed for the multiuser trellis. The associated iterative detec-
tor is illustrated in Fig-2.34(b). Note that the Verdú soft demodulator
computes the metrics Mk,m[·] from the matched filter outputs and the

Principles of Iterative Detection 125

ak and rk

ak(0)ak(1)ak(2)ak−1(0)ak−1(1)ak−1(2)

ak−1(2)ak−1(1) ak(1)ak(0)ak(0)ak−1(2) ak(2)ak(1)

ak(0) and rk(0) ak(1) and rk(1) ak(2) and rk(2)

(a)

(b)

−− −− −− −−

+−

−+

+−

−+ −+

+− +−

−+

+ + −

+ − +

+ −−

− + +

− + −

−− +

+ + +

+ + −

+ − +

+ −−

− + +

− + −

−− +

+ + +

−−− −−−

++ ++ ++ ++

Figure 2.35. The direct trellis and the simplified Verdú trellis for M = 3 and A(m) =
{+1,−1}.

multiuser SISO runs the forward-backward algorithm on the associated
Verdú trellis. All processing was done using min-sum soft inverses.

Three scenarios are considered for the selection of the signature wave-
forms {hm(t)}. The first example scenario is taken from [MoGu98],
where M = 3 highly correlated users with equal power share the channel.
Specifically, for normalized signature sequences (i.e.,

∫
|hm(t)|2dt = 1),

the correlations are

R(0) =

 1 2

3
1
3

2
3 1 2

3
1
3

2
3 1

 R(1) =

 0 1

3
2
3

0 0 1
3

0 0 0

 (2.42)

This may represent a severe like-signal interference channel where the
individual user waveforms have not been designed for good multiple
access interference rejection. The results of this simulation are shown in
Fig-2.36. The multiuser SISO has 43−1 = 16 states.

Several baseline receivers are also shown for comparison. The conven-
tional detector is a single user matched-filter detector which completely
ignores the multiple access interference (MAI). The conventional detec-
tor can be used for either soft-in decoding (SID) or hard-in decoding
(HID) of the convolutional codes. In the latter, the matched filter out-
puts are thresholded to make decisions on ak(m) which are deinterleaved
and used for Hamming distance Viterbi decoding. In the SID case, the

126 ITERATIVE DETECTION
������
������

����������
��������������������

����������

����������������������
����������������������

������������������
������������������

�������������������
�������������������

100

10−1

10−2

10−3

10−4

10−5

10−6

0

1

2

2

4

4 6

8

8 10

B
it

E
rr

or
R

at
e

Eb/N0 (dB) (of all users)

Single User

(SID)
(HID)

Verdú-HID

Iterative Detector
3 users

Conventional-HID

Conventional-SID

Figure 2.36. Performance of various receivers for a channel with 3 highly correlated
users.

matched-filter outputs are deinterleaved and used to form soft-in metrics
for Euclidean distance decoding of the convolutional codes. A hard-out
Verdú multiuser detector with hard-in decoding of the convolutional
codes is also considered. Finally, the performance of the correspond-
ing single-user channel (i.e., with no MAI) with HID and SID of the
convolutional code is shown.

The conventional detector fails over the SNR region of interest. The
Verdú multiuser detector with HID is approximately 3 dB (in SNR)
worse than the corresponding single user case with HID and approxi-
mate 5.5 dB worse than the soft-decision decoded, single-user channel.
The iterative receiver outperforms the Verdú-HID by approximately 2.5
dB on the first iteration. Thus, as in the single-user channel, there is
approximately a 2.5 dB gain associated with SID over hard-decision de-
coding. With iteration, however, the joint structure of the multiuser
channel and the convolutional codes is exploited. After four iterations
the performance of the iterative receiver is close to that of the single-
user channel with SID. Note that there appears to be a threshold effect
for this high-correlation case where the iterative detector fails to pro-
vide substantial gains at low SNR. Finally, the receiver in [MoGu98]
is similar to that of Fig-2.34(b) with the multiuser SISO replaced by
an approximation. This approximation, which is directly analogous to
the processor discussed in Example 2.15, yields a degradation of ap-
proximately 1.5 dB in the threshold relative to the iterative processing
described here [GoCh00].

For a second example, we consider the system simulated in [HaSt97]
which is a four-user system with relatively low cross correlation and equal

Principles of Iterative Detection 127

received power for each user. This may represent a heavily loaded code-
division multiple access (CDMA) system with power control. Specifi-
cally, for normalized signature waveforms, the correlation is

R(0) =

1 −2
7

1
7 0

−2
7 1 −2

7
1
7

1
7

−2
7 1 −2

7
0 1

7
−2
7 1

 R(1) =

0 1
7

2
7

−1
7

0 0 1
7

2
7

0 0 0 1
7

0 0 0 0

 (2.43)

In this case, a slight variation on the system of Fig-2.34(b) was used
based on bit-interleaving. Specifically, the two coded bits from each
convolutional encoder were serialized, interleaved, and modulated us-
ing BPSK modulation. Thus, the multiuser SISO has 24−1 = 8 states.
Simulation results are shown in Fig-2.37. Since the multiuser channel

��������� ����������

100

10−1

10−2

10−3

10−4

10−5

10−6

0 2 4 6 8 10

B
it

E
rr

or
R

at
e

Eb/N0 (dB) (of all users)

Single User

(SID)(HID)

Verdú-HIDIterative

(1,2,4,8 iterations)
Detector

4 users

Conventional-HID

Conventional-SID

Figure 2.37. Performance of various receivers for 4-user channel.

is less severe in this example than in the 3-user example, the perfor-
mance degradation of all receivers relative to the single-user channel is
less severe. This includes a less severe threshold effect for the iterative
receiver. Note that the performance difference between the Verdú-HID
and the first iteration of the iterative receiver is similar to that of the
HID-SID for the single-user channel.

As a final example, we consider a synchronous multiuser channel with
severe MAI. It was pointed out in [Ve98] that this is a particularly se-
vere channel for which the Verdú detector for an uncoded system fails.
Specifically, we consider the 2-user system with R1 = 0 (synchronous)
and ri,j(0) = 1 for i, j ∈ {0, 1}. In this degenerate case, one user’s signal
can completely cancel the other user’s signal. Simulation results for this
system are shown in Fig-2.38. As expected, hard-decision decoding of

128 ITERATIVE DETECTION

����������
��������������������

����������

100

100

10−1

10−2

10−3

10−4

10−5

0

1

2

2 3

4

4 5 6 7

8

8

B
it

E
rr

or
R

at
e

Eb/N0 (dB) (of all users)

Single User

(SID)
(HID)

Verdú-HID

Iterative
Detector

2 synchronous users

Figure 2.38. The severe 2-user synchronous multiuser system.

the codes is not possible when the Verdú detector fails. However, using
the Verdú SISO and multiple iterations, the code structure can be ex-
ploited to mitigate the MAI. In the synchronous case, the multiuser SISO
degenerates to a soft inverse mapper. This may be the reason that itera-
tion gain is observed for many more iterations than in the asynchronous
cases considered. Specifically, because the synchronous multiuser chan-
nel is a memoryless mapping of ak, its soft inverse is memoryless on
the associated soft-information, so that it takes more iterations for the
information to propagate between the code SISOs.

In summary, for the multiuser channel, iterative detection may be
used to incorporate global system structure (e.g., error correction cod-
ing) in mitigating MAI. As a result, significant performance gains are
observed relative to a receiver that considers the MAI and code struc-
ture separately. In some severe cases, these gains can effectively enable
a system to operate when segregated processing fails. Additional recent
research in this area can be found in [Mo97b, Mo98, MoGu98, VaWo98,
ReScAlAs98, AlReAsSc99, WaPo99, GoCh00].

2.5 Finite State Machines SISOs
The SISO for an FSM is such an important component of many it-

erative detectors, that we describe several variations in detail in this
section. The baseline SISO module is the standard, fixed-interval (FI)
forward-backward algorithm described in Section 1.3.2.2 and modified
to provide extrinsic soft-out information on the FSM inputs and outputs
in Section 2.2.1.

Principles of Iterative Detection 129

We distinguish between two types of variations from the baseline
forward-backward SISO. First, there are variations on the architec-
ture of the algorithm which do not change the soft information pro-
duced. More precisely, different algorithms are discussed that, as the
forward-backward algorithms does, carry out the equivalent of the gen-
eral marginal soft-inversion operation in (2.5). These variations gener-
ally take advantage of a different form of algorithm scheduling, some
special aspect of the underlying FSM, or even possibly a dramatically
different method carrying out the soft inversion.

Second, we consider SISO algorithms based on different combining
windows. For example, the FI-SISO is constructed based on an algorithm
that computes, for example, the MSMK−1

0 [uk] for the isolated FSM under
the assumption of independent inputs and a memoryless channel. In
some cases, it may be advantageous to use a combining window which is
a subset of the full interval {0, 1, . . . (K − 1)}. When the entire interval
is not used, the marginal soft inverse has not been computed, rather,
the SISO represents an approximation.

An important component of this development is the clear identifi-
cation of the desired soft information to be computed for the isolated
system. Once this is specified, there may be more than one algorithm
or architecture that can compute this soft information. Unless specified
otherwise, algorithms discussed in this section are semi-ring algorithms
so that the algorithmic duality discussed in Section 1.2.1.2 applies. We
prefer to develop the results in this section using the MSM soft output
which provides good intuition and using the APP version to verify some
details by equations.

We consider the three basic combining windows shown in Fig-2.39.
In computing the soft-out on a quantity uk associated with the transi-
tion tk, the fixed-interval (FI), fixed-lag (FL), and sliding-window (SW)
SISOs, use soft-in information over combining windows {0, 1, . . . (K−1)},
{0, 1, . . . (k + D)}, and {(k −D), . . . k . . . (k + D)}.10 It is implicitly as-
sumed that, for a FL or SW algorithm, when one of the edges of the
boundary exceeds the FI range, the value is replaced by the final edge.
For example, this would be explicitly denoted for the right edge of the FL
combining window as min(k +D,K−1). Variations on these combining
windows are discussed in Section 2.5.6.

Thus, we develop a given SISO by specifying an algorithm to compute
the soft information MSMk2

k1
[uk] for appropriately defined k1 and k2,

10The term sliding window is used by some authors to describe what we refer to as fixed-lag
algorithms. We follow the terminology that is standard in the estimation literature (e.g.,
[Me95]).

130 ITERATIVE DETECTION

uk

uk+1

(a)

uk(c)
uk+1

0 K − 1

K − 10

0

0 uk

uk+1

(b)

k −D

k −D + 1 k + D + 1

k + D

k + D + 1

k + D

Figure 2.39. Three combining windows considered in detail.

which implies the marginal soft inverse as described in Section 2.2. A
critical component of this development is to carefully identify the soft
output being produced so that algorithm equivalences can be identified.

2.5.1 The Forward-Backward Fixed-Interval SISO
As shown in Section 1.3.2.2, MSMK−1

0 [uk] can be computed by run-
ning forward and backward add-compare-select (ACS) recursions. The
extrinsic soft-outputs for uk can then be obtained by the completion
operation in (2.12) or (2.13). Note that the forward and backward re-
cursions may be performed in parallel or sequentially as shown in Fig-
2.40. In either case, however, the transition metrics must be stored for

· · ·

· · ·

· · ·

completion

(a)

(b)

s0

s0

sK

sK

Figure 2.40. Two different schedules for executing the FI-SISO via the forward-
backward algorithm: (a) the serial forward backward schedule and (b) the parallel
forward and backward recursions. The dashed lines represent locations for which the
completion step has been performed and the transition metrics can be released from
memory.

K time locations. The practical difference between the two schedules in
Fig-2.40(a) and Fig-2.40(b) is the associated latency and area require-
ments of the implied architectures. Specifically, the parallel schedule
has half the latency, but requires twice as many ACS processors as the

Principles of Iterative Detection 131

serial schedule. Note that each ACS processor node in Fig-2.40 repre-
sents a set or bank of |S| ACS units, one for each state. This is the most
primitive processing unit we consider. Architectures for carrying out the
processing of an ACS bank in parallel or serial are discussed in Chapter
6.

Thus, in this section we roughly characterize the area, latency, and
computational complexity of a specific algorithm/architecture by count-
ing in units of ACS banks. The FI-SISO can be implemented with O(K)
(i.e., order K) latency and O(K) computational complexity. The area
associated with computational (e.g., ACS) units is O(1). Specifically, ex-
ecuting parallel forward and backward recursions requires 2 ACS banks,
2N ACS recursions, and N ACS-clock cycles.

2.5.2 Fixed-Lag SISOs
2.5.2.1 Forward-Backward FL-SISO

A fixed-lag SISO is based on the computation of MSMk+D
0 [uk]. This

can be computed in a straightforward manner using the forward-back-
ward algorithm operating on the interval {0, 1, . . . k, . . . (k + D)}. This
may be seen by inspection of Fig-1.13. If the right edge of the trellis
corresponds to sk+D+1, then the desired MSM is computed when the
backward state metrics are initialized to a constant (e.g., zero). Specifi-
cally, the forward ACS recursion is the standard one in (1.59b) and the
backward ACS is

MSMk+D
k+d [sk+d] = min

tk+d:sk+d

MSMk+D
k+d+1[sk+d] + Mk+d[tk+d] (2.44)

This backward recrusion is executed for d = D − 1, . . . 0, initialized by
MSMk+D

k+D+1[sk+D+1] ≡ 0.
Thus, the FL-SISO computes a forward recursion identical to that

of the FI-SISO. A new backward recursion is started after each for-
ward ACS step. This is illustrated in Fig-2.41. Fixed-lag algorithms are
sometimes referred to as continuous decoding algorithms since they can
release the information on uk before observing zi for i ≥ (k+D). This is
primarily of interest in non-iterative algorithms since it may dictate the
latency of the system. For example, a fixed-lag Viterbi algorithm per-
forms a traceback of D steps after each forward ACS step. As a result,
this FL-VA produces a hard decision that is consistent with threshold-
ing MSMk+D

0 [uk]. Thus, one may view the backward recursion of the
FL-MSM algorithm just described as replacing the traceback operation
of the Viterbi algorithm, thus eliminating the need to store survivors,
but at the cost of significantly more complexity. This execution of the
forward-backward FL-SISO is illustrated in Fig-2.41.

132 ITERATIVE DETECTION

sk+D+2

completion

· · ·

ak

· · ·

sk+1 sk+2 sk+D+1

sk+1sksk−1

forward recursion started at 0

Mn[tn]’s required in D + 1 steps

backward recursion started at k + D

Figure 2.41. The forward-backward or bi-directional fixed-lag algorithm. Solid lines
represent operations performed to compute the soft outputs at time k (i.e., MO[ak]
and/or MO[xk]). The finely-dashed lines correspond to the computations occurring
to compute the soft-outputs at time k + 1. The coarsely-dashed lines correspond
to information from previous computations. This convention is also used on future
figures in this section.

In fact, the computational complexity of the FL-SISO is dominated
by the repetition of the backward recursion. Neglecting edge effects,
for each forward ACS step, D backward ACS steps are taken. Thus,
the FL-SISO is approximately D times more computationally complex
than the corresponding FI-SISO algorithm. The potential advantage
is that the transition metrics can be released from memory after being
processed by the forward recursion. For many practical iterative decoder
implementations, the circuit area associated with memory is a major
concern. Thus, as discussed in Chapter 6, FL-SISOs are attractive for
systems with large block sizes (i.e., large K).

The issue of initialization of the backward recursion has been the
source of some confusion in the literature (e.g., see Problem 2.20). From
the shortest path intuition associated with the MSM soft output and
Fig-1.13, it is clear that the backward state metrics should be initialized
uniformly in order to compute the metrics of shortest paths from any
state s0 to any state sk+D+1 based on the observation zk+D

0 . This is
most easily seen formally using the APP version. In particular, the
backward recursion for p(zk+D

k+d |sk+d) is as given in (1.70b). Note that,
by definition this is initialized by setting p(zk+D

k+D|sk+D), which can be
computed based on the probability of transition tk+D as

p(zk+D|sk+D) =
∑

tk+D:sk+D

p(zk+D|tk+D)p(ak+D) (2.45)

Finally, note that (2.45) corresponds to performing the sum-product
backward step in (1.70b) for p(zk+D|sk+D) with the convention that
p(zk+D

k+D+1|sk+D+1) = 1. That is, in the probability domain, the back-
ward state recursion parameters (i.e., equivalent to APPs) should be

Principles of Iterative Detection 133

uniform. Note that the above development basically constitutes a re-
derivation of the forward-backward algorithm in the sum-product semi-
ring.

The fixed-lag version of the forward-backward algorithm was sug-
gested independently by a number of authors [BeMoDiPo96, ChCh98,
Vi98, KwKa98] with the initialization of the backward recursion some-
times suggested incorrectly (e.g., see Problem 2.20). Alternatively, it
was suggested that by selecting sufficiently large D, the initialization of
the backward recursion was not important (i.e., essentially taking ad-
vantage of the merging of the implicit backward survivor sequences).
Uniform initialization was justified formally in [ChCh98] and indepen-
dently in [MoAu99b].

2.5.3 Forward-Only (L2VS) FL-SISO
For a single conditional value of uk(ζ) = uk, the desired soft-output

can be computed using only a forward recursion. Specifically, a stan-
dard forward ACS recursion can be run with the transition metrics
for transitions not consistent with uk(ζ) = uk set to infinity. With
this modification, the forward metric terminating into state sk+D+1 is
MSMk+D

0 [uk, sk+D+1]. This process is shown in Fig-2.42(b). Marginal-
izing out sk+D+1, the desired soft outputs can be obtained.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

1

2

3

1

2

3

0 0

sk+1sks0

(b)

1

2

3

1

2

3

0 0

MSMk+D
k+1

[sk+1]

sk+1sks0

(a)

Mk[tk]

sk+D+1

sk+D+1

MSMk−1
0 [sk]

Mk[tk : ak]MSMk−1
0 [sk] MSMk+D

0 [ak , sk+D+1]

Figure 2.42. The equivalence of (a) a forward and backward recursion and (b) a
constrained forward ACS recursion. Shown for the standard 4-state simple-FSM
trellis and uk = ak = +1.

134 ITERATIVE DETECTION

m
m

sk+D+1sk forward recursion started at 0

MSMk+D
0 [ak = +1]

MSMk+D
0 [ak = −1]

ak = +1
ak = −1

ak+D = +1
ak+D = −1

Figure 2.43. The L2VS fixed-lag algorithm. (Line style convention as described in
Fig-2.41.)

Note that this requires a distinct constrained forward ACS recursion
for each conditional value of uk. Furthermore, these |U| constrained for-
ward ACS recursions may be started from a given unconstrained forward
ACS. More precisely, the constrained forward ACS is defined as

MSMk+d
k1

[uk, sk+d+1] = min
tk+d:sk+d+1,uk

MSMk+d−1
k1

[uk, sk+d] + Mk+d[tk+d]

(2.46)
In order to use this approach in an FL mode, a single unconstrained
forward ACS is run only for the purpose of spawning constrained for-
ward ACS recursions. Along with each unconstrained ACS update, a
set of |U| constrained forward ACS recursions is started. Furthermore,
D other sets of constrained forward ACS recursion previously spawned
should be updated via (2.46). Finally, the “oldest” of these constrained
ACSs is mature with state metrics MSMk+D

0 [uk, sk+D+1]. These can be
marginalized to obtain the desired soft output metrics

MSMk+D
0 [uk] = min

sk+D+1:uk

MSMk+D
0 [uk, sk+D+1] (2.47)

Note that, for sufficiently large D, the condition sk+D+1 : uk reduces
to minimization over all sk+D+1. The execution of this algorithm is
summarized in Fig-2.43

In order to verify mathematically that the desired soft output is pro-
duced, the APP version can be used. Specifically, the L2VS algorithm

Principles of Iterative Detection 135

computes

p(zk+d
0 , uk, sk+d+1) =

∑
sk+d:(uk,sk+d+1)

p(zk+d
0 , uk, sk+d+1, sk+d) (2.48a)

=
∑

sk+d:(uk,sk+d+1)

p(zk+d−1
0 , uk, sk+d)p(zk+d, sk+d+1|sk+d) (2.48b)

=
∑

sk+d:(uk,sk+d+1)

p(zk+d−1
0 , uk, sk+d)p(zk+d|tk+d)p(ak+d) (2.48c)

which is the constrained sum-product recursion. Note that the de-
sired soft-out information p(zk+D

0 , uk) can be obtained by summing over
sk+D+1 after the recursion has reached d = D. Finally, the constrained
recursion is started by an unconstrained recursion since p(zk−1

0 , uk, sk) =
p(zk−1

0 sk)p(uk) – the past observations and current state are independent
of uk(ζ).

This algorithm was originally suggested by Lee [Le74] and rediscov-
ered by Li, Vucetic, and Sato [LiVuSa95] so we refer to it as the L2VS
algorithm.

2.5.3.1 Comparison of FL Architectures
It is important to realize that the FL forward-backward algorithm and

the L2VS algorithm produce exactly the same soft information when the
same marginalizing and combining operators and normalization methods
are used. This is clear, because the soft output information produced
by each algorithm was carefully identified and found to be the same.

The equivalence of the L2VS and the forward-backward (or “bidirec-
tional”) FL algorithms was shown in [ChCh98], where it was also noted
that the L2VS algorithm has greater computational complexity than the
forward-backward FL algorithm by approximately a factor of |U|. Com-
paring Figs. 2.41 and 2.43, it seems that the computational complexity
is offset by a higher degree of parallelism in the L2VS version. However,
the backward recursion in the forward-backward FL-SISO can also be
executed in parallel as shown in Fig-2.44. This is done by starting each
backward recursion D + 1 steps before it is required for completion, and
updating each of these staggered backward recursions in parallel.

Thus, both architectures allow one soft-output computation per ACS
clock with a sufficient number of ACS units. A careful accounting of
the storage requirements and computational complexity of the various
FL-SISOs is given in Table 2.3. For reasonable values of D (e.g., 5 to 7
times log|A| |S|), the computational complexity of the L2VS architecture
is approximately |U| times greater than that of the equivalent FL bi-
directional structures. The storage requirements of the L2VS approach

136 ITERATIVE DETECTION

· · ·
ak

. . .

sk+D+2

sk+D+1

sk−1 sk+1sk

sk+2D+1

sk+2D+2

Mn[tn]’s required in 2D+1 steps

Figure 2.44. The forward-backward FL-SISO with pipelined backward recursion.
(Line style convention as described in Fig-2.41.)

Algorithm # ACS ops. Total Storage

L2VS |U|D + 1 |S|(|U|D + |A| + 1)
fwd-bwd (serial) D + 1 |S|(D|A| + 1)

fwd-bwd (parallel) D + 1 |S|(D(2|A| + 1) − |A| + 1)

Table 2.3. Complexity of various FL-SISO architectures. Values listed are required
per soft-output produced – e.g., MSMk+D

0 [uk] for all possible values of uk. In addition
to those operations listed, each algorithm requires |U| completion operations (see
(2.12)).

are roughly |U|/|A| times greater than that of the corresponding serial
bi-directional FL algorithm shown in Fig-2.41 and |U|/(2|A| + 1) times
that of the parallel bi-directional architecture in Fig-2.44. These mea-
sures do not account for various tricks for storage and computation such
as exploiting soft-output normalization to reduce storage requirements
slightly (e.g., see Section 2.5.6). The area requirements for the L2VS
approach are also approximately |U| times that of the parallel forward-
backward architecture.

In summary, the forward-backward FL algorithm is preferred over
the L2VS algorithm by virtually every measure. Furthermore, the back-
ward recursion for forward-backward version may be partially pipelined
so that the bi-directional version has a greater amount of flexibility in
trading latency and area. However, the L2VS has an intuitive structure
which may be helpful in conceptualizing algorithms or architectures that
may latter be translated into a more efficient bi-directional form (e.g.,
see Section 4.2.3).

2.5.4 Sliding Window SISOs
From the development of the fixed-interval and fixed-lag algorithms,

it is clear that the sliding window SISO can be implemented by carrying

Principles of Iterative Detection 137

out a forward and backward recursion around each transition. Specifi-
cally, MSMk−1

k−D[sk] and MSMk+D
k+1 [sk+1] can be computed by forward and

backward ACS recursions, respectively, starting with uniform initializa-
tion.11 This process is computationally inefficient, performing approx-
imately 2D times as much computation as the corresponding FI-SISO.
However, these computations can be carried out in parallel if one allo-
cates sufficient parallel hardware resources. This concept is illustrated in
Fig-2.45 where the maturation process of the soft information is shown
against ACS clocks in a fully parallel architecture.

sk−1

sk−D+1

sk−D−1

sk sk+D

sk+1

sk−D sk

sk+D+2

sk+D+1

sk+2

sk+1

0

1

D

k + 1kk −D k + D + 1

FSM
clock

ACS
clock

ak−1

ak

ak+1

ak

Figure 2.45. The SW-SISO using forward-backward recursions.

Example 2.11.
The PCCC system considered in Section 2.4.3.1 was simulated with each
fixed interval SISO replaced by a sliding window SISO with the results
shown in Fig-2.46. The min-sum combining rules were used with various
values of D.

Note that for D ≥ 16 there is little degradation from the fixed-interval
SISO. This roughly follows the rules of thumb established for the trace-
back depth in the Viterbi algorithm. Specifically, if the traceback depth
is at least 5 to 7 times log2 |S| for an FSM with binary inputs, then
the performance degradation relative to that of a fixed-interval Viterbi

11Note that for k − D close to the left edge, some a-priori state information should be
accounted for (see Problem 2.13).

138 ITERATIVE DETECTION

�������
�������

�������
�������

���������
������������������

�������������������
����������

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1 2 3 4 5 6

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

Fixed Interval

Sliding Window (D)

D = 4

D = 6
D = 12

D = 10

D = 16

Figure 2.46. Performance of a turbo decoder for the PCCC of Section 2.4.3.1 with
min-sum SW-SISOS.

algorithm in negligible [HeJa71]. Thus, one might expect that selecting
D larger than 10 to 14 in the SW-SISO would yield acceptable results.

End Example

2.5.5 A Tree-Structured SISO
The forward and backward recursions used to develop the SISOs are

based entirely on the decoupling property of state conditioning in (1.85).
Namely, the shortest path problem (i.e., MSM computations) based on
the observation interval {0, 1, . . . K−1} can be decoupled into two short-
est path problems when conditioning on sk – i.e., one for the interval
{0, 1, . . . k−1} and another for {k, k+1, . . . K−1}. The forward ACS op-
eration combines the solution to these two problems by marginalizing out
the state sk (e.g., see (1.59b)). This is the basic dynamic programming
principle behind the Viterbi algorithm. This decoupling property can
be exploited more aggressively by fusing together conditional shortest-
path solutions based on larger observation intervals. In this manner,
algorithms for soft-inversion of the FSM (SISOs) can be developed that
are significantly different from the forward-backward algorithm. In this
section we show how the SISO computations can be carried out with
low-latency based on a tree structure.

The low-latency architecture is derived by formulating the SISO com-
putations in terms of a combination of a prefix and suffix operations.
To obtain this formulation, define C[sk, sm], for m > k, as the MSM
of state pairs sk and sm based on the soft-inputs between them – i.e.,
C[sk, sm] ∆= MSMm−1

k [sk, sm]. Note that, generally, there are |S|2 val-

Principles of Iterative Detection 139

ues of C[sk, sm] corresponding to all combinations of left and right edge
states. The forward and backward state MSMs can be obtained from
these values via

MSMk−1
0 [sk] = min

s0

C[s0, sk] (2.49a)

MSMK−1
k [sk] = min

sK

C[sk, sK] (2.49b)

Thus, if one can obtain {C[s0, sk]}K−1
k=1 and {C[sk, sK]}K−1

k=1 then the
forward and backward state MSMs are directly available via the mar-
ginalization operations in (2.49).

The MSMs C[sk0, sm] and C[sm, sk1] for k0 ≤ m ≤ k1, can be fused
together in the following sense

C[sk0, sk1] = C[sk0, sm]⊗C C[sm, sk1]
∆= min

sm

[C[sk0, sm] + C[sm, sk1]] .

(2.50)
which follows directly from the definition of C[·] and implicitly defines
the C-fusion operator ⊗C . This process, which is much like an ACS
operating on multiple steps through the trellis, is illustrated in Fig-2.47.

sk
C[sk, sm]

sm

C-fusion

slsk
C[sk, sl] C[sl, sm]

sm

operation

Figure 2.47. The C-fusion operator.

The semi-ring properties of the marginalization and combining oper-
ators imply that the associated fusion operator ⊗C is also associative.
Note that the required quantities in (2.49) can be obtained by

C[s0, sk] = C[s0, s1]⊗C C[s1, s2]⊗C · · ·C[sk−1, sk] (2.51a)
C[sk, sK] = C[sk, sk+1]⊗C · · ·C[sK−2, sK−1]⊗C C[sK−1, sK] (2.51b)

Thus, the computation of {C[s0, sk]}K−1
k=1 and {C[sk, sK]}K−1

k=1 may be
viewed as prefix and suffix operations, respectively. Many fast algorithms
exist for solving prefix problems in parallel, with a common application
being the design of fast adder circuits. These algorithms are based on
tree structures and typically have latency that is logarithmic in K.

One example tree-structured SISO algorithm is illustrated in Fig-2.48.
The outputs may be marginalized as in (2.49) to provide the desired
forward and backward state MSMs which can then be used to perform

140 ITERATIVE DETECTION

m

C-fusion processor

C[s0, s1]

C[s1, s2]

C[s2, s3]

C[s3, s4]

C[s4, s5]

C[s5, s6]

C[s6, s7]

C[s7, s8]

C[s0, s8]

C[s0, s1]

C[s0, s2]

C[s1, s2]

C[s2, s3]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s5, s6]

C[s6, s7]

C[s6, s8]

C[s7, s8]

C[s0, s1]

C[s0, s2]

C[s0, s3]

C[s0, s4]

C[s1, s4]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s4, s7]

C[s4, s8]

C[s5, s8]

C[s6, s8]

C[s7, s8]

C[s0, s1]

C[s0, s2]

C[s0, s3]

C[s0, s4]

C[s0, s5]

C[s0, s6]

C[s0, s7]

C[s1, s8]

C[s2, s8]

C[s3, s8]

C[s4, s8]

C[s5, s8]

C[s6, s8]

C[s7, s8]

F[s1]

F[s2]

F[s3]

F[s4]

F[s5]

F[s6]

F[s7]

B[s2]

B[s3]

B[s4]

B[s5]

B[s6]

B[s7]

B[s1]

Figure 2.48. A tree-SISO shown for K = 8. Dashed lines represent only forward or
backward information while solid lines represent bi-directional information.

completion via (2.12). The inputs to this tree-SISO are the transition
metrics Mk[tk] = C[sk, sk+1]. Note that, at each stage in the tree, all
C-fusion operations could be performed in parallel if sufficient hardware
resources are available. It is straightforward to generalize this example to
an tree-SISO which has log2 K stages. Thus, given sufficient hardware
resources, one could complete the equivalent of the forward-backward
recursions in log2 K C-fusion clock cycles.

Note that, in general, the C-fusion operation in (2.50) has complex-
ity that is significantly larger than the standard ACS operations on a
sparsely connected trellis. In fact, for sufficient separation between the
end-points of the intervals in (2.50) (i.e., so that all states are con-
nected), the complexity of the C-fusion operation is that of |S|2, |S|-way
ACS operations. In contrast, for an FSM with inputs ak, the standard
one-step ACS operation involves |S|, |A|-way ACS operations. Thus, if
the C-fusion process is to be performed in the same amount of time as
a standard ACS operation, the C-fusion processor will have significantly
larger area.

Some simplification can be obtained by converting to either forward
or backward information at the earliest point possible in the tree compu-
tation. This saves computation (and storage) since the “FC” and “BC”
fusion operations require combining and marginalization over fewer pos-

Principles of Iterative Detection 141

C-fusion processor

B-C-fusion processor

F-C-fusion processor

F[s1] F[s1]

F[s2]

C[s1, s2]

C[s2, s3]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s5, s6]

C[s6, s7]

B[s6]

B[s7]

C[s1, s2]

C[s2, s3]

C[s3, s4]

C[s4, s5]

C[s5, s6]

C[s6, s7]

B[s7]

F[s1]

F[s2]

F[s3]

F[s4]

C[s1, s4]

C[s2, s4]

C[s3, s4]

C[s4, s5]

C[s4, s6]

C[s4, s7]

B[s4]

B[s5]

B[s6]

B[s7]

F[s1]

F[s2]

F[s3]

F[s4]

F[s5]

F[s6]

F[s7]

B[s1]

B[s2]

B[s3]

B[s4]

B[s5]

B[s6]

B[s7]

Figure 2.49. The tree-SISO in Fig-2.48 with simplification in the edge computations
at the earliest possible stage. Dashed lines represent only forward or backward infor-
mation while solid lines represent bi-directional information.

sibilities. More specifically, these modules perform

MSMk−1
0 [sk] = min

sm

[MSMm
0 [sm] + C[sm, sk]] (2.52a)

MSMK−1
k [sk] = min

sm

[
C[sk, sm] + MSMK−1

m [sm]
]

(2.52b)

This is shown in Fig-2.49 for the example in Fig-2.48. Notice that of
the 17 C-fusion operations shown in Fig-2.48, all but 4 can be computed
using the simpler FC or BC fusion processors.

This architecture has been generalized in [BeCh00] where a careful
accounting of the computational complexity has been performed. It was
found that, for reasonably small values of |S|, this tree-SISO architec-
ture has O(log2 K) latency and O(K log2 K) computational complex-
ity. Thus, the exponential speed-up relative to the standard forward-
backward algorithm comes at a cost of an asymptotic increase in com-
putational complexity that is log2 K. The impact on the circuit area,
however, may be the most important aspect since the tree-SISO archi-
tecture is highly parallel. The use of several tree-SISOs operating on
subintervals is also described in [BeCh00]. This can further reduce the
latency of a SISO operation as discussed in Section 2.5.6.

142 ITERATIVE DETECTION

2.5.6 Variations on Completion and Combining
Windows

As described in Example 1.11, for a non-recursive FSM the com-
pletion operation can be performed on the state metric instead of the
transition metric. If soft-out information is not required for the FSM
output, this fact may be used to alleviate SISO computation and/or
storage requirements. For example, the SISO for the inner ISI channel
in the joint equalization and decoding application has this characteris-
tic. In such cases, the extrinsic output metric for the FSM input ak is
MOk2

k1
[ak] = MSMk2

k1
[ak]−MI[ak] and the MSM term may be computed

by marginalizing MSMk2
k1

[sk+m] for any value of m ∈ {1, . . . L}. Here
we have assumed that the combining window is such that k − k1 > L
and k2 − k > L. We refer to this process as L-early completion. In
this special case, for example, the fixed-interval forward-backward SISO
need only store forward and backward state metrics every L time steps.

Fixed-lag and sliding-window SISOs may be modified to take advan-
tage of L-early completion. For example, in the fixed-lag algorithm, com-
pletion can be done on L input symbols based on a single backward recur-
sion. Specifically, the D-step backward recursion yields MSMk+D

0 [sk+1]
which can then be marginalized to produce the soft-out information
MOk+D

0 [ak−m] for m ∈ {0, . . . L − 1}. Thus, a minimum-lag SISO al-
gorithm can be implemented which performs one backward recursion
every L forward steps. For a given minimum lag D, it is expected that
the minimum-lag algorithm will perform at least as well as the fixed-lag
counterpart and is also approximately L times less complex. If D < L,
no backward recursion is required for this special case [KoBa90] (see
Problem 2.21).

Minimum-lag algorithms can be implemented using a similar idea even
for arbitrary FSMs. In the general case, a single backward recursion of
(D + H − 1) steps is used to perform H completion operations. This
yields a minimum-lag algorithm with lag D. More precisely, this yields
MOk+D+H−1

0 [uk+m] for m = 0, 1, . . . (H−1). Note that uk can be either
the FSM input or output in this case. This requires storage of the for-
ward state metrics for H consecutive times, as opposed to one time for
the FL version, and reduces the computational complexity by approxi-
mately a factor of H relative to the FL-SISO since a backward recursion
is performed only once for every H forward steps.

This same concept can be applied to both the forward and backward
recursions in the SW-SISO, yielding a minimum half-window SISO. This
concept may be used to trade-off parallelism for area by tiling an obser-
vation interval with subwindows and applying a minimum half-window

Principles of Iterative Detection 143

DHD

DHD

DHD

DHD

DHD

. . .

(number of windows)
(K − 2D)/H

K (block size)

Figure 2.50. Minimum half window SISOs used on a tiled observation interval.

SISO on each subinterval. This concept is illustrated in Fig-2.50. When
H = 1, this corresponds to the parallel SW-SISOs illustrated in Fig-2.45.

2.5.7 Soft-Output Viterbi Algorithms
The term Soft-Output Viterbi algorithm (SOVA) is used in the lit-

erature to describe a variety of algorithms based on augmenting the
Viterbi algorithm to provide soft information on the FSM inputs (e.g.,
[Ba87, HaHo89, BeAdAnFa93, Vu97]). The SOVA described in [Ba87]
computes the fixed-lag MSM for binary input FSMs – i.e., MSMk+D

0 [ak]
using a method similar to that of the L2VS structure. Instead of spawn-
ing two constrained forward ACS recursions for each conditional value
of ak as in the L2VS structure, the SOVA of [Ba87] runs one uncon-
strained forward ACS and, for each state sk, stores the survivor se-
quence, the state metric, and reliability information for the survivor
sequence. More precisely, the reliability information associated with
the survivor sequence entering state sk is ∆MSMk−1

0 [ǎk−d, sk] for d =
1, 2 . . . D, where ǎk−d is the symbol value implied by the survivor and
∆MSMk−1

0 [ǎk−d, sk] is the difference in MSMk−1
0 [ak−d, sk] for ak−d =

ǎk−d and its compliment. After a standard ACS and survivor path up-
date step, ∆MSMk

0[ǎk−d, sk+1] can be computed by tracing back on the
two survivors compared in the ACS for sk+1. It is assumed that the
states have been defined in a convention such that the two competing
paths entering state sk+1 correspond to different values of ak. This allows
one to initialize the reliability information for d = 1 by the difference
in the path metrics in the associated ACS step. The update the relia-
bility information for d > 1 is accomplished by tracing back on both of
the survivor paths associated with the ACS competitors. The updating

144 ITERATIVE DETECTION

process performed during this traceback operation is roughly equivalent
to D ACS steps, although the computational complexity depends on the
number disagreements between the two paths being traced.12

Intuitively, therefore, the two constrained forward ACS recursions as-
sociated with the L2VS structure may be replaced using a traceback and
update operation which, using MSM differences, requires roughly half
the computation. This correspondence is shown in [FoBuLiHa98], where
the SOVA of [Ba87] is referred to as the improved-SOVA to distinguish
it from the SOVA in [HaHo89], which does not compute MSMs. The
SOVA in [Ba87, FoBuLiHa98] has been extended to non-binary FSM
inputs in [CoXiXi99] which is a rediscovery of the L2VS structure for a
FL-MSM algorithm.

The SOVA of [Ba87, FoBuLiHa98] has computational complexity less
than half that of the L2VS while producing the same output. The fixed-
lag forward-backward algorithm, however, has half the complexity of
the L2VS without any traceback operation and also produces an equiv-
alent output. Furthermore, unlike all of the SISO algorithms discussed
in this section, SOVA algorithms are non-semi-ring algorithms because
they utilize a traceback operation (i.e., there is no APP-version of the
SOVAs in [Ba87, HaHo89]). Also, these SOVAs do not naturally pro-
duce soft-out information on the FSM output. In many cases, therefore,
the FL forward-backward algorithm is preferred because of its relative
simplicity and generality. However, SOVAs may be reasonable choices
for the SISOs associated with a PCCC iterative decoder with BPSK
or QPSK modulation since soft-out information is required only for the
FSM inputs (i.e., see Problem 2.12). Furthermore, the degradation in
performance relative to an FL-MSM SISO associated with the simple
SOVA in [HaHo89] is smallest when the constituent codes have a small
number of states.

2.6 Message Passing on Graphical Models
Using the implicit index block diagram convention with the notion of

marginal soft inverses, iterative detectors for several practical applica-
tions were presented in Section 2.4. A great deal more insight into the
iterative detection process can be obtained, however, by considering ex-
plicit index block diagrams and the corresponding processing. Consider,
for example, the parallel concatenated system in Fig-2.17. If X and Y are
FSMs, then their soft inverses can be implemented using the forward-
backward algorithm. With explicit index block diagrams, it will be made

12The SOVA in [HaHo89] provides further complexity reduction.

Principles of Iterative Detection 145

apparent that the forward-backward algorithm is nothing more than an
iterative detection algorithm (or concatenated detector) on a subsys-
tem decomposition of the FSM. In other words, there is a concatenated
system model for the FSM such that application of the iterative detec-
tion principles yields the optimal detector for the isolated FSM (i.e.,
the forward-backward algorithm). Thus, there is really nothing to dis-
tinguish the soft information passed internally in the forward-backward
algorithm and that passed between the soft broadcasters and X−s and
Y−s in Fig-2.17.

In fact, as illustrated by Example 2.9, the drawing of boundaries be-
tween subsystems is somewhat arbitrary. How one partitions the system
block diagram into subsystems does not affect the overall system input
output relation, but it does affect the associated concatenated/iterative
detector. This brings us back to the discussion at the beginning of this
chapter about the conditions for optimality of a concatenated detector.
Specifically, recall that a concatenated detector is optimal if the soft in-
formation passed from the channel observations is a sufficient statistic
for detection of the desired input variable. With explicit index block
diagrams, the condition for this statistical sufficiency becomes clear –
i.e., the explicit index block diagram cannot have “cycles.” This will be
explained in detail in the following subsections.

Implicit index block diagrams are graphical system models and the
corresponding iterative detection processing, described in Section 2.3.2,
is a message passing algorithm on the associated graph. Thus, in the
following, we use the terms “graphical model” and “explicit index block
diagram” interchangeably. Interpretation of iterative or turbo detec-
tion as message passing on graphs has been widely celebrated in the
communications and error correction coding community [McMaCh98,
KsFr98, AjMc00]. This is in part because the technique has been well
known in computer science for some time [Pe86, Pe88, GoVa89, Je-
LaOl90, ShSh90, LaSp88, Je96]. The distinction being that, in the most
interesting applications considered in communications, message passing
(iterative detection) is done on graphs with cycles and is therefore sub-
optimal. Given the motivation of iterative detection in Section 2.2 and
the various applications explored in Section 2.4 it may not seem sur-
prising that iterative detection is useful, even when it is suboptimal.
However, the effectiveness of message passing on graphs with cycles was
not widely appreciated in the computer science literature. Thus, the sug-
gestion of iterative detection by Gallager [Ga63] and independently by

146 ITERATIVE DETECTION

Berrou, Glavieux, and Thitmajshima [BeGlTh93, BeGl96] represented
a significant practical breakthrough.13

While we use explicit index block diagrams as a simple and natural
graphical model, several other conventions are more common. The cor-
respondence between these models and explicit index block diagrams is
given in Section 2.6.4. At this point, however, we note that the explicit
index block diagrams are directed graphs (i.e., we think of inputs to
systems producing outputs) with implicit nodes for the system inputs
and outputs. Furthermore, except for the trivial case of renaming vari-
ables (e.g., see Fig-2.10), variables are not connected without a system
node separating them. Thus, our graphical models are essentially bi-
partite graphs meaning that there are types of nodes which can only be
connected to each other.

2.6.1 Optimality Conditions for Message Passing
Reconsider the serial concatenated system shown in Fig-2.4 and the

associated concatenated detectors in Fig-2.5 with the SOAs in Fig-2.5
interpreted as the associated soft inverses. The optimality of the equiv-
alent detectors in Fig-2.5(a) and Fig-2.5(b) is far more apparent by the
structure of the explicit index diagram in the latter than by the implicit
index block diagram of the former. Specifically, if the soft information
passed on x1 is equivalent to p(z|x1) then MAP-SyD decision for a2

and a3 is obtained using a sum-product soft inverse of the system X1.
Similarly, the MAP-SqD decision for a1 can be obtained using a max-
product soft inverse of X1 if the message passed on x1 is equivalent to the
generalized likelihood g(z|x1) with nuisance parameter set {am(ζ)}m�=1.

For an arbitrary system with global inputs {am}, the optimal deci-
sion on am is obtained via message passing under the same condition.
Specifically, if am is the input to a subsystem Q, then the soft information
passed by the soft inverse of Q in a concatenated detector should be a
sufficient statistic for detection of am. Recall that, in the absence of any
feedback in the system block diagram, it was reasoned that this implies
that the message passed inward from the channel must be a sufficient
statistic for detection of am based on the observation sequence.

In graph terminology, our assumption of no feedback loops means
that there are no directed cycles in the graphical model. Specifically,

13In [Pe88, Exercise 4.7], Pearl suggested that belief propagation on a graph with cycles could
be used as a reduced-complexity approximation to the optimal inference algorithm. Also,
in [MuWeJo99, We00] Pearl is attributed with a personal communication suggesting this
approach. In view of the effectiveness of iterative detection in communication applications
(e.g., turbo codes), probability propagation or message passing on graphs with cycles has
become an active area of research in computer science [We00, MuWeJo99, Fr98, FrMc98].

Principles of Iterative Detection 147

Tk+1

Tk

TK−1

Tk+2

Tk−1

T0

Tk−2

· · ·

· · ·

ak−1

ak+1

ak

ak−2

ak+2

sk

sk+1

sK−1

x0

xk−2

xk−1
xk
xk+1

xk+2

xK−1

s1 s0

sk+2

sk+3

sk−1

sk−2

...

...

a0

aK−1

Figure 2.51. The system block diagram for an arbitrary FSM drawn to emphasize
the view of ak as the input to a concatenated system with nuisance parameters.

a directed cycle exists when a directed path through the graph from
a given vertex returns to that vertex. Thus, by the development at
the beginning of the chapter, we expect that any system represented
by an explicit index block diagram with no directed loops should have
a MAP detector based on the associated concatenated detector (i.e.,
message passing). An example of this notion is illustrated in Fig-2.51
where an arbitrary FSM has been decomposed into a concatenation of
“transition subsystems.” This graphical model for the FSM has the
property that the outputs are obtained sequentially since the output xk

cannot be obtained until the value of sk is available. When a MAP-SyD
or MAP-SqD decision for ak is desired, ak should be viewed as the single
input to the system with {ai}i�=k viewed as nuisance parameters. The
associated optimal concatenated detector for ak is shown in Fig-2.52.
This detector is obtained by replacing all systems by the corresponding
soft inverses14 and passing the appropriate messages. Specifically, with
the soft-in information on xi being the marginal likelihoods (metrics)
from the channel and the soft-in information on the inputs ai being the
a-priori probabilities (metrics), the MAP decision on ak is obtained by
passing message from right to left in Fig-2.52. This proceeds by first
activating T−s

0 , then T−s
1 , etc. on the upper portion of the concatenated

detector and T−s
K−1, then T−s

K−2, etc. in the lower half of the concatenated
detector.

14Notice that regardless of whether ai is considered as an input or a nuisance parameter for
the system Ti, the soft inversion remains the same. This foreshadows the development of
marginal soft inverses for systems with channel nuisance parameters contained in Chapter 4.

148 ITERATIVE DETECTION

T−s
K−1

...

...
SI[x0]

SI[xk−2]

SI[xk−1]
SI[xk]
SI[xk+1]

SI[xk+2]

SI[xK−1]T−s
k+2

SI[ak−1]

SI[ak−2]

T−s
k−2

T−s
k−1

· · ·

· · ·

S[sk−2]

T−s
k+1

T−s
0

T−s
k

S[sk]

S[sk+1]

S[sk−1]

S[s1]

S[sk+2]

S[sk+3]

SI[ak+1]

SI[ak+2]

SI[aK−1]

SO[ak]

SI[ak]

S[sK−1]

S[s0]

SI[a0]

Figure 2.52. The optimal concatenated (message passing) detector for ak based on
the model in Fig-2.51.

The message passing on the upper and lower parts of the detector
in Fig-2.52 can be scheduled independently, but the soft output on ak

cannot be computed until a message has been received by T−s
k from

both parts, after which SO[ak] is produced, combined with SI[ak], and
thresholded. Careful inspection of the processing in Fig-2.52 reveals
that the message passing in the upper and lower parts corresponds to
the standard forward and backward recursions of the forward-backward
algorithm. Specifically, for sum-product marginalizing and combining,
the message passed from T−s

i to T−s
i+1 is P[si+1] ≡ p(zi

0, si+1) and that
passed from T−s

j+1 to T−s
j in the lower portion is P[sj+1] ≡ p(zK−1

j+1 |sj+1).
Note that these are, in fact, sufficient statistics for detection of ak from
zi
0 and zK−1

j+1 , respectively.
It follows that, by connecting the ports of the transition soft inverses,

the entire FSM soft inverse can be computed by passing messages. This
is illustrated in Fig-2.53. The system in Fig-2.53(a) is identical to that in
Fig-2.51, just redrawn to emphasize the desire to compute the extrinsic
soft outputs for all ai. Similarly, the message passing or “iterative”
algorithm in Fig-2.53(b) is the concatenated detector in Fig-2.52 with
messages passed in both directions. The soft inverse of a transition
subsystem is shown in Fig-2.54. Specifically, activation of T−s

k does one
update of the forward and backward state recursions to incorporate zk

and one completion for each of the system input (ak) and output (xk)
variables (see Problem 2.24). Therefore, the forward-backward SISO
may be viewed as the application of the iterative detection principles
defined in Section 2.3 to a subsystem decomposition of the FSM.

Principles of Iterative Detection 149

Tk+1Tk−1 TkT0
s0

a0

x0

TK−1
sk+1

ak−1 ak ak+1 aK−1

xk−1 xk xK−1xk+1

s1 sK−1· · · · · ·sk sk+2sk−1

· · · · · ·T−s
k−1 T−s

k+1 T−s
K−1

S[a0] S[ak−1] S[ak] S[ak+1] S[aK−1]

S[x0] S[xk−1] S[xk] S[xk+1] S[xK−1]

S[sK−1]S[sk−1]
T−s

0 T−s
k(b)

(a)

S[s0] S[s1] S[sk] S[sk+1] S[sk+2]

Figure 2.53. (a) An explicit index block diagram for an arbitrary FSM, and (b) the
associated concatenated detector.

T−s
k

SO[xk] SI[xk]

SI[ak] SO[ak]

SI[sk+1]=Bk1
k+1[sk+1]

SI[sk]=Fk−1
k0

[sk] SO[sk+1]=Fk
k0

[sk+1]

SO[sk]=Bk1
k [sk]

Figure 2.54. The soft inverse of of the transition subsystem. Activation is equivalent
to one update of the backward and forward state metric recursions, and completion
for both the FSM input and output.

It is somewhat odd to think of the processing illustrated in Fig-2.53(b)
as iterative detection since it is perhaps more accurately described as
concurrently processing K concatenated detectors, one for each value of
k, of the form shown in Fig-2.52. Consider two ways of viewing the con-
nection between the processing in Fig-2.52 for each value of k and the
bi-directional message passing in Fig-2.53(b). First, one could realize
that messages passed from T−s

0 through the upper part of the concate-
nated detector in Fig-2.52 to T−s

k could be updated and passed along
to T−s

k+1 providing the corresponding message for the concatenated de-
tector for ak+1. Similarly, the message from the lower portion of the
concatenated detector in Fig-2.52 could be updated and passed along
to provide the analogous information for the concatenated detector as-
sociated with ak−1. This leads to the standard forward and backward
recursions in the fixed-interval forward-backward SISO, each executed
serially. Specifically, for the forward recursion, messages are passed in
the processing of Fig-2.53(b) by successive, serial activation of T−s

0 , T−s
1 ,

etc. The backward recursion is similarly viewed as activation of T−s
K−1,

T−s
K−2, etc. Since there is no “cross-talk” between the SI/SO ports in Fig-

2.54 corresponding to the forward and backward recursions, these two
serial activations proceed independently and their individual scheduling

150 ITERATIVE DETECTION

need not be coordinated. This fact was illustrated in Fig-2.40. The
execution of serial forward and backward message passes in parallel, is
referred to as the fully serial or two-way schedule in more general graphs
as discussed in Section 2.6.1.2.

The other interpretation is that the concatenated detector of Fig-2.52
is basically replicated for each location k. Messages for each can be
passed toward the particular input variable of interest as was described
for ak in the context of Fig-2.52. This can also be accomplished by ac-
tivating all soft inverse nodes in Fig-2.53(b) in parallel K times. This
notion has also previously been described. In particular, the soft out
information for the sliding window SISO is the result of the first D such
parallel activations of the processing nodes in Fig-2.53(b). Conversely,
Fig-2.45 provides a good visualization process of the maturation of the
soft-outputs for each T−s

k . This is referred to as the fully parallel or flood-
ing schedule and generalizes other graphs as discussed in Section 2.6.1.2.

The conclusions drawn above generalize to more complicated graphs.
Specifically, any explicit index block diagram implies an optimal detector
or marginal soft inverse of the corresponding system provided that there
are no undirected cycles in the graphical model. An undirected cycle is a
loop in the graph that can be traced when the direction of the edges in
neglected (i.e., a directed cycle is an undirected cycle). We use the term
cycle-free graph to refer to a graph (directed or undirected) that has no
undirected cycles. Conversely, we refer to a graph with undirected cycle
as a loopy graph or graph with cycles. Before formalizing this optimality
claim, it is helpful to consider an example of graphical models with cycles
and cycle-free graphical models with different structure than the simple
graph in Fig-2.53(a).

Example 2.12.
Consider the PCCC in the implicit index block diagram in Fig-2.24.
The corresponding explicit index diagram is shown in Fig-2.55 with the
FSM graph from Fig-2.53(a) adopted for each constituent code. Note
that puncturing and state termination are shown. This graph has no
directed cycles (feedback), but does have undirected loops. For example,
one can go from T(1)

1 to T(1)

k along the trellis of RSC1, then through the
broadcaster and interleavers to T(2)

1 . Going from T(2)

1 to T(2)

0 along the
trellis from RSC2, then back through the interleaver and broadcaster,
one arrives back at the node T(1)

1 . Therefore, based on the above claim
regarding the optimality of message passing on cycle-free graphs, one

Principles of Iterative Detection 151

T
(1)
1 T

(1)
k T

(1)
K−2 T

(1)
K−1T

(1)
0

b0 b1 bk bK−2 bK−1

s
(1)
k s

(1)
K−2

s
(1)
k+1s

(1)
2s

(1)
1s

(1)
0 s

(1)
K−1

T
(2)
1 T

(2)
k T

(2)
K−2 T

(2)
K−1T

(2)
0

b0 b1 bk

s
(2)
k s

(2)
K−2

s
(2)
k+1s

(2)
2s

(2)
1s

(2)
0 s

(2)
K−1

a0 a1 ak aK−2 aK−1

(tail bits shown)

· · · · · ·

interleaver

· · ·· · ·

· · ·

d1(1) dK−1(1)

c0(0)c0(1) c1(0) ck(0)ck(1)

· · · · · ·

cK−2(1)

dk(1) (odd k)

(even k)
· · ·

cK−1(0)cK−2(0)

Figure 2.55. The explicit index block diagram of the PCCC shown in Fig-2.24.

cannot conclude that message passing on the graphical model of Fig-
2.55 is optimal.15

The decoder used in Section 2.4.3.1 is message passing on the graphi-
cal model in Fig-2.55 with a specific activation schedule. More precisely,
if only the structure of the subgraph corresponding to RSC1 is consid-
ered, the processing of SISO1 is accomplished by message passing on
this subgraph as described above. Next, activation of all the soft in-
verse broadcaster nodes is performed. Message passing on the subgraph
corresponding to RSC2 is then performed to carry out the soft inver-
sion of RSC2. The soft inverses of the broadcasters are executed again,
completing a single iteration of the detector in Fig-2.28.

This process is suboptimal, in general, because one cannot ensure the
soft information associated with ck(i), dk(i) and bk are weighted equally
for each value of k. Intuitively, for example, because of the cycles, the
soft-in information for c10(0) maybe “counted” more times than that for
c631(0).

It is interesting to generalize the concept of the SW-SISO to this
more general graphical model. For example, the connections leading
into and out of the broadcaster associated with a specific input bk can
be considered. In Fig-2.56 we have shown this subgraph for the actual
K = 1024 interleaver used in the simulations of Section 2.4.3.1 with
the input bit of interest being b500. Notice that this subgraph has no
cycles, so that, by the above claim, optimal detection of b500 based on
the associated subset of observations can be accomplished by message

15This is not to say that it is always suboptimal. Specifically, the absence of cycles is a
sufficient, but not necessary condition for the optimality claim.

152 ITERATIVE DETECTION

584690814

478 479

27

258257256

256 258

452

609608607606605

212

745744743

743 744 745

81 499 814

81

498 499 500 501 502

696 697 698

584501690

257

480

729

b500

b500

aI(500)

k = 479
T

(1)
k

(even k)

ck(0)
ck(1)

k = 257

bk

T
(2)
k

ak

dk(1)
(odd k)

s
(2)
k

s
(1)
k+1s

(1)
k

s
(2)
k+1

Figure 2.56. The graphical system model for bit b500 for the PCCC of Fig-2.55.
This represents a subgraph without loops for a region around the variable b500. The
associated message passing algorithm provides optimal detection of b500(ζ) based on
the associated subset of observations. (Based on the actual K = 1024 interleaver used
in the simulations of Section 2.4.3.1.)

passing on this graph. This diagram is analogous to cutting the upper
and lower sections of the graph in Fig-2.51 after Tk−1 and Tk+2. The
associated concatenated detector for b500 would pass messages “inward”
toward the node corresponding to the soft inverse of the broadcaster for
k = 500. The exact scheduling of this will be discussed in the following.
The important point is that, assuming that the above claim is true, one
can obtain the MAP-SyD or MAP-SqD decision for b500 based on the
observations zn(0) and zm(1) for n ∈ { 81, 256, 257, 258, 498, 499, 500,
501, 502, 584, 690, 743, 744, 745, 814 } and m ∈ { 256, 258, 498, 500,
502, 584, 690, 744, 814 } ∪ { 27, 479, 605, 607, 609, 697,729 }. Note
that, for example, z452(1) is not used because of the puncturing (i.e., the
only soft-in information propagated from the node 27 in the lower-right
is MI[a27]).

This subgraph provides an example of a cycle-free graph with inter-
esting structure. Furthermore, it provides intuition as to why turbo
decoding is effective. Based on intuition gained by the simulations of
the SW-SISO in Example 2.11 and the rule-of thumb regarding trace-
back depth in the Viterbi algorithm, it is reasonable to expect that if
the radius of the subgraph in Fig-2.56 is increased the resulting decision
for b500 will approach the optimal MAP decision based on the entire
observation sequence. This is because, presumably, one could create a
cycle-free subgraph akin to that in Fig-2.56, but with larger radius. Op-

Principles of Iterative Detection 153

am

q(0)

FQ from other systems
in same subgraph

q(1)p(1)

p(0)

R(0)

R(1)
Q

xn

FQ(0)

FQ(1)

P(I−1)
to other systems
in same subgraph

FQ(I−1)

BQ

R(J−1)

P(0)

P(1)

BQ(1)

BQ(0)

BQ(J−1)

q(J−1)p(I−1)

...
...

Figure 2.57. The general case of message passing on a graph with no directed or
undirected cycles.

timal detection on this subgraph, obtained via message passing, should
capture most of the strongly relevant observation information. In other
words, the soft-in information from observations that are connected to
b500 only through a very long sequence of nodes will have little effect on
the MAP detection of b500. Thus, if the graphical model of a system only
has very long cycles, then it may be expected that message passing will
be effective. In fact, as we will see, message passing on graphs with short
cycles is generally less effective than it is on graphs with long cycles.

End Example

2.6.1.1 Optimal Message Passing on Cycle-Free Graphs
The optimality claim for message passing on cycle-free graphs is ver-

ified by considering the system shown in Fig-2.57. Specifically, assume
that a system has been represented in explicit index form and that this
graph has no cycles. Each global input ai is the input to only one system
node (possibly a broadcaster) and each global output xj is the output
of one system node. System nodes may or may not have global system
inputs and/or outputs. Marginal soft-in information for each global sys-
tem input and output variable is available. Consider solving the general
problem stated in (1.37) – i.e., computing the marginal soft-output for
am based on all soft-in information and the global system structure. Be-
cause there are no cycles, we can isolate the system Q that receives am

as an input as illustrated in Fig-2.57. Specifically, no output of Q can
return as an input to a system node that provides an input to Q or a
directed cycle would occur. Similarly, an input of Q cannot be an input
to a system in BQ or an undirected cycle will exist.

We can conclude that if SFQ
[p(0), p(1), . . . p(I−1)] and SBQ

[q(0), q(1),
. . . q(J−1)] are available then these can be combined with SI[xn], SI[am]

154 ITERATIVE DETECTION

and marginalized over the structure of Q to provide the desired soft out-
put on am. Here, for example, SFQ

[p] represents the effect of combining
all soft-in information for global system inputs and outputs contained
in the subgraph that describes the system structure on the subset of
indices FQ and marginalizing over the configurations of that subgraph
consistent with p.

Furthermore, the cycle-free assumption implies that no system in FQ

can have outputs driving two systems P(i) and P(i′) for i �= i′, otherwise
there would be an undirected cycle occurring through the connection
to Q. By similar logic, the outputs of P(i) and P(i′) cannot drive any
common system other than Q. Thus, a partition of FQ into disjoint
subgraphs describing the structure on {FQ(i)} is obtained by the lack
of cycles. As a consequence of this partition, the soft information on p
must factor into the combination of SFQ(i)

[pi] over i = 0, 1, . . . I − 1.
Similar reasoning leads to the conclusion that BQ is partitioned as

shown in Fig-2.57 and that the soft information on SBQ
[q] factors into

the combination of SBQ(j)[q(j)]. Together this leads to

S[am] = ©m
p:am

(
SFQ

[p]©c SBQ
[q(p, am)]©c SI[xn]©c SI[am]

)
(2.53a)

SFQ
[p] =

I−1

©c
i=0

SFQ(i)
[pi] SBQ

[q] =
J−1

©c
j=0

SBQ(j)
[qj] (2.53b)

This argument can then be applied inductively to the nodes {P(i)} and
{R(j)} to show that S[am] based on the entire graph structure and all
soft-in information can be obtained by message passing and updating us-
ing the corresponding soft inverses. More precisely, the soft-in messages
from all ai and xj need to propagate to the node Q.

The above argument is only a slight generalization of the discussion
regarding the optimality of message passing in Fig-2.52 and Fig-2.53(b).
Specifically, the message passing inward to Q−s on FQ and BQ corre-
sponds to the forward and backward recursions in the forward-backward
algorithm, respectively. It follows that this reasoning can be applied to
each input variable ai and/or each output variable xj . As in the FSM
example, it is possible to perform this operation for all input and output
variables by message passing with a specific schedule. This is discussed
further in the next section.

2.6.1.2 Scheduling and Convergence for Cycle-Free Graphs
Scheduling defines the propagating pattern of messages in the graph

and is not unique. Roughly speaking, for any node Q−s in the message
passing algorithm corresponding to the subsystem node Q in a cycle-free

Principles of Iterative Detection 155

graphical system model, if a message has propagated from every other
processing node, the soft output information has converged (e.g., see
[AjMc00, KsFrLo00]). There are two extreme activation schedules, the
fully serial schedule and fully parallel schedule.

In the fully parallel schedule, every node is activated simultaneously.
With this schedule, the messages will converge (or stabilize or mature)
after at most diam(M) iterations where diam(M) is the diameter of the
cycle-free graph M (i.e., the maximum number of subsystem nodes sep-
arating any two variables). This schedule is also called the flooding
schedule [KsFr98].

In fully serial or two-way [KsFr98] schedule, messages begin at the
leaf nodes, which correspond to the global system inputs and outputs,
and propagate inwards by activating each node one-by-one. A node is
activated when a message has been received from all connected nodes
except one. When the node is activated, a message is passed out only on
that one node (i.e., this is called the all-but-one rule in [KsFrLo00]). For
example, in the FSM graph in Fig-2.53, the T−s

K−1 and T−s
0 are activated

initially and pass information inward only (i.e., backward and forward
recursion, respectively). Once a node has passed an inward message, it
waits to receive a message back from that direction and is configured
to send a message outward. After some period (≤ diam(M)), there will
be some nodes that have received messages from all of their neighbors
(i.e., the nodes in the “center” of the graph). Then, the messages will
begin to propagate outward and each node will receive messages from all
neighbors. For example, in the FSM case of Fig-2.53, the inward passes
correspond to running the forward and backward recursions inward to
the center of the graph. When these two recursions meet (or pass each
other) this corresponds to the switch from inward to outward message
passes. Also, at the time that a message has been received from all the
neighbors of a particular node, the soft-outputs on the global system
inputs and outputs have converged and can be output. This schedule is
also referred to as the generalized forward-backward schedule [KsFrLo00]
and the inward-outward schedule [AjMc00]. With this schedule, each
node is activated twice. In addition, it is possible to construct hybrid
schedules from these two extreme cases.

The reason we may describe scheduling somewhat imprecisely is that
once the soft-out information has converged, further activation of the soft
inverse nodes has no effect. For example, consider the FSM model and
message passing algorithm in Fig-2.53. Assume that, by some schedule,
the algorithm has converged. The forward and backward state messages
on the ports of the soft inverse in Fig-2.54 then correspond to k0 = 0
and k1 = (K − 1) and the soft-out information on ak and xk are based

156 ITERATIVE DETECTION

on the entire observation interval. If the soft inverse of Tk is activated
again (i.e., after convergence), none of the soft-out information changes.
Thus, in the above description of scheduling options, when we describe
“inward-only” message propagation, it is only for computational effi-
ciency. In fact, at each activation, the soft inverse may produce soft-out
messages on all of its ports. For example, in a flooding schedule for the
system of Fig-2.53, if all soft-out ports produce soft information for each
activation, then the soft outputs on ak and xk represent “preliminary”
versions of the final soft-outputs. In fact, after D activations using flood-
ing, the soft-outputs are exactly those produced by the sliding window
SISO. Thus, the exact soft inverse of a system represented by a cycle-
free graph can be computed using message passing with a significant
flexibility in scheduling between the fully parallel and serial extremes.

Example 2.13.
Consider the two-way schedule applied to the cycle-free graph in Fig-
2.56. The node corresponding to b500 is the “center” node in this graph
so, if soft-out information for only b500 is sought, only the inward message
passes are required. The start of this schedule is the parallel activation
of the soft inverse nodes of (81, 498, 814, 690, 502, 584, 729, 212, 452, 27,
605, 609) with inward-only message passing. The eight soft broadcaster
nodes connected to the nodes above are activated next, but only to
pass the inward messages through (i.e., no soft-out on bk is produced).
Next, in the upper left quadrant, for example, the nodes 478 and 480 are
activated, while node 499 waits for a message from the connected soft
broadcaster. Next, node 479 is activated. The 499 soft broadcaster is
activated next, followed by the activation of the 499 node in the trellis of
RSC1. By this time, node 500 in the RSC1 trellis has received a message
from both the left and right, so it is activated next to pass inward to
the soft broadcaster for b500. The symmetric process has taken place
on the lower half of the graph, so the soft broadcaster would switch to
an outward message mode. More importantly the soft output on b500 is
mature and can be output. If soft outputs on bi for other values of i are
desired, the outward messages should be passed until they reach the soft
broadcaster for bi.

End Example

2.6.2 Revisiting the Iterative Detection Conventions
Given the interpretation of message passing on graphs described

above, we should reconsider the iterative detection principles stated in
Section 2.3. As stated in Section 2.3.2, the iterative detection conven-
tions may be viewed as message passing on graphs which may have cy-

Principles of Iterative Detection 157

cles. With loops in the graphical models, however, convergence cannot
be guaranteed in general. Thus, in general there is no optimal sched-
ule or stopping criterion when the graph has cycles. For example, it is
difficult to define what “inward” and “outward” relative to a specific
node when there are cycles in the graph. The real challenge, it seems, is
determining good graphical models for systems and subsystems. Once
a system has been represented by a graphical model, such as an explicit
index block diagram, the iterative detector is basically fixed except for
the scheduling and the stopping criterion.

It is worth reemphasizing that the conventions described in Section 2.3
and message passing on graphs with cycles (i.e., also called Belief Propa-
gation on loopy graphs as described in Section 2.6.4) are one in the same.
Thus, all of the applications considered in Section 2.4 are valid exam-
ples of message passing on graphs. The message passing interpretation
provides another view and illustrates that the implicit index methods
used in Section 2.4 are only one of many possible activation schedules
for message passing on an underlying loopy graphical model. In the
implicit index block diagram approach, there are essentially two types
of messages passed. First, the system is represented as a concatenated
network of subsystems, with each subsystem represented by a cycle-free
subgraph. Messages are passed on these subsystem graphs and between
these subsystem graphs. The messages passed on the subsystem graphs
are used to compute the subsystem marginal soft inverse exactly. Even
with the demarcation of the subgraphs according to subsystems (i.e.,
super-nodes in the graph), the explicit index block diagrams for the ex-
amples in Section 2.4 have loops. For example, the graph in Fig-2.11 has
cycles. The development of this section has made it clear that the dis-
tinction of message passes “in” and “between” subsystem soft inverses
is somewhat artificial.16

The use of a fixed-lag or sliding window SISO, to approximate the
subsystem soft inverse, however, does change the algorithm. This is
because the message passing paradigm requires that the soft inverse of
every system be used in the associated iterative detector. As stated in
Section 2.5, changing the combining window fundamentally changes the
soft-out information produced. On the other hand, using the tree-SISO
of Section 2.5.5 in place of a forward-backward SISO is perfectly within
the principles of iterative detection described in Section 2.3 and the
message passing conventions described above. Specifically, it is just a

16The “between” messages in the explicit index approach usually correspond to physically
tangible variables in the system model.

158 ITERATIVE DETECTION

computation architecture for computing the exact marginal soft inverse
of an FSM. This is expounded upon in the following example.

Example 2.14.
Consider the decoding of the PCCC using SW-SISOs as described in
Example 2.11. By the above reasoning this is not in keeping with the
iterative detection principles and is therefore not the standard message
passing on the graph of Fig-2.55. It is closely related to a particular acti-
vation schedule for message passing on this graph. Specifically, consider
the incomplete flooding schedule on the subgraph of RSC1 which passes
messages D times. This is exactly equivalent to the SW-SISO process
as suggested by Fig-2.45. Messages are then passed to the nodes in the
subgraph corresponding to RSC2 (i.e., activation of the soft broadcaster
nodes). Again, D message passes are performed on the subgraph of
RSC2 which is equivalent to firing a SW-SISO for SISO2. These mes-
sages are then passed back through the soft broadcasters and another
incomplete flooding schedule on the trellis of RSC1 is executed. It is on
this second round of message passing on the RSC1 subgraph that the
SW-SISO iterative detector and the message passing algorithm begin to
differ. Specifically, the node [T(1)

k]−s has active forward and backward
state messages at its ports. In contrast, the SW-SISO is activated with
uniform information on the forward and backward state metrics each
time it is activated.

The message passing algorithm described above can be viewed as the
iterative detector with SW-SISOs, but with a modified state metric ini-
tialization convention for the SW-SISOs. Consider Fig-2.45 to be a de-
scription of the processing associated with the SW-SISO for RSC1. The
above message passing algorithm corresponds to continuing the upward
progression of the forward-backward recursions from one activation to
the next. For each activation, however, the FSM transition metrics
change according to the information on the uncoded input bits after
each round of message passing on the RSC2 subgraph. In practice this
means that the SW-SISO can be used for a standard message passing
algorithm, but this requires the additional storage of the latest forward
and backward state metrics between activations of the SW-SISO. While
this represents considerable overhead, it will provide significantly better
performance for small values of D.

End Example

The graphical modeling view also makes it clear that one can use a
model for a given system that has cycles in it and apply message passing
to approximate the optimal detector. In other words, while most of the

Principles of Iterative Detection 159

examples we have considered thus far have a natural decomposition (i.e.,
they were constructed by concatenating subsystems), one may try to
artificially decompose a system into a loopy concatenation of subsystems.
The primary potential advantage of performing message passing on such
a loopy graph, as opposed to optimal detection on the global system
structure, is complexity reduction. A toy example of this process is
considered in the next example.

Example 2.15.
Consider the special case of an ISI-AWGN channel as described in (1.62)
with L = 2, f0 = f2 = 1, f1 = 2, and BPSK modulation (i.e., A =
{+1,−1}). The data sequence is independent and uniformly distributed
over A and the system is normalized such that E{a2

k(ζ)‖f‖2}/E{w2
k(ζ)}=

2Eb/N0.
An explicit index block diagram for this system and the correspond-

ing iterative detector are shown in Fig-2.58 and Fig-2.59, respectively.

xk−2 xk−1 xk xk+1

XkXk−2 Xk−1 Xk+1

akak−1ak−2ak−3

Figure 2.58. A loopy system diagram for a three-tap ISI channel. An (undirected)
cycle of length four is shown.

S[xk−2] S[xk−1] S[xk] S[xk+1]

S[ak−3] S[ak−2] S[ak−1] S[ak]

X−s
k−2 X−s

k−1 X−s
k X−s

k+1

Figure 2.59. The iterative detector associated with the graph in Fig-2.58.

160 ITERATIVE DETECTION

100

10−1

10−2

10−3

10−4

10−5

0

1

3

5

5

2

4

6

10 2015

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

ML-SqD

Figure 2.60. The performance of iterative detector in Fig-2.59 compared against the
optimal decision rule.

Each of the soft inverse nodes associated with the channel outputs can
be activated in parallel, followed by a parallel activation of all broad-
caster nodes. These two parallel activations define one iteration for the
following discussion.

The performance of the MSM-based iterative detector is shown in Fig-
2.60 along with that of the optimal ML-SqD. Significant improvements
in performance were not observed after six iterations. The minimum
cycle length in the system diagram is 4. This is measured in terms of
edges between soft inverse nodes. For example, a cycle of length four in
Fig-2.58 is: broadcaster for ak, Xk+1, broadcaster for ak−1, Xk.

Thus, iterative detection in this system is not particularly effective –
i.e., the approximate 3 dB degradation in SNR relative to the optimal
processing is larger than that observed with systems having long cycles.
Nonetheless, this simple example shows how one may reformulate the
system model (i.e., adding cycles) and use iterative detection as an effec-
tive suboptimal detector. One iteration of this algorithm is substantially
less complex than the corresponding Viterbi algorithm or MSM-SISO.
However, six iterations of this algorithm represents substantially more
computation than the optimal detector (see Problem 2.25).

This example is continued in Chapter 3 to illustrate variations on
the iterative detection conventions that may yield complexity reductions
and/or improved performance.

End Example

Although no complexity reduction was achieved in Example 2.15, if
the ISI channel were sparse, a significant complexity reduction would

Principles of Iterative Detection 161

be achieved. Furthermore, a sparse ISI channel would have long cy-
cles in the graphical model so that the iterative algorithm is expected
to perform near optimally. This application is considered in detail in
Chapter 3.

2.6.3 Valid Configuration Checks
The MAP data detection problem, or more generally, the marginal

soft inversion of a system is stated in (1.37). The structure of the sys-
tem is enforced only through the mapping of the input sequence a to the
outputs xn(a). Notice that marginal soft information on {xn} can be
combined to form S[x] without regard to whether the sequence x is ac-
tually consistent with some input sequence. This must be accounted for
in the marginalization operation by only marginalizing over valid input
output pairs. This can be done by defining a valid configuration check
function V (a,x). This is an indicator function for a valid configuration
so that V (a,x) = 1 for valid input output pairs and V (a,x) = 0 for in-
valid pairs. With this definition, it can be verified that the soft-inverse
of a system can be computed by replacing (2.5) by

S[a] =
M−1

©c
m=0

SI[am] S[x] =
N−1

©c
n=0

SI[xn] (2.54a)

SO[am] = (©m
a:am,x

S[x]©c S[a]©c S[V (a,x)])©c −1SI[am] (2.54b)

SO[xn] = (©m
a,x:xn

S[x]©c S[a]©c S[V (a,x)])©c −1SI[xn] (2.54c)

where, for a validity check variable v, S[v = 1] = Ic and S[v = 0] =
Im. For example, in the probability domain, the soft information for a
v = 1 (valid) is 1, and v = 0 (invalid) is 0, while it is zero and infinity,
respectively, in the metric domain. Thus, invalid configurations do not
contribute to the soft-out information because they do not affect the
marginalization.

Comparing (2.5) and (2.54) yields an interesting interpretation. Al-
though the V (a,x) was added just based on maintaining the equivalent
soft inversion, (2.54) may be viewed as the soft inversion problem stated
for a system with inputs {am} and {xn}, selected freely from the digital
alphabets A and X , respectively, and output V (a,x). For some sys-
tems it is simpler to describe and exploit the structure through validity
checks than by the direct input output relations. This is illustrated in
the following simple example.

162 ITERATIVE DETECTION

Example 2.16.
Consider a binary block code. This code has uncoded input bits b0,
b1, . . . bK−1 and coded outputs c0, c1, . . ., cN−1, each in {0, 1}. The
structure of the code can be described by either the (N ×K) generator
matrix G or the ((N − K) × N) parity check matrix P. The code is
represented directly using the generator matrix via c(b) = Gb where
all arithmetic is modulo two. The code may also be represented by a
validity check of the form V (b, c) using the fact that Pc(b) = 0. Thus,
the validity indicator is one if Pc(b) = 0 and zero otherwise (i.e., the
configuration check is only a function of c).

The code can be decoded directly using the generator matrix structure
or using the parity check structure. For example, MSM-based soft-out
information on bk using the generator matrix structure is obtained using

MO[bk] = min
b:bk

∑
i�=k

MI[bi] +
N−1∑
n=0

[zn − q(cn(b))]2 (2.55)

where cn(b) is the n-th element of c(b) = Gb and q(·) is the mapping
from {0, 1} to the channel modulation (e.g., for BPSK q(0) = +1 and
q(1) = −1).

The equivalent processing using the parity check structure is obtained
using

MO[bk] = min
b:bk,c

∑
i�=k

MI[bi] +
N−1∑
n=0

[zn − q(cn)]2 + M[V (b, c)] (2.56)

This still requires checking to verify that b and c correspond. If, how-
ever, one is interested on soft-out information on cn, then the parity
check structure yields

MO[cn] = min
b,c:cn

K−1∑
k=0

MI[bk] +
∑
j �=n

[zj − q(cj)]2 + M[V (b, c)] (2.57)

If the independent input variables are uniformly distributed, then this
may be simplified to

MO[cn] = min
c:cn

∑
j �=n

[zj − q(cj)]2 + M[V (c)] (2.58)

where V (c) indicates a zero parity check.
End Example

Principles of Iterative Detection 163

The key to using validity checks efficiently is to obtaining an efficient
structure for V (a,x) (i.e., a factorization). In other words, one can find
a graphical representation of the validity check and use message passing
on this graph to perform the soft inversion process in (2.54). If the
graphical model is cycle free, then this provides the exact soft inverse
(i.e., optimal detection) and if it has loops, then message passing is a
suboptimal method of approximating the soft inverse (i.e., suboptimal
detection). A simple example of the former is illustrated in the next
example.

Example 2.17.
Consider the single parity check (block) code having K = N−1 and P =
pT = [1 1 · · · 1] which simply enforces even parity. The single parity
check is pTc =

∑N
i=0 pici, where the arithmetic is modulo two. This

check has the trellis representation as illustrated in Fig-2.61. Specifically,

T0 TN−1T1 T2

0 0

1 1

c0 c1 c2 cN−1

V (c)

s0 = 0

cn = 0

cn = 1

(c)(b)

(a)

· · ·

· · ·

Figure 2.61. A trellis representation of a single parity check: (a) the validity check
as the output of the final transition, (b) the individual transition structure, and (c)
the parity check implemented by removing transitions.

consider the state to be sn =
∑n−1

i=0 pici and each transition has metric
MI[cn]. Starting with s0 = 0, each state represents a partial parity
check sum. On the final transition, the validity check output V (c) =
V (sN−1, cN−1) is produced. Note that the only effect of the validity
check is to disallow all transitions into the state sN = 1. Thus, we can
delete those transitions by forcing termination of the trellis into the zero
state (i.e., sN = 0) and implicitly implement the validity check.

Soft inversion or decoding of this simple code can then be done by
running the forward-backward algorithm on this two-state trellis. Specif-
ically, in the min-sum semi-ring, when the input bits bk are uniformly
distributed on {0, 1}, running the forward-backward algorithm on the
pruned trellis of Fig-2.61(c) with MI[cn] = (zn − q(cn))2 performs the
computation in (2.58). Notice that if MO[bk] is sought, the minimization
must be done only over all c consistent with bk(ζ) = bk. This may or
may not be necessary depending on whether the goal is soft inversion or

164 ITERATIVE DETECTION

decoding of the isolated single-parity check. In the former, soft-out in-
formation on bk is typically not needed. In the latter, this may be simply
implemented in the case of systematic codes by removing all transitions
tn in the trellis of Fig-2.61 inconsistent with cn = bn.

End Example

The previous example illustrates that the FSM trellis may be viewed
as a validity check for the FSM structure. In fact, we have used this
interpretation implicitly throughout Chapters 1 and 2 by writing the
marginalization as tK−1

0 : uk where it is assumed that the metric of any
invalid transition in the trellis is infinite. This may also be viewed as
breaking a global configuration check (e.g., V (t)) into a set of local va-
lidity checks (e.g., {Vk(tk)}). In general, the single validity check V (a,x)
in (2.54c) may be replaced by a set of validity checks {Vi(a,x)}i. Typ-
ically, Vi(·) checks only the local validity of configuration of the system
and therefore depends on a and x only locally. Using the conventional

S[V (a,x)] = ©c
i

S[Vi(a,x)] (2.59)

a single, global validity check can be decomposed into a set of local
checks without affecting the computation in (2.54). More specifically,
each local check has veto power; if one of these local checks fail, then
the global check fails. An example of this is illustrated next.

Example 2.18.
The parity check of a block code can be represented as N − K single
parity checks. Thus, a given block code can be decomposed into N −K
single-parity check codes. This concept is illustrated in Fig-2.62(a). The
associated graph has cycles since some subsets {cn} will be involved
in more than one parity check. For iid, uniformly distributed input
bits bk, the message passing algorithm is then run as shown in Fig-
2.62(b). More specifically, this algorithm does not accept or produce
soft information on bk. The soft inverse of each validity check does not
produce soft-out information on the Vn and the soft-in for all validity
check variables is always the same. In the following, we may drop the
SI/SO ports associated with the validity check variables in the diagrams
for compactness (i.e., they are implicit). After running the suboptimal
iterative parity check decoder, the soft-out information on cn can be
thresholded to determine the MAP estimates ĉn (i.e., MAP codeword
for min-sum and MAP coded symbol for min∗-sum). Since the mapping
from b to c is one to one, this can be converted to a decision on {bk}
which is trivial if the code is in systematic form.

Principles of Iterative Detection 165

· · ·

· · ·

· · ·

V−s
1V−s

0

SI[V0(c)] SI[V1(c)]

V0 V1

c0 c1 cn cN−1

V0(c) V1(c)

· · ·

· · ·

· · ·

(a)

(b)

S[c0] S[c1] S[cn] S[cN−1]

VI(c)

VI

V−s
I

SI[VI(c)]

Figure 2.62. (a) A loopy graphical model for the parity check of a (N, K) block
code and (b) a suboptimal iterative decoder for uniform code input bits. Note that
I = N − K − 1 is used for compactness in the figure.

Low density parity check codes (LDPCs) were originally suggested
by Gallager [Ga62, Ga63] along with this suboptimal iterative decoding
technique. In an LDPC, each parity check involves only a small num-
ber of coded symbols. Thus, soft inversion of each subcode is relatively
simple using the technique described in Example 2.17. Specifically, an
LDPC is characterized by the number of 1’s in each column and row
of the parity check matrix. For example, a wc = 3, wr = 6 LDPC is
one with 3 ones in each column of P and 6 ones in each row. Thus,
each parity check is involves 6 codeword bits and each ck is involved in
3 parity checks. The location of these 1s may be selected at random to
design an LDPC, but a good code structure will avoid short cycles in
the graph of Fig-2.62. Gallager’s LDPCs were rediscovered17 after the
introduction of PCCCs [Ma99]. The performance of LDPCs is similar to
that of turbo codes [MaNe96]. Recently, irregular LDPC constructions
having a variable number of ones per row/column (e.g., wc ∈ {3, 5} and
wr ∈ {6, 8}) have been demonstrated to perform better than the origi-
nal Gallager constructions and PCCCs of comparable block length and
rate [RiShUr00]. Notice that it is natural to implement the parity checks
in Fig-2.62(b) in parallel. Also, decoding of an LDPC is typically com-

17Interestingly, Gallager did not simulate the iterative decoding algorithm in 1963 because
the computational resources were unavailable. Had Gallager’s iterative decoding algorithm
been more widely appreciated, much of the material in this book may have been developed
much earlier!

166 ITERATIVE DETECTION

putationally less intensive than the decoding of the comparable PCCC.
Thus, LDPCs offer attractive features for hardware implementation.

End Example

The use of validity checks can be viewed as introducing hidden or
auxiliary variables (i.e., {Vi}) which are viewed as system outputs in our
graphical convention. One can also introduce auxiliary input variables
as well. For example, suppose that the validity check in (2.54) can be
written as V (a,x) =

∏
j Vj(uj) where u is a set of auxiliary variables

that also determines a and, thus, x. In this case the soft inversion can
be performed based on this model with am(u), xn(u), and V (u) viewed
as outputs and uj viewed as iid, uniformly distributed (i.e., zero metric)
input variables. This is illustrated in the final example of this section.

Example 2.19.
As mentioned previously, the standard trellis associated with an FSM

may be viewed a set of valid configuration tests. This is inherently
sequential, however, since the global validity check is factored into a
sequence of validity transition checks (i.e., see Fig-2.53). Specifically, if
the auxiliary variables sk are introduced, then the k-th validity check
is Vk(ak, sk, sk+1, xk), which checks to ensure that the local transition
configuration is allowable under the FSM structure.

An equivalent tree-structured set of validity checks is shown in Fig-
2.63. Note that, in this case the auxilary inputs are the transitions tk
with ak(tk) and xk(tk) considered outputs. Similarly, the states sk(tk)
and sk+1(tk) may be viewed as outputs of teh subsystems at the first
level. The check variables Vk(sk) are outputs of the corresponding sys-
tems in Fig-2.63, but are not shown for compactness. The validity check
systems also have an additional output which is the input to another
check. Each check confirms that the state value obtained from the sub-
graph below is consistent. For example, V7(s7) checks to make sure that
the two values of s7 obtained from below (i.e., s7(t7) and s7(t6)) are
the same). For the example in Fig-2.63, it is clear that the set of checks
{Vi}7i=1 admits all valid paths in the FSM and no others. Since this graph
has no cycles, message passing will provide the optimal processing.

The details of message passing using the generalized forward-
backward schedule are shown in Figure 2.64 and 2.65 in min-sum process-
ing. The inward messages are shown in Fig-2.64. Specifically, initially
MI[tk] is set to uniform and the algorithm begins by activating the first
level of subsystems to compute Mk[tk] from MI[x(tk)] and MI[a(tk)]. The
messages passed inward to the next level of the tree are MSMk[sk, sk+1]
which is simply Mk[tk] if there are no parallel transitions. This inward

Principles of Iterative Detection 167

s4

s2

s1

s6

s7

(s2, s4)

(s2, s3) (s3, s4) (s6, s7)

(s4, s6)

s0

t0 t1 t2 t3 t4 t5 t6 t7
a0 x7a7x6a6x5a5x4a4x3a3x2a2x1a1x0

valid configuration
check system

V4

V2

V3V1 V5

V6

V7

s4

(s1, s2) (s4, s5) (s5, s6)

Figure 2.63. A binary tree-structured configuration check for a sequence of FSM
transitions.

message passing continues with the messages shown. When the two
messages on s4 reach V−s

4 , the outward propagation begins and proceeds
downward as shown in Fig-2.65. Again, all nodes at a given level of the
tree are activated before activating any of the nodes at the next level.
At the bottom level, the input metric of (sk, sk+1) is MSM{k}c [sk, sk+1] –
i.e., the sum of the forward and backward state metrics in the standard
forward-backward algorithm. Thus, the final activation of the nodes
on the bottom level produces the desired extrinsic output metrics. Note
that if an invalid set of transitions were applied to the system of Fig-2.63,
one of the check variables would be zero. Thus, the corresponding tree-
SISO is outputting the soft information based only on marginalization
and combining over valid transition sequences.

This tree structured SISO was suggested in [ThCh00] and referred
to as a forward-backward Tree-SISO (FBT-SISO) to distinguish it from
the tree-SISO of Section 2.5.5 and [BeCh00]. This FBT-SISO has twice
the latency of the tree-SISO in Section 2.5.5 because the messages must
propagate both inward and outward. This modest increase in latency
is accompanied by a significant reduction in computational complexity.
Specifically, the FBT-Tree SISO has O(K) computational complexity
and O(log2 K) latency. This is to be compared to O(K log2 K) com-
putational complexity and O(log2 K) latency for the Tree-SISO of Sec-
tion 2.5.5 and O(K) computational complexity and O(K) latency for
message passing on the standard trellis (i.e., Fig-2.53).

End Example

We note that validity checks were introduced only in the context
of performing the soft inversion. This is different than the direct in-
put/output explicit block diagrams used before this section. Specifi-

168 ITERATIVE DETECTION

MI[a7]
MI[x7]MI[x6]

MI[a6]
MI[x5]

MI[a5]
MI[x4]

MI[a4]
MI[x3]

MI[a3]
MI[x2]

MI[a2]
MI[x1]

MI[a1]
MI[x0]

MI[a0]
MI[s0]

V−s
4

V−s
2 V−s

6

V−s
1 V−s

3 V−s
5 V−s

7

MSM3
0[s4] MSM7

4[s4]

MSM1
0[s2] MSM7

6[s6]

MSM6[s6, s7]MSM4[s4, s5]
MSM3[s3, s4]

MSM3
2[s2, s4] MSM5

4[s4, s6]

MSM1[s1, s2]
MSM7[s7]

MSM5[s5, s6]
MSM2[s2, s3]MSM0[s1]

Figure 2.64. The messages passed inward using a generalized forward-backward
schedule on the tree structure in Fig-2.63.

MO[a7]
MO[x7]MO[x6]

MO[a6]
MO[x5]

MO[a5]
MO[x4]

MO[a4]
MO[x3]

MO[a3]
MO[x2]

MO[a2]
MO[x1]

MO[a1]
MO[x0]

MO[a0]
MO[s0]

V−s
4

V−s
2 V−s

6

V−s
1 V−s

3 V−s
5 V−s

7

MSM7
4[s4] MSM3

0[s4]

MSM7
1[s1]

MSM7
2[s2] MSM5

0[s6]+MSM7
4[s4]

MSM1
0[s2]

MSM6
0[s7]MSM2c [s2, s3] MSM4c [s4, s5] MSM6c [s6, s7]

MSM1c [s1, s2] MSM3c [s3, s4] MSM5c [s5, s6]

+MSM7
6[s6]

MSM3
0[s4]

Figure 2.65. The messages passed outward using a generalized forward-backward
schedule on the tree structure in Fig-2.63 with the active forward messages from Fig-
2.64. The notation 2c, for example, is shorthand for {2}c – i.e., all indices except 2.

cally, if one were to actually build an FSM using the model in Fig-2.63
it would imply that potential transition sequences would be applied until
the actual input sequence a was observed correctly, then the correspond-
ing x could be read out. For most systems of interest this is inefficient
as compared to directly building the system based on the input/output
explicit block diagram. Both of these are so-called realizations of the

Principles of Iterative Detection 169

system18 since they characterize the entire system structure. However,
we use the term constructive realization to refer to graphs that could
be directly translated to a signal generation circuit (e.g., an encoder).
Thus, constructive realizations are those with no “leaf” variables.19

2.6.4 Other Graphical Models
Explicit index block diagrams are quite natural graphical models for

the applications considered in the remainder of this book. They are not,
however, the standard graphical tools used in most of the literature. Our
reasons for using these graphs are primarily pedagogical. Specifically,
they allow one to describe both implicit index and graphical approaches
as one in the same. They also allowed us to present message passing
on graphical models from a detection-theory point of view and without
presenting a large body of material from graph theory. In this section we
briefly summarize several popular graphical models and point the reader
to the relevant references. The objective of each of these approaches is
to solve a general combine and marginalize (CM) problem of the form
in (1.37), (2.5), possibly by introducing hidden variables (e.g., states) to
factor the joint soft information.

2.6.4.1 Belief Networks and Pearl’s Belief Propagation
Algorithm

Belief networks are directed graphs without directed cycles20 that
describe the probabilistic dependencies of a set of variables. Given a set
of variables, {ui(ζ)}, a Belief Network is defined by a factorization of the
joint probability p(u) via Bayes law. Specifically, the joint probability
is written in the form

∏
i p(ui|P(ui)), where P(ui) is a set of parents for

variable ui. Conversely, ui is referred to as a child of all v ∈ P(ui).
The common notation for a belief network is that shown in Fig-2.66(a)

for the equivalent FSM graph in Fig-2.53. In a belief network, all “out-
puts” of a node labeled x are the variable x – i.e., in our notation, the
subsystem outputs and the subsystem configuration are one in the same.
Given a system diagram in the explicit index convention, the global sys-
tem inputs are nodes without parents and the global system outputs are
nodes with no children. For any of the systems previously modeled with-
out validity checks, a belief network can be constructed by starting the

18We use the terms system “representation,” “model” and “realization” interchangeably. The
term realization is engrained in the literature.
19By this we mean variables that are either not the input to any system or are not the output
of any system (i.e., even a graph with cycles).
20These are called Directed Acyclic Graphs in the literature.

170 ITERATIVE DETECTION

aka0 ak+1 aK−1ak−1

x0 xk−1 xk xk+1 xK−1

s0 t0 tk−1 tk tk+1 tK−1
· · · · · ·(a)

· · · · · ·

xk−1 xk+1x0 xk xK−1

a0 ak−1 ak ak+1 aK−1

s0 s1 sk−1 sk+1 sk+2sk sK−1
(c)

t0 tk tk+1 tK−1
x0 xk xk+1 xK−1

aka0 ak+1 aK−1ak−1

x0 xk−1 xk+1 xK−1xk

s0
· · · · · ·tk−1

xk−1

· · · · · ·

xk−1 xk+1x0 xk xK−1

a0 ak−1 ak ak+1 aK−1

s0 s1 sk−1 sk+1 sk+2sk sK−1
(b)

(d)

Figure 2.66. Common graphical models used to represent the system structure of
the FSM illustrated in Fig-2.53: (a) belief network, (b) Tanner-Wiberg graph, (c)
factor graph, and (d) junction tree .

factorization with p(z|a)p(a) and introducing hidden variables to char-
acterize the subsystem configurations as necessary (e.g., transitions).

The associated message passing algorithm on a belief network is re-
ferred to as Pearl’s Belief Propagation algorithm (BPA).21 It is well
known that Pearl’s algorithm produces the APP of all variables ui in
a cycle-free network by message passing (i.e., see [Pe88] for a rigorous
proof along the lines of the argument in Section 2.6.1). One distinc-
tion between the previous development and Pearl’s algorithm is that, in
the latter, messages are passed on the node variables themselves. This

21Pearl’s algorithm usually refers to the sum-product version. Pearl referred to the min-sum
version of the algorithm as “belief revision” [Pe86].

Principles of Iterative Detection 171

uI−1

yJ−1

u0 u1 · · ·

· · ·

(a) (b)

S[u0] S[u1] S[uI−1]

x x

· · ·

· · ·

y1y0

Figure 2.67. (a) A general node in a belief network and (b) the corresponding mes-
sage updating node in a belief propagation algorithm.

may be inefficient if the node variables have some overlap. For exam-
ple, in Fig-2.66(a) Pearl’s algorithm would pass messages on the state
transitions tk instead of the state variables themselves which, from the
previous development, is clearly inefficient.22 If, however, the belief net-
work of Fig-2.66(a) is modified using the states sk and sk+1 in place
of the transition tk, an undirected cycle will be introduced and would
void the optimality of Pearl’s original algorithm. Thus, in general, is
possible that the messages passed in Pearl’s algorithm can be simplified
to account for overlap between variable conditional values.

Finally, we note that, except for this minor difference, Pearl’s algo-
rithm is the same as the message passing described above (i.e., iterative
detection). Specifically, each node in the belief network is replaced by
the equivalent of the soft inverse node and messages are passed between
these soft inverse nodes. The notation used for the soft inverse node is
given in Fig-2.67.23 Two final caveats should be pointed out. First, the
soft-inverse of a variable corresponding to a global system input/output
is a source and sink of soft information. Second, due to the convention
of a single variable node producing several copies of the variable, the
activation of a node in Pearl’s BPA includes the equivalent of a soft
broadcaster. This is illustrated in Fig-2.68 where the information in
Fig-2.67 is expressed in the explicit index block diagram notation.

The correspondence between Pearl’s algorithm and the original turbo
decoding algorithm was pointed out in [McMaCh98, KsFr98].

22This is similar to the early description of the forward-backward algorithm described by
Chang and Hancock [ChHa66].
23Although, as has become clear in our notation as well, stating the belief network is sufficient
to determine the BPA except for scheduling.

172 ITERATIVE DETECTION

u0 uI−1

x

u1

(b)
(a)

· · ·

y0 y1 yJ−1

· · ·

· · ·

S[x]

· · ·

· · ·

S[u0] S[u1] S[uI−1]

Figure 2.68. (a) The explicit index block diagram graphical model corresponding to
the belief network node in Fig-2.67(a) and, (b) the associated soft inverse processing
producing the messages of the BPA node in Fig-2.67(b).

2.6.4.2 Factor Graphs and Tanner-Wiberg Graphs
Factor graphs and Tanner-Wiberg graphs are closely related undi-

rected graphs used to describe systems and/or the associated CM prob-
lem. Tanner introduced a graphical notation for describing error correc-
tion codes [Ta81] which was extended by Wiberg to include the repre-
sentation of hidden variables (i.e., state) [Wi96]. Tanner-Wiberg graphs
are bi-partite graphs with variable nodes and check nodes. Variable
nodes can only be connected to check nodes and vice-versa. Hidden
variable nodes are sometimes denoted slightly differently. For exam-
ple, the Tanner-Wiberg graph corresponding to the graph in Fig-2.53
is shown in Fig-2.66(b) with Wiberg’s notation for the hidden variable
nodes. In the Tanner-Wiberg graphs, the check nodes enforce valid con-
figurations for all of the connected variables. In Fig-2.66(b), for example,
the check node corresponding to transition tk verifies that sk, sk+1, ak

and xk are all consistent with a valid transition. Thus, establishing the
Tanner-Wiberg graph Fig-2.66(b) requires factorization of the validity
check for the transition sequence, into a set of checks for each individual
transition.

Factor graphs are similar to Tanner-Wiberg graphs with the check
nodes replaced by factor nodes [KsFr98]. This is shown in Fig-2.66(c) for
the FSM example. These factor nodes represent the associated factor in
the product function (or total metric) to be marginalized. In Fig-2.66(c),
for example, the factor node corresponding to transition tk represents the
contribution to p(z,a) from those variables associated with tk. Namely in
the sum-product version this is p(zk|xk)p(ak)p(sk+1|sk) where sk, sk+1,
ak, and xk are all consistent with the same transition.

Principles of Iterative Detection 173

The message passing algorithms for Tanner-Wiberg graphs and factor
graphs are the same as that described in the context of explicit index
block diagrams. Specifically each check (factor) node in the Tanner-
Wiberg (factor) graph is replaced by the analogous soft-inverse node
which passes soft-in and soft-out messages on all variables involved in
that check (factor) node. The associated processing at the soft-inverse
is identical to that described in the context of explicit index block dia-
grams. Again, variable nodes involved in several checks or factors have
implicit soft broadcasters in the soft inverse processors and the soft in-
verses for nodes corresponding to the global system inputs/outputs are
sources and sinks of soft-in/soft-out information. Wiberg identified the
optimality of message passing on cycle-free graphs and interpreted the
method of turbo decoding as the same on loopy graphs [Wi96]. Similar
results for factor graphs have been reported with generalization to ar-
bitrary semi-ring marginalization and combining operators [WiLoKo95,
KsFr98, KsFrLo00].

Note that, in contrast to our convention and, for the most part, belief
networks, factor graphs and Tanner-Wiberg graphs are not constructive
in nature. In other words, they generally do not represent a construc-
tive realization and were developed only based on a factorization of the
joint soft information to be marginalized. As a result, these graphs are
undirected and handle validity checks more naturally than the implicit
index block diagram convention.

2.6.4.3 Junction Trees
Like factor graphs and Tanner-Wiberg graphs, junction trees [JeJe94,

Je96, AjMc00] are undirected, and are not necessarily based on construc-
tive realizations of the system. Junction trees are, however, cycle-free by
definition (i.e., they are trees not graphs). In a junction tree, each node
corresponds to a collection of variables and all nodes that are involved in
a common factor in the CM problem are connected. The notation used
is illustrated via the FSM example in Fig-2.66(d), where tk is, as usual,
shorthand for (sk, ak, sk+1). The message passing algorithm is, again,
identical to that already described with each node replaced by the asso-
ciated soft-inverse. Once again, the global system input/output nodes
are sources and sinks with a soft broadcaster operation as appropriate.
Messages are passed on the intersection of the node variables (e.g., the
states in Fig-2.66(d)).

Since junction trees are cycle-free, message passing is optimal. This
has been shown in [AjMc00] where arbitrary semi-ring marginalizing
and combining operators have been considered (i.e., the generalized dis-
tributive law) and the general CM (equivalently the MPF) problem has

174 ITERATIVE DETECTION

shown to be solved by message passing. Again, this is a rigorous proof
of the argument in Section 2.6.1.

As described above, junction trees are similar to factor graphs or
Tanner-Wiberg graphs without cycles. However, junction trees are asso-
ciated with a graphical factorization procedure as described in [AjMc00,
Aj99]. This procedure allows one to start with a joint soft information
measure (e.g., p(z|x(a)p(a)) and obtain a (hopefully efficient) factoriza-
tion of this function. For a simple FSM, starting from a graph like that
in Fig-2.58, one can obtain the junction tree in Fig-2.66(d) through a
graphical procedure. Thus, the primary advantage of junction trees is
that they are part of a larger framework for establishing valid factor-
izations or, equivalently, trees for which message passing is an efficient
solution. Once the valid factorization has been established, the graphi-
cal model can be described in another convention. For example, the tree
in Fig-2.63 follows directly from the junction tree approach [ThCh00].
Although it is clear that the set of validity checks introduced in Ex-
ample 2.19 fully characterize the FSM and are non-redundant (i.e., no
single check may be removed without admitting invalid configuration),
following the junction tree approach always ensures that this is the case.

Some qualifications should be stated with regard to the above pro-
cedure for graphical factorization. First, the junction tree for a given
system is not unique (e.g., the junction tree associated with Fig-2.63
and that in Fig-2.66(d) represent the same system). There is no known
method for producing some form of “optimal” junction tree. For ex-
ample, while the procedure described in [AjMc00, Aj99] can transform
Fig-2.58 to Fig-2.66(d) for a non-recursive FSM, it is less clear how the
procedure could be applied to obtain Fig-2.66(d) for a recursive FSM
(e.g., the encoder of Fig-2.24) without prior knowledge of the appro-
priate state variables. Second, graphical models with cycles are not
addressed under the domain of junction trees and the associated graph-
ical factorization procedure.24 Armed with the knowledge that message
passing is effective, if suboptimal, for loopy graphs, often times we are
interested in efficient graphical models with cycles. In general, efficient
realizations of a system is a well studied problem in computer engineer-
ing and computer science (e.g., [Ha65, Gi62, CeMaSa79, Mo82, Fo00])
with no simple procedure solving all cases.

24The notion of a junction graph (i.e., a junction-tree-like graph with cycles) has been intro-
duced in [Aj99] in an effort to analyze message passing on single-cycle graphs.

Principles of Iterative Detection 175

2.7 On the Non-uniqueness of an Iterative
Detector

For a given system, there may be several representations, each of
which implies a different iterative detector. In fact, for systems with
loopy graphical models, there are inherently many equivalent system
models, each of which represents the system. Furthermore, because
message passing is generally suboptimal for such graphs, one can modify
the types of messages passed. This may result in a complexity reduction,
performance improvement, or change the convergence characteristics of
the iterative detector. Because of the suboptimal nature of iterative
detection, the selection of a good system model and modification of the
message passing rules remains somewhat of an art. Chapters 3 and 5
focus on this material. We conclude this chapter with a few examples
that highlight this non-uniqueness.

Example 2.20.
Consider the simple (7,4) Hamming linear block code [LiCo83] with iid,
uniform inputs bk and outputs cn. Three message passing algorithms
are considered for this code. The loopy graphical models for the parity
check and generator matrices are shown in Fig-2.69. The iterative detec-
tors implied by these models have different complexities. For example,
a min-sum, parity check based decoder will have three 4-way ACS-type
operations and four soft broadcasters. The corresponding generator ma-
trix based iterative detector will have three 2-way ACS units, one 3-way
ACS unit and similar soft broadcasters. The corresponding decoders
for larger block codes may differ more dramatically in complexity. The
number of inputs to either of these is also an important complexity con-
sideration (e.g., LDPCs have manageable complexity despite their large
size because there are only a small number of codeword bits involved in
each component check).

A third graphical model is shown in Fig-2.70. This is a cycle-free trellis
representation of the code. This is a generalization of the graph found
in Fig-2.61 and can be obtained using the procedure in [BaCoJeRa74].
The forward-backward algorithm may be run on this graph to obtain
the optimal decoding.

The performance of these three decoders is shown in Fig-2.71 for min-
sum decoding. Both of the iterative detectors perform near optimally
with the generator version obtaining slightly better performance. This
improvement is due to the fact that the generator-based decoder contin-
ues to gain up to the eighth iteration whereas convergence was observed
after five iterations of the iterative parity check decoder. This may have

176 ITERATIVE DETECTION

G0 G1 G2 G3 G4 G5 G6

V0(c) V2(c)V1(c)

c0 c1 c2 c3

c0 c1 c2 c3 c4 c5 c6

(a)

(b)

c4 c5 c6

b0 b1 b2 b3

V0 V1 V2

Figure 2.69. Loopy graph representations of the (7,4) Hamming code: (a) the parity
check structure and (b) the generator matrix graph.

T0 T2 T4 T6T1 T3 T5

c0 c1 c2 c3 c4 c5 c6

s0 s1 s2 s3 s4 s5 s6

s0 s1 s2 s3 s4 s5 s6 s7
c0 c1 c2 c3 c4 c5 c6

(a)

(b)

ck = 1
ck = 0

Figure 2.70. A cycle-free graphical model for the (7,4) Hamming code.

been predicted since the parity check matrix has several cycles of length
four while the minimum cycle length of the generator graph is six. In gen-
eral, iterative detection algorithms converge quickly on graphs with short
cycles. A method of slowing the convergence for graphs with short cy-
cles is introduced in Chapter 3 (i.e., message filtering) which can provide
significant performance improvements. Note that, as in Example 2.15,
the suboptimal iterative processors are actually more complex than the
optimal algorithm. For larger codes with sparse structure, however, an
iterative decoder can be significantly less complex (e.g., LDPCs).

Principles of Iterative Detection 177

����
����

�����
�����

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

0 0

1 1

2 2

3

4 4

5 5

6 68

8

810 10

B
it

E
rr

or
R

at
e

Eb/N0 (dB) Eb/N0 (dB)

ML-SqD ML-SqD

ID ID

(a) (b)

Figure 2.71. Performance of the iterative decoders implied by the (a) parity check
graph and (b) generator graph from Fig-2.69.

Finally, for block codes, an iterative decoder can be based on a graph
representing the structure of the dual code [HaOfPa96, HaRu76, Ri98,
Fo00]. Thus, our list of decoders in this example is still incomplete.

End Example

Next we consider different decompositions of the block diagram of a
given system.

Example 2.21.
Consider the convolutionally encoded, ISI channel in Example 2.9. The
natural decomposition of this system is into the code and ISI subsystems.
For this decomposition, it is natural to pass messages on the 4-ary QPSK
symbols ak that connect the two subsystems. In this example, we show
that both the decomposition and the messages are not unique.

First, we consider the standard decomposition, but alter the messages.
Messages are passed on subsets of transitions in the super-trellis that
defines the joint trellis of the code and ISI channel. This 64-state super-
trellis has states sk = bk−1

k−6. Since the code trellis has states sk = bk−1
k−4,

each state in the code trellis corresponds to four states in the super-
trellis. This is illustrated in Fig-2.72. The 128 transitions in the super-
trellis can then be partitioned into 16 sets {Di(j)}3i,j=0, each containing
8 transitions. The individual ISI and code trellises can then be labeled
by these 16 subsets. These subsets may be thought of as 16-ary hidden
symbols that play the same role as the 4-ary (hidden) QPSK symbols in
Example 2.9. The labeling of the code and ISI trellises by the subsets

178 ITERATIVE DETECTION

03020100

07060504 07060504

sk+1sk

00

D0(0)

D3(0) D3(0)
D0(0)

D0(1)
D3(1)

01 02 03

sCC
k+1sCC

k
0

1

0

1

...
...

Figure 2.72. The mapping from the super-trellis to the 16-ary hidden symbols as
outputs of the convolutional code.

is summarized in Fig-2.72 and Table 2.4. Specifically, the ISI trellis
state is defined by s

(ISI)
k = (ak−1, ak−2) and indexed according to the

standard 4-ary expansion 4ak−1+ak−2, where ak is mapped to the QPSK
constellation via the Gray labeling convention (i.e., 0(00) ↔ θ = 0,
1(01) ↔ θ = π/2, 3(11) ↔ θ = π, 2(10) ↔ θ = 3π/2). Under this
convention, {Da(j)}3j=0 all correspond to the same QPSK symbol value
ak = a.

Da(j) (s
(CC)
k , s

(CC)
k+1) (s

(ISI)
k , s

(ISI)
k+1)

D0(0) (0, 0) (1, 8) (0, 0) (3, 0) (12, 3) (15, 3)
D0(1) (3, 1) (2, 9) (1, 0) (2,0) (13, 3) (14, 3)
D0(2) (4, 2) (5, 10) (4, 1) (7, 1) (8, 2) (11, 2)
D0(3) (7, 3) (6, 11) (5, 1) (6, 1) (9, 2) (10, 2)

D1(0) (8, 4) (9, 12) (0, 4) (3, 4) (12, 7) (15, 7)
D1(1) (11, 5) (10, 13) (1, 4) (2, 4) (13, 7) (14, 7)
D1(2) (12, 6) (13, 14) (4, 5) (7, 5) (8, 6) (11, 6)
D1(3) (15, 7) (14, 15) (5, 5) (6, 5) (9, 6) (10, 6)

D2(0) (9, 4) (8, 12) (0, 8) (3, 8) (12, 11) (15, 11)
D2(1) (10, 5) (11, 13) (1, 8) (2, 8) (13, 11) (14, 11)
D2(2) (13, 6) (12, 14) (4, 9) (7, 9) (8, 10) (11, 10)
D2(3) (14, 7) (15, 15) (5, 9) (6, 9) (9, 10) (10, 10)

D3(0) (1, 0) (0, 8) (0, 12) (3, 12) (12, 15) (15, 15)
D3(1) (2, 1) (3, 9) (1, 12) (2, 12) (13, 15) (14, 15)
D3(2) (5, 2) (4, 10) (4, 13) (7, 13) (8, 14) (11, 14)
D3(3) (6, 3) (7, 11) (5, 13) (6, 13) (9, 14) (10, 14)

Table 2.4. Definition of the 16-ary hidden symbol, D, from Example 2.21

Iterative detection for the same system partitioning, can be done in
the standard way using the 16-ary hidden symbols in place of the 4-ary
QPSK symbols. The simulated performance of this iterative detector is
shown in Fig-2.73(a) with the curves from Example 2.9 shown for ref-
erence (all curves use min-sum processing). Using the 16-ary messages
improves the performance on the first iteration, but the iteration gain is

Principles of Iterative Detection 179

�����������������
�����������������

����
����

�����
�����

����
����

���
���

������������
��������������������������
��������������

��
��

��

��

��

��
��

��

��

��
��

��

�����������������
�����������������

�����
�����
�����
�����

����
����

����
����

���
���

��������������
��������������������������
������������

100

10−1

10−2

10−3

10−4

10−5

10−6

00

11
1

1

22

3

44

6
6

6

6

6 88 1010

B
it

E
rr

or
R

at
e

Eb/N0 (dB)Eb/N0 (dB)

ML-SqDML-SqD

(a) (b)

16-ary message
4-ary message 16-state–16-state

2-state–32-state

Figure 2.73. The performance of modified iterative detectors for the convolutional
code, ISI channel example from Example 2.21. (a) 16-ary message passing on the
standard (16 state, 16 state) trellises and (b) a 2-state, 32-state decomposition.

reduced. The computational complexity of these two detectors is com-
parable since the number of states in the forward-backward processors
remains fixed, but the 16-ary version requires more storage.

One can also modify the actual decomposition. For example, the
state of the super-trellis may be split in any way desired. Specifically,
we can define the state of the outer system as bk−1

k−Lo
and the inner system

as bk−Lo−1
k−6 . The outputs of the outer system are then the transitions

bk
k−Lo

. This yields a 2Lo-state, 26−Lo-state decomposition. A standard
iterative detector can then be run using the forward-backward SISO for
each subsystem that exchanges soft information on the 2Lo+1-ary hid-
den symbols. The performance of this iterative detector is shown in
Fig-2.73(b) for Lo = 1. Thus, the hidden symbols are 4-ary and the
outer and inner trellises have 2 and 32 states, respectively. The perfor-
mance of the 2-32 decomposition is significantly better than the standard
16-16 decomposition and approaches that of the optimal detector. The
complexity is roughly characterized by the sum of the number of states
in the inner and outer trellis, so that the two iterative detectors have
roughly the same complexity.

End Example

Next we consider a single system described by several equivalent block
diagrams.

180 ITERATIVE DETECTION

Example 2.22.
There is an inherent asymmetry in the system model and decoder asso-
ciated with the PCCC in Section 2.4.3.1. This is because the systematic
information is used for encoder 1, but not for encoder 2. This apparent
asymmetry may be removed by considering the systematic bit as the
output of the broadcaster and the two encoders to produce parity bits
only. This view leads to the same decoder considered in Section 2.4.3.1
(see Problem 2.18). It is tempting, however, to try to use the channel
information on the systematic bit to decode both constituent codes. In
this example, we give system models that imply different methods for
utilizing the channel information on the systematic bit and compare the
performance of the associated iterative decoders.

Specifically, consider the rate 1/4 binary code in Fig-2.74. This is

parity
I−1
2

I−1
3

systematicM
RSC1

RSC2

RSC3

I2

I3

Figure 2.74. The encoder for the rate 1/4 PCCC example.

a PCCC with three constituent codes, taken to be the same as that
used in the PCCC of Section 2.4.3.1, with all of the parity information
sent. With the addition of the deinterleavers after each encoder, the
systematic bit can be viewed as the output of any of the encoders. This
is summarized by the system M that maps the three versions of the
systematic information onto a single systematic bit. Obviously, this
mapping is trivial because all of the inputs are equal. The iterative
decoding algorithm, however, changes with the definition of this mapper.

We consider three different cases: (i) a “pass to 1”, (ii) a “funnel”,
and (iii) a switch. Let the systematic and parity bits of the i-th en-
coder be denoted by c(i)

k (0) and c(i)
k (1), respectively. Also, denote the

output of M by xk(0). Then the mapper is defined by the function
xk(0) = mk(c

(1)

k (0), c(2)

k (0), c(3)

k (0)). For case (i), xk(0) = c(1)

k (0). For the
funnel, the mapper checks that each are equal and passes their common
value – i.e., xk(0) = c(1)

k (0) = c(2)

k (0) = c(3)

k (0) and is undefined if they
are unequal. Finally, the switch just cycles through the different con-
stituent codes – i.e., x0(0) = c(1)

0 (0), x1(0) = c(2)

1 (0), x2(0) = c(3)

2 (0),
x3(0) = c(1)

3 (0), etc. The soft inverse of (i) and (iii) are trivial since
they just invert the distribution of that mapper. As a result, in the

Principles of Iterative Detection 181

corresponding iterative detector, M−s needs only to be activated once in
cases (i) and (iii) since further activation does nothing. The funnel is
akin to a broadcaster run in reverse, and the soft inverse of the funnel
is equivalent to a soft broadcaster (see Problem 2.27).

Simulation results for the three systems are shown in Fig-2.75. Unless

100

10−1

10−2

10−3

10−4

10−5

10−6

1 2 3

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

Funnel

Funnel (schedule 2)

Switch

Pass to 1

Pass to 1 (serial)

0.5 1.5 2.5

Figure 2.75. The performance of the min-sum iterative decoders associated with the
encoder of Fig-2.74.

indicated otherwise, the activation schedule used is: M−s → (SISO1,
SISO2, SISO3) in parallel→ soft broadcaster (SOBC)→ (SISO1, SISO2,
SISO3), with the interleavers/deinterleavers activated as required. This
defines one iteration. For the “pass to 1” case, we also consider a serial
activation of the SISOs: M−s → SISO1→ SOBC→ SISO2→ SOBC→
SISO3→ SOBC. This serial schedule is equivalent to viewing the system-
atic bit as the direct output of the broadcaster with all RSCs producing
only parity. Only the funnel-based decoder shows a significant perfor-
mance difference, showing a loss of nearly 2 dB. Some improvement is
gained by modifying the activation schedule. Specifically, the curve la-
beled with schedule2 was generated by activating the SOBC and soft
inverse funnel in parallel after each set of SISO activations.

End Example

2.7.1 Additional Design Guidelines
In addition to the conventions described in Section 2.3, we describe

several rules of thumb based on the above examples and experience
gained from other applications:

1. Avoid system models with short cycles whenever possible.

182 ITERATIVE DETECTION

2. Avoid marginalizing information when it is not necessary.

3. Exploiting the channel information “strongly” in one subsystem is
preferred to exploiting the information weakly in several subsystems.

4. Avoid over characterization of the system which tends to add cycles
without describing any further structure.

Several examples illustrating the first point have been given. As an
example of the second rule, consider a SISO for a simple FSM that
produces the soft-out on the inputs ak using the standard forward-
backward algorithm, but produces the soft-out on the FSM output in
a modified fashion. Specifically, the soft-out for xk is obtained by com-
bining the associated marginal soft information on ak. For example,
P[xk(tk)] =

∏L−1
m=0 P[ak−m(tk)] is one way to construct intrinsic informa-

tion on xk from intrinsic information on the consistent ak
k−L. While this

may work, it is generally preferable to obtain the soft-out information
for xk directly from tk.

The last two rules were illustrated in Example 2.22. Specifically, the
“pass to 1” model is preferred over the “switch” (illustrating rule 3) and
the funnel model yields poor results (illustrating the last rule). More
precisely, the structure added by the funnel has already been accounted
for by the soft broadcaster, so its addition adds only unnecessary loops
into the associated decoder. Similarly, the 2-32 decomposition of Exam-
ple 2.21 illustrates rule 3.

It appears that it is most important to avoid short and/or unnecessary
cycles. For example, according to rule 2, the 16-ary message passing
in Example 2.21 should be preferred over the 4-ary message passing.
However, because there is no interleaver, this graph has short cycles.
As a result, the iterative decoder tends to converge quickly to a local
minimum. Using the 16-ary messages increases the convergence further
which is undesirable. This is not predicted by the above set of rules
because the system model has short cycles. In other words, the rules
above are heuristics and they should be applied disjointly (e.g., less
marginalization is better when there are no short cycles).

2.8 Summary and Open Problems
Based on the notion of a marginal soft inverse of a system, which

updates marginal likelihood information on both the system input and
output, iterative or “turbo” detection was developed in a systematic
manner. Several important examples of iterative detection were demon-
strated using only these few conventions. In general, it is observed that
iterative detection techniques provide significant gains over traditional

Principles of Iterative Detection 183

segregated detection methods. Also, iterative detection may be used
as a complexity reduction method (with near optimal performance) by
decomposing a system into subsystems. Thus, iterative detection is use-
ful even in systems that are not constructed as concatenated networks
and/or do not contain subsystem isolating interleavers. While a signif-
icant list of applications were considered, it is not exhaustive by any
means (e.g., [ChDeOr99, LiRi99, MoAu00]). Our goal has been to il-
lustrate the method so that the reader can apply it where it will be
fruitful.

The soft inverse of an FSM was given special attention due to the
importance of the FSM subsystem in many encoder and channel mod-
els. The exact soft inverse can be computed using the (fixed-interval)
forward-backward algorithm. While replacing the exact marginal soft
inverse by a fixed-lag, minimum-lag, sliding-window, or minimum half-
window SISO changes the iterative algorithm (i.e., one may get different
final decisions), these variations are important because they allow trade-
offs in practical implementations with minor performance degradations.
Two tree-structured exact soft inverses for an FSM were also given as
example alternatives to the standard forward-backward SISO.

Using explicit index block diagrams allowed the optimality conditions
for concatenated detectors to be more clearly identified. Specifically,
if a graphical model has no (undirected) cycles, then the concatenated
detector, defined by the node soft inverses, provides MAP detection
by inward likelihood message passing. Allowing the soft inverse nodes
to pass messages in both directions with appropriate scheduling, leads
to a solution of the soft inverse problem. Specifically, after each node
has received a message from all other nodes, the soft-out information is
mature and does not change with further activation of the soft inverse
nodes.

This view made it clear that iterative detection is equivalent to mes-
sage passing on graphs with cycles. With cycles present, the soft-outputs
are not guaranteed to stabilize. In practice, however, message passing
on graphs with long cycles has been empirically observed to be quite
stable.

Some open research issues related to this chapter are in the areas
of system modeling, performance analysis, and modified message pass-
ing rules. Determining systematic approaches to obtain system models
has been applied mainly to error correction codes [BaCoJeRa74, Fo00,
AjMc00]. The tree-SISOs described in this chapter are an example of
an alternative system model for an arbitrary FSM that has a desirable
property (i.e., an associated soft inverse with low-latency). Applica-
tion of alternative system models to many practical detection problems

184 ITERATIVE DETECTION

appears to be a rich area for future research. Similarly, exploring en-
coder constructions that result in simplified iterative decoders is another
interesting area.

Convergence of message passing on graphs with cycles is a very active
area of research. Recent results address the dynamics of message passing
in PCCC decoders using non-linear system analysis methods [Ag99] or
SNR transformations [HaEl00]. Also, a practical limit on performance
for turbo-like codes has been obtained which is akin to the computa-
tional cut-off rate for sequential decoding [Ag99, RiUr00]. Similarly,
recent advances have been made in obtaining good upper bounds on the
performance ML decoding of turbo-like codes [Di99]. An interesting area
for future research is to obtain good lower bounds, potentially using the
method of uniform side information introduced in Chapter 1.

Modified message passing rules may be useful when the system is
modeled by a graph with short cycles. For example, if no interleavers
separate subsystems, then the sequence of soft information exchanged
has a high degree of temporal correlation. This correlation is scram-
bled when an interleaver is present so that, on a small time scale, the
soft information appears uncorrelated. In such cases, it may be useful
to model the statistics of the soft information sequence and compute
messages accordingly. For example, instead of the marginal soft inverse
based on a memoryless channel, one may consider a SISO based on a
colored noise channel. In general, modified rules may be obtained by
viewing the marginal likelihoods as an observation and deriving likeli-
hood combining rules (e.g., see Problem 2.28). It may be possible to
draw upon results from the distributed detection and data fusion fields
for these rules.

2.9 Problems

2.1. Suppose that S(ζ) is a set of statistics for deciding on H(ζ) from
z(ζ) that is not sufficient. Show that any other set of decision
statistics J (ζ) obtained by a deterministic transformation on
S(ζ) is also insufficient.

2.2. Consider making a MAP decision for a hypothesis H(ζ) based on
the observation z1(ζ). Suppose that you already have access to a
processing unit which takes as its inputs the observation z1 and
the a-priori probabilities {p(Hm)} to produce the optimal deci-
sion. This processing unit is shown in Fig-2.76. Suppose that you
now have access to a second, independent observation z2(ζ) and
you would like to use this same processing unit. Show that the op-
timal decision based on the observation {z1, z2} may be obtained

Principles of Iterative Detection 185

by using this processor with p′(Hm) = αp(z2|Hm)p(Hm) where α
is a constant selected so that p′(Hm) sums to unity over all pos-
sibilities. What happens if you replace p(z2|Hm) by p(Hm|z2)?

decision

information
a-priori

observation

Figure 2.76. The processing unit available in Problem 2.2

2.3. Consider the parallel concatenation analogous to the serial con-
catenation of Fig-2.4. Specifically, consider the binary input se-
quence am driving a serial to parallel converter (1 to 2), followed
by the 4PAM mapper to produce xn. Also, am drives a simple
FSM with memory L to produce ym – i.e., ym and am are on the
same time scale and there are half as many xn. Determine the
MAP received for am if ym and xn are both transmitted over in-
dependent AWGN channels. Hint: the entire system is an FSM.

2.4. Repeat the calculations of Example 2.5 for the min∗-sum version
using the numerical values in Example 1.12 and Fig-1.15 – give
the MO[a3] and MO[x7] (i.e., extrinsic output metrics).

2.5. Using the results of Problem 1.22, modify your program for the
forward-backward algorithm to compute extrinsic output metrics
on both the FSM inputs and outputs. You may want to pass flags
to allow you to disable one or more of the four SISO ports.

2.6. Based on a BPSK modulation scheme and an ISI-AWGN chan-
nel, create histograms of the output metrics generated by a min-
sum forward-backward algorithm. Specifically, assume that the
input metrics MI[ak] are zero (uniform) and use the channel
fT = [1 2 1]. For various SNR values, generate a histogram
of |MO[ak = +1]−MO[ak = −1]|. Repeat this for the min∗-sum
case.

2.7. Suppose that one used the output of a SISO to bias another run
of that same SISO. Specifically, for an FSM with uniform in-
puts, after running the forward-backward algorithm to produce
MO(1)[ak], discuss the effects of setting MI(2)[ak] = MO(1)[ak]
to produce MO(2)[ak] with another run of the forward-backward
SISO – i.e., use MI[xk] for each of these “self-iterations.” For ex-
ample, are MO(1)[ak] and MO(2)[ak] threshold consistent? What
about the implied sequence decisions? Consider the same method
for an APP-based SISO – how do your conclusions vary? Also

186 ITERATIVE DETECTION

k = 0 1 2 3 4

I(k) = 3 1 4 0 2

k = 0 1 2 3 4 5 6

zk(0) = 0.414 0.564 -1.66 -1.26 -0.457 0.455 -0.539

zk(1) = -2.643 -0.631 1.567 -0.820 -0.997 1.889 -0.346

Table 2.5. The interleaver definition and observation sequence for Problem 2.11.

consider iterating intrinsic information in place of extrinsic infor-
mation.

2.8. Show that, for an AWGN channel, in order to use the metrics
MI[xk] = |zk − xk|2 and MI[ak] = −N0 ln(p(ak)), a log-domain
version of the APP-SISO should use the marginalization operator

min∗
N0

(x, y) = min(x, y)−N0 ln
(

1 + e
−|x−y|

N0

)
(2.60)

Show that after processing, the soft-output produced by a soft
inverse is N0M∗SM[·].

2.9. Consider a concatenated system with two output sequences xk(0)
and xk(1) that are transmitted over independent AWGN chan-
nels with noise spectral level N0(0) and N0(1), respectively. If
the a-priori probabilities on the global system inputs is uniform,
show that an MSM-based iterative decoder requires knowledge of
N0(0)/N0(1) and an APP-based iterative decoder requires knowl-
edge of N0(0) and N0(1).

2.10. Show that the encoders in Fig-2.79 are realizations of the same
FSM as that in Fig-2.25.

2.11. Consider the PCCC from Section 2.4.3.1 with K = 7 and the
sequence of channel observations and interleaver as show in Ta-
ble 2.5. This data was generated using

√
Es = 1 and Eb/N0 = 1

dB. Create tables for Fk−1[sk], Bk[sk] for each of the four states
and k = 0, . . . 7. Also, create a table for MO[bk] and MO[ak]
and M[bk] (the soft-broadcaster output to be thresholded) for
k = 0, 1, . . . 4. Hand compute (or use a spread-sheet) the val-
ues of these quantities for two iterations of the (min-sum) PCCC
decoder described in Section 2.4.3.1 and fill-in these tables (i.e.,
four Fk−1[sk] and Bk[sk] tables, and two MO[ak], MO[bk], and
M[bk] tables).

Principles of Iterative Detection 187

2.12. Suppose that the two output bits of the rate 1/2 PCCC consid-
ered in Section 2.4.3.1 were mapped onto a 4-ary constellation.
Specifically, consider the 4-PAM labeling of Fig-1.4 and a Gray-
labeled QPSK constellation. Show that for the 4PAM case, a
SOMAP should be included in the decoding iteration. Also show
that, in contrast, for the QPSK case the corresponding SOMAP
need be activated just once and then the decoding proceeds as
described in the example considered in Section 2.4.3.1. Why is
there a difference?

2.13. Consider the FSM defined by the RSC constituent codes in Sec-
tion 2.4.3.1 with initial state set to s0 = 0 with probability one.
Show that for the sliding window SISO, if k−D = 1, APPk+D

k−D[uk]
should be computed using non-uniform initialization of the for-
ward recursion based on p(s0). Specify this initialization.

2.14. Repeat the SW-SISO simulations of Example 2.11 for D = 4 using
the initialization of forward and backward state metrics suggested
in Example 2.12.

2.15. Consider the multiuser channel with L = 1, but without a specific
structure for R(1).

(a) Find an expression for Mk,m[·] analogous to that in (2.41) by
applying (2.39) to all three terms inside the real-part operator
in (2.37c).

(b) Show that this allows processing on a trellis with |A|M states,
but with state transitions corresponding to individual user
data transitions. Sketch the trellis corresponding to the ex-
ample in Fig-2.35 for the case of general R(1). Is there any
advantage to using this trellis and Mk,m[·] over the trellis in
Fig-2.35(a) and Mk[ak,ak−1]?

(c) Assuming the upper-triangular structure for R(1), simplify
this expression for Mk,m[·]. Does this enable processing on a
|A|M−1-state trellis?

2.16. Show that the equivalent discrete-time multiuser channel model
at the output of matched filter bank is

rk(ζ) = yk(a(ζ)) + nk(ζ) (2.61a)

yk =
L∑

m=0

R(m)ak−m (2.61b)

with E{nk+n(ζ)nH
k (ζ)} = N0R(n).

188 ITERATIVE DETECTION

2.17. Consider the FSM defined by the RSC constituent codes in Sec-
tion 2.4.3.1 with the tail bits added to drive the encoder to the
zero state. Verify that, for the purposes of computing MO[bk] for
k = 0, . . . (K − 3), one can account for the tail bits by either set-
ting MI[bK−1] and MI[bK−2] to zero or infinity accordingly or by
setting the backward state metrics BK [sK] to zero for sK = 0 and
infinity otherwise. Are these two approaches the same if extrinsic
soft-out information is desired for the tail bits?

2.18. Consider the equivalent system block diagram for the PCCC sys-
tem of Fig-2.24 as shown in Fig-2.77. Give an activation sched-
ule for the associated iterative decoder that produces exactly the
same decoding algorithm considered in Section 2.4.3.1.

parity

RSC1

RSC2I (odd)

(even)

systematic

Figure 2.77. An equivalent model of the PCCC encoder of Fig-2.24.

2.19. [LiRi99] Consider the bit interleaved coded modulation system
shown in Fig-2.78. Is the non-iterative concatenated detector
optimal in this case? Draw the associated explicit index diagram.

R = 2/3 8 PSK (Gray)

IConv.
Code

Figure 2.78. The system consider in Problem 2.19.

2.20. Based on (1.70), the forward and backward parameters in the
APP algorithm are

Fk
k1

[sk] ≡ APPk−1
k1

[sk] ≡ p(zk−1
k1

, sk) (2.62a)

Bk2
k [sk] ≡ APPk2

k [sk] ≡ p(zk2
k |sk) (2.62b)

One method suggested in [BeMoDiPo96] for a fixed-lag algo-
rithm was the forward-backward sum-product algorithm in which
the backward recursion parameters were initialized using the for-
ward recursion parameters. Specifically, it was suggested that
Bk+D

k+D+1[sk+D+1] = Fk+D
0 [sk+D+1] for each conditional value of

sk+D+1. What is the extrinsic soft information produced by this
algorithm?

Principles of Iterative Detection 189

DD

D D
vk(1)

vk(0)

pk qk qk−1

uk
pk−1

(b)

pk−1 qkqk−1

vk(1)

vk(0)

(a)

uk

Figure 2.79. Alternate structures for the encoder of Fig-2.25.

2.21. Show that, for a simple FSM, a D = L fixed-lag SISO can be im-
plemented using only a (single) forward recursion with a modified
completion operation.

2.22. [Vi98] Draw figures analogous to Fig-2.41 and Fig-2.44 for the
minimum-lag forward-backward SISO with H = D.

2.23. [BeCh00] Explain how tree-SISOs of the form in Fig-2.48 can
be tiled without any overlap to provide a minimum half window
SISO.

2.24. Show that activation of the soft inverse of a transition subsystem
is as shown in Fig-2.54. Specifically, for min-sum processing, show
that this does one forward ACS step, one backward ACS step, and
the completion steps for the system inputs and outputs.

2.25. For the iterative detector of Example 2.15 and determine the
computational complexity of the activation of each X−s

k node in
terms of 4-way ACS operations. The forward-backward algorithm
requires roughly 4 × 2 ×K = 8K 2-way ACS operations for the
forward and backward recursions and K 4-way ACSs for the com-
pletion operations (on ak only). Discuss how many iterations of
the iterative detector can be made with complexity comparable
to the forward-backward algorithm. Is there any other advantage
to the structure of the iterative detector?

2.26. The goal of this problem is to relate the tree-SISO in Section 2.5.5
to the forward-backward tree-SISO (FBT-SISO) of Example 2.19.

(a) Show that the inward message passing in Fig-2.64 is the same
as that for the “middle tree” in Fig-2.49 – i.e., the tree in
Fig-2.49 producing F[s4] and B[s4].

190 ITERATIVE DETECTION

(b) Show that after the inward message pass in Fig-2.64, one
could obtain MSM7

0[s4].
(c) Show that the computation of F[s5] in Fig-2.49 may be viewed

as a forward message passing over a tree similar to that in
Fig-2.63, but not including any validly check for s6, s7, and
s8.

(d) Generalize the above to show that the tree-SISO in Fig-2.63
can be obtained by six different validity check trees. Explain
why an outward message pass is not required. Hint: are the
validity checks redundant?

(e) Show that, if only hard decisions are desired that a “tree-
Viterbi algorithm” can be defined by the inward message
passing in Fig-2.64. Specifically, describe the “survivor” in-
formation that would need to be stored during this inward
recursion and the associated traceback. For similar ideas, see
[FeMe89].

2.27. Show that the marginal soft inverse of the “funnel” defined in Ex-
ample 2.22 is the same as a soft broadcaster. Specifically, consider
a broadcaster with input xk(0) and outputs c

(1)
k (0) = c

(2)
k (0) =

c
(3)
k (0) = xk(0) and show that the soft inverse of this system is

the same as that of the funnel.
2.28. Consider a binary hypothesis testing problem with N observa-

tions: z(ζ, 0) . . . z(ζ,N − 1). Recall that the MAP receiver will
form p(zN−1

0 |Hm)p(Hm) and maximize over m = 0, 1. In this
problem we consider the case where instead of z(ζ, n), the obser-
vations are pre-processed and in place of {z(ζ, n)} the receiver
has access to the random variables Lm(ζ, n) = gm(z(ζ, n)) for
m = 0, 1 and n = 0, . . . N − 1, where

gm(zn) = pz(ζ,n)(zn|Hm) (2.63)

In other words, only the marginal channel likelihoods are avail-
able.
(a) In general, is the set of observations {Lm(ζ, n)} for m = 0, 1

and n = 0, 2 . . . N − 1 a set of sufficient statistics for the
decision problem? Explain.

(b) Consider the special case of N = 2 and

H0 : z(ζ) =
√

E/2
[

+1
+1

]
+ w(ζ) (2.64a)

H1 : z(ζ) =
√

E/5
[
−2
−1

]
+ w(ζ) (2.64b)

Principles of Iterative Detection 191

where w(ζ) is a mean-zero Gaussian vector with covariance

Kw =
N0

2

[
1 ρ
ρ 1

]
(2.65)

Show that the optimal MAP receiver based on observing z(ζ)
can be realized in terms of L0(ζ, 0), L1(ζ, 0), L0(ζ, 1), and
L1(ζ, 1)? Diagram the likelihood combining required to im-
plement the MAP receiver for observation z(ζ) in terms of
the four likelihoods.

(c) Compare the performance of the optimal likelihood combining
and the receiver that simply multiplies likelihoods –i.e.,

L0(ζ, 0)L0(ζ, 1)
H0
>
<
H1

L1(ζ, 0)L1(ζ, 1) (2.66)

Characterize the performance difference as a function of ρ and
E/N0

(d) Revisit your answer to part (a). If you believe that the
marginal likelihoods are not a sufficient statistic, can you pro-
vide a counterexample? Otherwise can you prove their suffi-
ciency? Given a condition on the signals s0 and s1 (associated
with the hypotheses) which ensures that the optimal receiver
based on the marginal likelihoods in the same as that based
on the joint likelihood.

Chapter 3

ITERATIVE DETECTION FOR
COMPLEXITY REDUCTION

As outlined in the introduction of this book and demonstrated in
Chapter 2, iterative detection itself may be viewed as a complexity re-
duction technique. In fact, the vast majority of complexity reduction
obtained in the examples of this book and chapter results from model-
ing a given system efficiently. Specifically, a decomposition into a con-
catenated network of subsystems or, equivalently, an efficient (possibly
loopy) graphical model is sought for which the associated iterative de-
tector is relatively simple. Comparing the iterative detectors in Section
2.4 against the optimal receivers that directly exploit the global system
structure, it is apparent that a huge decrease in complexity has been
achieved. Furthermore, all evidence indicates that this complexity re-
duction comes at the cost of little performance degradation.

In this chapter we exploit this view of iterative detection to obtain
significant complexity reduction (even for systems in isolation). First, a
set of tools based primarily on decision feedback concepts is introduced
that can yield complexity reduction beyond that inherent to the model-
ing gain described above. When these techniques are applied or iterative
detection is performed on graphs with short cycles, modification of the it-
erative detection rules can improve performance. We demonstrate these
approaches on (coded) ISI channels.

3.1 Complexity Reduction Tools
Even though each marginal soft inverse block considers only local

structure, it does so using locally optimal methods. For example, for an
FSM subsystem, the marginal soft inverse has complexity determined by
the number of FSM states. For a simple FSM with input ak, therefore,
the complexity grows as |A|L, where L is the memory. Although this

193

194 ITERATIVE DETECTION

is typically a small fraction of the complexity of the globally optimal
processing, it may still be prohibitive as the following simple example
illustrates.

Example 3.1.
Consider a TCM-Interleaver-ISI serial concatenation with the associated
iterative detector as shown in Fig-2.20. If the TCM-encoded sequence
is QPSK modulated, and the ISI channel has 10 taps (L = 9), an inner
SISO based on the forward-backward algorithm will run on a trellis with
49 =262,144 states with 1,048,576 different transitions at each time.

End Example

In fact, while an iterative detector will typically have several types of
soft inverses (e.g., interleaver/deinterleavers, SOMAPs, SOBCs, etc.), it
is common for the computational and storage complexities of the FSM
soft inverse to dominate that of the overall detector. Thus, much of our
focus in this chapter is on the soft inverse of the FSM, specifically on
reducing the complexity of the forward-backward algorithm. Below is a
brief list of methods that can be used to reduce complexity.

3.1.1 Operation Simplification
Several modifications to the baseline forward-backward SISO (i.e., the

fixed-interval) algorithm were described in Chapter 2 that are primar-
ily intended to decrease the computation and/or storage requirements
of the SISO. For example, fixed-lag approaches yield a significant re-
duction in memory requirements. The minimum-lag modification yields
further reduction in complexity, as does L-early completion in the case
of a simple FSM. Similarly, the primary allure of SOVAs is a potential
complexity reduction relative to the forward-backward algorithm. Many
references also present the min-sum algorithm1 as an approximation to
the min∗-sum version using∑

a:uk

p(z,a) ∼= max
a:uk

p(z,a) (3.1)

3.1.2 Decision Feedback Techniques
Decision feedback is a well-known approach for complexity reduction.

Several complexity reduction methods for iterative detection have been

1According to the view presented in Chapters 1-2, both may be justified from a MAP detec-
tion point of view. Both are suboptimal when used on loopy graphs, but approximate each
other at high SNR.

Iterative Detection for Complexity Reduction 195

suggested based on decision feedback. In fact, one may view iterative
detection itself as a method of (soft) decision feedback. Techniques sug-
gested differ in several aspects. First, either soft or hard decision in-
formation can be fedback. Initially, we focus on hard decision feedback
(HDF) which may be viewed as replacing soft information on a quantity
by a hard decision (e.g., zero metric for one conditional value and infi-
nite for the others). Second, the scope over which the feedback decisions
are enforced is another variation. For example, one may make a hard
decision on an input bit after the first iteration and enforce that hard
decision in all subsequent processing. Alternatively, one may enforce a
hard decision only locally to simplify processing and then release this
hard decision condition. For example, a hard decision on an input bit
may be made after the first iteration and used to simplify the activation
of a single iteration of a SISO, with this decision released for subsequent
processing. This may eventually lead to soft information on this bit that
changes the implied hard decision. Third, based on the implicit index
block diagram view, it may be useful to distinguish between internal
versus external decision feedback. The latter corresponds to enforcing
decision feedback at the soft-in ports of a soft inverse and the former
corresponds to some decision feedback internal to the (approximate) soft
inverse processor. These concepts are illustrated by the following exam-
ples.

Internal Hard Decision Feedback for State Reduction Hard
decision feedback is a well-known technique for complexity reduction
in forward- (backward-) only hard-decision algorithms. Specifically, the
reduced-state sequence estimation (RSSE) algorithm [EyQu88], and the
similar delayed decision feedback sequence estimation (DDFSE) algo-
rithm [DuHe89] both use decision feedback on a per-survivor basis to
approximate the Viterbi algorithm using a smaller trellis. A RSSE
algorithm with reverse-time structure was suggested in [McKe97]. In
[MuGeHu96] HDF has been applied to the L2VS (fixed-lag) algorithm.
This is conceptually straightforward since the L2VS has a forward-only
structure (see Problem 3.12). Similarly, the same approach has been
applied to the forward-backward SISO of Chapter 2 [CoFeRa00]. This
is accomplished by running a reduced state forward recursion (e.g., as
in DDFSE) and storing all transition metrics. These transition metrics
are then used for the backward recursion and completion operation (see
Problem 3.12).

Note that these reduced-state techniques apply hard decision feedback
internal to a SISO and enforce these hard decisions only for the current
activation of the SISO.

196 ITERATIVE DETECTION

Internal Probability Truncation Other complexity reduction sche-
mes based on soft information have been suggested. Exploiting the fact
that many conditional values are highly unlikely, the complexity can
be reduced by truncating this soft information. For example, in the
probability domain with “sum-to-unity” normalization (e.g., see (2.15))
a small probability can be truncated to zero. This was suggested in
[FrAn98] for the forward and backward state APPs.2 After truncation,
paths emanating from that state need not be considered in the subse-
quent recursion. This is illustrated in the following example.

Example 3.2.
Consider a forward sum-product recursion on a four-state trellis with
sum-to-unity normalization where all state probabilities below 0.1 are
truncated to zero. For the scenario shown in Fig-3.1, the forward state
APPs of state 1 and 3 at time k are truncated to zero. Consequently
the transitions departing from these states can be dropped from the fol-
lowing calculations.

0.03 0.46
1

0.21 0.00
2

0.04 0.00
3

0.72 0.54
0

sk sk+1 sk+2

Figure 3.1. Illustration of the small probability truncation scheme in an sum-product
SISO algorithm. The dotted lines represent the transitions killed due to the proba-
bility truncation.

End Example

Similar to the reduced-state approaches, this technique applies hard
decision feedback (on the states) internal to the SISO and enforces these
decisions only during the given activation. In contrast to the reduced-
state approaches described above, however, this probability truncation
yields a variable-complexity algorithm with a reduction in the average
computational complexity. This presents unique challenges for hardware
implementation. For example, the chip area for such an algorithm is

2This is similar to the concept underlying the so-called T-algorithm for reduced complexity
sequence detection [Si89].

Iterative Detection for Complexity Reduction 197

typically as large as the standard fixed-complexity algorithm but the
power consumption may be reduced depending on the aggressiveness of
the design (e.g., computational units not being used may be powered
down). Another potentially challenging aspect of variable-complexity
algorithms is that the amount of effort expended is typically a function
of the SNR and other parameters which results in a variable processing
time (throughput) as well.

External Hard Decision Feedback In [FrKs98], a so-called early
detection scheme is based on external HDF which, once performed, is
enforced over all subsequent processing. Any quantity which has high
reliability (i.e., dominance of the soft information by one conditional
value) is decided early and held fixed from that point on in the pro-
cessing. These early decisions result in trellis splicing in subsequent
iterations and therefore reduced complexity. This is also a variable com-
plexity method.

Example 3.3.
Suppose that after the n-th iteration in the decoding procedure for a
turbo code, we obtain P[ak = 0] = 0.98 and P[ak = 1] = 0.02 as the
intrinsic information used to make decisions. Based on this, it appears
reliable to decide âk = 0. A decoder using the early decision technique
will fix the final decision for ak to 0 and run all subsequent iterations
with this value fixed. In the next iteration, therefore, the transition from
sk to sk+1 is deterministic due to the early decision âk = 0. The k-th
transition can then be dropped out of the forward and backward recur-
sions and the two trellis segments between sk and sk+2 can be “spliced”
into a single segment. This results in computational and storage savings
as more transitions get spliced out.

End Example

External Soft Estimate Feedback In contrast to hard decision
feedback, which is based on selecting one of the conditional values for a
digital quantity, soft estimate feedback can be used to replace a quantity
by its average value. Computation of this average value can be based
on available soft information. For example, consider a linear ISI channel
with input ak and output xk. Furthermore, assume that some of the ISI
coefficients are small. In this case, it may be effective to average out the
effects of these taps using the current soft information available for ak.
Specifically, we can apply the following approximation

∑
|fi|<ε

fiak−i
∼=
∑
|fi|<ε

∑
a

fiaP[ak−i = a] =
∑
|fi|<ε

fiE {ak−i(ζ)} (3.2)

198 ITERATIVE DETECTION

ãk

S[ak]

transition

Figure 3.2. Soft decision feedback on a simple FSM transition.

where the expectation is over the pmf implied by the properly normal-
ized soft information (i.e., sum-to-unity normalization in the probability
domain). In this case ãi = E{ai(ζ)} may be viewed as the soft estimate
being fedback. Note that, in general, ãi �∈ A. This concept is illustrated
in Fig-3.2. While the linearity of the channel simplifies the computa-
tion, the soft estimate feedback concept may be applied to more general
problems (see Problem 3.4). For this linear ISI example, if the average
value of ak−i(ζ) is zero under the current beliefs, soft estimate feedback
corresponds to ignoring those taps (i.e., this would be the case if A is a
symmetric constellation and the current beliefs are uniform).

Connection Cutting As the above special case of soft estimate feed-
back suggests, it may be reasonable to simply ignore a variable associ-
ated with a soft inverse processor for the purposes of performing the local
combining and marginalization. We refer to this as connection cutting.
This may be a reasonable approach for complexity reduction, especially
when the local dependency on that variable is weak. Furthermore, this
may have the effect of alleviating the problem of short cycles in some
message passing algorithms. This is illustrated in the following example.

Example 3.4.
Consider the (suboptimal) SISO in Fig-2.59. For a given k, consider
cutting some connections corresponding to message passes from X−s

k back
to the soft broadcaster. In fact, considerable complexity reduction can
be realized by cutting all but one of these message passing connections.
In this case, we refer to the connection not cut as the pivot location.
In Fig-3.3, the connection-cut SISO is shown based on the pivot of tap
1 (i.e., the “2” tap in [1, 2, 1]). How many and which connections are
cut are design options. It is reasonable to expect, however that the
connections corresponding to “heavier” taps (i.e., larger energy in the
taps) should not be cut.

End Example

Iterative Detection for Complexity Reduction 199

S[xk−2] S[xk−1] S[xk] S[xk+1]

S[ak−3] S[ak−2] S[ak−1] S[ak]

X−s
k−2 X−s

k−1 X−s
k X−s

k+1

Figure 3.3. The SISO algorithm from Fig-2.58 with all but the “center” connections
to the soft broadcasters cut. Dashed lines indicate a cut connection – i.e., no messages
are passed along these edges and uniform soft information is used instead.

3.2 Modified Iterative Detection Rules
When working with graphical models having short cycles and/or using

decision feedback methods, it may be useful to slightly modify the iter-
ative detection rules to alleviate rapid convergence to a local minimum
or even divergence. Below, we describe several reasonable modifications
to the standard conventions.

3.2.1 Altering the Convergence Rate
Many iterative algorithms (i.e., iterative detection being a special

case) exhibit a trade-off between convergence rate and accuracy of the
eventual solution. Specifically, faster convergence typically comes at the
expense of a less accurate solution (e.g., convergence to a local minimum
is more likely). This concept is illustrated in Fig-3.4.

Iteration No.

BER

Figure 3.4. Illustration of relationship between convergence rate and system perfor-
mance typical of iterative algorithms.

We have observed that, when using aggressive complexity reduction
techniques and/or graphical models with short cycles, iterative detectors
can convergence rapidly with relatively poor performance. We have

200 ITERATIVE DETECTION

β
1− β

β

D
SISO

Figure 3.5. A single-pole low pass filter for soft information (shown filtering the soft-
out on the subsystem output). Note the unit-delay is applied across activations. The
symbol shown to the right is adopted to indicate such a filter in the following.

found that applying techniques to slow the convergence of the iterative
detector can improve the performance in such cases.

The method that we have utilized most effectively is soft information
filtering which simply filters out large variations in the soft information
of a particular quantity from one activation to the next. For exam-
ple, a single-pole soft information filter was proposed in [ChChNe98]
to slow down the convergence. A similar scheme has been suggested
in [MuWeJo99] to alleviate steady-state oscillations (e.g., limit cycles).
This concept is illustrated in Fig-3.5. The actual soft output information
after n-th activation that is passed to other processors in3

SO(n)[a]← β × SO(n)[a] + (1− β)× SO(n−1)[a] (3.3)

where SO(n)[a] on the right hand side of (3.3) is the standard extrin-
sic information produced by the processor. The parameter β can be
used to adjust the bandwidth of the filter. Specifically, when β = 1,
there is no filtering. The smaller β is selected, the smaller the filter
bandwidth which is expected to slow convergence. Clearly, this concept
generalizes to more complicated filter designs, although we have found
the performance to be relatively insensitive to the specific filter choice.
This concept is demonstrated in the next example.

Example 3.5.
In the (suboptimal) SISO of Example 2.15, a filter can be used for each
soft-out port of the soft broadcaster nodes in Fig-2.59. As shown in
Fig-3.6, filtering with β = 0.3 provides more than a 2 dB gain in Eb/N0

at high SNR. This gain is achieved only after the unfiltered iterative
detector has converged (i.e., after the 6-th iteration). By trial and error,
it was found that β = 0.3 provided the best performance.

3The superscript (n) used in notation S(n)[·] denotes the number of iteration with which the
soft quantity is associated.

Iterative Detection for Complexity Reduction 201

100

10−1

10−2

10−3

10−4

10−5

10−6

0 4

6

8

10

12 16

ML-SqD
B

it
E

rr
or

R
at

e

Eb/N0 (dB)

ID (no filtering)

ID (β = 0.3)

Figure 3.6. Impact of soft information filtering on the performance of SISO. The
numbers attached to the curves are the iteration numbers used.

����������
����������

����������
����������

100

10−1

10−2

10−3

10−4

10−5

10−6

0.3

0.8

0 4 8 12 16

ML-SqD

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

ID

ID (tap 1)

ID (tap 0)

Figure 3.7. Impact of connection cutting on the performance of SISO. The value of
β is attached to each curve if the soft information filtering is employed. 20 iterations
has been used for ID (tap 0). All other iterative schemes use 10 iterations.

This same approach can be applied in conjunction with connection
cutting. For example, the effect of the above filtering was considered
with two connection cutting schemes of the form described in Exam-
ple 3.4. Specifically, all but one connection from each X−s

k back to the
soft broadcasters was cut. We consider two pivot locations: tap 0 (i.e.,
the first “1” tap in (1, 2, 1)), and tap 1 (i.e., the “2” tap). The results
are shown in Fig-3.7 with comparison to the fully-connected version with
filtering. It was observed that filtering did not significantly improve

202 ITERATIVE DETECTION

the performance of the connection-cut version using tap 0 as the pivot.
When tap 1 is used as the pivot, filtering with β = 0.8 provides an im-
provement of approximately 2 dB at high SNR. As expected, using tap 1
as the pivot yields better performance, but this is still nearly 4 dB worse
than the fully-connected version. Compared to the fully-connected ver-
sion in Example 2.15, however, the connection cutting scheme reduces
the marginalization operations at each X−s by a factor 3 and no compu-
tation is required at the soft broadcasters.

End Example

Other methods for slowing the convergence are conceivable. For ex-
ample, we use the term belief degradation to refer to methods that modify
the standard soft-out information so that it is less reliable. For example,
let PO[b] be the standard extrinsic information associated with a binary
variable and assume that it has been normalized to sum to unity. This
information can be degraded as

PO[b]←
{

0.5 if |PO[b]− 0.5| < ∆
PO[b] otherwise (3.4)

where ∆ < 0.5 is a belief threshold. The larger ∆ is chosen, the slower
the convergence is expected to be. Other choices for the degrading func-
tion are possible (i.e., see Problem 3.6).

Complexity reduction can be achieved by performing fewer iterations.
Thus, just as one can slow the convergence of an iterative detector, an
attempt can be made to increase this rate of convergence. Thus, some
performance degradation may be traded to obtain fewer iterations (i.e.,
complexity reduction). For example, instead of removing all of the soft-
in information on a quantity to create extrinsic information, one could
remove only part of this information. Similarly, one could apply the
opposite of the belief degrading concept above (i.e., belief enhancing) to
increase the convergence rate.

3.2.2 Modified Initialization Schemes
In an effort to increase the reliability of the initial soft-in information,

one can attempt to use some additional information to form this bias.
Below we describe two methods along these lines.

Cross Initial Combining In Example 2.15 the a-priori information
p(zk|xk(tk) = p(zk|tk) has been used to initialize PI[xk]. Since the ob-
jective of the iterative algorithm is to converge to the likelihood of ak

based on the whole observation sequence z, it may desirable to com-
pute PI[xk] based on a larger region of the observation data to achieve

Iterative Detection for Complexity Reduction 203

stronger initial combining effects. In this specific example (3-tap ISI),
PI[xk] can be set using

PI[xk] = p(zk+1
k−1|xk(tk)) = p(zk|tk)×

∑
ak+1

p(zk+1|tk+1)p(ak+1)

×
∑

ak−L−1

p(zk−1|tk−1)p(ak−L−1) (3.5)

As illustrated in Fig-3.8, three observations are used in this initialization
scheme. This approach was proposed in [ChChNe98] for two dimensional

PI[tk]

zkzk−1 zk+1

Figure 3.8. Illustration of a 3-term cross initial combining scheme.

applications. Thus, we refer to this approach as cross initial combining
(i.e., in 2D, the region is shaped like a cross). More than three ob-
servations can be included if desired. However, using more than three
observations in this example requires significantly more complexity and
we have observed that most of the benefits of cross combining are ob-
tained with small combining regions.

Example 3.6.
The cross initial combining scheme in (3.5) was applied to the iterative
processors in Example 3.4 with the results presented in Fig-3.9. For the
connection-cut versions, the cross initial combining helps to improve the
performance significantly. In fact, the version using tap 0 as the pivot
outperforms the fully-connected SISO at high SNRs with a lower com-
plexity. Thus, the cross initial combining may be useful to compensate
for the performance degradation due to complexity reduction techniques.

End Example

Self-Iteration If an approximation to the marginal soft inverse is
used as a SISO, it may be reasonable to reactivate the SISO applying
the soft-out information as soft-in information for the next activation.
We will use this technique for reduced-state SISOs in this chapter and
(suboptimal) adaptive SISOs in Chapter 4. In this context, we refer to
this technique as self-iteration. It is interesting to note, however, that
for a given concatenated system, the standard iterative detector is an

204 ITERATIVE DETECTION

���������
���������

���������
���������

100

10−1

10−2

10−3

10−4

10−5

10−6

0.3 0.8

0 4 8 12 16

ML-SqD
B

it
E

rr
or

R
at

e

Eb/N0 (dB)

ID

ID (tap 1)

ID (tap 0)

Figure 3.9. Impact of cross initial combining on the performance of SISO. The value
of β is attached to each curve if soft information filtering is employed. The fully-
connected version (labeled ID) uses 10 iterations and all other curves are based on 20
iterations.

approximation of the marginal soft inverse of the global system. Thus,
applying self-iteration to this suboptimal SISO for the global system
may be meaningful. This concept is illustrated in Fig-3.10 for a seri-
ally concatenated system. In this context, SO[ak] can be viewed as the
output of a suboptimal SISO for the global system. Thus, self-iteration
applied to this system would entail using the SO(n−1)[ak] for SI(n)[ak].

S[ak] S[xk]
I

I−1

SISO
outer inner

SISO

iterative detector

suboptimal SISO for
the global system

self-iteration

Figure 3.10. Self-iteration applied to a suboptimal (global) SISO for a serially con-
catenated system.

3.3 A Reduced-State SISO with Self-Iteration
In this section we present a reduced-state SISO (RS-SISO) based on

separate decision feedback for the forward and backward recursions of
the forward-backward algorithm [ChCh00]. This results in an approxi-
mate soft inverse for an FSM. We apply self-iteration to this RS-SISO to
refine the soft information produced. The performance is demonstrated
for ISI channels both in isolation and as part of a concatenated system.

Iterative Detection for Complexity Reduction 205

3.3.1 Reduced-State SISO Algorithm
Hard decision feedback of the type used in DDFSE can be applied

to both the forward and backward recursions of the standard forward-
backward SISO. However, the completion step must be modified to take
into account the HDF. We refer to the resulting (suboptimal soft in-
verse) SISO algorithm as the reduced-state (RS) SISO algorithm. For
the simplicity of presentation, we consider the simple FSM with state
sk = ak−1

k−L. With little modification, however, this complexity reduction
scheme is also applicable to other types of FSMs.

To reduce the number of states, the RS-SISO truncates the state
and rebuilds the corresponding trellis. The truncated trellis state at
time k is defined as vk = ak−1

k−L1
, where L1 ≤ L. The corresponding

truncated trellis transition at time k is τk = (vk, vk+1). Note that all of
the information in τk (the trellis transition) can be obtained from tk (the
FSM transition). We denote this relation by τk � tk.4 If L1 = L, then
vk = sk, and the following derivation will simply result in the standard
forward-backward SISO algorithm. We present the derivation using min-
sum computations for concreteness. The forward and backward state
metrics F[vk] and B[vk] are defined for the RS-SISO algorithm recursively
as

F[vk+1] = min
vk:vk+1

(
F[vk] + M(f)[τk]

)
(3.6a)

B[vk] = min
vk+1:vk

(
B[vk+1] + M(b)[τk]

)
(3.6b)

where M(f)[τk] and M(b)[τk] are the truncated-transition metrics in the
forward and backward recursions, respectively. Specifically, the forward
recursion is initialized by

F[v0] = min
s0:v0

MI[s0] (3.7)

where MI[s0] is the a-priori soft information on s0. As usual, the back-
ward recursion is begun with uniform state metrics. If, as described
in Chapters 1 and 2, one would like to account for tail bit informa-
tion by initializing the backward state metrics, one may use B[vK] =
minsK :vK

MI[sK].
Due to state reduction, the trellis transition metrics required in (3.6a)

and (3.6b) are not directly available. However, this soft information is

4This is essentially a subset relation. However, since our notation implies that, for example,
tk is a variable and not a set, we use this modified notation. In the following, we will use �,
�, �, and 	, in place of the standard set operations/relations ⊂, ⊃, ∪, and ∩ to describe the
analogous relations between variables.

206 ITERATIVE DETECTION

closely related to the transition metrics Mk[tk] that are given. Since
τk � tk, one can obtain the required metrics by marginalization

M(f)[τk] = M(b)[τk] = min
tk:τk

Mk[tk]. (3.8)

However, it can be shown that the complexity of using (3.8) with (3.6a–
3.6b) will be close to that of the standard forward-backward SISO algo-
rithm. In order to achieve the goal of complexity reduction hard decision
feedback is employed in the calculation of M[τk]. Define the survivor
state associated with vk in the forward (or backward) recursion as the
state contributing most in the marginalization operation in (3.6a) (or
(3.6b)). For the min-sum version, this survivor state is exactly the same
as in DDFSE [DuHe89]. On the other hand, since the marginalization in
the APP version is the summation operation, this definition of survivor
state is not the only reasonable choice. Therefore, at this point in the
development, it is clear that the RS-SISO discussed is not a semi-ring
algorithm. Associated with each trellis state vk a survivor path can be
obtained in the forward and backward recursions (see Fig-3.11)

ǎ(f)
k (vk) = [ǎk

k−L(vk), ǎk
k−L+1(vk), . . . ǎk

k−L1−1(vk)] (3.9a)

ǎ(b)

k (vk) = [ǎk
k(vk), ǎk

k+1(vk), . . . ǎk
k+L2−1(vk)] (3.9b)

where L2 = L − L1. Note that ǎk
l (vk) denotes the symbol at time l on

vk

vk+1

âk
k−L âk

k−L1−1 ak−L1 ak−L1+1 ak−1 ak

âk+1
k+L2

ak−L1 ak−L1+1 ak−1 ak âk+1
k+1

vk

vk+1

forward recursion

backward recursion

tk → xk

tk+L2 → xk+L2

completion over vk+1

â
(f)
k

â
(b)
k+1

Figure 3.11. The reduced states in the forward and backward recursions at time k
in the RS-SISO algorithm.

the survivor path terminating into trellis state vk. When k > l, ǎk
l (vk)

is on the survivor path in the forward recursion. Otherwise it is on
the survivor path in the backward recursion. Based on the definition of
survivor paths, the desired soft information about τk can be calculated

Iterative Detection for Complexity Reduction 207

simply using

M(f)
k [τk] = MI[xk = x(ǎ(f)

k (vk), τk)] + MI[ak] (3.10a)

M(b)

k+L2
[τk] = MI[xk+L2 = x(τk, ǎ

(b)

k+1(vk+1))] + MI[ak] (3.10b)

Note that a subscript has been added to M(f)[τk] (M(b)[τk]) to denote
the observation index used in its computation. This is similar to the
standard convention for Mk[tk]. Similarly, the notations for forward
and backward state metrics are modified from this point forward to
Fk[vk+1] and Bk+L2 [vk], respectively (i.e., denoting the largest index
used in the forward recursion and the smallest index included in the
backward computation). The key notion used in (3.10a) and (3.10b) is
the rebuilding of the full FSM transition tk and tk+L2 using the survivor
paths and truncated trellis transitions (see Fig-3.11). When L2 = 0,
M(f)

k [τk] = B(b)

k+L2
[τk] = Mk[tk], yielding the standard full-state forward-

backward SISO algorithm.
The complexity in (3.6a–3.6b) is determined by |V| = |A|L1 . Com-

pared to the standard SISO algorithm, both the computational com-
plexity and memory requirements of the RS-SISO algorithm are approx-
imately reduced by |A|L2 times. After executing both the forward and
backward recursions, the extrinsic soft-out metric for ak can be obtained
by

MO[ak] = min
vk+1:ak

(Fk[vk+1] + Bk+L2+1[vk+1])−MI[ak] (3.11)

The completion step in (3.11) is also illustrated in Fig-3.11. Due to the
state truncation, SO[xk] cannot be obtained directly by marginalizing
over Fk[vk+1] + Bk+L2+1[vk+1]. Nevertheless, there are reasonable ap-
proaches to obtain some form of soft-out information for xk. For exam-
ple, the soft-information on the corresponding inputs can be combined

MO[xk] = min
tk :xk

k∑
l=k−L

M[al(tk)]−MI[xk] (3.12)

where M[al(tk)] = MO[al(tk)] + MI[al(tk)] represents intrinsic soft in-
formation obtained by (3.11) without subtracting the soft-in metric.
Numerical results in [ChCh98b] suggest that this approach is reason-
able although extensive experimentation in this RS-SISO context has
not been conducted. It is notable that (3.12) can be calculated recur-
sively due to the temporal relationship between tk and tk+1 (see Problem
3.15). If a final decision is sought from the soft information produced,
one should threshold M[ak].

208 ITERATIVE DETECTION

As the notation used in (3.11) suggests the soft-out metric for ak is
computed based only using soft-in metrics with indices in {0, 1, . . . k} ∪
{(k + L2 + 1), . . . K − 1}. The omission of {MI[xk+1], · · · ,MI[xk+L2]} in
the completion operation for MO[ak] can also be seen in Fig-3.11. This
omission is a consequence of the completion strategy selected. Other
completion approaches which use all of the observations are feasible for
an RS-SISO, but this may again result in a SISO algorithm with com-
plexity dominated by the “full (FSM) state” completion. Regardless of
the completion technique used, an RS-SISO algorithm is suboptimal due
to the decision feedback used in the forward and backward recursions.
The simple completion scheme defined in (3.11) results in further per-
formance degradation and complexity reduction. The smaller L1, the
simpler the RS-SISO algorithm while the more severe the performance
degradation. Adjusting this tradeoff between complexity and perfor-
mance is sometimes difficult using only the parameter L1 since the RS-
SISO complexity grows exponentially with L1. In an attempt to improve
performance with a less substantial increase in complexity, we suggest
self-iteration for the RS-SISO algorithm. This self-iteration is realized
by running the RS-SISO algorithm with MO[ak] recirculated through
the soft-in port of the RS-SISO several times before passing on the final
soft-out metric. Thus, the external interface of the RS-SISO is the same
as that of a standard SISO with several self-iterations of the RS-SISO
performed in place of a single iteration of a full-state SISO. Self-iteration
of the RS-SISO algorithm allows the metrics {MI[xk+1], · · · ,MI[xk+L2]}
to affect the soft-out information MO(n)[ak] after n > 1 self-iterations.
Furthermore, these self-iterations result in a linear increase in complex-
ity which allows one to trade-off the size of the trellis used and the
number of self-iterations to achieve the desired trade-off between com-
plexity and performance. Specifically, with N self-iteration activations,
the RS-SISO algorithm has a complexity determined by N |A|L1 and the
parameters N and L1 can be adjusted separately.

Viewing the RS-SISO with self-iteration as a replacement for the full-
state forward-backward SISO, several observations can be made. First,
the RS-SISO can be substituted for the SISO in an iterative detector
that dominates the overall receiver complexity without affecting the rest
of the receiver design. Second, an RS-SISO may be an effective method
for complexity reduction even for systems considered in isolation (e.g.,
as an alternative to DDFSE for a reduced complexity approximation to
the Viterbi algorithm).

Iterative Detection for Complexity Reduction 209

3.3.2 Example Applications of the RS-SISO
Two example transmission systems – an ISI-AWGN system and a

TCM-ISI-AWGN system – are used to investigate the features of the
RS-SISO. In the former case, the RS-SISO is used in the place of hard
decision algorithms. In the latter, it replaces the standard SISO in an
iterative detector. For the applications considered, min-sum processing
and min∗-sum processing yield nearly identical results so all processing
is done using min-sum algorithms.

ISI-AWGN System This example application is summarized in
Fig-3.12. Two 12-tap (L = 11) ISI-AWGN channels are used (Fig-
3.12(a)). Channel A has equal entries and Channel B is chosen to be

ak(a) xk

ISI

(b)
DDFSE

âk
zk

(c)
âk

S[xk]

self iteration

zk

zk

SODEM

RS-SISO
MSM

12-tap

VA or

wk

S[ak]

c

Figure 3.12. (a) The tested 12-tap ISI-AWGN channel model, (b) hard decision
detectors and (c) a RS-SISO based detector.

(c, 2c, · · · , 12c), where c is a positive constant. Both channels are nor-
malized to have unit power, i.e., ‖f‖ = 1. BPSK modulation of an
iid-uniform source (i.e., ak = ±

√
Eb) is used at the transmitter. The

output of the ISI channel is corrupted by AWGN with E{w2
k(ζ)} = N0/2.

For comparison, two hard decision algorithms are also tested under iden-
tical conditions (Fig-3.12(b)): the VA [Fo73] and DDFSE [DuHe89]. As
described earlier, DDFSE is equivalent to the forward ACS recursion of
the RS-SISO described with a traceback used to provide the final deci-
sions. Thus, similar to the RS-SISO, a truncated state of length L1 is
defined in DDFSE. The detector using the RS-SISO with self-iteration
is illustrated in Fig-3.12(c).

In all numerical experiments conducted, the convergence of the RS-
SISO with self-iteration has been observed. A typical example is shown
in Fig-3.13 which indicates that convergence occurs after 4–5 iterations
in this case. Although any number of self-iterations may be used to trade
complexity and performance, we select the number of self iterations to
be the minimum number for which convergence is achieved and denote
this by Nc. The performance of the three algorithms on channel A is

210 ITERATIVE DETECTION

���
���

���
���

���

��� ���
���

���
���

���
��� ��� ���

���
���
���

���������
���������

1 2 3 4 5 6 7 8 9 10

10−2

10−3
Channel A (Eb/N0 = 22dB)

Channel B (Eb/N0 = 20dB)

MSM RS-SISO with L1 = 2

B
it

E
rr

or
R

at
e

n, No. of Iterations

Figure 3.13. The convergence of a min-sum RS-SISO with self-iteration (L1 = 2) for
an isolated ISI channel.

���
��� ���

���
���

����
����

����
����

����
�������
�������

������������
�������������������

�������
�������������

������

�������

�����������������
�����������������

����������
����������

���������
���������������������

������������
������������

100

10−1

10−2

10−3

10−4

10−5

14

16

16 18 20 22 24 26

Channel A

(L1 = 2, N = 4)

(L1 = 2, N = 1)

VA

MSM RS-SISO

MSM RS-SISO

B
it

E
rr

or
R

at
e

4096 6464

DDFSE (L1 = 5)

Eb/N0 (dB)

Figure 3.14. The performance comparison of various detection algorithms for Chan-
nel A. The number attached to each curve is the complexity index of the corresponding
algorithm.

compared in Fig-3.14. Attached to each curve is a complexity index C
defined as the product of the number of transitions |A|L1+1, the self-
iteration number N and the recursion number r, i.e., C = rN |A|L1+1

(|A| = 2 in this example). For the forward-only algorithms (e.g., VA,
DDFSE) r = 1, while r = 2 for the forward-backward SISO. The perfor-
mance of the VA and its complexity index CVA = 4096 are presented as
a baseline. It can be shown that while thresholding the soft-output of
the full-state MSM-SISO yields ML-SqD as the VA, thresholding the RS
min-sum SISO does not yield the same result as DDFSE using the same
L1 (see Problem 3.14). For this example, DDFSE performs roughly 3 dB

Iterative Detection for Complexity Reduction 211

�������
�������

������������
������������

�������
�������

���������

������������
������������

����������
����������������������

100

10−1

10−2

10−3

10−4

10−5

16 32 4024

Channel B and B′

VA

MSM RS-SISO
(L1 = 2, N = 4)

B
it

E
rr

or
R

at
e

4096

64

64DDFSE (L1 = 5) – B

DDFSE (L1 = 5) – B′

Eb/N0 (dB)

Figure 3.15. The robustness of the iterative detector using the MSM RS-SISO algo-
rithm. Note the MSM RS-SISO performs the same for Channel B and B′.

worse than the VA at a BER of 10−4 when L1 = 5, i.e., CDDFSE = 64.
Even without self-iteration (N = 1), the RS-SISO with L1 = 2 (C = 16)
performs 0.3 dB better than a DDFSE algorithm with 4 times less com-
plexity. This gain can be attributed to the bidirectional architecture
of RS-SISO – i.e., the use of decision feedback in both directions pro-
vides robustness to decision feedback error propagation. Moreover only
4 self-iterations (Nc = 4) improve the performance by an additional 1.9
dB. Thus, with the same complexity index, the RS-SISO outperforms
DDFSE by 2.2 dB. Even compared to the VA, this RS-SISO performs
only 0.8 dB worse but is 64 times less complex. As is typical with de-
cision feedback algorithms, the degradation of the RS-SISO relative to
the VA is smaller at high SNR.

The use of separate decision feedback in the forward and backward re-
cursions makes the RS-SISO insensitive to non-minimum phase channels.
The DDFSE, however, is very sensitive to non-minimum phase channels
since it is based on the assumption that HDF is performed on weak taps
of the channel. Channel B is a non-minimum phase channel. Channel
B′ is the time-reversed version of Channel B, i.e., {12c, 11c, · · · , c} and
is a minimum phase channel. The results in Fig-3.15 show that DDFSE
with L1 = 5 virtually fails for Channel B but works well for Channel
B′. However, the detector based on RS-SISO with the same complexity
(L1 = 2 and N = 4) performs the same for both Channel B and B′. This
is also true for the optimal Viterbi algorithm.

An Interleaved TCM-ISI-AWGN System In this experiment,
an iid-uniform binary source is encoded by an 8-state, rate R = 2/3

212 ITERATIVE DETECTION

Ungerboeck 8-PSK TCM code with the following generator matrix.

G(D) =
[

D D2 1
0 1 D

]
The 8-PSK signals from the TCM encoder are fed into a 32 × 32 block
interleaver. The interleaved 8-PSK signals pass through a 5-tap (L = 4)
ISI channel with equal entries (normalized to unit power), and the output
is corrupted by complex circular AWGN wk with E{|wk(ζ)|2} = N0.
This system is illustrated in Fig-3.16(a). Similar to the examples in

RS-SISO
MSM

(a)

(c) âk

dE

I−1
softsoft zk

ak I zk
ISImapper

TCM 5-tap8-PSK

(d)
âk I−1

(b) hardâk

dH

hard zk

outer detector inner detector

zk

R = 2/3 32×32 wk

VA VA

VA
MSM
SISO

MSM
SISO I

encoder

I−1

c

S[ak] self iteration

SODEM

Figure 3.16. (a) The tested TCM-ISI-AWGN channel model, (b) the VA-VA detec-
tor, (c) the SISO-VA detector and (d) the iterative RS-SISO/SISO detector. Note
that the symbol attached to each outer detector represents the type of metric used.
dH denotes “Hamming distance” while dE denotes “Euclidean distance”.

Section 2.4.2, we consider the receivers shown in Fig-3.16. The detector
in Fig-3.16(b) employs the VA at both the inner and outer stages with
hard-in decoding (HID) of the TCM. In Fig-3.16(c) a better solution
is shown, which replaces the inner VA by a forward-backward SISO
which enables soft-in decoding (SID) of the TCM. Moreover, one can
apply iteration between the inner and outer processors in Fig-3.16(c) as
described in Section 2.4.2. The inner FSM of this concatenated system,
however, has 84 = 4, 096 states which dominates the complexity of the
overall receiver. Therefore, we consider using the RS-SISO with self-
iteration in place of the inner SISO in Fig-3.16(c). For this RS-SISO
based iterative detector shown in Fig-3.16(d), the complexity index is
rNoNi|A|L1+1, where Ni is the number of inner iterations (i.e., the self-
iterations of the RS-SISO at inner stage), No is the number of outer
iterations (i.e., the iterations between the two stages), and |A| = 8 for
the current example.

Iterative Detection for Complexity Reduction 213

���
���

���

���
���

���

���������������
���������������

��������������
��������������

�����������

������������
������������

���������������

�������������������
�������������������

��������������������

�������������������
�������������������
�������������������

��������������
��������������

��������������������
��������������������
��������������������

100

10−1

10−2

10−3

10−4

10−5

6 8 10 12 14

65536

12288 1024

1920

32768

(L1 = 1, Ni = 3, No = 5)

(L1 = 2, Ni = 3, No = 4)

(L1 = 2, Ni = 1)

VA – VA

RS-SISO – SISO

RS-SISO – SISO

RS-SISO – VA

SISO – VA

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

Figure 3.17. The performance comparison of various detection algorithms for the in-
terleaved TCM-ISI channel. The number associated with each curve is the complexity
index of the corresponding detector.

The performance of various detection schemes for this concatenated
system is shown in Fig-3.17. First, replacing the VA by the MSM-SISO
at the inner stage, a 5 dB gain in Eb/N0 at a BER of 10−4 is achieved.
Instead of the full-state MSM-SISO, min-sum RS-SISO with L1 = 2 and
without self-iteration (i.e., Ni = 1 and No = 1) yields only a 0.3 dB
gain at this BER. This comparable performance, however, is achieved
with a complexity that is 32 times smaller than the full-state system of
Fig-3.16(b). Two different RS-SISO based receiver configurations with
iteration are considered. One such detector employs L1 = 1 (8 states),
and 3 inner iterations (Ni = 3). Hard decisions are made after five
outer iterations (No = 5). Compared to the SISO-VA scheme in Fig-
3.16(c), the performance degradation is only 1.1 dB while the complexity
reduced by a factor of 34. In order to obtain better performance, the
second iterative detector uses L1 = 2 and Ni = 3. After four outer
iterations (No = 4), a 0.3 dB gain is obtained over the SISO-VA approach
while the complexity saving is roughly a factor of 5. For comparison,
note that applying any reduced complexity hard-decision processor (e.g.,
RSSE [EyQu88], DDFSE [DuHe89]) will perform worse than the VA-VA
scheme in Fig-3.17.

3.4 A SISO Algorithm for Sparse ISI Channels
3.4.1 Sparse ISI Channel

The RS-SISO is a method of complexity reduction applicable to the
soft inverse of a generic FSM channel. In this section we consider a
suboptimal marginal soft inverse (SISO) for a specific type of ISI channel

214 ITERATIVE DETECTION

– the sparse ISI (S-ISI) channel. We refer to this as the sparse SISO (S-
SISO) algorithm [ChCh00b]. An S-ISI channel has an impulse response
with large delay spread, but with energy concentrated in several small
regions within this overall delay spread. This channel model may be
applicable to various data communication systems. Two typical S-ISI
channels are shown in Fig-3.18. In a high frequency (HF) radio channel

earth

ionosphere

A

(a)

B

(b)

A

B

Figure 3.18. Sparse ISI channels between site A and site B. (a) a high frequency
radio channel, (b) a point-to-point high data rate wireless channel.

(3-30 MHz) [Go66, WaJuBe70], the signal is transmitted from one site
to another by ionospheric reflection. This phenomenon usually results in
an S-ISI channel since more than one ionospheric reflection path exists in
practice and the spread in arrival time could be on the order of 3-5 ms due
to the long distance between the two sites. A fixed point high data rate
wireless connection can be modeled as an S-ISI channel because of the
multipath transmission and the short symbol time. The S-ISI channel
model can also be applied to certain mobile radio channels [Pr91]. In
addition, the S-ISI structure is similar to certain error correction encoder
structures. Specifically, the S-ISI channel may be viewed as a parallel
concatenation of several ISI channels with small delay spread. A similar
convolutional encoder with sparse generator polynomials was considered
in [BeBeMa98]. The LDPCs considered in Chapter 2 have a similar
graphical structure.

An example of S-ISI channel (baseband equivalent model) is shown
in Fig-3.19. Usually a real-world S-ISI channel has many taps that are
nearly zero which may be neglected in the system analysis. As a general
ISI channel, the noisy observation of an S-ISI channel is

zk = xk + wk =
∑L

i=0fiak−i + wk (3.13)

where wk is AWGN. The model in (3.13) may be viewed as the output
of a whitened matched filter [Fo72b] or, with slight modification, may
be viewed as a fractionally-spaced (over-sampled) model [ChPo96]. For
an S-ISI channel, most of the terms in (3.13) are either zero or are small

Iterative Detection for Complexity Reduction 215

h(i)28 17 10 022 21
i04 3 25 1

f(5) = f28
f(0) = f0

f(1) = f10
f(2) = f17

f(3) = f21f(4) = f22

Figure 3.19. A sparse ISI channel with L = 28, Ls = 5. Those taps that are
almost zero (not indexed) are not modeled in the detector design. The delay is shown
increasing to the left.

enough that they may be modeled as such. Thus, for an S-ISI channel,
we denote the i-th non-zero tap (NZT) by a 3-tuple (i, h(i), f(i)). Given
the NZT index i, h(i) represents the original index of this NZT in the
S-ISI channel, and f(i) is its value, i.e., f(i) = fh(i). The total number
of NZTs is Ls + 1. Note Ls � L since the channel is sparse. We assume
that f0 and fL are non-zero – i.e., (0, 0, f0) and (Ls, L, fL) are present
in the S-ISI model. With this notation, (3.13) can be specialized for the
S-ISI channel to

xk =
Ls∑
i=0

f(i)ak−h(i) (3.14)

In order to describe classes of S-ISI channels, some definitions are
required. First, define a tap distance function d(i, j) ∆= |d1(i, j)| where
d1(i, j)

∆= h(i)− h(j). Then, we say that NZT i1 and i2 are adjacent if
d(i1, i2) = 1. The i-th NZT is isolated if it is not adjacent to any other
NZT, i.e., d(i, i−1) > 1 and d(i+1, i) > 1. A set of NZTs {i : i1 ≤ i ≤ i2}
is called grouped if d(i, i − 1) = 1 for i1 + 1 ≤ i ≤ i2. An S-ISI channel
is called regular if the NZT set {i : nlg ≤ i ≤ (n + 1)lg − 1} is grouped
for n = 0, 1, · · · ,Mg − 1 (i.e., Mglg = Ls + 1) and d(i, i − 1) = dg > 1
for i = lg, 2lg, · · · , (Mg − 1)lg; otherwise, it is called irregular. An S-ISI
channel is called discrete if all its NZTs are isolated. An S-ISI channel is
called simple if it is regular and discrete (i.e., lg = 1). The class of simple
S-ISI channels is also called the zero-pad channel class in [McKeHo98].
These definitions are explained in the following example.

Example 3.7.
The S-ISI channel in Fig-3.19 is irregular with L = 28 and Ls = 5. The
tap distance between NZT 0 and NZT 1 is d(0, 1) = |0− 10| = 10. Also
d1(0, 1) = 0 − 10 = −10. Therefore d1(·, ·) is not a distance. The 0th,
1st, 2nd and 5th NZTs are isolated. The 3rd and 4th NZT are grouped
since d(3, 4) = 1. Thus, this S-ISI channel is not discrete.

216 ITERATIVE DETECTION

Suppose that another S-ISI channel has 10 NZTs (Ls = 9) and its h(i)
set is {0, 1, 10, 11, 20, 21, 30, 31, 40, 41} (L = 41). Then it is regular and
has lg = 2, dg = 9 and Mg = 5. However, this regular S-ISI channel is
not simple since it is not discrete. As another example, the S-ISI channel
with NZT at locations h(i) ∈ {0, 7, 14, 21, 28} for i = 0, . . . 4 is simple.

End Example

The S-SISO algorithm is based on message passing similar to that
described in Example 2.15. Specifically, for a discrete S-ISI channel, the
loops associated with the graphical model will be relatively long and the
associated message passing algorithm should work well while avoiding
the state explosion associated with the optimal trellis processing (i.e., see
Fig-2.53). In order to include the case of grouped taps, however, we also
introduce models that are hybrids of the graphical models shown in Fig-
2.53 and Fig-2.58 and therefore lead to algorithms that are hybrids of the
forward-backward algorithm, and the distributed algorithm described in
Example 2.15. Furthermore, to reduce the complexity, we also would like
to use connection cutting. In the following, we introduce the notation
required to concisely describe these different schemes.

We define the neighborhood of ak associated with the NZT set {i, (i +
1), . . . j} (i.e., having Lg = j− i+1 elements) as a set of J = Ls−Lg +1
input symbols

Nj
i (k) ∆= {ak+n|n = d1(i, l), l ∈ {0, . . . i− 1} ∪ {j + 1, . . . Ls}} (3.15)

In words, the neighborhood Nj
i (k) is the set of input symbols, excluding

ak, · · · , ak+d1(i,j), which are included in (3.14) when the term f(i)ak

appears. For each neighborhood set, a fusion set is defined as

Fj
i (k) ∆=

j⋃
l=i

{ak+d1(i,l)} (3.16)

It can be shown that their union, called the support set

τk
∆= Nj

i (k) ∪ Fj
i (k), (3.17)

determines the output xk+h(i) uniquely. The support set τk plays the
role of the “transition” for (3.14) and corresponds to the components
of the transition tk for the (L + 1)-tap ISI channel associated with the
NZTs.

The i-th NZT is called the pivot NZT associated with Nj
i (k) (and

Fj
i (k)) and {i, i + 1, . . . j} is called the associated pivot NZT set. For

example, when the NZT set has only one element i (Lg = 1), the neigh-
borhood of ak associated with this NZT is denoted as Ni(k) = Ni

i(k). In

Iterative Detection for Complexity Reduction 217

this case, the size of the neighborhood is J = Ls and the fusion set is
Fi(k) = {ak}. This corresponds to the case analogous to that shown in
Fig-3.3, where all but one of the connections departing each X−s

k have
been cut. More generally, soft information is passed back to the SOBCs
from X−s

k for the members of the fusion set.

Example 3.8.
The concept of the neighborhood is illustrated in Fig-3.20 for the S-ISI
channel in Fig-3.19. The neighborhood set N2(k), shown in Fig-3.20(a),

5 4 3 2 1 0 i

ak

aj

N2(k)

ak

aj
ak−1

N3
2(k)

(a)

(b)

Figure 3.20. Neighborhood of ak for an S-ISI channel. (a) N2(k), (b) N4
3(k).

is a collection of 5 input symbols (shaded squares). For this case, NZT
2 is the pivot NZT. When f(2)ak appears in (3.14), ak+17, ak+7, ak−4,
ak−5 and ak−11 are also involved in (3.14) – these symbols constitute the
neighborhood N2(k). The fusion set for this example consists of ak only
(the hollow square). The support set τk is the union of N2(k) and F2(k).

Similarly, as shown in Fig-3.20(b), when f(3)ak (also f(4)ak−1) is
included in (3.14), ak+21, ak+11, ak+4 and ak−7 constitute N4

3(k). The
corresponding fusion set F4

3(k) consists of ak and ak−1. Again, the sup-
port set is the union of N4

3(k) and F4
3(k).

End Example

3.4.2 Existing Algorithms for S-ISI Channels
Decision feedback equalization (DFE) [BePa79] is a generic solu-

tion for ISI mitigation. For the S-ISI channels, both the linear feed-
forward and feedback filter in a conventional DFE can be fairly long. In
[FeGeFi98], a fast algorithm is developed to compute optimal DFE set-
tings for the S-ISI channels. The complexity of DFE is relatively low as
compared to trellis-based algorithms. In [BeLuMa93, BeSa94, BeMa96],
a so-called multi-trellis VA (MVA) was developed for S-ISI channel that
reduces the complexity significantly as compared to that of the Viterbi
algorithm. The MVA is based on an irregular trellis construction. This
trellis construction and the resulting algorithm is ad hoc because it ig-
nores some data dependencies and uses early decisions. This is exacer-

218 ITERATIVE DETECTION

bated when the S-ISI channel has any two adjacent strong taps. Fur-
thermore, when the structure of the S-ISI channel is complicated (e.g.,
≥5 non-zero taps) and a reasonable traceback depth is used (usually 5L
- 7L [HeJa71]), the construction of MVA can become fairly complicated.
In [McKeHo98], the so-called parallel trellis VA (PTVA) is developed
which is applicable only to simple S-ISI channels. It can be shown that
the PTVA yields the MAP-SqD solution. Both the PTVA and MVA
have a complexity determined by the number of non-zero taps instead
of the length of memory. Also, based on the development in Chapters 1
and 2, modification of the PTVA to a forward-backward version which
produces soft-out information is straightforward. In [CuMa99] an sum-
product SISO algorithm is developed for S-ISI channels which has an
L2VS structure with lag D = (L− 1). This algorithm uses soft decision
feedback to obtain a soft output that approximates the desired APP. No
iteration was used in [CuMa99].

3.4.3 The Sparse SISO Algorithms for S-ISI Channels
We first present an S-SISO algorithm based on the graphical model

of Fig-2.58 which also includes connection cutting as an option. We
refer to this as the distributed S-SISO (DS-SISO) algorithm. Second,
we consider a hybrid of the graphical models in Fig-2.53 and Fig-2.58
applied to the S-ISI channel. This allows use to model grouped taps
together as an FSM subsystem and the isolated taps in the parallel
fashion of Fig-2.58. This results in what we refer to as the grouped
sparse SISO (GS-SISO).

3.4.3.1 Distributed S-SISO Algorithms Associated with a
Single NZT

Consider an algorithm based on a single pivot NZT. Any single NZT
in an S-ISI channel, e.g., the i-th NZT, can be assigned as the pivot NZT.
Associated with this given pivot NZT, a SISO algorithm can be devel-
oped. To distinguish soft information on a given quantity associated
with different pivots, a subscript i is used in Si[·] for the corresponding
algorithm. As illustrated in Fig-2.58 for a 3-tap ISI channel, a generic
ISI channel can be modeled graphically as a collection of subsystems
{Xk}. This graphical model is also applicable to arbitrary S-ISI chan-
nels. As described in Section 2.6, therefore, the corresponding SISO
can be obtained by message passing as shown in Fig-2.59. However,
this SISO may be prohibitively complex when the number of NZTs is
large. When the j-th NZT is relatively small, the correlation between
the related xk+h(j) and ak (e.g., xk+h(j) = fh(j)ak + · · ·) is weak. Thus,

Iterative Detection for Complexity Reduction 219

the soft information obtained by X−s
k+h(i) for ak is relatively unreliable.

By selecting a single pivot NZT properly, a simplified SISO algorithm is
obtained by connection cutting as described in Example 3.4 and shown
in Fig-3.3.

In terms of the general notation described above, the marginal soft-
out information on the elements of the fusion set Fi(k) = {ak} is gener-
ated by marginalizing the soft information collected by X−s

k+h(i) from the
neighborhood Ni(k). Clearly, this is an approximation to the marginal
soft inverse because of the loops and the connection cutting. Since the
underlying graphical model ignores the temporal index originally em-
bedded in the ISI channel, this S-SISO has a distributed architecture
and is referred to as the distributed S-SISO (DS-SISO) algorithm.

Based on the above discussion, given the pivot NZT i, the operation
of the DS-SISO can be specified directly and is illustrated in Fig-3.21.
First, consider the n-th activation of X−s

k+h(i). At this point, X−s
k+h(i) has

MI[ak] MO(n)
i [ak]

X−s
k+h(i)M(n+1)

i [ak] M(n+1)
i [ak]

Figure 3.21. Illustration of message passing in the SOBC associated with ak in Fig-
3.3 at the n-th iteration.

MI[xk+h(i)] from the channel, and M(n)
i [aj] from the SOBCs for all aj

corresponding to τk. Activation of X−s
k+h(i) produces soft output only for

the fusion set Fi(k) = {ak} via

MO(n)
i [ak] = min

τk :Fi(k)
(MI[xk+h(i)(τk)] +

∑
Ni(k)

M(n)
i [aj(Ni(k))]) (3.18)

which is sent back to the SOBC associated with ak. Notice that this is in
extrinsic form because ak is not part of the neighborhood. The following
activation of the SOBC node associated with ak is trivial due to the con-
nection cutting. This SOBC has MI[ak] from the source and MO(n)

i [ak]
from X−s

k+h(i). The SOBC sends MO(n)
i [ak] back to the source (i.e., the

220 ITERATIVE DETECTION

desired soft-out information on ak), sends MI[ak] to X−s
k+h(i) correspond-

ing to the pivot NZT and sends M(n+1)
i [ak] = MI[ak] + MO(n)

i [ak] to all
X−s

k+h(n) for n �= i corresponding to the neighborhood.
The iteration process may be continued until some stopping criterion

is met or simply stopped after N iterations. If necessary, soft-out infor-
mation for xk+h(i) can be obtained via the final activation of X−s

k+h(i) –
i.e.,

MO(N)
i [xk+h(i)] = min

τk:xk+h(i)

∑
τk

M(N)
i [aj(τk)]−MI[xk+h(i)] (3.19)

Notice that (3.19) is similar to (3.18) with soft-in on ak included and
the soft-in contribution on xk+h(i) removed to convert to extrinsic form.
Similarly, the soft information passed back from X−s

k+h(i) to the SOBC for
ak is the extrinsic soft-out information for ak due to connection cutting.

3.4.3.2 S-SISO Algorithms for a Grouped NZT Set
When a grouped NZT set is assigned as the pivot NZT set, a corre-

sponding graphical model for the S-ISI is illustrated in Fig-3.22. In Fig-

Xk−2

xk−2

Xk−1

xk−1

Xk

xk

Xk+1

xk+1

Fk−2 Fk−1 Fk Fk+1

ak−2 ak+1ak−1 ak

Figure 3.22. Another graphical model for generic ISI channels (illustrated by a 3-tap
ISI channel and the pivot NZT set consists of the first two taps).

3.22, Tap 0 and 1 of this ISI channel are chosen as the pivot set, which
determines the fusion set F1

0(k) = {ak−1, ak}. In Fig-3.22 this set corre-
sponds to the subsystem Fk. As illustrated, F1

0(k) is uniquely determined
by the current input ak and the previous fusion set F1

0(k− 1). However,
F1

0(k) alone is not enough to determine xk, which also depends on the
current neighborhood N1

0(k). This dependence is illustrated in Fig-3.22
as the connection from the broadcaster of ak−1 to Xk. If not for this
connection, the rest components in Fig-3.22 would constitute a cycle-
free graph on which the forward-backward SISO can be run. The SISO
associated with Fig-3.22 is shown in Fig-3.23. Again, connection cutting

Iterative Detection for Complexity Reduction 221

S[xk−2] S[xk−1] S[xk] S[xk+1]

S[ak−2] S[ak−1] S[ak] S[ak+1]

F−s
k−2 F−s

k−1 F−s
k+1

X−s
k−2 X−s

k−1 X−s
k+1X−s

k

F−s
k

Figure 3.23. The SISO algorithm obtained by message passing on the model in Fig-
3.22. Notice that connections from X−s

k ’s to soft broadcasters have been cut and are
not shown.

is used for complexity reduction. Specifically, the connections from X−s
k

back to the soft broadcasters are cut. We refer to this as the grouped
sparse SISO (GS-SISO) algorithm. One major difference between Fig-
2.58 and Fig-3.22 is that the second model has not ignored the temporal
axis completely. Consequently, the corresponding GS-SISO has a recur-
sive architecture. Analogous to Fig-2.53(a), a cycle-free graphical model
for the same ISI channel can be established when the fusion set includes
all taps in the ISI channel. The corresponding SISO is just the standard
forward-backward FI-SISO, which is the exact marginal soft inverse, but
is prohibitively complex for most S-ISI channels. The DS-SISO and GS-
SISO are developed by modeling the S-ISI channel as a graph with cycles
and applying a connection-cut message passing algorithm. The only dif-
ference is that the GS-SISO is based on a model which treats certain
grouped NZTs as an FSM subsystem.

Given a grouped NZT set {i, i + 1, . . . j} where L1 = j − i, a local
state is defined as sk = {ak−L1 , · · · , ak−1} (i.e., this is the state of the
FSM subsystem in Fig-3.22. The corresponding transition in the FSM
subsystem trellis is the fusing set Fj

i (k) = (sk−1, sk). Then a standard
forward-backward SISO can be applied along this subgraph. This can
be used to compute extrinsic information on the corresponding S-ISI
inputs and the subsystem FSM transitions Fj

i (k). Analogous to (3.18),
the combining and marginalization performed at the n-th activation of
the node X−s

k+h(i)
is

M(n)
i [Fj

i (k)] = min
τk:Fj

i (k)
(MI[xk+h(i)(τk)] +

∑
N

j
i (k)

M(n)
i [al(N

j
i (k))]) (3.20)

which is passed back to F−s
k as the soft-in information on ”transition”

Fj
i (k) for the subsystem FSM. Note this is in extrinsic form because the

222 ITERATIVE DETECTION

neighborhood and the fusion set are disjoint and the M(n)
i [al] correspond-

ing to the latter are excluded from (3.20). A similar message passing
procedure occurs and a similar soft information M(n+1)

i [ak] yields in the
SOBC of ak as illustrated in Fig-3.21. Specifically, the SOBC here has
MI[ak] from the source and MO(n)

i [ak] from the forward-backward algo-
rithm that runs on the subsystem FSM and is activated once after each
activation of the SOBCs and X−s

k ’s. Again, on the final activation of
X−s

k+h(i), soft-out information on xk+h(i) can be produced. Similarly, the
final soft-out information on ak is produced by the final activation of the
corresponding SOBC in Fig-3.23.

3.4.3.3 Decision Feedback S-SISO and Multiple S-SISO
Algorithms

In the DS-SISO or GS-SISO, the combining is performed over the
whole neighborhood. This procedure (i.e., (3.18) or (3.20)) determines
the complexity of these SISO algorithms. A reduction in complexity can
be obtained by applying hard decision feedback to a proper subset of the
neighborhood. We refer to the resulting algorithm as the decision feed-
back S-SISO (DFS-SISO) algorithm. The complexity of the processing
at X−s

k is reduced exponentially with the number of connections that use
HDF. The hard decisions are enforced only during the combining and
marginalization associated with {X−s

k } after which they are released.
For a given S-ISI channel, various DS-SISOs or GS-SISOs can be

defined by assigning different pivot NZTs or NZT sets. For example, if
an S-ISI channel has two significant NZTs 2 and 5, two distinct DS-SISOs
can be developed based on these two pivot choices. Since each of these
D-SISOs operate on different soft information, these two algorithms can
be executed independently and simultaneously and the resulting soft
outputs can be combined to yield a higher quality. In general, if a DS-
SISO is run for each NZT in set Id and a GS-SISO for each pivot NZT
set in set Ig, the final soft output for this multiple S-SISO algorithm can
be obtained as

MO[ak] =
∑
i∈Id

MO(Ni)
i [ak] +

∑
j∈Ig

MO(Nj)
j [ak] (3.21)

where Ni is the number of iterations used in the corresponding S-SISO
algorithm. This algorithm will be referred to as the multiple S-SISO
(MS-SISO) algorithm since it consists of multiple S-SISO submodules.
Intuitively, the MS-SISO algorithm should yield a more reliable soft
output than any single submodule since it exploits more information on
the structure of the S-ISI.

Iterative Detection for Complexity Reduction 223

3.4.4 Features of the S-SISOs
Again, we define an index of the complexity index C ∆= TNr, in

which T is the number of transitions (i.e., the cardinality of tk or τk

as appropriate), N is the number of iterations and r the number of re-
cursions. Table 3.1 tabulates T,N, r and C for several algorithms that
are applicable to an S-ISI channel and list some other relevant features.
With the broadest applicability and highest complexity, both the VA

VA FBA PTVA MVA DS-SISO GS-SISO

Applicable arbitrary arbitrary simple short arbitrary arbitrary
S-ISI (single) (grouped)

Optimality opt opt opt sub-opt sub-opt sub-opt
In/Out s/h s/s(h) s/h s/h s/s(h) s/s(h)

T ML+1 ML+1 MLs+1 ∼ MLs+1 MLs+1 MLs+1

N 1 1 1 1 N N
r 1 2 1 1 1 2

C ML+1 2ML+1 MLs+1 ∼ MLs+1 NMLs+1 2NMLs+1

Table 3.1. Comparison of algorithms for S-ISI channels. Note “s” stands for soft,
“h” for hard, and “(h)” means that the hard decision is available if necessary. FBA
is short for the forward-backward algorithm.

and the standard forward-backward SISO algorithm yield the optimal
sequence decision, but their complexity is prohibitive in practice for S-
ISI channels. Both the PTVA and the MVA can reduce this complexity
significantly with acceptable performance, but their applicability is lim-
ited to a small subset of the S-ISI channels expected in practice. Also,
they do not directly yield soft outputs, although modification using the
concepts of Chapter 2 is conceivable. The S-SISOs described herein are
applicable to arbitrary S-ISI channels, have a good deal of flexibility for
trading complexity for performance and may be used in place of the
standard forward-backward SISO in a given iterative detection network.

3.4.5 Design Rules for the S-SISO Algorithms
Due to the variations possible in the graphical models, there can be

many versions of the S-SISO algorithm. Several rules can be established
to streamline the algorithm specification. In the following numerical
experiments, the transmitter uses a BPSK modulation of an iid-uniform
binary source (i.e., ak = ±

√
Eb), and the output of the S-ISI channel is

corrupted by an AWGN wk with E{w2
k(ζ)} = N0/2. All S-ISI channels

224 ITERATIVE DETECTION

are normalized (i.e., ‖f‖ = 1). For compactness, the results will be
labeled by the following convention: (i) the algorithm used, (ii) the
channel simulated, (iii) the pivot NZT5, and (iv) the number of iterations
used. Usually the algorithm used is represented by the initial letter of
its name. Further explanation of other labels will be given as needed.
Some S-ISI channels to be used are listed in Table 3.2. Others will be
specified in the following. Only the min-sum version of a given S-SISO
algorithm is used in these experiments.

i 0 1 2 3 4 5

A h(i) 0 13 14 20 27 /
f(i) 0.32 -0.25 -0.12 0.3 0.17 /

B h(i) 0 4 10 11 17 21
f(i) 0.72 -0.64 -0.85 -0.52 1.3 0.67

C h(i) 0 6 12 18 24 /
f(i) 0.29 0.5 0.59 0.5 0.29 /

E h(i) 0 4 5 / / /
f(i) 0.22 0.41 0.29 / / /

G h(i) 0 10 26 27 89 103
f(i) 0.36 -0.24 0.38 1.0 -0.23 1.19

Table 3.2. S-ISI channels used in numerical experiments.

3.4.5.1 The Pivot NZT and the Type of S-SISO
To apply the S-SISO for an S-ISI channel, the pivot NZT (set) must

be assigned first, which in turn determines the type of S-SISO to be used.
The choice of the pivot NZT (set) is strongly dependent on the structure
of the S-ISI channel. Define a modified version of Channel A, Channel Ai

(0 ≤ i ≤ 4), by replacing the value of i-th NZT Channel A by 0.8. The
NZT with value 0.8, i.e., the i-th NZT for Channel Ai, dominates the
channel in energy – i.e., by this we mean that f2(i)� f2(j) for all j �= i.
The BER results for various S-SISO simulations are plotted in Fig-3.24.
For comparison, the BER curve for a channel without ISI is also included
as a lower bound (i.e., this is the ISI-free lower bound from Example
1.21). In Fig-3.24(a) the DS-SISO is executed for Channel A3 with all
possible choices of the pivot NZT. The results show that the detector

5For a GS-SISO, only the first NZT in the pivot NZT set will be listed. The corresponding
NZT set is the largest grouped NZT set in which the listed NZT is involved unless otherwise
specified.

Iterative Detection for Complexity Reduction 225

���
���
���
���
���

�� ��� ���
��� ���

���
���
��� ���

���
��� ���

���
���

��
��
��
��
��
��

��������������

��������������������������������
��������������������������������

B
it

E
rr

or
R

at
e

B
it

E
rr

or
R

at
e

2Eb/N0 (dB)

2Eb/N0 (dB)

(a)

(b)

DFE(28,27)-A2

D-A3-0-13
D-A3-1-16
D-A3-2-9

D-A3-4-14

D-A0-0-5
D-A1-1-5
D-A2-2-7
D-A3-3-5

D-A3-3-5

D-A4-4-6
G-A2-1-5

No ISI

No ISI

100

10−1

10−1

10−2

10−2

10−3

10−3

10−4

10−4

10−5

10−5

0

3 6 9 12

5 10

15

15 20 25 30

Figure 3.24. Performance of an S-SISO with different pivot NZTs. (a)Use different
pivot NZTs for Channel A3, (b)use the dominant NZT (set) as the pivot NZT (set).
Note the pivot NZT set for G-A2-1-5 is {1, 2}.

using the dominant 3rd NZT significantly outperforms other detectors.
Moreover, the ranking (in terms of performance) of the curves in Fig-
3.24(a) is consistent with the order of the energy in the pivot NZT used.
Thus, when an S-ISI channel has a dominant NZT, it can be assigned
as the pivot NZT for the DS-SISO. The results shown in Fig-3.24(b)
also support this conclusion. Regardless of the location of the dominant
NZT in the channel impulse response, the DS-SISO associated with it
performs well in all experimental results.

Also shown in Fig-3.24(b) are the results for A2, which is dominated
by the NZT set {1,2}. For this channel, the GS-SISO associated with
this set outperforms the DS-SISO associated only with the 2nd NZT.
Thus, when a grouped NZT set dominates an S-ISI channel, improved
performance is achieved by using this as the pivot NZT set for the GD-
SISO. In general, when a detector can only afford a single S-SISO, the
NZT (set) with the largest weight can be chosen as the pivot NZT (set)
for the DS-SISO (GS-SISO).

226 ITERATIVE DETECTION

3.4.5.2 Convergence of S-SISOs
The complexity of the S-SISOs developed grows linearly with the num-

ber of iterations used. Again, we use Nc to denote the observed min-
imum value of N that obtains virtually all of the iteration gain. The
convergence of various S-SISOs is illustrated in Fig-3.25 for Channel B.
It follows from Fig-3.25(a) that the closer to the center of the S-ISI chan-

���
���

���
������

�����������

������������������������������
������������������������������

�����������������������������
�����������������������������

������������������������������
������������������������������

������������������������������

�����������������������������
�����������������������������

������������������������������
������������������������������

������������������������������
������������������������������

�������
�������

���������
���������

�������
�������

�������
�������

�������
�������

�������
�������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������
������
������

���������
���������

�������
�������

����
����

����
����

����
���������
�����

B
it

E
rr

or
R

at
e

B
it

E
rr

or
R

at
e

Number of Iterations

Number of Iterations

(a)

(b)

D-A0-0 (12dB)
D-A0-1 (23dB)
D-A1-1 (12dB)
D-A2-2 (13dB)
G-A2-1 (12dB)
D-A3-3 (12dB)
D-A4-4 (12dB)

D-B-0 (23dB)

D-B-5 (23dB)
D-B-1 (28dB)

D-B-3 (28dB)
D-B-2 (25dB)

D-B-4 (16dB)

G-B-2 (21dB)

10−1

10−1

10−2

10−2

10−3

10−3

10−4

10−4

0

4
6

6
5

5 10 15

20

20

20

25 30

40

45

60

60

78

80 100

115

120

Figure 3.25. Convergence of various S-SISO algorithms. (a) D-SISO with different
pivot NZTs for Channel B, (b) with the dominant NZT (set) for Channel Ai used
for the pivot NZT. The number with dB-unit is the value of Eb/N0 at which the
corresponding algorithm is simulated. The number attached to each curve is the
corresponding Nc.

nel the pivot NZT is located, the faster the convergence. Specifically, the
DS-SISO associated with the 2nd or 3rd NZT has the same convergence
rate as the GS-SISO associated with the NZT set {2,3}. A similar trend
can be observed in Fig-3.24(a) where Nc is used for each curve. However,
when the pivot NZT (set) dominates an S-ISI channel, Nc becomes al-
most independent on its location. This is demonstrated in Fig-3.25(b).
Specifically, although the NZT 1 is much closer to the channel center
than the dominant NZT 0, D-A0-1 has an Nc 3 times as large as that of

Iterative Detection for Complexity Reduction 227

D-A0-0. Note that in all cases the BER curves become very stable after
the convergence occurs. In summary, convergence occurs more rapidly
when the pivot NZT (set) is located closer to the channel center, or it
contains more weight.

3.4.5.3 Impact of Decision Feedback
For an S-ISI channel we can apply the hard information feedback on

those NZTs with relatively small weights, e.g., the NZT 1 and 3 in Chan-
nel B. The hard information used is the tentative hard decision obtained
by thresholding S(n)

i [ak] after each iteration. Using NZT 4 as the pivot
NZT, several DFS-SISOs were simulated for Channel B with the results
shown in Fig-3.26(a). These simulations suggest that the convergence
of the DS-SISO is significantly slowed when hard decision feedback is
used. Specifically, the more weight the feedback entry set contains, the

��
��
��
��
��

���������
����������������

�������
�������
�������

���������
���������

������
������

��

�����������������������������
�����������������������������

���

���
���

���������������������������
���������������������������

���
���

�������������������������������������
�������������������������������������

������������
������������

B
it

E
rr

or
R

at
e

B
it

E
rr

or
R

at
e

2Eb/N0 (dB)

Number of Iterations

(a)

(b)

D-B-4 (16dB)
DF(1)-B-4 (16dB)
DF(3)-B-4 (16dB)
DF(13)-B-4 (16dB)

DF(3)-B-4-70 (0.78)

DF(3)-B-4-45 (0.5)

DF(1)-B-4-100 (1.1)

D-B-4-45 (1.0)
DF(13)-B-4-110 (0.6)

DF(13)-B-4-80 (0.44)

DF(1)-B-4-65 (0.72)

100

10−1

10−1

10−2

10−2

10−3

10−3

10−4

10−4

10−5

0

12 14 16 1810 20

20 40

45

60

70

80

100

100

110

120

Figure 3.26. Impact of hard decision feedback on S-SISO algorithms for Channel B.
(a) Convergence property of the DFS-SISO. (b) BER performance of the DF-SISO.
The number following “DF-” is the feedback entry set. The number following a label
is the corresponding complexity index normalized to that of D-B-4-45.

228 ITERATIVE DETECTION

slower the DFS-SISO converges and the more performance loss the DFS-
SISO experiences. Compared to the standard S-SISO these DFS-SISO
algorithms only observe a fractional dB performance degradation (see
Fig-3.26(b)). This actually implies that iteration greatly compensates
for the effect of decision feedback. The effective complexity reduction
is neutralized partially by the increase in Nc. Sometimes a DFS-SISO
using Nc (e.g., DF(1)-B-4-100) can be even more complex than the cor-
responding standard S-SISO. For each DFS-SISO, an N < Nc is properly
assigned and the resulting performance is shown in Fig-3.26(b). Specif-
ically for DF(13)-B-4-80 and DF(3)-B-4-45, the complexity has been
reduced by a factor of 1.5 with a performance loss of approximately 1
dB. If a large feedback entry is used, it is possible that error propagation
will cause very poor performance of the DFS-SISO.

3.4.5.4 Performance Improvement by MS-SISO
When an S-ISI has a few NZTs of similar weight, an individual DS-

SISO or GS-SISO may not provide satisfactory performance and the
MS-SISO should be considered. Channel C is a simple but severe S-ISI
channel. The performance of several MS-SISO algorithms on Channel
C is shown in Fig-3.27. First, it is found that the more submodules an

�������������������
���

������������������������
���������������������������
���������������������������B

it
E

rr
or

R
at

e

2Eb/N0 (dB)

D-C-2-8

M-C-12-14

M-C-123-18

100

10−1

10−2

10−3

10−4

10−5

16 18 20 22 24 26 28 30 32

Figure 3.27. Performance improvement associated with the MS-SISO for Channel
C. The notation “M-C-12-14” means that this MS-SISO consists of two DS-SISO
submodules associated with NZT 1 and 2.

MS-SISO consists of, the slower the convergence. This is expected since
the MS-SISO will not converge until all its submodules have converged.
Therefore, Nc for an MS-SISO will increase when more submodules are
included. Compared to D-C-2-8, M-C-12-14 gains 3.2 dB in SNR with

Iterative Detection for Complexity Reduction 229

the complexity increased by a factor of 3.5. Thus, it also appears that
the more submodules, the better the performance.

3.4.5.5 Summary of Design Rules
In summary, when an S-ISI channel is specified, an S-SISO based

detector can be designed using the following rules

1. If the S-SISO channel has a dominant NZT (set), choose it as the
pivot NZT (set). Go to step 4.

2. If two NZTs (sets) have similar tap weight, choose the one closer to
the channel center as the pivot NZT (set). Go to step 4.

3. If the S-ISI channel does not have a dominant NZT (set), an MS-
SISO is suggested. Choose the heaviest NZTs and NZT sets as the
pivot NZTs (sets).

4. If the S-ISI channel has some “light” NZTs, choose these as the feed-
back entry set and use the DFS-SISO for each pivot NZT (set). Oth-
erwise, use the corresponding S-SISOs for each pivot NZT (set).

5. Determine Nc numerically. Use this value or choose a smaller value
for N for further complexity reduction if desired.

Note that these are heuristics based on our numerical experiments and
we expect them to lead to a reasonably good design. It is possible,
however, that in some cases a better design could be found by another
method.

3.4.6 Using the Sparse SISO Algorithms
The S-SISO can be applied to arbitrary S-ISI channels. For compar-

ison, the DFE, MVA and PTVA are also considered when applicable.
Specifically, the DFE(Kf ,Kb) has a linear feed-forward filter of length
Kf and a feedback filter of length Kb. The MMSE criterion [SmBe97]
is used to determine the filter coefficients. The inputs to the feedback
filter are the previously detected symbols.

First, the S-SISO can be applied to any channel to which the MVA
is applicable. Channel E, referred to as the channel 2 in [BeSa94], is
an S-ISI channel with only 3 NZTs. In Fig-3.28, we reproduce the per-
formance of the MVA designed for this channel from [BeSa94]. The
MS-SISO algorithm M-E-12-16 outperforms this MVA by approximately
0.5 dB at high SNRs, and betters the performance of the DFE(11,4) re-
ceiver by more than 5.5 dB. Also, this specific S-SISO algorithm performs
within approximately 1 dB of the ISI-free lower bound (see Fig-3.28).

When the S-ISI structure becomes more complicated, developing the
corresponding MVA becomes more difficult. Channel F is a regular S-ISI

230 ITERATIVE DETECTION

��������������
��������������

���������
������������������������
������������������������

������������������������������
������������������������������

B
it

E
rr

or
R

at
e

2Eb/N0 (dB)

No ISI

MVA-E

M-E-12-16

DFE(11,4)-E

100

10−1

10−2

10−3

10−4

10−5

14 16 18 20 22 24 26 28

Figure 3.28. Simulation results for S-ISI Channel E (8-PSK signal).

channel, defined by f0 = f2 = f40 = f42 = 0.0993, f1 = f20 = f22 =
0.352 and f21 = 1.0. To this channel The GS-SISO algorithm is directly
applicable to this channel while the MVA is not. For Channel F, the
grouped NZT set {20, 21, 22} contains most of the channel energy. Fol-
lowing the design rules developed in Section 3.4.5, a GS-SISO associated
with this NZT set is a good choice. The performance of this GS-SISO is
presented in Fig-3.29. The performance curves in Fig-3.29(a) show that
Nc = 7 is a reasonable choice for the number of iterations. Furthermore,
most of the performance gain is achieved by the first 4 iterations. Thus,
using N = 4, the complexity can be reduced by almost 50% at a cost of
approximately 1 dB in SNR. Moreover, Fig-3.29(b) shows that G-F-3-7
performs only 1.2 dB away from the ML-SyD lower bound described in
Section 3.4.7. By comparison, the DFE(43,42) performs more than 2.1
dB worse than this GS-SISO.

Channel G is a fairly long and complicated S-ISI channel with 6 NZTs
spread over a memory length of 104. For this channel, application of
the MVA is complicated and is not considered. It can be shown that
Channel G is dominated by NZT 3 and 5, so, according to the design
rules, a reasonable choice can be either a DS-SISO associated with 3
or 5, or an MS-SISO consisting of both of them. The results for these
three algorithms are shown in Fig-3.30. Similarly, Fig-3.30(a) shows
that D-G-5 obtains a large gain through 10 iterations. In this case, using
fewer than 10 iterations may not provide a good complexity/performance
trade. For example, compared to Nc = 10, using N = 5 reduces the
complexity by half but incurs a 9 dB performance loss. Using a DFS-
SISO may be a better choice to reduce complexity. The performance of

Iterative Detection for Complexity Reduction 231

��� ��� ��� ��� ��� ��� ��� �� ��� ����� ���
��� ��� ���

��� ��� ��� ��
�� ��� ��������

������

�����
�����
����
����

���������
����

�������
�������

����
��������
����

������������
������������

������������
������������

�������������������
�������������������

��������������������������������
��������������������������������

������������

B
it

E
rr

or
R

at
e

B
it

E
rr

or
R

at
e

2Eb/N0 (dB)

2Eb/N0 (dB)

(a)

(b)

MLSE
Lower Bound

DFE(43,42)-F

G-F-3-7

G-F-3-n

100

100

10−1

10−1

10−2

10−2

10−3

10−3

10−4

10−4

10−5

10−5

1

2

3
4

6

6

6

8

8

12

12

14

14

16

16

18

18

5

10

10

Nopt = 7

Figure 3.29. Simulation results for S-ISI Channel F. (a) Convergence property of
G-F-3, (b) the BER performance of various algorithms.

various algorithms is shown in Fig-3.30(b). For this channel, the filters
in the DFE are fairly long. By 12 iterations the D-G-3 works as well
as the DFE(104,103). By assigning the heavier NZT 5 as the pivot
NZT, D-G-5-10 obtains a 1 dB gain with a slightly lower complexity. As
expected, an MS-SISO consisting of these two DS-SISOs has a better
performance as shown in Fig-3.30(b). Specifically, M-G-35-10 performs
2 dB better than D-G-5-10 and more than 3 dB better than either D-
G-3-12 or DFE(104,103). On the other hand, M-G-35-10 performs only
1.5 dB worse than the ISI-free performance bound. It should be noted
that at low SNR, DFE(104,103) outperforms both DS-SISOs.

3.4.7 On Performance Bounds for S-ISI Channels
In theory, the performance bounds developed in Section 1.4.3-1.4.4

can be applied to the S-ISI channel. In practice, however, the memory
length L is very long making evaluation of the bounds difficult at best. In
particular, the upper bound is not practical for arbitrary S-ISI channels.

232 ITERATIVE DETECTION

������
������

�����
�����
�����

�����
�����
���������

����
�����
�������������

��������

������������
������������

����
����

���������
���������

������
������

��������������
��������������

����������������������
����������������������

������������������������
����������������������
���

�������������������������������������

������������

B
it

E
rr

or
R

at
e

B
it

E
rr

or
R

at
e

2Eb/N0 (dB)

2Eb/N0 (dB)

(a)

(b)

No ISI

D-G-5-n

D-G-3-12

M-G-35-10

D-G-5-10

DFE(104,103)-G

100

100

10−1

10−1

10−2

10−2

10−3

10−3

10−4

10−4

10−5

10−5

1

2

3

4

4

6

6
7

8

8
9

12 14 16

5

5

10

10 15 20 25 30

Nopt = 10

Figure 3.30. Simulation results for S-ISI Channel G. (a) Convergence property of
D-G-5, (b) BER performance of various algorithms.

The lower bound can be used for S-ISI channels if one can determine a
set of small distances that can be used for a uniform side information
scheme. One obvious choice results in the ISI-free bound of Example
1.21. For a tighter upper bound, we can attempt to find error sequences
that yield normalized distance less than unity. One approach is to use an
S-SISO to solve the shortest path problem associated with the minimum
distance (i.e., see (1.131)). Specifically, a good detection algorithm can
be used to find small distances to produce a lower bound. This method
is used for the two-dimensional (2D) ISI channel in Section 5.2.1.

Simple S-ISI Channel A simple S-ISI channel has the same distance
spectrum as the “compact” ISI channel with coefficients {fh(0), fh(1), . . .
fh(Ls)}. This can be seen by appealing to Fig-3.31 which shows that
the two channel produce exactly the same output sequence. Thus, these

Iterative Detection for Complexity Reduction 233

(a)

a0, a1, · · ·

x0, x1, · · ·

a0, a2, . . .

(b)

a0, a1, · · ·
x0, x2, · · ·

x1, x3, · · ·

x0, x1, · · ·

f0 f1

f0 f1

f0 f1

DD

D D

DD D

a1, a3, · · ·

Figure 3.31. Two equivalent models for a simple S-ISI channel.

two channels have the same achievable performance.6 As a result, upper
and lower bounds for the simple S-ISI channel can be obtained using
standard techniques applied to the equivalent compact ISI channel.

Regular S-ISI Channel For a regular S-ISI channel, sequences re-
sulting in small distances may be obtained by appealing to a close re-
lationship with 2D ISI channels. Specifically, as illustrated Fig-3.32, a
regular S-ISI may be viewed as the equivalent of raster scanning a 2D ISI
channel with NZTs that are concentrated in 2D. If the number of zeros
between NZTs is large for the S-ISI channel, then this analogy becomes
quite a good approximation. Thus, lower bounds for the regular S-ISI
channel may be obtained using the methods described in Chapter 5.

f21f0 f1 f2 f20 f22 f42f40 f41

f2 f1 f0

f22 f21 f20

f40 f42f41

wrap around

Figure 3.32. Equivalence between a regular S-ISI channel and a two-dimensional ISI
channel on a cylinder surface.

6This equivalence relationship can be used to directly inspire the PTVA and show that the
PTVA is optimal.

234 ITERATIVE DETECTION

3.5 Summary and Open Problems
Complexity reduction can be obtained using iterative detection in a

number of ways. Possibly the most powerful method is the basic idea
underlying iterative detection – i.e., the efficient modeling of a system
by a graph with loops. In this chapter we explored one application, the
sparse ISI channel, where this modeling trick provides significant com-
plexity reduction while providing near optimal performance. In addition
to inherent gain, we also described a number of techniques that can be
used to further reduce complexity. Most of these techniques may be
viewed as decision feedback in one form or another.

When applying these tools for complexity reduction in an aggressive
manner, it may be helpful to alter the iterative detection principles intro-
duced in Chapter 2. In particular, filtering of soft information has been
found to improve the performance of some iterative detectors operating
on graphs with short cycles and parallel activation schedules.

Two methods were considered in detail. First, we demonstrated that
a reduced state SISO can be used as a replacement for the forward-
backward SISO for a generic FSM. This provides a method not only for
complexity reduction in iterative detectors, but an attractive reduced
complexity substitute for the Viterbi algorithm in some cases. Second,
the S-ISI channel was considered in detail. Various modeling options,
connection cutting, and hard decision feedback were all used to develop
effective low complexity SISOs for this channel.

Although we have not attempted to give a single solution for complex-
ity reduction, the concepts explored in this chapter are fairly generic.
Some reasonable directions for future research include the adaptation
of the RSSE (set partitioning) approach to the forward-backward SISO
algorithm, and using RS-SISOs in place of several SISOs in an iterative
detection network. Furthermore, a careful comparison of the various
RS-SISO approaches suggested in the literature (especially with the self-
iteration concept) is lacking. This is especially the case when complexity
is measured not in terms of computation and storage counts, but in the
ease of implementation. Finally, it may be possible to obtain reduced
complexity SISOs for FSMs using modified linear and decision feedback
equalizers, sequentially decoders, and other known reduced complexity
hard-out data detection algorithms.

The general modeling methods used in the S-SISO remain an interest-
ing and open area of research. For example, the discussion surrounding
Fig-3.32 suggests that good 2D detection algorithms may be applica-
ble to the S-ISI problem (for regular S-ISI channels at least). It may
be possible to model more general S-ISI channels (and analogous error

Iterative Detection for Complexity Reduction 235

correcting codes) using higher dimensional models and/or collections of
linked-graphs.

BER Bit Error Rate
BPSK Binary Phase Shift Keying
DDFSE Delayed Decision Feedback Sequence Estimate
DFE Decision Feedback Equalization
DFS-SISO Decision Feedback S-SISO
DS-SISO Distributed S-SISO
GS-SISO Grouped S-SISO
HDF Hard Decision Feedback
MS-SISO Multiple S-SISO
MVA Multi-trellis VA
NZT Non-Zero Tap
PTVA Parallel trellis VA
QPSK Quadratic Phase Shift Keying
RS-SISO Reduced State SISO
RSSE Reduced State Sequence Estimate
S-ISI Sparse InterSymbol Interference
SNR Signal-to-Noise Ratio
S-SISO Sparse SISO
VA Viterbi Algorithm

Table 3.3. Table of abbreviations specific for Chapter 3

3.6 Problems

3.1. Let M[a] ≡ − ln P[a] be the metric domain equivalent of a given
soft information measure in the probability domain. Show that
sum-to-unity normalization can be accomplished in the metric
domain using

min∗ (M[a = 0], M[a = 1], . . . M[a = |A| − 1]) = 0 (3.22)

Specifically, show that the above normalization implies that the
sum of exp(−M[a]) is 1. Can you find a simple method to im-
plement the normalization implied by (3.22)? Can you adapt
the“internal probability truncation” technique to the metric do-
main?

3.2. Show how trellis splicing can be applied to the PCCC decoder in
Section 2.4.3.1. Specifically, suppose after the 4-th iteration, with
sum-to-unity normalization and sum-product processing, the ex-
trinsic soft-out from the SOBC is P[bk]. Furthermore, consider
the specific case of P[b10 = 1] = 0.05, P[b11 = 1] = 0.56, P[b12 =

236 ITERATIVE DETECTION

1] = 0.77, P[b13 = 1] = 0.95, P[b14 = 1] = 0.2, and P[b15 =
1] = 0.81. Show the (spliced) trellis diagram for SISO1 of Fig-
2.28 using early detection based on a probability threshold of 0.1.
Repeat for a probability threshold of 0.25.

3.3. Given a pmf P[aj] for an iid sequence {ak(ζ)}, find the soft esti-
mate ã that minimizes the mean square error (MSE)

E

∣∣∣∣∣∣
∑
|fi|<ε

fiak−i(ζ)−
∑
|fi|<ε

fiã

∣∣∣∣∣∣
2

3.4. Consider a nonlinear mapper with inputs ak, ak−1 . . . ak−L and
output xk. Suppose that soft information on {ai(ζ)} is avail-
able in the probability domain with sum-to-unity normalization
(i.e., P[ak]). Consider using soft estimate feedback to simplify the
combining and marginalization associated with the soft inverse of
this mapper. Specifically, consider the case where combining and
marginalization is done only over ak−i for i = 0, 1, . . . L1 with
P[ak−i] for i = L1 + 1, . . . L used to average out the effects of
the other inputs. How does this differ from the linear case con-
sidered in(3.2)? Describe how this method could be used in a
sum-product RS-SISO.

3.5. Consider the TCM-ISI system in Example 2.9 (i.e., without in-
terleaving). Draw the explicit index (graphical) diagram for this
system using a standard graphical model for each FSM (i.e., as in
Fig-2.53(a)). What is the minimum cycle length on this model?
Try using soft information filtering in the iterative detector of
Example 2.9.

3.6. For soft information on a binary variable b(ζ), the belief degrading
function maps the given soft information p0 = P[b = 0] and p1 =
P[b = 1] into q0 and q1, both in the sum-to-unity normalization
convention – i.e., q = g(p). Show that any g(·) that is convex
on the interval [0.5, 1] and symmetric around pT = [0.5 0.5] is
a reasonable choice. Generalize this to the case of a nonbinary
variable.

3.7. To slow convergence in detector of Example 3.5, try using belief
degradation in place of soft information filtering.

3.8. For an (L + 1)-tap ISI channel tabulate the computation and
storage requirements for the algorithm of Example 2.15 and the
connection cut version with all but one of the connections back

Iterative Detection for Complexity Reduction 237

to the SOBCs cut. Roughly, what is the percentage of computa-
tional saving for |A| = 4 and L = 4? Repeat Problem 2.25 for
the connection cut version.

3.9. Show that the cross combining in Example 3.6 can be viewed as
running an SW-SISO with D = 1 and using the resulting soft-in
information on xk(tk).

3.10. For the RS-SISO of Section 3.3, determine the values of n such
that the trellis state vn can be used for completion on ak. Dis-
cuss how combining of soft-out information on ak, obtained by
different values of n could be combined to produce MO[ak] which
uses all available observations.

3.11. For the RS-SISO of Section 3.3, the completion is done via (3.11).
Describe why modification of this completion scheme to exclude
the MI[ak] term (i.e., as (2.13) replaces (2.12)) is not straightfor-
ward for the RS-SISO.

3.12. Describe other options for a RS-SISO in detail and discuss the
relative advantages and disadvantages of these approaches:

(a) Show that the reduced state forward recursion in (3.6a) can
be applied to both the unconstrained and constrained forward
recursions in the L2VS structure on an |A|L1-state trellis.

(b) Consider a DDFSE (forward algorithm) that runs across the
observation records and stores a sequence of hard decisions.
Explain how these hard decisions can be fedback during a
backward recursion on an |A|L1-state trellis.

(c) Consider an algorithm that runs the forward recursion in
(3.6a) across the entire observation interval and stores the
forward truncated trellis transition metrics. A backward re-
cursion is then run using these truncated transition metrics
with completion performed on ak using the truncated trellis
transition τk.

3.13. Show that, for the RS-SISO presented in Section 3.3, the soft-out
information of ak is the same for a given channel and its time-
reversed version. What does this imply about the robustness of
the RS-SISO to non-minimum phase channels? For which vari-
ations in Problem 3.12 is this also the case? Is this the case for
the full-state VA and forward-backward algorithm?

3.14. Explain why thresholding the RS-SISO of Section 3.3 yields dif-
ferent decisions than the corresponding DDFSE algorithm with
the same number of states. Which of the variations in Problem
3.12 are threshold consistent with DDFSE?

238 ITERATIVE DETECTION

3.15. Develop a recursive approach to simplify the computation of
MO[xk] in (3.12).

3.16. Using the rules in Section 3.4.5, design an S-SISO for the S-
ISI channel defined by a set of 3-tuples: {(0,0,−0.31), (1,3,0.52),
(2,9,−0.9), (3,10,0.25), (4,21,0.15), (5,27,1.67), (6,35,−0.35)}.

3.17. Use Fig-3.31 or Fig-3.32 separately to prove that the MAP-SqD
problem associated with the simple S-ISI channel can be split into
Mg uncorrelated sub-problems. Show that finding the MAP-SqD
for each sub-problem via a Viterbi algorithm yields the PTVA.
Describe how a similar forward-backward algorithm for the simple
S-ISI can be constructed.

Chapter 4

ADAPTIVE ITERATIVE DETECTION

In most practical situations, perfect channel state information (CSI)
is not available at the receiver. Consequently, an iterative receiver
should be able to deal with unknown, and possibly time varying pa-
rameters. Applications that can potentially benefit from these adap-
tive receivers include Trellis Coded Modulation (TCM) in interleaved
frequency-selective fading channels, and Parallel and Serial Concate-
nated Convolutional Codes (PCCCs and SCCCs) with carrier phase
tracking (or in the presence of flat fading).

A concise description of systems that include unknown parameters
can be based on the graphical models discussed in Chapter 2. The
fundamental difference between this and the perfect CSI case is that
the unknown parameters are almost always continuous1 in nature (e.g.,
carrier phase, or fading amplitude). Based on this graph representation,
adaptive iterative receivers can be constructed in a way similar to the
perfect CSI case. The exact partitioning of the graph into subgraphs,
as well as the exact algorithm used for soft-decision generation for each
subgraph, lead to different receiver structures.

Example 4.1.
Consider the SCCC system discussed in Section 2.4.3.2 in the presence of
unknown time-varying carrier phase. The graph describing the original
system need only be augmented with the subgraph describing the dy-
namics of the unknown parameters, as shown in Fig-4.1. In this example,

1It has been suggested however, that digitized models for these parameters be adopted,
which allows the parameter estimation process to be viewed as another detection problem
[Ca74, LeChPo99, KoWe99].

239

240 ITERATIVE DETECTION

the interleaver
according to
permuted

C1

C2

CN

Tc1

...
...

...
...

...
O I

inner CCouter CC

ck dk

To1

To2

ToN

Ti2

Ti1

TiN

bk qk

Channel

...
...

Parameter

zk

Tc2

TcN

fk

...
PS PF

Figure 4.1. Graph representation of an SCCC in the presence parametric uncertainty.
Subgraphs O and I correspond to the Outer and Inner code, respectively. Subgraphs
PS and PF are related to the adaptive soft inverse blocks A-SODEM and A-SISO,
respectively.

the unknown parameters are interacting with the rest of the system only
through the transmitted symbols. Possible approaches for constructing
adaptive receivers include:

use of an external estimator – which is activated only once before the
iterative detection processing, providing an initial estimate of the
unknown parameter – followed by the standard perfect-CSI iterative
detection network, using the estimate in place of the true value of the
parameter, as shown in Fig-4.2(c).
iterative detection with an external estimator which iteratively up-
dates its estimate by utilizing decisions (soft or hard) on the output
symbols. This scheme is suggested from the partitioning of the over-
all graph of Fig-4.1 into subgraphs O, I, and PS (i.e., Parameter and
Symbol), and the corresponding receiver block diagram is shown in
Fig-4.2(d). The soft inverse block corresponding to PS will be referred
to as the Adaptive Soft Demodulator (A-SODEM).
iterative detection using an adaptive soft inverse algorithm corre-
sponding to the partitioning of the overall graph into subgraphs O
and PF (i.e., Parameter and FSM). In this receiver, depicted in Fig-
4.2(e), the inner block, which will be referred to as Adaptive Soft-
Input Soft-Output (A-SISO) module, jointly estimates the parame-
ters and generates soft information on the inner coded symbols.

End Example

Adaptive Iterative Detection 241

phase
estimator

SISO
Inner

Inner
CC

SISO
Inner

SISO
Inner

bk

Outer
SISO

Outer
SISO

Outer
CC

Outer
SISO

Outer
SISO

ck dk

I−1

MOD

zk

zk

zk

qk

ejθk nk
zk

e−jθk

e−jθ̂k

zk

I−1

I−1

I−1 A-SISO
Inner

SODEM

SODEM

I

I

I

I

I

A-SODEM

(e)

(d)

(c)

(b)

(a)

Figure 4.2. (a) SCCC transmitter block diagram with carrier-phase uncertainty. (b)
Iterative detection network for perfect CSI. (c) External estimator feeding a perfect-
CSI iterative detector. (d) Iterative receiver resulting from partitioning the graph of
Fig-4.1 into subgraphs PS, I and O. (e) Iterative receiver resulting from partitioning
the graph of Fig-4.1 into subgraphs PF and O.

The derivation of optimal and sub-optimal (practical) A-SISO algori-
thms for the FSM model described in Section 1.3 is the main topic of
this Chapter. In particular, the observation equations (1.44),(1.51) for
the two modeling options for the unknown parameter Θ, namely the de-
terministic (Θ = f) and the stochastic Gauss-Markov (Θ(ζ) = {fk(ζ)}),
are the starting points for our derivations. We are particularly interested
in A-SISOs, since A-SODEMs can be considered a special case. Indeed,
the A-SODEM is just an A-SISO corresponding to a single-state FSM
(i.e., memoryless sequence).

For a generic quantity u derived from the input-output pair (a,x) of
an FSM, soft-information of the form APP, MSM, GAP, and M∗SM can
be defined in a way similar to (1.32). In addition to the sequence related
nuisance parameters, the unknown channel parameter Θ needs to be
marginalized using either expectation or minimization (maximization)
for the probabilistic and deterministic parameter models, respectively.
The order of marginalization is important when the sequence and pa-
rameter marginalization operators do not commute (e.g., mina:u and
EΘ(ζ)), since it leads to different soft information. We will only de-

242 ITERATIVE DETECTION

rive exact expressions for the soft information defined with parameter
marginalization performed first. We note that different, but meaningful
soft metrics can also be defined by interchanging the marginalization
order. These options will not be pursued in this work, mainly because
they don’t appear to lead to rigorously expressed optimal structures.
To distinguish between different parameter marginalization options, the
subscript “p” will denote marginalization (i.e., averaging) over a proba-
bilistic parameter model, and the subscript “d” will denote marginaliza-
tion (i.e., maximization or minimization) over a deterministic parameter
model. The APP and MSM soft information of interest are defined as
follows

APPp[u] ∆=
∑
a:u

E{fk(ζ)} {p(z,a|{fk})} =
∑
a:u

p(z,a) (4.1a)

MSMp[u] ∆= min
a:u

[− ln E{fk(ζ)} {p(z,a|{fk})}] = min
a:u

[− ln p(z,a)] (4.1b)

APPd[u] ∆=
∑
a:u

max
f

p(z,a; f) (4.1c)

MSMd[u] ∆= min
a:u

min
f
− ln p(z,a; f) (4.1d)

4.1 Exact Soft Inverses – Optimal Algorithms
Equation (4.1) clearly suggests several options in manipulating

p(z,a|{fk}) and p(z,a; f) to obtain the proposed soft metrics.

Maintaining the conditioning over the entire input sequence, mar-
ginalization (i.e., expectation or maximization) can be performed on
the unknown parameter depending on the underlying model. Mar-
ginalization of the resulting metrics over the nuisance parameters
a : u is performed as a final step, leading to the final soft metrics for
u. This approach is described in Section 4.1.1.

On the other hand, the sequence and parameter marginalization can
be performed in a single step, leading to the exact expression derived
in Section 4.1.2.

It would be advantageous at this point to generalize the notion of the
FSM state sk and transition tk to larger sequence portions, by defining
trellis states and trellis transitions, respectively. For instance, a super-
state and a super-transition can be defined as ss

k = (tk−d, . . . , tk−1, sk)
and tsk = (tk−d, . . . , tk) for arbitrary d. This foreshadows the result that
the optimal algorithms do not “fold” [Ch98] onto a trellis as in the case
of known channel and that the size of the trellis eventually used is a
design parameter.

Adaptive Iterative Detection 243

4.1.1 Separate Sequence and Parameter
Marginalization

We begin by deriving optimal algorithms for the evaluation of the soft
outputs defined in equations (4.1a) and (4.1b) and more precisely the
quantity p(z,a). Evaluating this quantity for each sequence a can be
done using the Estimator-Correlator (EC) structure described in (1.49),
(1.53). This technique, although efficient, results in suboptimal algori-
thms where complexity and smoothing depth are exponentially coupled,
as in [ZhFiGe97].

An alternative optimal procedure for the metric calculation, is based
on the forward-backward EC structure expressed in (1.87). Recall that
for a forward-backward EC, and at a particular time instant k, the |A|k+1

metrics corresponding to the nodes of the forward tree are combined with
the |A|K−1−k metrics corresponding to the nodes of the backward tree
(future) and weighted by the binding factor in (1.88).

The final soft output for a generic quantity um is the marginalization
(i.e., summation or maximization) over all factors with the same um.
Note that the choice of k, the particular point in time when the past
and future metrics are combined, is completely arbitrary (i.e., it is not
related to m). In a practical algorithm, however, the reference point
k is chosen to be in the neighborhood of m, in order to maximize the
number of relevant sequences combined to produce the soft information
on um. Thus, while it may seem redundant to store and update both
a forward and a backward tree (i.e., same result can be accomplished
with a single forward tree), the fact that the two trees can be pruned
independently, decouples complexity and observation length, leading to
practical algorithms, as will be discussed in Section 4.2.

For the deterministic parameter model, i.e., (4.1c) and (4.1d), we need
to evaluate maxf p(z,a; f) for each sequence a, which can be done using
a similar forward-backward EC (see Problem 4.4 and [An99, AnCh99]),
followed by marginalization over a : uk.

We stress that under the folding condition, the forward and backward
trees fold and the forward-backward recursions can be performed on the
corresponding trellises. This case is illustrated in the following example.

Example 4.2.
We now derive expressions for the forward-backward EC, for the spe-
cial case presented in Example 1.14. The innovation term used in the
backward recursion becomes

p(zk+1|zK−1
k+2 , sk+1,aK−1

k+1) = N cc(zk+1;
ak+1αzk+2

ak+2
; |ak+1|2σ2

u) (4.2)

244 ITERATIVE DETECTION

where sk+1 = ak does not appear in the innovations term. The backward
innovations term depends on the symbols ak+1, ak+2, which means that
the backward recursion can be performed on a |A|-state trellis. The
binding term simplifies to∫

δ(fk − zk/ak)N cc(fk;αzk+1/ak+1;σ2
u)

N cc(fk; 0,
σ2

u
1−|α|2)

dfk =

N cc(zk/ak;αzk+1/ak+1;σ2
u)

N cc(zk/ak; 0,
σ2

u
1−|α|2)

(4.3)

The last equation provides an intuitive explanation for the binding term.
Specifically, the numerator involves the quantity |zk/ak −αzk+1/ak+1|2,
which is the squared difference between the forward filtered estimate
and the backward predicted estimate. When these two estimates do not
agree, a penalty is paid by means of decreasing the sequence probability
(or increasing the sequence metric). We note that this example repre-
sents a very special case, and for the rest of the examples in this chapter,
folding does not occur.

End Example

4.1.2 Joint Sequence and Parameter Marginalization
The special form of APPp[uk] allows us to obtain alternative expres-

sions for the optimal soft outputs by explicitly marginalizing over both
the parameter and the sequence in (4.1a), to obtain

APPp[uk] =
∑
a:uk

E{fk(ζ)} {p(z,a|{fk})} = p(z, uk) (4.4)

We now derive exact expressions for the soft-output APPp[tk] for the
GM channel. A straightforward expression can be derived by utilizing
the fact that the process {(tk, fk)} is a mixed-state Markov chain.

p(z, tk) =
∫

p(z, tk, fk)dfk =∫
p(zk−1

0 , sk, fk)p(zk|tk, fk)p(ak)p(zK−1
k+1 |sk+1, fk)dfk (4.5a)

where p(zk−1
0 , sk, fk) and p(zK−1

k+1 |sk+1, fk) can be updated by a forward
and a backward recursion respectively

p(zk
0 , sk+1, fk+1) =

∑
tk:sk+1

∫
p(zk−1

0 , sk, fk)

p(zk|tk, fk)p(ak)p(fk+1|fk)dfk (4.5b)

Adaptive Iterative Detection 245

p(zK−1
k+1 |sk+1, fk) =

∑
tk+1:sk+1

∫
p(zk+1|tk+1, fk+1)p(ak+1)

p(fk+1|fk)p(zK−1
k+2 |sk+2, fk+1)dfk+1 (4.5c)

Unfortunately, the storage requirement for the above equations is infinite
due to the fact that fk takes values in a continuous space, making it of
primarily conceptual value.2 Although it is conceivable to quantize the
channel values, we will follow another approach. A derivation similar to
(1.87) leads to

p(zK−1
0 , tk) = p(zk−1

0 , sk)p(zK−1
k+1 |sk+1)∫

p(fk|sk, zk−1
0)p(zk|tk, fk)p(ak)p(fk|sk+1, zK−1

k+1)
p(fk)

dfk︸ ︷︷ ︸
b′p(·)

(4.6a)

The forward and backward recursions for the first two quantities are as
follows:

p(zk
0 , sk+1) =

∑
tk:sk+1

p(zk−1
0 , sk)p(zk|tk, zk−1

0)p(ak) (4.6b)

p(zK−1
k+1 |sk+1) =

∑
tk+1:sk+1

p(zk+1|tk+1, zK−1
k+2)p(ak+1)p(zK−1

k+2 |sk+2) (4.6c)

Aside from the evident similarity of (4.6) with (1.87), there are two im-
portant differences: (i) the recursions described here do not depend (at
least explicitly) on the entire path history, and (ii) the off-line evaluation
of the third term of (4.6a) as well as the innovation terms in (4.6b) and
(4.6c) is complicated due to the fact that they are mixed-Gaussian den-
sities. Nevertheless, assuming that the latter difficulty can be overcome,
the algorithm suggested by (4.6) is much simpler: only a forward and a
backward recursion is performed over a state trellis, followed by combin-
ing (i.e., multiplication) of the updated quantities with an appropriate
weight (binding factor). This procedure is depicted in Fig-4.3. Once
more we emphasize that the trellis states ss

k and transitions tsk do not
have to correspond to the FSM states and transitions.

The case of deterministic parameter modeling, i.e., joint marginali-
zation of the parameter and sequence in (4.1d), is not pursued further,

2The recursions in (4.5) are basically the well-known BCJR [BaCoJeRa74] recursions for a
mixed-state Markov process.

246 ITERATIVE DETECTION

Binding

0 k K − 1

|T
|m

et
ri
cs

· · ·

· · ·

Figure 4.3. Soft-metric evaluation in the case of joint sequence and parameter mar-
ginalization.

the reason being that the exact metric evaluation is cumbersome to ex-
plicitly express and does not offer any significant insight. Nevertheless,
by utilizing the correspondence between the expectation and the maxi-
mization operator, meaningful suboptimal algorithms will be developed
in the next section based on this subcase.

4.2 Approximate Soft Inverses – Adaptive SISO
Algorithms

The exact evaluation of the soft metrics developed in the previous
section under either modeling assumption for the unknown parameter
involves likelihood updates on a forward and backward tree or trellis,
assisted by per-path filters, followed by binding of the past and future
metrics. In view of this fact, any suboptimal algorithm for the case of
separate sequence and parameter marginalization can be interpreted as
the result of applying one or more of the following simplifications to the
forward-backward EC: (i) non-exhaustive tree search, (ii) non-Kalman
(or non-RLS) parameter estimators, and (iii) suboptimal binding of the
past and future metrics. Similarly, for the case of joint sequence and
parameter marginalization, any suboptimal algorithm is the result of a
simplifying assumption for the innovation terms, as well as a simpler
form for the parameter estimators and binding term in (4.6). In the
following, this design space is partially explored.

4.2.1 Separate Sequence and Parameter
Marginalization

Regarding the tree search, all options available to prune the sequence
tree in the case of hard-decisions [AnMo84] are candidates for use here
as well. Breadth-first schemes seem to be the most appropriate for soft-
decisions, because completion of the sequence metrics is required. In-

Adaptive Iterative Detection 247

deed, the fact that breadth-first algorithms maintain a common front in
the search process facilitates the marginalizing task. Using the Viterbi
algorithm (VA), and employing either the per-survivor processing (PSP)
principle [RaPoTz95], or equivalently, the decision feedback assumption
introduced in [SeFi95], practical A-SISO algorithms can be derived. The
resulting algorithms, shown in Fig-4.4, consist of forward and backward
recursions similar to the ones performed in the classical SISO. A KF (or

Observation

Buffer & Combiner
Trellis BasedTrellis Based
Backward
Recursion

S[tk]

f̃k|k−1

Channel
Estimators
Channel

Recursion
Forward

Estimators

f̃ b
k|k+1

Figure 4.4. Trellis-based practical A-SISO algorithm with multiple estimators.

RLS for deterministic modeling) parameter estimate is kept for every
trellis state and updated in a PSP [RaPoTz95] fashion. At this point we
emphasize once more that the trellis on which this algorithm operates is
not tightly related to the FSM trellis. Its size is a design parameter that
determines the amount of pruning in the forward and backward trees,
and eventually, the complexity of the algorithm.

Additional simplifications can be performed on the metric updates
and the parameter estimates. One such simplification for the case of
deterministic parameters can be achieved [An99] by approximating the
information matrices used in the forward and backward RLS with P̃k =
(1−ρ)IL+1 and P̃b

k+1 = (1−ρ)IL+1, where L+1 is the parameter vector
size and IL+1 is the identity matrix of size L + 1. This simplification
results in least mean square (LMS) parameter estimators and a simple
and meaningful expression for the binding term bd(·) as shown below

f̃k = f̃k−1 + βq∗
k(zk − qT

k f̃k−1) (4.7a)

bd(f̃k, f̃ b
k+1) =

1
N0

ρ

(1− ρ2)
||f̃k − f̃ b

k+1||2 (4.7b)

In particular, (4.7a) describes the forward LMS parameter estimator
with step size parameter β related to the RLS forgetting factor ρ by
β = (1− ρ)/(ρ + (L+ 1)(1− ρ)). Regarding complexity reduction in the
case of probabilistic modeling, reduced complexity KF is conceivable,
although such solutions are application specific [RoSi97].

248 ITERATIVE DETECTION

By dropping the backward recursion in the forward-backward EC, the
forward-only FL algorithms proposed in the literature can be derived.
The algorithm in [ZhFiGe97] calculates APPp[ak] soft outputs in a FL
configuration, using the T-algorithm [AnMo84] for path pruning and
employing KF for channel estimation. To achieve the desired smoothing
depth D, the forward algorithm is developed based on the trellis state
ss
k = (tk−d, · · · , tk−1, sk), where d is selected such that ak−D is included

in ss
k+1. Similarly in [AnPo98], a forward-only recursion is considered to

produce APPd[ak] and MSMd[ak] soft outputs for the special FL case of
the delay being equal to the channel length, with the VA used to prune
the tree, and RLS channel estimation.

4.2.2 Joint Sequence and Parameter Marginalization
Starting from equations (4.6), suboptimal algorithms can be derived

by employing a simplifying assumption for the innovation terms
p(zk|tk, zk−1

0), and p(zk+1|tk+1, zK−1
k+2), which are in reality mixed Gaus-

sian density functions. The Gaussian approximation leads to an at-
tractive algorithm since only the state-conditioned/sequence-averaged
forward (i.e., f̃k|k−1(sk) = E{fk|sk, zk−1

0 }) and backward parameter one-
step predictions together with the corresponding covariances need to be
maintained and updated. Note that these estimates are only partially
conditioned on the data sequence through the FSM state sk (or more
generally the trellis state ss

k). Recursive update equations for these par-
tially conditioned parameter estimates, first derived in [IlShGi94], are
very similar to the KF recursions, thus we use the name partially con-
ditioned KF (PCKF). Furthermore, in the limiting case when the trellis
state represents the entire sequence, the innovation terms become pre-
cisely Gaussian and the PCKF become the sequence conditioned KF;
this is the exact scenario of the separate sequence and parameter mar-
ginalization in the GM case.

In addition to the Gaussian approximation, a further simplification
occurs under the assumption that the conditional means and covariances
of the parameter are not functions of the states

E

{
fk|sk, zk−1

0

}
∼= E

{
fk|zk−1

0

}
= f̂k|k−1 (4.8)

This approximation – if valid – results in a desirable solution, since only a
single forward and a single backward global estimator (averaged over the
sequence) needs to be maintained and updated. Assuming that a prob-
abilistic description p(tk) is available for the transition tk (derived from
a recent soft information on tk), a recursion can be derived for f̂k|k−1.
These recursion equations, closely resemble those of the KF. The intu-

Adaptive Iterative Detection 249

itive justification of this algorithm is that since a probabilistic description
of tk – and consequently qk – exists, an average q̂k =

∑
tk

qkp(tk) can
be used in place of qk in the KF recursions, thus resulting in what we
refer to as an Average KF (AKF). The application of the AKF single-
estimator idea is inhibited since (i) the independence assumption is not
valid and (ii) an accurate p(tk) can only be derived from the observation
zk
0 and is therefore tightly coupled with the estimation process. Both

(i) and (ii) are alleviated by introducing a delay (advance) d in the pa-
rameter estimate to evaluate the forward (backward) transition metric
at time k. Specifically, by increasing the tentative decision delay d, the
accuracy of the approximation

E{fk−d|sk, zk−d−1
0 } ∼= E{fk−d|zk−d−1

0 } = f̂k−d|k−d−1 (4.9)

is improved. The resulting algorithm, that utilizes a d-lag (d-advanced)
soft-decision-directed forward (backward) AKF, is depicted in Fig-4.5.
The forward metrics at time k are updated using the d-delayed parame-

z−d

Observation

Buffer & Combiner
Trellis Based

Channel

Trellis Based

Channel

Backward
Recursion

S[tk]

Forward
Recursion

Estimators Estimators

zdf̂k−d|k−d−1 f̂ b
k+d|k+d+1

tentative decision
feedback (hard or soft)

Figure 4.5. Trellis-based practical A-SISO algorithm with a single estimator.

ter estimate f̂k−d|k−d−1. Starting at time k a d-step non-adaptive back-
ward recursion is performed, at the end of which, a smoothed soft metric
p(tk−d) ∼= p(tk−d|zk−1

0) is obtained. The latter is then used in the AKF
to update f̂k−d|k−d−1. A similar one-step backward/d-step forward re-
cursion is required for the update of the backward quantities.

Finally, by exploiting the correspondence between the expectation and
maximization operator, a suboptimal algorithm can be derived for the
case of joint marginalization and deterministic parameter model. This
algorithm has a similar structure with the one described in the previous
paragraph. Forward (backward) ACS operations are performed on the
state trellis, aided by a single d-lag (d-advanced) hard-decision-directed
forward (backward) RLS or LMS parameter estimation.

Starting from the A-SISO employing per-state PCKF, and by drop-
ping the backward recursion, the algorithm described in [IlShGi94] is

250 ITERATIVE DETECTION

produced as a special case. Although the latter was not intended to pro-
vide soft decisions, the metric updates and parameter recursions (in the
form of the PCKF) are precisely those developed therein. The A-SISO
algorithm described in [BaCu98] can be regarded as a special case of the
single-estimator (AKF) A-SISO presented earlier. Indeed, the latter is
an FL, forward only version, operating on the trellis state ss

k = tk−1 with
d = 0. Although the zero tentative decision delay eliminates the need for
additional backward recursions, it seriously compromises the accuracy
of the approximation in (4.9), motivating the non-zero delay d described
herein. Similarly, the fixed complexity algorithm corresponding to the
case of joint sequence and parameter marginalization for the determinis-
tic parameter model can be regarded as a forward-backward extension to
the conventional adaptive ML-SqD receiver [Ko71, MaPr73, Un74]. The
latter is a modification to the VA, that uses a d-delayed, hard-decision
directed, single external parameter estimate to update the metrics.

4.2.3 Fixed-Lag Algorithms
To apply the algorithms presented in Sections 4.2.1 and 4.2.2 in the

tracking mode, it is assumed that both a forward and backward training
sequences are present, providing the initial forward and backward pa-
rameter estimates. In many realistic situations, however, there is only a
forward training sequence available. In addition there may be a neces-
sity to process the received data without large delay. In these cases, an
FL adaptive soft input soft output algorithm is required.

As mentioned in the previous sections, FL A-SISO algorithms have
been derived in [ZhFiGe97, AnPo98, BaCu98] and can be interpreted
as forward-only versions of FI A-SISOs operating on a super-trellis. In
the following, we describe new FL A-SISO architectures based on the
work in [HeChAn00]. In particular, the FL A-SISO is realized both
in the forward-backward form [ChCh98b], as well as in the L2VS [Le74,
LiVuSa95] forward-only form. The resulting algorithms have linear com-
plexity in D and estimate the channel without a backward channel train-
ing sequence.

Bi-directional Fixed Lag A-SISO Algorithms An FL forward-
backward A-SISO algorithm is realized by the same procedure as the
FI forward-backward A-SISO, but the backward adaptive recursion is
started at k + D to obtain the SOk+D

0 [uk]. In Fig-4.6(a), the back-
ward recursion and the completion are illustrated. The challenge is
how to initialize the backward channel estimates. Among the various
possible solutions, the simplest method is to use the latest updated per-
survivor forward channel estimate f̃(sk+D+1) as the backward channel

Adaptive Iterative Detection 251

sk sk+D+1

(a)

(b)

(c)

(d)

Figure 4.6. Architectures for the FL algorithms: (a) Bi-directional recursions with
forward-backward estimation, (b) Bi-directional recursions with forward-only estima-
tion, (c) L2VS-based A-SISO with estimation in both the constraint and unconstraint
recursions, and (d) L2VS-based A-SISO with estimation in the unconstraint recursion
only. (The notation is similar to the one used in Fig-2.43).

initial coefficients f̃ b(sk+D+1). A variation on this backward initializa-
tion is also considered where the forward adaptive recursion is processed
up to k + D + d instead of k + D, d is an additional lag. When d is
large enough, survivor merging will occur between times (k + D and
k + D + d) with high probability. By storing all channel estimates for
this forward recursion, one can traceback from time k + D + d to find
the channel estimate associated with the best state at time k + D. This

252 ITERATIVE DETECTION

estimate associated with the best survivor can then be used to initialize
the backward channel estimates for all states.

Another variation, depicted in Fig-4.6(b) is to store the transition
metrics computed during the forward adaptive-ACS processing. The
backward ACS is then run using these stored metrics without channel
adaptation. Since backward channel estimation is not performed in this
approach, the issue of backward estimator initialization and binding is
avoided.

Forward-Only Fixed Lag A-SISO Algorithms Following the ra-
tional in Section 2.5.3, we consider two variations of the L2VS algorithm,
in the adaptive context. In the first variation, illustrated in Fig-4.6(c),
both the constrained forward ACS and the unconstrained forward ACS
recursions are adaptive ACS operations implemented in a PSP manner.
The other variation is shown in Fig-4.6(d). When the unconstrained
forward adaptive-ACS recursion is running, the transition metric (or
channel estimates) are stored. As the constrained forward ACS recur-
sions are running, the stored metrics (or channel estimates) are used
in a PSP manner without adaptation. It may be shown that this sec-
ond version is exactly equivalent to the forward-backward FL algorithm
that utilizes the forward estimates in the backward recursion, described
above. While a detailed proof of this fact is omitted, it follows similar
reasoning as the known channel case. Thus, it also follows from simi-
lar reasoning that the forward-backward version of these two algorithms
has less complex by a factor equal to the cardinality of uk. However, the
memory requirements for the forward-backward version are higher than
the requirements for the forward-only version (see Problem 4.11). Note
that the L2VS-based A-SISO algorithm consists of forward only adap-
tive ACS operations. Therefore, neither the backward channel estimate
initialization nor the binding term is applicable.

4.2.4 Forward Adaptive and Forward-Backward
Adaptive Algorithms

The discussion of forward-backward FL A-SISO algorithms in the
previous section raises some more general issues regarding A-SISO algo-
rithm construction, that are relevant to FI structures as well. In par-
ticular when constructing a forward-backward A-SISO algorithm, two
options are available. In the first one, adaptive processing is performed
both in the forward, as well as in the backward direction. This is the
approach suggested in all FI A-SISO algorithms discussed so far in Sec-
tions 4.2.1 and 4.2.2, and is also one of the options for building FL
A-SISOs. Moreover, this is the approach that is directly implied by the

Adaptive Iterative Detection 253

optimal schemes developed in Section 4.1. We will refer to this generic
processing as the forward adaptive backward adaptive (FABA) struc-
ture. In the second approach, adaptive processing is only performed
in the forward direction, and all transition metrics (and/or parameter
estimates) associated with the forward adaptive step are saved. It is
now possible to perform the backward recursion in a non-adaptive way,
by utilizing the previously saved metrics (and/or parameter estimates).
This option will be referred to as the forward adaptive (FA) structure.

We would like to emphasize the distinction between FABA and FA
processing only refers to the adaptive processing performed in an A-
SISO, and does not reflect the global structure used to generate soft
decisions, i.e., forward-backward A-SISOs can be either FABA or FA.
We also note that in general, FABA algorithms are more computationally
intensive, while FA algorithms require more memory. Additionally, it is
expected that FABA algorithms will perform better than FA, since the
former can utilize binding of forward and backward metrics, which, by
definition, is not applicable to the latter.

4.3 TCM in Interleaved Frequency-Selective
Fading Channels

Consider the interleaved TCM system described in Section 2.4.2,
where the frequency selective fading channel is unknown to the re-
ceiver. To facilitate acquisition of the channel shape, training se-
quences are inserted in the beginning and the end of each transmit-
ted burst. Several options are available at the receiver front-end for
pre-processing the received signal: lowpass filtering or matched filter-
ing with the transmitted pulse shape, followed by fractionally-spaced
sampling, followed by noise whitening (if necessary), as is extensively
discussed in [Il92, YuPa95, Ch95, ChPo96, ChPo96b]. Regardless of
the specific front-end structure, the front-end output can be modeled
as an equivalent symbol-spaced vector ISI channel. Since our focus is
on post-processing algorithms that are valid for any front-end process-
ing, in order to improve the readability of the development, we choose to
illustrate the concepts using a simplified symbol-spaced scalar ISI model.

An adaptive iterative receiver can be derived in a straightforward
way from the non-adaptive version, by replacing the inner SISO with its
adaptive equivalent, while leaving the outer SISO intact. Although there
are many possible A-SISOs arising from the framework in Sections 4.1
and 4.2, we only utilize trellis-based algorithms. Several notes on the
details of the implementation follow:

254 ITERATIVE DETECTION

Trellis-based multiple-estimator structures store and update one es-
timator per state with zero delay, while single-estimator schemes re-
quire d backward steps – for every forward step – to provide reliable
tentative soft or hard data estimates to update their single estimator.

Regarding the particular channel estimator used, the complexity in-
creases in the order LMS, RLS, KF, AKF, PCKF, with the KF and
the AKF having almost equal complexity.

Optimal binding is, in general, a costly operation as shown in (1.88),
while the suboptimal binding in (4.7b) results in a small increase in
complexity relative to no binding.

The trade-offs between FI and FL schemes, namely complexity vs.
memory, are qualitatively the same as in the non-adaptive SISOs.
The differences are amplified, however, due to the fact that channel
related parameters need to be stored and updated in the A-SISOs,
whereas only the forward and backward metrics are stored and up-
dated in the perfect CSI case.

Example 4.3.
Simulations were run for the transmission scheme described in Exam-
ple 2.8. The convolutionally encoded sequence is interleaved using a
57 × 30 block interleaver. Each interleaver column is formatted into a
TDMA burst together with a training sequence, equally split in 13 lead-
ing and 13 trailing symbols. Each burst is modulated and sent over a
3-tap equal power Rayleigh fading channel (each tap is assumed inde-
pendent from the others) with normalized Doppler spread νd = 0.005.
Although the decorrelation time of such a channel is much larger than
57 symbols, for the purpose of simulation efficiency, a smaller interleaver
depth is used in conjunction with the assumption of burst-to-burst inde-
pendent channel. A rate 1/2, 16-state coded QPSK system is considered.

Comparison of FI A-SISOs Fig-4.7 presents performance curves
for the iterative receiver described earlier with different options for the
inner (equalizer) A-SISO. Regarding the naming of the presented algori-
thms, each algorithm is identified by a four-part label, each part of which
denoting (i) the type of the soft decision (i.e., APP or MSM), (ii) the
multiplicity of the channel estimators (i.e., S for single, or M for mul-
tiple), (iii) the particular channel estimator used (i.e., KF, RLS, LMS,
AKF), and (iv) the binding method (i.e., Optimal Binding (OB), Subop-
timal Binding (SB), or No Binding (NB)). Bit Error Rate (BER) curves
for the first and fifth iteration are shown; no significant improvement was
observed for more than five iterations. For the A-SISOs employing KF or

Adaptive Iterative Detection 255

�� ��� ���
��� ���

��
��

��

�� ���

���

���

���
���
���

���������������������������
���������������������������100

10−1

10−2

10−3

10−4

10−5

10−6

2 4 6 8 10 12 14 16

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

1st Iteration
5th Iteration

Perfect CSI

MSM-M-KF-OB

MSM-M-LMS-SB

APP-S-AKF-OB (d = 3)

MSM-S-LMS-SB (d = 3)
MSM-M-LMS-NB

Figure 4.7. BER vs. Eb/N0 for the TCM system and various configurations for the
inner A-SISO. Performance is compared between (i) MSM-M-LMS-SB and MSM-M-
LMS-NB, (ii) MSM-M-LMS-SB and MSM-M-KF-OB, and (iii) M and S.

AKF, the channel estimators were obtained by approximating the Clarke
spectrum (with correlation function shown in (2.21)) with a first order
model having 10dB-bandwidth equal to νd. Comparing the two curves
corresponding to MSM-M-LMS, a loss of 2 dB (1 dB) is observed for the
5th (1st) iteration when no binding is performed. This outcome clearly
indicates the significant practical – aside from the conceptual – value
of the binding factor. The comparison between MSM-M-LMS-SB and
MSM-M-KF-OB shows that LMS channel estimation with suboptimal
binding is nearly as good as the KF with optimal – and computationally
expensive – binding. In the first iteration the latter performs slightly
better (by 0.7 dB at BER=10−3), while in the fifth iteration no notable
difference is observed. Multiple-estimator schemes are shown to be 2 to 4
dB better than single-estimator counterparts in the first iteration, while
this gain is decreased to 0.5 to 2 dB after the fifth iteration as can be
observed from the comparison of MSM-M-LMS-SB and MSM-M-KF-OB
with MSM-S-LMS-SB or APP-S-AKF-OB. Note that the optimal value
for the tentative delay was found to be d = 3 for both single-estimator
receivers. The best A-SISO achieves performance that is just 1 dB away
from that of perfect CSI. Regarding the iteration gain, as much as 6 to
7 dB can be gained using 5 iterations for both single or multiple esti-
mator SISOs. This result is the direct antithesis with the perfect CSI
case, where an iteration gain of only 1 dB does not even justify the need
for ID. Simulation results that are not shown here confirm the negligi-
ble difference between APP and MSM algorithms for these operational
SNRs, a fact which was noted in [AnCh97b, AnCh98] for the case of CSI

256 ITERATIVE DETECTION

as well. Finally, we note that the receiver based on PSP hard-decision
inner equalization followed by hard decision VA performs approximately
9 dB worse than MSM-M-LMS-SB at a BER of 10−3.

Comparison with FL A-SISOs In this comparison, MSM algori-
thms with LMS estimation are utilized. Each algorithm is identified
by (i) the type of observation window (i.e., FI or FL), (ii) the type of
FL structure (i.e., FB for forward-backward or L2VS), (iii) the type
of binding (i.e., SB or NB), (iv) the type of L2VS channel adaptation
(i.e., CE for Constrained Estimation or UE for Unconstrained Estima-
tion), and (v) the type of channel adaptation (i.e., FABA, or FA). In
Fig-4.8 the performance of the adaptive iterative detector is shown for
the first and the fifth iteration. For comparison, two FL methods (FB,
L2VS) were shown with the FI algorithm (the two FI curves shown are
the MSM-M-LMS-NB, and MSM-M-LMS-SB curves of Fig-4.7). As the
FL-FB-FA and FL-L2VS-UE algorithms generate the same soft output,
they show the same performance in Fig-4.8. The performance of the FL-

��
�� �� ��

��
��
��

��

��
�� ��

��

��

��
��

��
�� �� ��

��
��

��

��
�� ��

��

��
��

��

��
�� �� �� ��

��
�� ��

�� ��

��
�� ��

��
��

��

��

���������������������������������������
���������������������������������������
���������������������������������������

���������������������������
���������������������������100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

5 10 15

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

1st Iteration
5th Iteration

FI-SB

FI-NB

FL-BD-FABA-NB
FL-BD-FABA-SB
FL-L2VS-CE

FL-BD-FA /
FL-L2VS-UE

Figure 4.8. The performance of the fixed-interval and fixed-lag adaptive SISO algori-
thms, D=6.

FB-FA/FL-L2VS-UE algorithm is about 5dB in Eb/N0 worse than that
of the FI algorithm at a BER of 10−3 for the first iteration but is only
2dB worse for the fifth iteration. Note that the FL algorithm shows
a larger iteration gain compared with the FI algorithm. For the FL-
FB-FA algorithm, the backward ACS recursion was simulated with the
previously stored forward channel estimates as described in the previous
section. For the FL-FB-FABA algorithm we utilized the simplest back-
ward initialization method which was to initialize the backward channel
estimator with the latest estimated value of the forward channel esti-

Adaptive Iterative Detection 257

mator. As a result, the backward estimate has a strong dependency
on the forward estimate. Therefore, we expect little inconsistency be-
tween the forward and backward channel estimates, and thus a small
binding gain for the FL-FB-FABA algorithm. This is in contrast to the
FI algorithm, which has a large binding gain (i.e., 2dB). Although we
do not present the results here, the variation of the FL-FB-FABA algo-
rithm using channel estimates after merging was also simulated with no
significant improvement observed. In conclusion, attempts to use back-
ward channel estimation without a backward channel training sequence
were not as successful as the FL-A-SISO algorithms with only forward
channel estimation.

In Fig-4.8, the two different L2VS-based adaptive FL algorithms are
also compared. The FL-L2VS-UE performs better than the FL-L2VS-
CE. The channel coefficients are estimated based on the symbol esti-
mates in the PSP manner, and the symbol estimates come from the
ACS recursion. Therefore, the constrained ACS recursion provides a con-
straint on the channel estimates. This constraint on the channel estimate
apparently degrades the performance in the FL-L2VS-CE. Although the
FL-L2VS-UE requires additional storage for the previous channel es-
timates, it yields a significant reduction in computational complexity
relative to the FL-L2VS-CE algorithm. However, the FL-L2VS-UE is
more complex by a factor of |Q| which is the alphabet size of the symbol
qk (e.g., |Q|=4 for QPSK) compared to the FL-FB-FA algorithm. As
the alphabet size |Q| increases, the FL-FB-FA algorithm is much less
complex than the FL-L2VS-UE algorithms while it produces exactly the
same soft-information.

End Example

Although in all previous examples the A-SISO trellis size was the
same as the size of the underlying FSM trellis, it has been mentioned
that the former is a design parameter and can be different from the
latter. In particular, when soft information is thresholded to produce
hard decisions, an A-SISO of the FA type (i.e., with only forward adap-
tive processing) is threshold-equivalent (i.e., it generates the same hard
decisions) to the PSP algorithm [RaPoTz95] operating on the same trel-
lis. On the other hand, an A-SISO of the FABA type (i.e., with both
forward and backward adaptive processing) produces different hard de-
cisions. Furthermore, assuming that all these algorithms operate on
the same trellis, it is expected that the latter will have a better perfor-
mance, due to the utilization of two independent parameter estimators.
Thus, using FABA algorithms in place of FA (or PSP) algorithms may
be viewed as an alternative to increasing the trellis size for performance

258 ITERATIVE DETECTION

100

10−1

10−2

10−3

0 5 10 15 20

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

PSP16
PSP32
PSP64
ASISO16-1
ASISO16-2
ASISO16-5
RS-ASISO4-1
RS-ASISO4-2
RS-ASISO4-5

Figure 4.9. Performance comparison between different adaptive algorithms for se-
quence detection in an isolated ISI fading channel.

improvement. Clearly there is a trade off between number of trellis states
(i.e., search effort) and FA or FABA processing. This design alternative
becomes even more interesting when considering additional complexity
reduction techniques, e.g., reduced-state A-SISOs in conjunction with
self iteration, as discussed in Chapter 3 for the case of perfect CSI. In
the following example, which is based on the work in [He00], we inves-
tigate these trade offs for the problem of data detection in an isolated
fading ISI channel.

Example 4.4.
A burst of uncoded QPSK symbols is transmitted over a 3-tap equal
power Rayleigh fading channel (each tap is assumed independent from
the others) with normalized Doppler spread νd = 0.005. Each burst of
length 57 symbols is padded with a training sequence, equally split in
13 leading and 13 trailing symbols. MAP-SqD for the perfect CSI case
can be implemented using a VA with 42 = 16 states. Three adaptive
receivers are compared in the following, the last two of which are FABA
type algorithms. The first is a standard PSP based receiver with 16, 32,
and 64 states. The second is an FI A-SISO (with LMS estimation and
suboptimal binding) operating on a 16-state trellis and employing 1, 2,
and 5 self-iterations, similar to the one shown in Fig-3.12(c). The third is
an FI reduced state A-SISO, similar to the one presented in Section 3.3.1,
and shown in Fig-3.12(c), operating on a 4-state trellis and employing
1, 2, and 5 iterations. Performance comparisons are presented in Fig-
4.9. Comparing the two A-SISO based receivers, we conclude that for a
given computational complexity, performance is enhanced by increasing

Adaptive Iterative Detection 259

the state space, rather than increasing the number of self iterations. Fur-
thermore, comparing the PSP and A-SISO receivers, it is evident that
the same or better performance is obtained by running an FABA algo-
rithm (i.e., A-SISO) on a trellis, rather than running an FA algorithm
(i.e., PSP equivalent) in a trellis with double number of states. This
result indicates that search effort can be effectively traded for FABA
processing.

End Example

4.4 Concatenated Convolutional Codes with
Carrier Phase Tracking

In Section 4.2 we derived practical A-SISO algorithms that are based
on forward-backward processing and binding. We now derive similar
algorithms for phase tracking in SCCC and PCCC, a nonlinear estima-
tion problem, by appealing to the framework established for the linear
estimation problem. In particular, the algorithm structure is the same
as before, while the presented estimators are substituted by a first-order
decision directed phase-lock loop (DD-PLL) of the form

θ̃k = θ̃k−1 + λ�
{
zkq

∗
ke

−jθ̃k−1

}
(4.10)

where the notation is the same as in Fig-4.2.

4.4.1 SCCC with Carrier Phase Tracking
The baseline adaptive decoder of Fig-4.2(c) is derived based on the

idea introduced in [LuWi98] for PCCCs. It consists of a single DD-
PLL which uses decisions on the raw output symbols qk, as well as the
pilot symbols, to obtain a phase estimate and consequently derotate
the observation; however, no feedback information on qk from the inner
SISO is utilized. A standard iterative decoder is then employed on the
derotated observation – after discarding the pilot symbols – to produce
final decisions on the source bits. The A-SODEM-based and A-SISO-
based receivers of Fig-4.2(c) and (d) are constructed in a way similar to
the linear estimation problem, by utilizing the DD-PLL of (4.10), and
the following approximate binding term (which is implied by (4.7b)).

b(θ̃k, θ̃
b
k) =

1− λ

λ(2− λ)
|ejθ̃k − ejθ̃b

k |2
N0

(4.11)

Example 4.5.
The SCCC system presented in Example 2.10 is considered in this exam-
ple. We generalize the transmission scheme by considering the insertion

260 ITERATIVE DETECTION

of pilot symbols in the transmitted sequence. In particular, Nt pilot
symbols are inserted in the transmitted sequence for every Nd coded
symbols. The energy lost in the redundant pilot symbols is accounted
for by lowering the transmitted symbol energy as

Es = RRtEb = RoRi log2 |Q|
Nd

Nd + Nt
Eb (4.12)

where Eb is the energy per information bit. In the development of it-
erative receivers for the above system, it is desirable to view the pilot
symbols as part of the inner code by introducing a time-varying CC.
The phase process is generated as a random walk as in [DaMeVi94]

θk(ζ) = θk−1(ζ) + φk(ζ) (4.13)

where {φk(ζ)} is an iid sequence of zero mean Gaussian random vari-
ables with variance σ2

φ. Only APP-type soft decision algorithms are con-
sidered. The receivers consisting of the inner A-SISOs will be labeled
as A-SISO-S/M-SB/NB, corresponding to single or multiple DD-PLLs
and suboptimal binding of (4.11), or no binding respectively. Among
the A-SODEM-based receivers two special cases are considered: (i) the
single-state A-SODEM derived exactly as an A-SISO, and (ii) a single-
state A-SODEM variant with forward-only recursions and no binding
(labeled A-SODEM-FW). Finally, the baseline algorithm consisting of
a single external DD-PLL operating on the raw 8-PSK symbols will be
labeled EXT (i.e., external DD-PLL). In all simulations presented here,
the initial and final phase estimates are assumed ideal. Consequently,
for a fair comparison between the External DD-PLL receiver and the
proposed receiver structures, a forward DD-PLL starting at the begin-
ning of the block is used to derotate the first half of the observation,
while a backward DD-PLL starting at the end of the block is used for
the second half of the observation. With such a scheme, the knowledge
of both the initial and the final phase is utilized by the External PLL
receiver. Note that interpolation between phase estimates obtained us-
ing the Nd-separated pilot symbols was found to perform poorly under
all operational scenarios presented.

Fig-4.10 shows a comparison of the SCCC system with the industry
standard rate 1/2, 128-state CC. The CC output is mapped on a QPSK
alphabet resulting in a rate R = 1 (bits per channel use) code (no pi-
lot symbols are used). ML-SqD with the aid of a VA is performed in
the coherent case, while two adaptive receiver structures are considered.
The first is the conventional adaptive-ML-SqD receiver of [Un74], con-
sisting of a single DD-PLL driven by delayed tentative decisions from
the VA, and the second is a PSP-based [RaPoTz95] receiver consist-
ing of a VA with 128 DD-PLLs driven with zero-delay decisions. The

Adaptive Iterative Detection 261

�� �� ��
�� ��

�� ��
��

��

��
���
���

��

���

����������������������������������
����������������������������������
����������������������������������

���
���

�����������������
�����������������

������������
������������

����������
����������

������

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1 2 3 4 5

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

CC

SCCC

EXT

PSP
CA-MLSD

A-SODEM

A-SODEM-FW

A-SISO-M-SB

A-SISO-S-SB
A-SISO-S-NB

Perfect CSI

Perfect
CSI

Figure 4.10. BER vs. Eb/N0 for SCCC (interleaver size is K = 16384 symbols) with
phase dynamics and various inner A-SISO and A-SODEM configurations (the optimal
performance for S receivers was achieved for d = 0). The loss due to pilot insertion
is −10 log10(Rt) = 0.27dB. For comparison, the performance of CC with adaptive
hard-decision detection is presented.

SCCC receivers considered are the EXT, A-SODEM, A-SODEM-FW,
A-SISO-M-SB, A-SISO-S-SB, and A-SISO-S-NB. Simulations were run
for σφ = 2 (degrees) and λ was optimized for each Eb/N0 value. Ex-
amining the CC performance curves, the following observations can be
made. With perfect CSI, BER of 10−5 is achieved at Eb/N0 = 3.75 dB.
The PSP-based receiver operates at this BER with a loss of 0.4 dB, while
the conventional adaptive ML-SqD receiver performs poorly resulting in
a BER of 10−2 at 4 dB.

Simulation trials not shown here suggested that for the SCCC case, a
reasonable pair for the training is (Nt, Nd) = (16, 256) for a target BER
of 10−5 and the mentioned phase dynamics. Regarding the performance
of the proposed adaptive schemes for the SCCC, it can be noted that
since the SNR loss due to the insertion of pilot symbols is −10 log10 Rt =
0.27dB, the actual loss due to the unknown phase is only 0.33dB (for
the best adaptive scheme, i.e., A-SISO-M/S-SB). This means that even
if the state space is increased (by using super-state-based A-SISOs), the
expected performance gain is very small (at most 0.33dB). As a result, in
this particular applications, the adaptive algorithms built on the original
state trellis suffice.

The comparison of the CC and SCCC curves clearly illustrates the im-
portance of adaptive iterative detection. Under perfect CSI, the SCCC
performs with a 2.6 dB gain over the standard CC. This gain vanishes
when a PSP based ML-SqD receiver is used to decode CC and the EXT

262 ITERATIVE DETECTION

receiver is used for SCCC. By utilizing the more advanced A-SISOs or
A-SODEMs proposed here, together with pilot symbols, the correspond-
ing gain is increased to 3 dB.

End Example

4.4.2 PCCC with Carrier Phase Tracking
We consider the PCCC system described in Section 2.4.3.1. Instead

of using BPSK transmission, however, we assume that the systematic
bit ck(0) = bk, together with the coded bits ck(1) or dk(1) are mapped
to a QPSK constellation after alternate puncturing.

qk =
{

QPSK(bk, ck(1)) k even
QPSK(bk, dk(1)) k odd (4.14)

where QPSK(·, ·) maps the bits to the two-dimensional QPSK signal
constellation (e.g., using Gray mapping). The complex QPSK symbols
qk are transmitted over an AWGN channel which introduces phase un-
certainty, modeled exactly as in the case of SCCCs. The post-correlator
complex baseband observation equation is given by

zk =
√

Esqke
jθk + wk (4.15)

Pilot symbols are inserted in the transmitted sequence in the same man-
ner described in the previous section.

The adaptive receiver proposed in [LuWi98], consisting of a single
external DD-PLL operating on the coded symbols qk, followed by a non-
adaptive turbo decoder, is shown in Fig-4.11(b). The A-SODEM-based
receiver is straightforward to construct and is shown in Fig-4.11(c). Fi-
nally, for the A-SISO-based receiver, contrary to the serially concate-
nated examples, the PCCC has the property that the outputs of both
FSMs are directly affected by the channel. Furthermore, the outputs
of the constituent FSMs are coupled via the non-linear mapping (4.15),
(4.14). This makes the substitution of the perfect-CSI SISO by an A-
SISO insufficient for performing adaptive iterative detection in this case.
Thus, adaptive iterative detection for this PCCC application requires a
method for evaluating transition metrics and updating phase estimates
for each A-SISO. In the following we discuss the options for doing so
and demonstrate one specific approach.

Metric Evaluation Metric evaluation in A-SISO1 can be performed
by treating the output symbols corresponding to CC2 as nuisance pa-
rameters and either averaging or maximizing over them. Since APP soft
metrics are typically observed to be superior compared to MSM ones

Adaptive Iterative Detection 263

A-SODEM
zk

I
I−1

S[bk]

close after 1st iteration

parameter

metric evaluation

I
I−1

S[bk]

update

zk

I
I−1

S[bk]

I

bk

(a)
qk zkMOD

estimator
phasee−jθ̂

zk
(b)

(c)

(d)

ejθk wkCC1

SISO1

SISO2

SISO1

SISO2

SODEM

A-SISO1

A-SISO2

CC2

Figure 4.11. (a) Parallel concatenation of CCs. (b) Adaptive receiver based on a
single external DD-PLL. (c) A-SODEM-based iterative receiver. (d) A-SISO-based
iterative receiver (the demodulator is part of the A-SISO).

(for the particular application in the perfect CSI case), averaging over
the output symbols of CC2 seems to be a preferable choice. A reason-
able choice for the probabilities needed in the averaging process, is to
use the most recent soft-metrics produced by A-SISO2. This is iden-
tical to the operation of soft mapper (SOMAP) [BeDiMoPo98] in the
case of perfect CSI. The only difference is that the demodulator and the
SOMAP are now integrated with the A-SISO1, since a phase estimate is
required for this operation. This solution is both simple to implement,
and compatible with the notion that SISO blocks exchange information
only in the form of soft metrics. A similar procedure can be followed for
the evaluation of the transition metrics of A-SISO2.

Parameter Estimate Update Several options are considered for
updating the phase estimate in A-SISO1.

264 ITERATIVE DETECTION

Starting from the simplest solution, the channel update in A-SISO1
is only performed for those time instants k, for which the symbol qk is
only a function of bk and ck(1) (k is even). The resulting updates for
this punctured DD-PLL become

θ̃k =

{
θ̃k−1 + λ�

{
zkQPSK(bk, ck(1))∗e−jθ̃k−1

}
k even

θ̃k−1 k odd
(4.16)

where bk and ck(1) are obtained from the state transition of A-SISO1.
The immediate consequence of this sort of channel update is a loss of the
full tracking ability of the estimator (i.e., the effective loop bandwidth
is halved). In addition, such an approach is not always applicable, since
the symbol qk may always be an explicit function of the symbol dk(1) as
well, as in the case of non-punctured codes (this is also true in this case
when considering phase estimation for A-SISO2).

In a more refined technique, the phase estimator – and in particular
the DD-PLL (or DD-PLLs) – is updated for every time instant k. The
symbols bk and ck(1) are determined by the state transition of A-SISO1,
while an estimate d̃

(
k1) of dk(1) – needed when k is odd – is determined by

hard quantizing the most recent soft information of dk(1) available either
from A-SISO2 or from any other soft block in the adaptive receiver. The
resulting updates for this parallel DD-PLL become

θ̃k =

 θ̃k−1 + λ�

{
zkQPSK(bk, ck(1))∗e−jθ̃k−1

}
k even

θ̃k−1 + λ�
{
zkQPSK(bk, d̃k(1))∗e−jθ̃k−1

}
k odd

(4.17)

Finally, an even more sophisticated technique can be derived by uti-
lizing a mixed-mode PLL. Such a PLL operates in a decision directed
mode in terms of the symbols (bk, ck(1)), while it effectively averages
out the symbol dk(1) (a simple PLL structure that operates by averag-
ing equiprobable binary symbols has been proposed in [LiSi73]). Hybrid
schemes that use a punctured PLL initially and switch to a parallel
decision-directed operation are also possible.

Example 4.6.
In this example, the first order DD-PLL and suboptimal binding term in
(4.10) and (4.11) will be used. A hybrid approach for phase tracking is
used. Specifically, A-SISO1 is run with the punctured DD-PLL of (4.16)
on the initial iteration, and switches to the parallel decision-directed
mode of (4.17) in the subsequent iterations. The rational behind this
hybrid bootstrapping procedure is that in the first iteration, there are
no soft (or hard) decisions available for the symbol dk(1). The activation

Adaptive Iterative Detection 265

schedule is described as follows: A-SISO1 (with internal SOMAP and de-
modulator) → forward extrinsic information form A-SISO1 to A-SISO2
→ A-SISO2 (with corresponding internal SOMAP and demodulator)→
forward extrinsic information form A-SISO2 to A-SISO1 → A-SISO1,
etc.

The generator polynomial of the two RSC codes is the one in Sec-
tion 2.4.3.1 and the output symbol is formed exactly as described in
(4.14). The interleaver size is K = 16384 symbols, and only APP-type
soft information is exchanged between A-SISOs. In Fig-4.12, perfor-
mance curves similar to those of Fig-4.10 are presented. The conclusions

��� ��� ���
��� ���

��� ���
���

���

���

���

���

����������������������������������
����������������������������������
����������������������������������

���
���

����������������
����������������

��������

�������������
�������������

������������
������������

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1 2 3 4 5

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

CC

PCCC

EXT

PSP
CA-MLSD

A-SODEM

A-SODEM-FW A-SISO-M-SB
A-SISO-S-SB

A-SISO-S-NB

Perfect CSI

Perfect
CSI

Figure 4.12. BER vs. Eb/N0 for PCCC with phase dynamics and various A-SISO
and A-SODEM configurations (the optimal performance for S receivers was achieved
for d = 0). For comparison, the performance of CC with adaptive hard-decision
detection is presented.

are similar to the SCCC case, with the only difference being the slight
degradation of the A-SISO-S-SB and A-SISO-S-NB algorithms over the
A-SISO-M-SB receivers. In addition, the A-SODEM-FW performance
is very close to the performance of the A-SISO-based receivers, and the
A-SODEM algorithm results in slightly better performance compared to
A-SISOs. Also, as in the case of perfect CSI, the quantitative perfor-
mance achieved using the SCCC and PCCC systems is very similar.

End Example

A similar problem to that of phase tracking for PCCCs is decoding
of a PCCC in the presence of a flat fading channel. The suggested
transmission schemes utilize an additional channel interleaver in order
to provide additional time diversity. Such a system is illustrated in the
following example, which is based on the work in [HeCh00].

266 ITERATIVE DETECTION

Example 4.7.
The standard PCCC code of the previous example is considered on an
interleaved flat fading channel. A block of source symbols bk is encoded,
modulated and channel interleaved. After the channel interleaver, two
training sequences (20 symbols) are attached at the head and tail of the
interleaved symbol block (2040 symbols) and pilot symbols are inserted
within the interleaved symbol block (1 every 30 symbols). The signal is
transmitted through a flat fading channel and observed in AWGN.

The structure of the adaptive receiver, shown in Fig-4.13, is that of
a decoupled estimator and decoder, which is similar to the A-SODEM-
based receiver. The difference in this approach though is that the feed-

Icencoder
Turbo

Ic

Ic

I−1
cTurbo

decoder

fk (flat fading)

wk (AWGN)

channel
interleaver

estimator

re-encoder

estimator
channel

(hard)

bk qk zk

f̂k, zk

q̂k

b̂k

SO[qk]

SO[bk]

q̂k

Figure 4.13. Block diagram of the decoupled adaptive iterative detector for turbo
codes on an interleaved flat fading channel.

back information from the decoder to the estimator is hard decisions,
instead of soft decisions. For the first iteration, the channel is estimated
by the known training sequences and pilot symbols. After the first iter-
ation, the hard output of the turbo decoder is fed back to the channel
estimator to refine the channel estimates. The refined channel estimates
are passed back to the turbo decoder. In the simulations the channel
taps are generated based on the model in (2.21). Two kinds of channel
estimators are considered based on probabilistic channel models.

An FI Kalman smoother based on a first order Gauss-Markov model
fk = αfk−1 + nk. The parameter α was selected such that the 10 dB
bandwidth of the GM model is νd.

A Wiener filter, which for M -PSK signaling can be designed a-priori
[ViTa95, ChLe98] based on the channel correlation in (2.21). The

Adaptive Iterative Detection 267

estimate of fk is

f̂k =
N∑

i=−N

zk−i

q̂k−i
gk (4.18)

where 2N+1 is the window size and {gk} are the pre-designed Wiener
filter taps.

In Fig-4.14 the performance of these adaptive iterative detectors (la-
beled KF and WF for Kalman filter and Wiener filter, respectively) at
the 10th iteration are shown for a normalized Doppler spread νd = 0.01
and a window size 2N + 1 = 31. For comparison, the performance of

100

10−1

10−2

10−3

10−4

54 6

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

known channel

WF

KF

R-WF

R-KF

estimation prior to decoding

4.5 5.5

Figure 4.14. The performance of different decoupled adaptive iterative detection
methods with punctured QPSK and νd = 0.01 at the 10th iteration.

the receiver with parameter estimation prior to iterative decoding, and
the known channel case is shown as well. In addition, the performance
of a receiver that utilizes the final decoded symbols (after re-encoding)
for the channel estimation is also presented (labels R-WF and R-KF are
used to denote these two receivers). The performance of both R-WF
and R-KF is much worse than the proposed adaptive receivers, while
the WF-based receivers are better than the KF-based. This is most
likely because the WF can better approximate the correlation in (2.21),
whereas the KF applies a first order GM approximation. The accuracy of
this approximation is more critical in the flat fading case than in the ISI
case. Variations of these approaches, that provide minor performance
improvements, are discussed in [HeCh00].

End Example

268 ITERATIVE DETECTION

4.5 Summary and Open Problems
The problem of identifying optimal and suboptimal (practical) algori-

thms that generate soft information in the presence of unknown param-
eters was the main topic of this Chapter. Several options were discussed
for the formulation of the optimal A-SISO under the assumption of Gauss
Markov, or deterministic parameters, and a linear observation model.
Utilizing different simplifying assumptions, families of practical algori-
thms were derived, the basic characteristic of which is either forward
adaptive processing, or forward-backward adaptive processing followed
by binding. The application of these A-SISOs as part of an adaptive it-
erative receiver for a TCM system in frequency selective fading channel
is straightforward and results in significant performance improvements.
Similarly, the utilization of A-SISOs or A-SODEMs as part of the itera-
tive decoder for SCCC and PCCC codes when carrier phase uncertainty
is present, provides close to optimal performance even with significant
channel dynamics.

Several theoretical and practical open problems arise from the ma-
terial presented in this Chapter. On the theoretical front, the concept
of forward-backward estimator correlator is fairly new and not fully un-
derstood, yet. In particular, only the linear observation model has been
studied, for the special cases of GM and deterministic parameter model.
Furthermore, the implications of the forward-backward EC to other de-
tection and estimation problems (e.g., MAP-SqD in flat fading channels,
joint data detection and ISI channel acquisition) have not been explored.
Another interesting theoretical topic is the derivation of optimal forward-
backward soft decision structures that involve forward only estimation.
In fact, the FA type algorithms developed herein can be thought of as
suboptimal derivatives of a forward adaptive, backward non-adaptive EC
optimal structure, similar to the one developed in [GeLo97, HaChAu00].

The problem of SCCC and PCCC receiver design for channels with
high dynamics is very crucial for any practical application of turbo codes.
Although the results presented herein show remarkable performance at
significant phase dynamics, the problem of receiver design for turbo
codes in the presence of unknown frequency shifts remains unsolved. A
popular method for deriving such adaptive algorithms is to truncate the
estimator memory. The linear predictive, or innovations based receiver
of [MaMa98], as well as the “noncoherent” receivers in [CoFeRa00], are
all instances of this approach, where open loop estimators are used to aid
the detection process. A complete comparison between these algorithms
is not available, but it is likely that the open loop methods are most
robust to extreme dynamics when few pilots are available, and that the
closed loop structures work better for a given complexity in less severe

Adaptive Iterative Detection 269

dynamics. Finally, the joint design of concatenated codes and adaptive
iterative decoders may lead to more efficient and robust transmission
schemes for the demanding wireless channels.

A-SISO-M-SB Adaptive Soft Input Soft Output,
Multiple estimators, Suboptimal Binding

A-SISO-S-NB A-SISO, Single estimator, No Binding
A-SISO-S-SB A-SISO, Single estimator, Suboptimal Binding
A-SODEM-FW Adaptive Soft DEModulator, Forward only
AKF Average Kalman Filter
APP-S-AKF-OB A Posteriori Probability, Single estimator, Optimal Binding
EXT EXTernal PLL
FA Forward Adaptive
FABA Forward Adaptive Backward Adaptive
FL-FB-FABA Fixed Lag, Forward-Backward,

Forward Adaptive Backward Adaptive
FL-FB-FA Fixed Lag, Forward-Backward, Forward only adaptation
FL-L2VS-CE Fixed Lag, Lee and Li Vucetic Sato, Constraint Estimation
FL-L2VS-UE Fixed Lag, L2VS, Unconstraint Estimation
MSM-M-KF-OB Minimum Sequence Metric, Multiple estimators,

Kalman Filter, Optimal Binding
MSM-M-LMS-NB MSM, Multiple estimators, Least Mean Squares, No Binding
MSM-M-LMS-SB MSM, Multiple estimators, LMS, Suboptimal Binding
MSM-M-LMS-SB MSM, Multiple estimators, LMS, Suboptimal Binding
MSM-S-LMS-SB MSM, Single estimator, LMS, Suboptimal Binding
PCKF Partially Conditioned Kalman Filter
R-KF Re-encoding, Kalman Filter
R-WF Re-encoding, Wiener Filter

Table 4.1. Table of abbreviations specific to Chapter 4.

4.6 Problems

4.1. Consider the Gauss Markov channel and observation equation of
(1.52) and (1.51), respectively. Derive a block Estimator Corre-
lator for the above model, similar to the one obtained in Exam-
ple 1.7 for the deterministic modeling case.

4.2. Find a closed-form expression for the integral∫ N cc
n (x;m1;K1)N cc

n (x;m2;K2)
N cc

n (x;m3;K3)
dx

where N cc
n (x;m;K) denotes the n-dimensional probability den-

sity function of a vector complex circular Gaussian random vari-
able with mean m, and non-singular covariance matrix K.

270 ITERATIVE DETECTION

4.3. [An99, AnCh00] Derive the forward-backward Estimator Corre-
lator expressed in (1.87) for the Gauss Markov parameter model.
Specifically, using the results of the previous problem, show that
the binding factor bp(·) is given by (1.88).

4.4. [An99, AnCh99] Derive a forward-backward Estimator-Correlator
for the deterministic parameter model of (1.44). Work in the
logarithmic domain and generalize the metric by introducing an
exponentially decaying window relative to an arbitrary time k as
follows

MK−1
0 (q(a),a) = min

f

[
K−1∑
m=0

(
|zm − qT

mf |2
N0

− ln p(am)
)

ρ|k−m|
]

4.5. Derive a block, forward recursive, and forward-backward Esti-
mator-Correlator for the non-linear observation model

zk(ζ) = qk(a(ζ))ejφ + nk(ζ)

where nk(ζ) is AWGN, defined as in (1.44), and the phase φ is
modeled as an unknown deterministic constant.

4.6. [An99, AnCh00] Derive the forward-backward recursions (4.6) for
the GM parameter model. Specifically, using a result similar to
the one derived in Problem 4.2, give a closed-form expression for
the binding term b′p(·).

4.7. [ZhFiGe97] Starting from the Forward EC in (1.53), for an (L+1)-
tap ISI/GM channel, and by folding the sequence tree into a
trellis, defined by the trellis state ss

k = (ak−D, . . . , ak−1), de-
rive a FL A-SISO that approximately evaluates APPp[ak−D] ∼
p(zk

0 , xk−D).

4.8. [IlShGi94] Consider the forward recursion in (4.6b) under the
Gaussian assumption for the innovation term p(zk|tk, zk−1

0). Show
that under this assumption, the recursion can be performed with
the aid of partially conditioned Kalman filter (PCKF), as de-
scribed in Section 4.2.2. In particular, derive forward recursions
for the state-conditioned estimate f̃k|k−1(sk) = E

{
fk|sk, zk−1

0

}
under the above Gaussian assumption.

4.9. Show that under the Gaussian assumption for the innovation
terms, the binding term b′p() in (4.6a) can be evaluated off-line,

Adaptive Iterative Detection 271

resulting in a function similar to (1.88)

b′p(f̃k|k, F̃k|k, f̃
b
k|k+1, F̃

b
k|k+1) =

p(ak)
N0

|Kf ||P|
|F̃k|k||F̃b

k|k+1|
exp(βHP−1β − γ)

with

P−1 = F̃−1
k|k + (F̃b

k|k+1)
−1 −K−1

f +
q∗

kq
T
k

N0

β = F̃−1
k|kf̃k|k + (F̃b

k|k+1)
−1f̃ b

k|k+1 +
q∗

kzk

N0

γ = f̃H
k|kF̃

−1
k|k f̃k|k + (f̃ b

k|k+1)
H(F̃b

k|k+1)
−1f̃ b

k|k+1 +
|zk|2
N0

where f̃k|k−1, f̃ b
k|k+1 are the partially conditioned one-step forward

and backward Kalman predictors and F̃k|k−1, F̃b
k|k+1 are the cor-

responding covariances, described in the previous problem.

4.10. [An99] Consider the forward recursion in (4.6b) under the Gaus-
sian assumption for the innovation term p(zk|tk, zk−1

0). Under the
additional assumption that the conditional means and covariances
of the parameter fk are not functions of the states, derive a for-
ward update for the global estimate f̂k|k−1. In doing so you need
to assume that some sort of probabilistic description on tk−d,
p(tk−d) is available at the receiver.

4.11. Compare the computational complexity and memory require-
ments for the FA type (i.e., with forward only adaptation)
forward-backward FL A-SISO algorithm, and the L2VS-based FL
A-SISO (with non-adaptive constrained ACS operations).

4.12. Derive single-estimator versions for the FA type generic algori-
thms discussed in Section 4.2.4 by inserting a tentative decision
delay.

Chapter 5

APPLICATIONS IN TWO DIMENSIONAL
SYSTEMS

We focus on detection problems associated with systems most natu-
rally indexed in two dimensions in this chapter. The problem consid-
ered in most detail is a 2D ISI-AWGN channel, with page-access optical
memories (POMs) providing the motivation. The algorithms and models
developed, however, are applicable to any 2D combining and marginali-
zation problem with local metric dependencies. We conclude this chapter
by considering one such application, image halftoning.

5.1 Two Dimensional Detection Problem
5.1.1 System Model

Consider a generalization of the one-dimensional systems considered
in Chapter 1. Specifically, let a digital page a(ζ; i, j) of independent
random variables be “transmitted” and denote the associated noisy ob-
servation page by z(ζ; i, j). Analogous to the one-dimensional folding
condition in (1.85), we focus on the case when the observation depends
only locally on the conditional data page

PZ(ζ)|A(ζ)(Z|A) =
∏
(i,j)

p(z(i, j)|A) =
∏
(i,j)

p(z(i, j)|t(i, j)) (5.1)

where A represents the data page consisting of a(i, j) and t(i, j) is a
local neighborhood description for a(i, j). Specifically, t(i, j) = {a(i −
m, j − n)}(m,n)∈P where P is the support region. Note that since p(A)
factors into the product of marginal pmfs, whenever (5.1) holds we have

PZ(ζ),A(ζ)(Z,A) =
∏
(i,j)

p(z(i, j)|t(i, j))p(a(i, j)) (5.2)

273

274 ITERATIVE DETECTION

where in both (5.1) and (5.2) each t(i, j) is implicitly defined by the
conditional value of A. For concreteness, we focus on the special case of

P = {(m,n) : −Lc ≤ m ≤ +Lc,−Lr ≤ n ≤ +Lr} (5.3)

In other words, the dependency on the underlying page hypothesis has
support region of size (2Lc+1)×(2Lr+1) with Lc providing a measure of
the memory across columns (y-direction) and Lr doing the same for the
memory down rows. Most applications that we consider may be viewed
as a 2D system with inputs a(i, j) and outputs x(i, j;A) that depend
on A via the conditional data in the support region, t(i, j). Then z(i, j)
is the output of a memoryless stochastic channel for which x(i, j) is the
input – i.e., p(z(i, j)|t(i, j)) = p(z(i, j)|x(i, j)) where x(i, j) is the output
determined by t(i, j).

5.1.2 Optimal 2D Data Detection
With the above assumption, MAP detection of either the symbol

a(ζ; i, j) individually (i.e., MAP symbol detection, MAP-SyD) or the
page A(ζ) collectively (i.e., MAP page detection, MAP-PgD) can be
formulated in terms of an additive metric function. Specifically, define

M[t(i, j)] ∆≡ − ln[p(z(i, j)|t(i, j))p(a(i, j))] (5.4a)
= − ln[p(z(i, j)|x(t(i, j))] − ln[p(a(i, j))] (5.4b)
= MI[x(t(i, j))] + MI[a(i, j)] (5.4c)

where the specialization to a system with output x(i, j) has been made.
Thus, based on (5.2), MAP page and symbol detection are obtained,
conceptually at least, by the following

M[A,X(A)] =
∑

i

∑
j

M[t(i, j)] (5.5a)

â(i, j) = arg min
a(i,j)

[
min

A:a(i,j)
M[A,X(A)]

]
(MAP-PgD) (5.5b)

â(i, j) = arg min
a(i,j)

[
min

A:a(i,j)

∗ M[A,X(A)]
]

(MAP-SyD) (5.5c)

which is the special case of combining and marginalizing in the metric do-
main over the structure of a 2D system. Note that there is no reason that
one must associate the input metric of a(i, j) with the metric of t(i, j)
and we will consider models that associate MI[a(l,m)] with M[t(i, j)] for
(l,m) �= (i, j). A related issue is how one handles edge information. In
particular, for the one-dimensional case, this was obtained by p(s0). The

Applications in Two Dimensional Systems 275

analogous quantity in 2D depends on how one models the corresponding
2D system. Throughout this chapter we assume that a(i, j) is defined
for i ∈ {0, 1, . . . I − 1} and j ∈ {0, 1, . . . J − 1} and that the edges are
terminated in a deterministic manner. For example, x(0, 0) depends on
edge symbols, the values of which are assumed known at the detector
with probability one.

Before the thresholding over a(i, j), both (5.5b) and (5.5c) are spe-
cial cases of the general combining and marginalization problem of Sec-
tion 1.2.1.2. In fact, the only aspect that distinguishes the applications
considered in this chapter is that the local dependencies are most natu-
rally expressed using a 2D index set. Thus, problems of the same form as
those in (5.5) are considered that are not data detection problems based
on statistical source and channel models. These problems are data fit-
ting or encoding problems, typically of the form (5.5b). This class has
been referred to as the 2D-digital least metric (2D-DLM) problem in
[ChChOrCh98].

Example 5.1.
Data detection for the 2D linear ISI-AWGN channel can be formulated
as in (5.5). Specifically, the observation page z(i, j) is

z(i, j) = x(i, j) + w(i, j) (5.6a)

=
Lc∑

l=−Lc

Lr∑
m=−Lr

f(l,m)a(i− l, j −m) + w(i, j) (5.6b)

= f(i, j) � a(i, j) + w(i, j) (5.6c)

where the last equality defines a 2D convolution and the channel is as-
sumed to have finite support. With this assumption, t(i, j) is defined
as above with p(z(i, j)|x(i, j)) = N1(z(i, j);x(i, j);σ2

w). The input data
is assumed to be independent for different indices with a-priori proba-
bilities p(a(i, j)). Thus, the MAP page and symbol detection problems
are as defined in (5.5) with MI[x(i, j)] ≡ [z(i, j) − x(i, j)]2/(2σ2

w) and
MI[a(i, j)] ≡ − ln p(a(i, j)).

End Example

While the 2D detection problem is analogous to problem of detecting
the input to a one dimensional FSM corrupted by noise, the lack of a
natural order for the 2D index set complicates the problem immensely.
A straightforward realization of MAP-PgD is to build a look-up table
(LUT) storing M[A,X(A)] for all possible input pages. However, the
number of entries in this LUT is |A|I×J . This is prohibitively complex
even for a binary data page with relatively small page sizes. Another

276 ITERATIVE DETECTION

· · ·

· · ·

state statecolumn
symbol j j + 1

I

J

...
...

Figure 5.1. An algorithm for MAP-PgD using the Viterbi algorithm (Lr = 1).

approach, which is illustrated in Fig-5.1, is to run the VA by treating
each column in A as a single vector symbol. These vector symbols take
on |A|I different conditional values and the associated Viterbi algorithm
is run on a trellis with |A|I(2Lc+1) transitions. Thus, while providing a
huge complexity decrease relative to the exhaustive search, this is still
impractical for the page sizes of interest. The problem of MAP-SyD
is, similarly, prohibitively complex. Thus, the focus on this chapter
will be on designing efficient approximate algorithms. In the following
section we present bounds on the performance associated with MAP-
SyD and MAP-PgD, which provide a way of gauging the performance
of suboptimal detection algorithms against the best achievable.

5.2 Performance Bounds for Optimal 2D
Detection

Both the upper and lower bounds in Sections 1.4.3 and 1.4.4 were
derived in a manner that extends directly to the 2D case [Ch96]. In
particular, for the upper bound, the notion of sufficient (e.g., simple)
sequences generalizes to sufficient 2D patterns. Specifically, conditioned
on the transmitted page being A, the set of simple patterns S(i,j)(A) are
those that differ from A at location (i, j) and have a connected pattern
of disagreements. This is illustrated in Fig-5.2 for a (3 × 3) support
region centered around the point of interest. More precisely, if A and
Ã disagree at locations (i, j) and (k, l), then these disagreements are
connected iff t(i, j) and t(k, l) share common elements – i.e., recalling the
dual variable/set interpretation introduced in Chapter 3, this requires
that t(i, j) � t(k, l) �= ∅. A simple pattern Ã ∈ S(i,j)(A) is one in which
the set of all disagreements form a connected set in this sense. Thus, the
pattern in Fig-5.2(c) is not simple because the two support regions do
not intersect. The pattern in Fig-5.2(d) comprises two simple patterns
that are isolated from each other, so the overall pattern is not simple.

Applications in Two Dimensional Systems 277

(a)

(d)

(b)

(c)

the support region

Figure 5.2. Examples of difference patterns for a(i, j) and ã(i, j) for an Lc = Lr = 1
support region. The disagreements are indicated by ×’s and other outlined points
are in agreement. Examples of simple patterns are shown in (a)-(b) with non-simple
patterns shown in (c)-(d). For the linear ISI case, these may be interpreted as (a)-
(b) simple and (c)-(d) non-simple error patterns with the ×’s denoting the non-zero
elements in the error pattern.

It is straightforward to verify that this definition of 2D simple pat-
terns reduces to the standard simple sequence definition from Chapter 1
when the support region is 1D (e.g., Lr = 0). Intuitively, the connected
condition is that the conditional values of a(·, ·) at the two locations
both affect at least one common system output x(·, ·). It is straightfor-
ward to extend the development of Section 1.4.3 to an upper bound on
MAP-PgD detection using these simple patterns [Ch96, ChChThAn00].
Specifically, (1.130) remains valid for the 2D linear ISI-AWGN channel
with S interpreted as 2D simple patterns with shift equivalences re-
moved. These 2D simple error patterns are those for which the non-zero
elements are connected in the above sense. The examples in Fig-5.2 may
be interpreted as error patterns with the nonzero elements denoted by
the “×-ed” boxes. For the linear ISI channel the connected condition
for two nonzero terms means that the contributions to e(i, j) � f(i, j)
from the two locations overlap.

An interesting and subtle point coming from this bound development
is that a pairwise decisions can be made for portions of pages using
only local information [Ch96]. For example, for the simple patterns
in Fig-5.2(a)-(b), an optimal pairwise decision between A and Ã at
the ×-locations can be made independently of the pairwise decision at
other locations in the page. Thus, the assumption of a local region of
agreement between different hypotheses plays the same role as a state
agreement in 1D. In fact, this leads to a sort of 2D Viterbi algorithm

278 ITERATIVE DETECTION

which, unfortunately, has complexity that grows exponentially in the
perimeter of the observation page used (see Problem 5.3).

Evaluation of this 2D bound can be approximated by exhaustive
search over some finite region. However, the number of error patterns
searched grows much more quickly in 2D than in 1D. Thus, in prac-
tice the search is limited to a relatively small region. The 2D ver-
sion of the upper bound in (1.130) can, however, be shown to con-
verge [ChChThAn00] for the linear ISI-AWGN channel.

Similarly, the lower bound in Section 1.4.4 generalizes directly to the
2D case. In the linear ISI-AWGN case, one can search all simple error
patterns over a finite region to obtain different distance sets. A strictly
valid lower bound for MAP-SyD of the form in (1.135) can then be
formed using these sets. Specifically, one can purge sequences from B(d),
until a pairwise partition exists, so that a bound of the form in (1.135)
can be computed. This process is demonstrated in the following example.

Example 5.2.
Consider the observation model in (5.6a) with a (3× 3) symmetric sup-
port region (i.e., Lr = Lc = 1) and the channel taps are as follows

F =

(
f(−1,−1) f(0,−1) f(+1,−1)
f(−1, 0) f(0, 0) f(1, 0)

f(−1,+1) f(0,+1) f(+1,+1)

)
=

(
g h g
h 1 h
g h g

)
(5.7)

where we have fixed the center tap to the value 1 so that the channel can
be specified by two parameters, g and h. In this example we consider the
coefficients g = 0.0327 and h = 0.181, which is referred to as Channel A
in the following.

We consider the input alphabet A = {0, 1} so that the error alphabet
is ∆A = {0,+1,−1}. All simple error patterns up to size (4 × 4) were
searched exhaustively (i.e., nonzero elements in the error patterns were
limited to a (4 × 4) grid). This may be implemented by generating 316

different patterns and discarding those that are not simple. A check
should also be included to remove shift equivalences.

For each simple pattern E, the normalized square distance

d̄2(E) =
1
‖F‖2

∑
m,n

|e(m,n) � f(m,n)|2 =
d2(E)∑

i,j f2(i, j)
(5.8)

was computed. After removing shift equivalences, the 400 patterns
yielding smallest distances were retained to construct the bounds. This
yielded 23 different values for d̄, which we label in increasing order as
d̄1 < d̄2 < d̄3 The upper bound was approximated using all of these
terms and the fact that PC(E) = 2−w(E) for the binary alphabet.

Applications in Two Dimensional Systems 279

The smallest normalized square distance found was d̄2
1 = 0.76, which

is generated by two different weight four error patterns. One pattern is

0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0︸ ︷︷ ︸

ẽ(i,j)

=
� � � �
� 1 0 �
� 0 1 �
� � � �︸ ︷︷ ︸

ã(i,j)

−
� � � �
� 0 1 �
� 1 0 �
� � � �︸ ︷︷ ︸

a(i,j)

(5.9)

where the � indicates a free position. Specifically, recalling the conven-
tion that ẽ(i, j) = ã(i, j)−a(i, j) where a(i, j) is the true data, the above
error pattern is expressed as such a difference and the transmitted se-
quence a(i, j) is constrained to take the values 0 and 1 as shown, but
the other locations are free to be selected as either 0 or 1 with the same
values taken for ã(i, j) in the corresponding locations. Thus, only one
transmitted page is consistent with the above error pattern.

The other error pattern is the opposite of that in (5.9) with the values
of ã(i, j) and a(i, j) exchanged. Thus, based on the finite search, the set
of data pages that are consistent error sequences have distance d̄1 is

B(d̄1) =

� � � �
� 1 0 �
� 0 1 �
� � � �

,

� � � �
� 0 1 �
� 1 0 �
� � � �

 (5.10)

Since in the four restricted locations, only 2 of the possible 24 = 16
sequences are in B(d1), P (B(d1)) = 2/16 = 1/8. This yields the lower
bound

PSy(Y) ≥ 1
8
Q

√‖F‖2d̄2

1

4σ2
w

 =

1
8
Q

(√
γd̄2

1

2

)
(5.11)

where γ = ‖F‖2/(2σ2
w) is a measure of the SNR.

A second lower bound is obtained by the weight-one error patterns
which achieve d̄6 = 1 – i.e., the 6th smallest distance found. This is a
special case of the ISI-free lower bound of Example 1.21, and results in

PSy(Y) ≥ Q
(√

γ

2

)
(5.12)

A third lower bound can be obtained considering the distance d̄2
3 =

0.873 arising from the two distinct error patters

0 0 0 0
0 +1 −1 0
0 0 0 0
0 0 0 0

and
0 0 0 0
0 +1 0 0
0 −1 0 0
0 0 0 0

(5.13)

280 ITERATIVE DETECTION

B
it

E
rr

or
R

at
e

SNR (dB)

10−1

10−3

10−5

10−7

10−9

5 10 15 200

based on d̄1

based on d̄3

based on d̄6 (ISI free)

Figure 5.3. The best lower bound for Channel A from the finite error pattern search
is achieved by combining the three component bounds shown.

along with their opposites. The corresponding B(d̄3) is

B(d̄3) =

� � � �
� 0 1 �
� � � �
� � � �

,

� � � �
� 1 0 �
� � � �
� � � �

,

� � � �
� 0 � �
� 1 � �
� � � �

,

� � � �
� 1 � �
� 0 � �
� � � �

=
{ 1 0

0 � , 0 1
1 �

}
∪
{ 1 1

0 � , 0 0
1 �

}
∪
{ 1 0

1 � , 0 1
0 �

}
(5.14)

where only the restricted 2× 2 part of the patterns is shown in the last
equation. The partition in (5.14) yields the pairwise USI scheme. Since
6 of the 8 possible patterns in the three restricted positions are in B(d̄3),
the associated lower bound is

PSy(Y) ≥ 6
8
Q

(√
γd̄2

3

2

)
(5.15)

In the evaluation of the lower bound in (1.135) (i.e., as a maximum
over all single-d lower pairwise USI lower bounds) over the SNR range
of interest, it was found that only the three different distances discussed
above were used, resulting in an overall lower bound of the form

PSy(Y) ≥ max

{
1
8
Q

(√
γ(0.76)

2

)
,

3
4
Q

(√
γ(0.873)

2

)
, Q

(√
γ

2

)}
(5.16)

Each of these three bounds are plotted in Fig-5.3. The bound based on
d̄6 dominates at low SNR up to an SNR of 9 dB. The bound associated

Applications in Two Dimensional Systems 281

with d̄3 dominates from 9 dB up to 18.2 dB, above which the d̄1 bound
dominates. The composite lower bound results from the maximization
in (5.16).

End Example

In Example 5.2, we can not conclude that the minimum distance is
d̄1, due to the finite search. However, the lower bound stated is strictly
valid. Thus, we can conclude that the ISI associated with Channel A
causes an effective degradation of at least −10 log10(d̄2

1) = 1.18 dB in
SNR at sufficiently high SNR. We note that, while many of the tests
in [AnFo75] have analogies in the 2D case, it does not appear that the
method described therein extends to 2D. Specifically, there is no known
subset of 2D simple error patterns which can be searched to find the
minimum distance for any 2D channel of a given support size. While
the upper bound is only an approximation, the same numerical result
is obtained using a search of only (3 × 3) error patterns and including
fewer terms in the sum. Conversely, using a 2D extension of the stack
algorithm in [AnFo75], patterns up to size (4 × 12) have been searched
without altering the subsequent bound (or finding a smaller distance). In
the following, we use similar truncated bounds as upper bounds without
further qualification. Specifically, upper and lower bounds obtained by
this procedure are presented in Section 5.4 as a gauge for the performance
of the suboptimal algorithms introduced.

5.2.1 Finding Small Distances
Recall from Section 1.4.3 that the problem of finding the minimum dis-

tance is a shortest path problem similar to the underlying data detection
problem. The minimum distance problem differs in that the underlying
alphabet is ∆A and the minimizing input cannot be all zeros. Simi-
larly, for the 2D linear ISI channel, minimization of (5.8) is a 2D-DLM
problem with similar constraints. This means that, since 2D detection
appears to be prohibitively complex, finding the minimum distance is
likely to have similar complexity. This may not have severe practical
consequences since, as demonstrated above, useful lower bounds can be
obtained without an assurance that dmin has been found. Furthermore,
the similarity of the data detection problem and the associated minimum
distance problem allows one to apply an effective (suboptimal) detection
algorithm to search for small distances.

Example 5.3.
In Section 5.3, several iterative detection algorithms, or SISOs, are devel-

282 ITERATIVE DETECTION

oped which are applicable to the 2D ISI channel. One of these, referred
to as a “composite 2D SISO” in Section 5.3.1.3, was used to search for
the error pattern that minimizes (5.8) for a given channel of the form
in (5.7). The requirement of a nonzero error pattern was enforced by
setting the input metrics for the error value at the center of the page
appropriately. More precisely, let e(i0, j0) be at or near the center of the
page considered, then the value of e(i0, j0) = +1 is enforced by setting
MI[e(i0, j0) = +1] = 0 and the metrics associated with e(i0, j0) = 0 and
e(i0, i0) = −1 to infinity. This also exploits the fact that d(E) = d(−E),
so one need only consider e(i0, i0) = +1. The 2D SISO returns the
nonzero error pattern minimizing the distance with the associated dis-
tance also noted. We denote the smallest distance found by this search
as ds.

This algorithm was run for a variety of 3 × 3 symmetric channels in
(5.7) on a 30×30 page with the results shown in Fig-5.4. The normalized
smallest distance found – d̄s, along with the associated pattern is shown
over the (g, h) plane. The results obtained by this suboptimal search

1

1 1

0

00.2
0.20.4

0.40.6
0.60.8 0.8

0.3

0.5

0.7

0.9

(
+−
−+
)

(+)

(+−) (+−)

(0+0
−0−
0+0

)
(+)

(+)

d̄s

g h

min(d̄s) = 0.35

Figure 5.4. Normalized ds and corresponding error patterns. The underlying 2D
channels are defined in (5.7).

coincide with those found by exhaustive search and the stack algorithm
over small pattern sizes. Only four minimizing error patterns were found
for all channels considered. Moreover, all the d̄s error patterns found are
either symmetric or asymmetric around the center in both the x and
y directions. This is analogous to the symmetry found for the vast
majority of minimizing sequences in 1D ISI channels [AnFo75, VaFo91].

Applications in Two Dimensional Systems 283

We also observed that d̄s reaches a minimum value of 0.35 when g ∼= 1/2
and h ∼= 1/

√
2. It is interesting to note that this “worst” 2D ISI channel

is the outer product of the worst 3-tap 1D ISI channel – (1/
√

2, 1, 1/
√

2)
[Pr95, pg.601] – with itself.

End Example

5.3 Iterative 2D Data Detection Algorithms
5.3.1 Iterative Concatenated Detectors

As described in Chapter 2, once a subsystem decomposition or a
graphical model for a system has been established, an iterative detection
or message passing algorithm has been specified except for the activa-
tion schedule. Furthermore, these algorithms accept soft-in information
on the 2D system inputs and outputs and update this information to
produce soft-out information on the same. Thus, these algorithms may
be viewed as suboptimal SISOs (i.e., approximations to the marginal
soft inverse of the 2D system). We use the term SISO to describe these
algorithms in the following with the notion that they may be used as
part of a larger iterative detector (e.g., see Problem 5.6).

The 2D SISOs developed are, therefore, based largely on obtaining
models for the underlying 2D system (or equivalently, the CM problem
implied in (5.5)). We also apply some of the methods of complexity
reduction developed in Chapter 3 to simplify the resulting algorithms.

5.3.1.1 A Concatenated Channel Model and 2D SISO
A general 2D system underlying (5.5) may be viewed as a mapping

from the input page a(i, j) to the page of transitions t(i, j). In this
section we demonstrate that this may be viewed as the serial concate-
nation of two 1D FSMs separated by a block interleaver [ChCh98]. For
concreteness, we develop this for the linear ISI channel, but it will be
apparent that this applies to a general 2D system as described in Section
5.1.1.

Consider the ISI channel with rectangular support defined in (5.3)
and define the row vector1

v(i, j) = [a(i, j − Lr) a(i, j − Lr + 1) · · · a(i, j + Lr)] (5.17)

1In order to make the development most intuitive, we momentarily depart from the convention
of using column vectors exclusively.

284 ITERATIVE DETECTION

as an inner vector symbol. The 2D convolution operation in (5.6a) can
then be reformulated as

x(i, j) =
Lc∑

m=−Lc

v(i −m, j)fT
m = v(i, j) � fT

i (5.18)

where the row vector fm = [f(m,Lr) f(m,Lr − 1) · · · f(m,−Lr)] is the
coefficient of the vector-based one-dimensional convolutional operation
with the m-th row of F. Consequently, (5.6a) is accomplished in two
stages: the collapsing of the row memory in (5.17) and the 1D convolu-
tion of vectors in (5.18).

In fact, for a fixed i (row), the mapping from a(i, j) to v(i, j) is an
FSM with v(i, j) defining the transition. Similarly, the convolution in
(5.18) is a 1D FSM in the column index variable i. Thus, this simple
modeling trick yields the serially concatenated model for 2D ISI as illus-
trated in Fig-5.5. Specifically, the memory is first collapsed across each
row, then the output can be computed independently running down each
column. This is illustrated further in the following example.

...
...

. . .

1D Mapper

1D Mapper

1D Mapper

1D
IS

I

· · ·

1D
IS

I

1D
IS

I

w(i, j)
x(i, j)

z(i, j)

v(0, j)

v(1, j)

v
(i

,0
)

v
(i

,1
)

a(1, j)

a(0, j)

v(I − 1, j) v
(i

,J
−

1)
a(I − 1, j)

Figure 5.5. Block diagram for the (COL-row) concatenated channel model for a 2D
ISI channel.

Example 5.4.
An example of the above mapping for a 3× 3 2D ISI is given in Fig-5.6
for a single transition (i.e., t(7, 5)). First, the binary input pixel array
a(i, j) is mapped row-wise into a 8-ary vector symbol array v(i, j). For
instance, v(6, 5) = [a(6, 4), a(6, 5), a(6, 6)] and v(6, 6) = [a(6, 5), a(6, 6),
a(6, 7)] (not shown). Notice that these vector symbols overlap and may

Applications in Two Dimensional Systems 285

v(6, 5)

v(7, 5)

v(8, 5)

a(6, 4) a(6, 5) a(6, 6)

a(7, 4) a(7, 5) a(7, 6)

a(8, 4) a(8, 5) a(8, 6)

x(7, 5)

f−1

�

f0

f1

binary symbols 8-ary

Figure 5.6. Illustration of the concatenated mapping process for a 3 × 3 2D ISI
channel.

be viewed as the output of an FSM. Specifically, v(6, 5) is the transi-
tion of the FSM with state [a(6, 4), a(6, 5)] and input a(6, 6).2 After the
mapping in (5.17) has been applied to each row, the sequence v(i, j) is
read out column-wise and fed into the second FSM, the vector-based 1D
convolutional operation (5.18) which yields x(i, j) in (5.6a). Specifically,
note that t(7, 5) is defined by the values of v(6, 5), v(7, 5), and v(8, 5).

End Example

Clearly, the concatenated model applies to a general 2D system of
the form described in Section 5.1. This follows because, as shown in
Example 5.4, specification of {v(i, j −m)}+Lr

m=−Lr
determines the transi-

tion t(i, j). It is worth stressing that there is no approximation in this
model. Specifically, the concatenated model provides exactly the same
input-output relation as the original 2D system.

A key observation is that the model in Fig-5.5 is equivalent to a serial
concatenation of two 1D FSMs separated by a block interleaver as illus-
trated in Fig-5.7. For the serial concatenation in Fig-5.7, the inner FSM

FSM
outer inner

FSMinterleaver
ak vk vn xnblock

Figure 5.7. Equivalent block diagram of the concatenated channel model in Fig-5.5
in terms of 1D subsystems.

corresponds to the column (vector ISI) FSM in Fig-5.5, the outer FSM
corresponds to the row-wise FSM in Fig-5.5 and the block interleaver
corresponds change between row-wise and column-wise ordering. The

2Notice that the channel is noncausal in both i and j. Thus, in the following, the notation
of the previous chapters should be modified slightly to describe the underlying FSM.

286 ITERATIVE DETECTION

system in Fig-5.7 takes a row-wise raster scan of the data page a(i, j)
yielding ak. Specifically, k = i · J + j, with i incremented once for every
J times that j is. This is processed by the 1D FSM to produce v(i, j)
ordered by row-wise scanning – i.e., vk. The block interleaver reorders
v(i, j) to correspond to a column-wise scan. Specifically, we use the in-
dex variable n = i + j · I with j incremented once for each I times that
i is incremented. The inner FSM performs the vector ISI convolution
and produces x(i, j) in column-scan order. Note that our assumption of
a known pattern around the edges of the page ensures that the state of
the row (column) FSM are known before and after each row (column) is
scanned.

In this model, the outer FSM is a row-wise simple FSM with memory
2Lr. The column-wise FSM (5.18) is a vector-based 1D ISI (simple FSM)
with memory 2Lc and inputs v(i, j) that are drawn from an alphabet of
size |A|2Lr+1. We refer to the structure illustrated in Fig-5.7 (and, equiv-
alently Fig-5.5) as the “COL-row” version of the concatenated model.
The analogous ROW-col version of this model is defined by associating
the outer FSM with column-wise processing. We capitalize the COL
(ROW) in the COL-row (ROW-col) version as a reminder that the FSM
associated with the column processing has many more states.

5.3.1.2 Concatenated 2D SISO
Based on Fig-5.7 and the development of Chapter 2 an effective 2D

SISO algorithm can be obtained by the same processing used for serially
concatenated FSMs with interleaving. The resulting algorithm is illus-
trated in Fig-5.8 for the system notation in Fig-5.7 and, equivalently,

SISO
row

SISO
COL.

I
I−1

S[v(i, j)]

S[a(i, j)] S[x(i, j)]

Figure 5.8. The 2D SISO algorithm (COL-row version).

in Fig-5.9, for the diagram in Fig-5.5. This concatenated 2D SISO con-
sists of two types of processors: the column SISOs and the row SISOs
which correspond to the inner stage and outer stage, respectively. The
parameters of these two SISOs, which may be implemented using the
forward-backward algorithm, are listed in Table 5.1.

The 2D SISO processing is the same as that of the iterative detector
for a serially concatenated system. As suggested by Fig-5.9, however,
one has the option of executing all of the row SISOs in parallel since
the processing is decoupled. Similarly, the column SISOs may be exe-

Applications in Two Dimensional Systems 287

c

c

â(i, j)...

· · ·

...

z(i, j)

S[v(i, j)]

row

row

SISO
COL.COL.

SISO

S[a(i, j)]

SISO

SISO

S[x(i, j)]

SODEM

block
interleaver

Figure 5.9. A simple 2D SISO: the iterative concatenated detector (COL-row ver-
sion).

Processor Transition Input symbol
Def. Size Def. Size

Column SISO {v(i − l, j)}Lc
l=−Lc

|A|(2Lr+1)×(2Lc+1) v(i, j) |A|(2Lr+1)

Row SISO v(i, j) |A|(2Lr+1) a(i, j) |A|

Table 5.1. The parameters of column SISOs and row SISOs in the iterative concate-
nated detection algorithm (COL-row version).

cuted in parallel. Note, however, that the row SISOs cannot be activated
until all column SISOs have completed their processing for a given iter-
ation. Also, as implied by Fig-5.8, the processing can be done serially
for columns, then rows, etc.

One iteration of the COL-row SISO is defined by activation of all
column SISOs, then all row SISOs. For the first activation of the COL
(inner) SISO, the soft-in information on the hidden variables v(i, j) is
set to uniform. The COL SISOs and row SISOs exchange and update
soft information on the vector symbols v(i, j). Note that since extrinsic
soft-out information on the 2D system inputs a(i, j) and outputs x(i, j)
can be produced using this algorithm, this may be viewed as a 2D SISO
which approximates the marginal soft inverse of the 2D system.

5.3.1.3 Modified Concatenated 2D SISOs
The COL-row SISO described above is inherently asymmetric with

respect to the row and column processing. For example, the column
(inner) SISO is far more complex for a square support region. It is rea-

288 ITERATIVE DETECTION

SISO
row

SISO
COL.

SISO
col

SISO
ROW S[x(i, j)]

S[a(i, j)]

COL-row
ROW-col

I−1

I

I
I−1

c

c

Figure 5.10. The composite 2D SISO algorithm consisting of ROW-col and col-ROW
2D SISO algorithms operating independently.

sonable, therefore, to consider combining a COL-row and ROW-col 2D
SISO to obtain a more symmetric algorithm. We refer to this as the
composite 2D (concatenated) SISO algorithm. Exactly how one com-
bines the operation of the COL-row and ROW-col SISOs is not initially
clear. However, our experiments suggest that an effective way to do
so is as illustrated in Fig-5.10. Since these two submodules operate on
different soft information, they can operate independently and thus si-
multaneously. The soft information from each is combined only after
the final iteration to produce the final soft output via

SO[u(i, j)] = SORc[u(i, j)]©c SOCr[u(i, j)] (5.19)

where u(i, j) can be either x(i, j) or a(i, j), and the subscript represents
the corresponding version of concatenated 2D SISO used.

For a square support region, complexity is increased by a factor of
two when a composite SISO is used in place of the COL-row or ROW-
col SISO. Alternatives exist to trade increased complexity for (possibly)
better performance. For example, in the COL-row model, the definition
of v(i, j) can be modified to

v(i, j) ∆= [a(i, j − Lr − 1), a(i, j − Lr), . . . a(i, j + Lr)] (5.20)

Note that, compared to (5.17), an extra input a(i, j−Lr−1) is included.
Consequently, each inner (column) SISO can incorporate two columns
of SI[x(i, j)] instead of one. This is expected to improve performance
since it decreases the degree of marginalization (i.e., heuristic rule 2
in Section 2.7.1). Carrying this notion to the extreme, one obtains an
optimal detector of the form shown in Fig-5.1 (with the VA running in
the y-direction).

When a suboptimal SISO is used for the row or column SISO, soft
information filtering (see Chapter 3) may provide an improvement in per-
formance. One such configuration of interest in the following is shown in
Fig-5.11. Furthermore, since the 2D SISO itself is a suboptimal approx-

Applications in Two Dimensional Systems 289

S[x(i, j)]
outer
SISO

inner
SISOS[a(i, j)] β

I−1

I

Figure 5.11. A modified 2D SISO algorithm with soft information filtering.

β2 β1
S[a(i, j)] S[x(i, j)]

SISO
inner

SISO
outer I−1

I

Figure 5.12. A modified 2D SISO algorithm using self iteration and soft information
filtering.

imation to the marginal soft inverse of the 2D system (even if the row
and column SISOs are “full-state” forward-backward algorithms), the
concept of self-iteration is applicable as well. A configuration of interest
in the following, show in Fig-5.12, uses soft-in information filtering and
self-iteration.

Complexity Reduction The complexity of the concatenated 2D
SISO algorithm grows exponentially in the area of the support region.
This may be prohibitive even for moderate values of Lr and Lc. For ex-
ample, when Lr = Lc = 2 (i.e., a 5× 5 2D ISI channel), the inner SISO
has |A|20 states, which is prohibitive, even for a binary inputs. The deci-
sion feedback concepts introduced in Chapter 3 can be applied to reduce
this complexity. For example, many 2D ISI channels are symmetric in
nature and have energy that falls off quickly from the center tap. Such a
2D SISO can be based on a modeled memory of L1 < L = Lr = Lc with
decision feedback used for the taps outside of this region. Specifically,
the original channel can be partitioned into two parts: the taps with
index −L1 ≤ i, j ≤ L1 and the rest. One may then feedback the hard
decisions â(i, j) or soft estimates ã(i, j) for all positions related to the
taps in the second part. Consequently, the complexity is comparable to
a 2D SISO operating on a (2L1 + 1)× (2L1 + 1) channel. This concept
is illustrated in Fig-5.13.

In particular, this can be applied to the COL-row SISO by enforcing
this hard information at the SI[x(i, j)] port at each iteration. For the
case when hard decisions are fedback, â(i, j) can be obtained from the
last iteration and used in each of the shaded locations in Fig-5.13 to
recompute SI[x(i, j)] at each iteration. Similar processing could be done
by averaging over soft information at each iteration – i.e., using ã(i, j),
the average value of a(i, j) according to the beliefs from the last itera-
tion. Alternatively, this averaging could be done once, before the first

290 ITERATIVE DETECTION

hard information
region ã(i, j)

region S[a(i, j)]
soft information

Figure 5.13. Truncation of a 2D ISI: from 7 × 7 to 3 × 3.

iteration, and these values could be used for all subsequent iteration.
The last approach has the advantage that the values of SI[x(i, j)] are
the same at each iteration.

5.3.2 Distributed 2D SISO Algorithms
The concatenated channel model obtained in Section 5.3.1.1 is based

on a model which is essentially a reordering in a 1D fashion. Models that
are more naturally 2D can be established by considering the dependen-
cies of local variables directly. Once a graphical model is established, the
corresponding SISO follows from the principles developed in Chapter 2.
One characteristic of these resulting SISOs is that they tend to naturally
admit parallel activation schedules and architectures. This is a desired
property for many 2D applications since the signal format and system
hardware is naturally 2D and locally connected. We consider two graph-
ical models that differ from the concatenated models presented thus far
and suggest fully parallel algorithms based on parallel activation sched-
ules. It is important to note, however, that other schedules are possible
for message passing on the same graphical models.

5.3.2.1 Graphical Model 1 and Associated 2D SISOs
The graphical model for the 1D ISI channel shown in Fig-2.58 extends

directly to the 2D case. This is illustrated in Fig-5.14, where only one
mapper from t(i, j) to x(i, j) is shown. Analogous to the model in Fig-
2.58, there is a broadcaster node for each input variable a(i, j) that
sends the value to each t(i, j) affected by its value (i.e., for the square
support, this is t(i + l, j + m) for |l| ≤ Lc and |m| ≤ Lr). While it is
cumbersome to show the complete diagram, this may be though of as a
set of connections from the input plane (made up of a(i, j)) to the output
plane (made up of x(t(i, j))). The node that maps the input symbols to
x(i, j) is denoted by the subsystem T(i,j). This graph is referred to as
the graphical model 1 for the 2D system (2D-GM1).

Applications in Two Dimensional Systems 291

T(i,j)

a(i, j)

x(i, j)

(i)

(i + 1)

(i − 1)

(j − 1) (j) (j + 1)(column)

(row)

Figure 5.14. Graphical model 1 for the 2D system (illustrated by a 3 × 3 2D ISI
channel). Note that the only output subsystem shown is T(i,j) with all its connections
shown.

Clearly, 2D-GM1 has cycles so that applying iterative detection (mes-
sage passing) is, in general, suboptimal. Nonetheless, one can apply the
standard message passing techniques to this 2D model in exactly the
same manner used in the 1D case described in Example 2.15. We refer
to this algorithm with parallel activation of all T−s

(i,j) nodes, followed by
parallel activation of all SOBC nodes, as the fully-parallel (2D SISO)
algorithm 1 (FPA1).

For many applications considered, the energy in the 2D channel im-
pulse response decays quickly away from the center. Thus, the con-
nection cutting concept introduced in Chapter 3 can be considered for
complexity reduction of FPA1. Since the center tap typically contains
the most energy in the applications considered (i.e., f2(i, j) is maximized
by i = j = 0), we consider cutting all message passing connections from
T−s

(i,j) back to the SOBCs except for the SOBC corresponding to a(i, j).
Note that this corresponds precisely to the algorithm in Example 3.4
(and the distributed sparse SISO algorithm in Section 3.4) with a single
pivot selected to be the center tap. The corresponding simplified version
of FPA1 is shown in Fig-5.15.

To compensate for the performance degradation associated with this
connection cutting, one may apply 2D cross initial combining (see Prob-
lem 5.12) and soft information filtering. Specifically, the soft informa-
tion passed back to the SOBC for a(i, j) can be filtered. This reduced

292 ITERATIVE DETECTION

S[x(i, j)]

S[a(i, j)]

T−s
(i,j)

Figure 5.15. The SISO associated with the graphical model in Fig-5.14 using con-
nection cutting.

complexity version of the FPA1 (i.e., connection cutting, filtering, and
cross-combining), was suggested in [ChChNe98] where it was referred to
as the 2D distributed detection algorithm (2D4).

5.3.2.2 Graphical Model 2 and Associated 2D SISOs
While the 2D-GM1 model does not implicitly raster the data page, it

does result in an algorithm (FPA1) that marginalizes the soft informa-
tion on t(i, j) all the way down to the input symbol level before combin-
ing it at the next iteration. According to heuristic rule 2 of Section 2.7.1,
one should avoid marginalization whenever possible to improve perfor-
mance. An algorithm [Th00] which does not marginalize all information
to the input symbol plane is described by defining two auxiliary variables
r(i, j) and c(i, j) which, together with one input variable specify t(i, j).
For example, for the case of Lr = Lc = 1 these are defined as

r(i, j) =
(

a(i− 1, j − 1) a(i− 1, j) a(i− 1, j + 1)
a(i, j − 1) a(i, j) a(i, j + 1)

)
(5.21a)

c(i, j) =

 a(i− 1, j − 1) a(i− 1, j)

a(i, j − 1) a(i, j)
a(i + 1, j − 1) a(i + 1, j)

 (5.21b)

In general, the auxiliary variables are

r(i, j) ∆= t(i− 1, j) � t(i, j) (5.22a)

c(i, j) ∆= t(i, j − 1) � t(i, j) (5.22b)

Applications in Two Dimensional Systems 293

t(i, j) � r(i, j) � c(i, j) � a(i + Lc, j + Lr) (5.22c)

Thus, these auxiliary quantities establish direct connections among the
t(i, j) variables instead of through a(l,m) plane as in 2D-GM1 (see Fig-
5.14). Using the relationship (5.22c), the graphical model in Fig-5.16
is established. We refer to this as the graphical model 2 for 2D sys-
tems (2D-GM2). It is interesting to note that this directed graph is

column
index

index
row

x(i, j)

r(i, j)

c(i, j)

a(i + 1, j + 1)

j j + 1

i + 1

i
c(i, j + 1)

r(i + 1, j)

TT

TT(i,j)

Figure 5.16. Graphical model 2 for 2D systems (shown for Lr = Lc = 1). Note that
only the inputs and outputs of subsystem T(i,j) are labeled. The inputs of T(i,j) are
r(i, j) fed from T(i−1,j), c(i, j) fed from T(i,j−1) and a(i + 1, j + 1). The output is
x(i, j)

“causal” in the “southeast” direction – i.e., all connections in the graph
are southeast directed so that a give subsystem receives its inputs only
after the outputs of all northwest systems have produced outputs. Due
to the auxiliary variables introduced, T(i,j) is connected only to a sin-
gle 2D system input variable a(i + 1, j + 1). Nevertheless, 2D-GM2 has
numerous cycles, the shortest of which is length 4 as may be observed
from Fig-5.16.

Given the 2D-GM2, the corresponding SISO follows by applying the
standard rules described in Chapter 2. In addition, since there are short
cycles in this model, we also introduce the option of soft information
filtering with the resulting algorithm diagrammed in Fig-5.17. Similar
to the FPA1 and 2D4 2D SISOs, this SISO can be implemented in a
fully distributed manner by parallel activation of the T−s

k nodes. We
refer the algorithm shown in Fig-5.17 (i.e., with filtering) and parallel
activation as the fully-parallel (2D SISO) algorithm 2 (FPA2). Notice
that FPA2 has lower computational complexity than the FPA1 because
the marginalization to the symbol plane and subsequent recombining is
avoided. The storage requirements for the FPA2, however, are greater
than that of the FPA1 due to this same characteristic.

294 ITERATIVE DETECTION

S[c(i, j)]

S[x(i, j)]

T−sT−s

T−sT−s
(i,j)

S[r(i, j)]S[a(i + 1, j + 1)]

Figure 5.17. The FPA2 2D SISO developed from the 2D-GM2 in Fig-5.16. Soft
information filters have been added as illustrated.

5.4 Data Detection in POM Systems
5.4.1 POM System Model

There is a great interest in parallel recording and retrieval techniques
for the future high capacity storage systems. The page-oriented optical
memory (POM) system is a promising candidate because of its potential
for simultaneously achieving high capacity, fast data transfer and 2D
parallel access (e.g., see [ChChNe99] and references therein). However,
POM systems operating near their capacity are subject to numerous
sources of noise and interference arising from the optical system itself.
Specifically, the blur resulting from the low-pass nature [Go68] of the
optical system causes neighboring bits in a data page to overlap during
the retrieval procedure. Thus this pre-detection retrieval procedure can
be modeled by a 2D ISI (space continuous) channel

s(x, y) =
∑
(i,j)

a(i, j)h(x − i∆, y − j∆) (5.23)

where a(i, j) is the stored binary data, and ∆ is the vertical and horizon-
tal detector (e.g., CCD pixel) spacing. The effect of interference is cap-
tured by h(x, y), the point spread function of the optical system, which
is truncated to the region {(x, y) : |x| < (Lr + 0.5)∆, |y| < (Lc + 0.5)∆}
in our system model. The optical-to-electrical conversion process is as-
sumed to take place by means of an array of detectors (e.g., CCD) that
integrate the intensity of the signal over both time and space.3 Further-

3As shown in (5.23), the integration over time (e.g., temporal matched filtering) has already
taken place.

Applications in Two Dimensional Systems 295

more, it is assumed that a detector is centered on each pixel location and
the fill factor is unity (i.e., no spatial guard bands between detectors ex-
ist). For a POM system using incoherent signaling (i.e., optical intensity
modulation and detection), the function s(x, y) in (5.23) characterizes
the intensity function directly. A discrete-space model for the output of
the (i, j)-th detector, x(i, j) is the linear ISI model in (5.6a) with chan-
nel coefficients determined by spatial integration over the optoelectronic
detector region

f(l,m) =
∫ ∆/2

−∆/2

∫ ∆/2

−∆/2
h(x + l∆, y + m∆)dxdy (5.24)

The blurred output from the 2D ISI channel is then corrupted by vari-
ous sources of post-detection noise, which may be modeled as AWGN.
Other signal and noise models (e.g., coherent field noise, shot noise, etc.)
are possible, especially in coherent POM systems [ChChNe99]. In the
current context, these result in different soft information metrics and/or
nonlinear ISI channels.

Thus, the data retrieval problem for POM systems may be modeled
as a 2D detection problem of the form discussed in Section 5.1 and the
iterative detection algorithms (SISOs) developed in Section 5.3 can be
applied. Effective ISI mitigation techniques translate to increased POM
storage capacity by possibly reducing the required detector spacing. Fur-
thermore, the noise level is often determined by the number of pages that
are written to a particular medium. Therefore, an SNR gain associated
with an effective algorithm translates to an increased storage capacity
(i.e., see [ChChNe99] for a detailed description of these trade-offs).

Two channels inspired from POM systems are used in the following
investigation. The Gaussian blur, h(x, y) = N2((x, y);0; σ2

bI) is a typical
point spread function in a POM system. Channel A is a 3× 3 truncated
Gaussian blur channel with σb = 0.623 4 which results in a discrete-space
channel in the form of (5.7) with a = 0.1235 and b = 0.3515. Channel
B is a 5 × 5 truncated Gaussian blur with σb = 0.8. Specifically, the
upper-left portion of this symmetric channel is

 0.0040 0.0317 0.0639
0.0317 0.2534 0.5034
0.0639 0.5034 1.000

 (5.25)

We assume iid-uniform binary inputs of intensity 0 and 1, and AWGN
with variance σ2

w. The SNR is defined by γ = ‖F‖2/2σ2
w. Due to the

4In the following, σb is expressed relative to ∆ (i.e., equivalently assume that ∆ = 1).

296 ITERATIVE DETECTION

operational SNR, only min-sum processing is considered. For the itera-
tive algorithms, the iteration is terminated once convergence is observed,
i.e., after Nc iterations.

5.4.2 Existing Detection Algorithms
Various detectors have been developed to solve the 2D data detec-

tion problem. For comparison, the following detectors are tested on the
channels A and B.

Thresholding Detector Letting mz
∆= E {z(i, j)}, the threshold

decision (TH) rule is: â(i, j) = 1 if z(i, j) > mz; otherwise, â(i, j) = 0.
For a binary input alphabet {0, 1}, AWGN noise, and the channel in
(5.7) with g ≥ 0 and h ≥ 0, it can be shown that the performance of TH
does not have a BER floor if and only if (g +h) < 0.25. Therefore, when
the 2D ISI is severe, it can be expected that the threshold detector will
fail.

MMSE Equalizer Denoting v0(ζ) = v(ζ)− E {v(ζ)}, the minimum
mean square error (MMSE) equalizer is defined by a (2Q+1)× (2Q+1)
linear filter g(i, j) and the operation

ǎ0(i, j) = g(i, j) � z0(i, j) (5.26)

The MMSE filter coefficients g(l,m) are obtained by solving the Wiener-
Hopf equations, and the corresponding decision rule is: â(i, j) = 1 if
ǎ0(i, j) > 0, otherwise â(i, j) = 0. The details of the MMSE equalizer
design for 2D ISI channels and the impact of their use on POM storage
capacity are discussed in detail in [ChChNe99].

Decision Feedback Equalizer The decision rule in the MMSE
equalizer can be replaced with a simple iterative decision making pro-
cess [NeChKi96]. After obtaining the tentative decisions â(i, j) by the
MMSE equalizer, we calculate the quantity x0(i, j), which is the 2D
ISI output at location (i, j) assuming a(i, j) = 0. Similarly, x1(i, j) is
obtained by setting a(i, j) = 1. An updated decision is obtained as
â(i, j) = arg minl |z(i, j) − xl(i, j)|. This iteration can be performed
a fixed number of times, or until no further improvement/change oc-
curs. This algorithm is referred to as (2D) decision feedback equalization
(DFE).

Decision Feedback VA Although the standard VA [Fo73] is not
directly applicable to MAP-PgD for the 2D ISI channel, the so-called
decision-feedback VA (DFVA) [HeGuHe96, KeMa98] adapts the VA to
provide a reasonable 2D detection algorithm. As illustrated in Fig-5.18
for a 3× 3 2D ISI channel, the DFVA runs a VA row-wise, with a state

Applications in Two Dimensional Systems 297

j − 1
state

i

i− 1

i + 1

hard decision fedback
from previous row VA

t(i, j)

state state
j + 1j

Figure 5.18. The decision feedback VA (row-wise version) for a 3×3 2D ISI channel.

consisting of a 2×2 symbol matrix. The transition metrics are computed
using hard decisions fed-down from the previous row. After reaching
the end of each row, the VA traces back on the best path and makes
decisions only on the row i. This process is continued down rows until
the entire data page has been detected. A scheme combining the row-
wise and column-wise versions along with hard-decision iterations has
been developed and successfully applied to image processing problems
in [Mi99]. Like other decision feedback algorithms, the DFVA may suffer
significant error propagation effects at low SNR.

5.4.3 The Performance of Iterative Detection
Algorithms

The performance of various algorithms on Channel A is shown in
Fig-5.19. In addition, the performance bounds derived in Section 5.2
are shown. Channel A is a relatively severe channel 2D ISI channel for
practical POM systems. The thresholding detector completely fails for
this channel. Both the DFE and DFVA detectors perform 6 dB worse
than the MAP-PgD upper bound. The composite 2D SISO slightly
outperforms the concatenated COL-row 2D SISO with both converg-
ing relatively quickly (4 iterations). Based on the performance bounds,
it is unlikely that a practical algorithm can be designed that will per-
form better than the composite 2D SISO. Several COL-row 2D SISOs
using SW-SISO modules were applied to Channel A with fairly good
performance. These solutions provide another algorithm with a fairly
high degree of parallelism. As expected, the larger the window size in
the SW-SISOs, the better the performance. Note that soft information
filtering improves the performance of the COL-row detectors based on
SW-SISO with D = 2. In summary, the detectors based on iterative de-
tection can tolerate up to 6 dB more noise which translates to a storage
capacity increase [ChChNe99].

298 ITERATIVE DETECTION

���
��� ���

���

���

���

B
it

E
rr

or
R

at
e

SNR (dB)

100

10−1

10−2

10−3

10−4

10−5

10−6

MLPD bounds

Threshold

DFE
DFVA

C-FI (4)
S-FI (4)

S-SW2 (5)

M-S-SW2 (5)

S-SW4 (5)

12 14 16 1810 20 22

Figure 5.19. Performance of various iterative concatenated detectors on Channel A.
Each curve is labeled by: algorithm used (iteration number used). S(C)-FI(SW) is
the “single” (composite) concatenated 2D SISO using FI(SW)-SISO modules. The
number following “SW” is the parameter D used with SW-SISO. The M-S-SW is the
algorithm in Fig-5.12, with parameters β1 = 0.7 and β2 = 0.15 and SW-SISOs.

��� ���
���

���

���

���

���

B
it

E
rr

or
R

at
e

SNR (dB)

10−1

10−2

10−3

10−4

10−5

10−6

MLPD bounds

DFVA

2D4(0.3) (20)

FPA1(0.3) (20)

FPA2(1.0) (10)

FPA2(0.3) (20)

C-FI (4)

12 14 16 1810 20 22

1

Figure 5.20. Performance of various iterative distributed detectors on Channel A.
Each curve is labeled by: algorithm used (number of iterations). The number follow-
ing FPA1 (or FPA2) is the value of the soft information filter parameter β which was
optimized empirically.

Fully Parallel Algorithms The distributed algorithms developed in
Section 5.3.2 were applied to Channel A with the performance is shown
in Fig-5.20. One iteration of these distributed algorithms corresponds
to a parallel activation of the T−s

(i,j) nodes and the SOBC nodes (when
appropriate). Note that the 2D4 algorithm performs almost as well as
the FPA1 despite a substantial complexity reduction and the severity

Applications in Two Dimensional Systems 299

of Channel A. As suggested by heuristic rule 2 in Section 2.7.1, the
performance of the FPA2 is better than FPA1. Since both 2D-GM1 and
2D-GM2 have short cycles and a parallel activation schedule is used,
both of the associated algorithms benefit from soft information filtering.
Specifically, with β = 0.3, the performance of the FPA2 is comparable
to the composite 2D SISO (using FI-SISO modules). It is worth noting
that if a row-column activation schedule for message passing is used on
2D-GM2, filtering is not required to achieve the best performance shown
in Fig-5.20 [Th00b].

Reduced Complexity 2D SISOs For Channel B, the 2D SISO
algorithms are prohibitively complex. Since the energy in the ISI taps
decays quickly away from the center, reduced-complexity versions based
on decision feedback are expected to perform reasonable well. Specif-
ically, we chose to truncate Channel B by keeping the central 3 × 3
portion as in Fig-5.13. A COL-row concatenated SISO with this com-
plexity reduction was simulated for Channel B (i.e., this has complexity
comparable to the corresponding 2D SISO for Channel A) with the re-
sults shown in Fig-5.21. According to Fig-5.21, substituting ã(i, j) = 0

��
��

��
��

��
���
���

��

�����������������������������������
�����������������������������������

B
it

E
rr

or
R

at
e

SNR (dB)

100

10−1

10−2

10−3

10−4

10−5

MLPD bounds

DFVA

RC-(ã = 0)-0.3 (10)

RC-(ã = 0.5)-0.3 (10)

RC-HDF-1 (5)

RC-HDF-0.3 (5)

14 16 18 20 22 24 26

Figure 5.21. Performance of various reduced-complexity simple 2D SISO (Fig-5.11)
detectors on Channel B. Each curve is labeled by: RC-hard information feedback
scheme-β (number of iterations).

in the positions corresponding to the truncated taps is not viable. Using
ã(i, j) = E {a(ζ; i, j)} = 0.5 (i.e., averaging over the a-priori probabil-
ities) and using this value for each iteration results good performance.
Using hard decision feedback with MI[x(i, j)] adjusted before each ac-
tivation of the COL SISO provides similar performance. With filtering
and β optimized, as shown in Fig-5.11, the performance of the hard de-

300 ITERATIVE DETECTION

cision feedback technique is substantially improved. The performance of
this algorithm is approximately 6 dB better than the DFVA and 3 dB
from the lower bound. The DFVA, however, has 23×4 = 212 states which
is substantially more complex that 5 iterations of the reduced complexity
COL-row SISO. Finally, using the soft information on a(i, j) available
at each iteration to feedback a soft estimate was found to provide no
significant gain relative to the hard decision feedback algorithm (curve
is not shown).

5.5 Digital Image Halftoning
Digital image halftoning refers to approximately rendering a gray level

image as a binary (black and white) image. When a binary image is
displayed or printed, the human visual system [Gr81] and/or the imper-
fections of the printing device [PaNe95] result in a blurring or low pass
filtering of the image. While the blurring effect is undesired in a storage
system (e.g., POM) or many imaging systems, it enables effective image
halftoning by averaging the black spots and white spaces to approximate
the original gray level image.

Several halftoning methods have been developed [Ul87]. Since the “re-
ceiver” of halftone images is a human observer, good quantitative mea-
sures of quality for halftoning are difficult to specify. While well-defined
metrics for quality such as least squared error (LSE) roughly capture the
halftone quality, other aspects such as regular patterns, edge degrada-
tion, poor contrast can degrade the perceptual quality of the halftone.
Image halftoning is an area with considerable (and impressive) results
that are too numerous to summarize here. Our objective is to show that
the halftoning problem may be formulated as a 2D-DLM problem and
that the iterative algorithms presented in Section 5.3 can provide high
quality results. This application also provides an opportunity to display
the characteristics of the 2D detection algorithms visually which pro-
vides additional insight into their respective characteristics. We make
no claim, however, to the optimality of these approaches in terms of qual-
ity or complexity due to the above perceptual quality issue and the vast
body of research available (e.g., . [Ul87, AnAl92, MuAh92, GeReSu93,
ScPa94, NePa94, PaNe95, LiAl96, Wo97, PaNe99, LaArGa98, Ul00]). In
Fig-5.22, a 512×512, 256 gray-level version of “Lena” is shown, which is
a benchmark digital image selected as the test image for the experiments
that follow.

We consider the LSE halftoning problem which is analogous to data
detection in a linear ISI-AWGN channel. Specifically, let z(i, j) repre-
sent the gray scale image and a(i, j) a halftone. The least squares im-
age halftoning (LSIH) problem is the 2D-DLM problem in (5.5b) with

Applications in Two Dimensional Systems 301

Figure 5.22. The Lena image with 256 gray-levels.

MI[x(i, j)] = [z(i, j) − x(i, j)]2 and x(i, j) = f(i, j) � a(i, j) with f(i, j)
selected to capture the imaging system characteristics. Thus, with this
model and objective, the LSIH is precisely equivalent to the ML-PgD
problem for the 2D ISI-AWGN channel.

5.5.1 Baseline Results
A straightforward way to obtain a halftone image is by thresholding

the gray-scale pixel: a(i, j) = 1 if z(i, j) > 0.5; otherwise, a(i, j) =
0. Thresholding is a special case of the more general LSIH problem
presented earlier, derived under the assumption that x(i, j) = a(i, j).
Applied to Fig-5.22 this simple halftoning algorithm yields the image in
Fig-5.23. This image is of poor quality, since most important details of
the original image have been lost or severely distorted.

To obtain better halftoning results, a nontrivial filter f(i, j) is re-
quired. One choice, inspired by the work in [Wo97], is the 3 × 3 2D
linear filter with coefficients

 0.2219 0.1439 0.0355
0.1439 0.0980 0.0306
0.0355 0.0306 0.0174

 (5.27)

302 ITERATIVE DETECTION

where the taps are normalized to sum to one. We emphasize that this
filter only represents one reasonable choice for the given filter size and
has not been carefully optimized.

The DFVA, presented in Section 5.4.2, can be used as an approximate
solution to the LSIH problem. In Fig-5.24, the result of DFVA is shown
using the filter in (5.27). Compared to (Fig-5.23), this image provides
much better quality. However, there exist many low frequency, undesired
patterns, which reflect the row-by-row processing of the DFVA.

One property of the 2D SISOs developed in Section 5.3 is that
they handle “noncausal” filter patterns very naturally (i.e., filters with
f(i, j) �= 0 in all directions). Specifically, hard decision feedback on a
rastered model is not performed. Thus, it is expected that the unde-
sirable patterns in the DFVA halftone will not occur with a 2D SISO
solution. Using the (min-sum) COL-row 2D SISO algorithm with zero
soft-in metrics for a(i, j), the image shown in Fig-5.25 is obtained after
three iterations. In terms of the objective criterion, the LSE of Fig-5.25
is approximately 40% less than that of Fig-5.24. In addition to having a
smaller LSE, Fig-5.25 has much better perceptual quality. However, this
halftone image still contains undesirable patterns, especially on the face
and right portion in the image corresponding to portions in the original
image in Fig-5.22 that have nearly constant gray level. A good halftone
output of a constant gray level image should have the properties of ran-
dom noise with the proportion of white to black pixels determined by
the average gray level. This perceptual quality measure is difficult to
capture with the LSE objective function. However, the iterative algori-
thms can be biased toward a random image to alleviate these regular
patterns.

5.5.2 Random Biasing
The soft-in metrics for the 2D SISO allow one to naturally bias the

halftoning process toward a particular image. For example, an initial
bias toward a gray pattern suitable for a particular imaging device may
be appropriate. Alternatively, a random biasing scheme can be used
to alleviate the undesirable patterns in Fig-5.25. In the following we
explore this option.

At the inner SISO of the COL-row 2D SISO, the soft-in metrics for
v(i, j) are initialized using

MI[v(i, j)] =
Lr∑

l=−Lr

[a(i, j − l)d(i, j − l) + (1− a(i, j − l))(r − d(i, j − l))]

(5.28)

Applications in Two Dimensional Systems 303

Figure 5.23. Halftone Lena image by thresholding.

Figure 5.24. Halftone Lena image by DFVA.

304 ITERATIVE DETECTION

Figure 5.25. Halftone Lena image using the COL-row 2D SISO with the uniform
initialization.

Figure 5.26. Halftone Lena image using the 2D SISO with a random initialization.

Applications in Two Dimensional Systems 305

Figure 5.27. Halftone Lena image using a modified 2D SISO with a 7 × 7 filter.

Figure 5.28. Halftone Lena image using error diffusion.

306 ITERATIVE DETECTION

where d(i, j) is a random number uniformly distributed in [0, r] and r
is a design parameter. At the outer SISO, uniform soft-in metrics (i.e.,
MI[a(i, j) = 0] = MI[a(i, j) = 1] = 0) are used. After the first iteration,
the soft information exchanged on v(i, j) is computed and exchanged
in the standard fashion. This random initialization has the effect of
biasing the image toward a random halftone. This provides a “cloud-
ing” of the halftone which is partially removed with each iteration. A
halftone version of Lena using three iterations and the random biasing
with r = 30000 is shown in Fig-5.26. Compared to Fig-5.25, the unde-
sirable patterns are reduced significantly. In addition, the edges in the
original image are well preserved and the image contrast is good.

5.5.3 Larger Filter Support Regions
Better performance is expected when the support of f(i, j) is larger.

However, this results in a significant increase in complexity for the 2D
SISO algorithms. In this section, we use a 7×7 symmetric filter adopted
from [Wo97] and a reduced complexity 2D SISO. Specifically, the filter
f(i, j) is (only the left upper part (4× 4) given for compactness)

−0.0029 0.0030 0.0091 0.0116

0.0030 0.0174 0.0306 0.0355
0.0091 0.0306 0.0980 0.1439
0.0116 0.0355 0.1439 0.2219

 (5.29)

Decision feedback is used as described in Section 5.12 with L1 = 1.
Specifically, for the first iteration ã(i, j) = z(i, j) is used and â(i, j) is
used for subsequent iterations (i.e., the tentative halftone image from the
previous iteration). With a uniform initialization it was found that this
halftoning scheme works well in most regions in the image, but provides
poor perceptual quality in those regions that are nearly all black or all
white. The modified 2D SISO with self-iteration and filtering as shown
in Fig-5.12 (using FI-SISO modules) was used to improve the quality
in these regions. The results are shown in Fig-5.27 using β1 = 0.3 and
β2 = 0.65 and 10 iterations.

A simple and effective technique for halftoning is error diffusion
[PaNe95]. The result of this algorithm applied to the Lena image is
shown in Fig-5.28. It can be observed that, although Fig-5.27 is percep-
tually superior to Fig-5.23 and Fig-5.24, a comparison between Fig-5.27
and Fig-5.28 is difficult. The error diffusion version is smoother, while
the 2D SISO version is sharper (i.e., better edge preservation) and has
better contrast and fewer artifacts.

Applications in Two Dimensional Systems 307

5.5.4 High Quality and Low Complexity using
2D-GM2

An algorithm which produces a halftone which has the best attributes
of the error diffusion method and the method that yields the image in
Fig-5.27 is obtained using message passing on 2D-GM2 in Section 5.3.2.2
with decision feedback. The result of this algorithm is the halftone shown
in Fig-5.29. Specifically, the 7 × 7 filter in (5.29) is used with hard de-

Figure 5.29. Halftone Lena using the 2D-GM2 model with decision feedback to create
an effective 3-pixel L-shaped support region.

cision feedback used in all locations of the support except for three:
f(0, 0), f(0, 1), and f(1, 0) (i.e., the effective P(i, j) consists of a(i, j),
a(i−1, j) and a(i, j−1)). Thus, the support region used by the algorithm
is a small “L” shaped region. The hard decisions â(i, j) fedback in the
other locations are the best hard decisions currently available. For the
initial activation, the hard decisions are randomly selected to be 0 or 1,
each with probability 1/2. In contrast to FPA2, the activation schedule
used is a column-row serial schedule as described in the following. First,
forward and backward messages are passed up and down the entire first
column. Next, this same complete forward-backward schedule is exe-
cuted up and down the second column. This proceeds sequentially to
the right for each column. After the last column has been processed, a

308 ITERATIVE DETECTION

full forward-backward schedule is run on the first row. This continues
sequentially for each row and, after processing the last row, one iteration
is complete. Note that this schedule enables updated hard decisions to
be fedback early – i.e., these hard decisions are updated after every node
activation, not each iteration as defined above.

The quality of the image in Fig-5.29 is quite good, exhibiting the
smoothness of the error diffusion halftone in Fig-5.28 and the sharpness
of that in Fig-5.27. Also, the associated processing complexity is sub-
stantially lower than that used to produce Fig-5.27. Specifically, the
algorithm producing the image in Fig-5.29 passes messages on binary
variables (see Problem 5.14) and has an effective t(i, j) that takes only
8 values. In contrast, the algorithm used for Fig-5.27 has an effective
t(i, j) that takes on 29 values making it roughly 64 times as complex.

5.6 Summary and Open Problems
Two dimensional systems provide an interesting framework to apply

the concepts developed in Chapters 1-3. In particular, there are several
reasonable system models that lead to iterative detection algorithms
with substantially different characteristics – i.e., trading performance,
computational complexity, storage requirements, and parallelism. Fur-
thermore, performance bounds are tractable for 2D systems and provide
an opportunity to compare the performance of iterative detection to
that of the optimal receiver for a nontrivial problem. Most reasonable
iterative detectors were found to perform near optimally.

We believe that the methods presented in this chapter may prove
to be applicable to a number of relevant problems. Any system which
is most naturally described in terms of a multidimensional index set
with local dependencies is a candidate for these methods. This may
include, for example, multi-track magnetic recording channels, space-
time channels (e.g., multi-carrier systems with frequency and temporal
distortion/coding), and various problems in image processing and com-
pression. For some of these areas, the adaptive methods of Chapter
4 may also be applicable in concert with the 2D methods introduced
in this chapter. There is considerable room for application and modi-
fication of these techniques in the data encoding/fitting problems. In
fact, we have applied the iterative algorithms in place of the DFVA
[KeMa98] for near-lossless image compression with significant improve-
ments [ChChOrCh98]. In many of these potential applications, however,
complexity reduction is imperative since the complexity grows exponen-
tially in the support region and, in many of these applications, |A| is
quite large. The reduced complexity approaches discussed herein rep-
resent only a first step in the development of iterative algorithms that

Applications in Two Dimensional Systems 309

could be useful for gray level image deblurring, for example. While a
rectangular support region may be a reasonable assumption for data de-
tection problems, it may be an overkill for many data encoding/fitting
problems, as suggested by the L-shaped region used to create the best
halftone.

Several theoretical topics related to the performance bounds and the
theoretical complexity of the 2D detection problem are interesting future
directions. In the former, the searching algorithms used to approximate
the minimum distance and the upper bound can certainly be improved.
Application of the concepts in [AnFo75, Ve86] and their extension to
2D is an interesting and difficult open problem. Similarly, a formal
analysis of the complexity for the data detection problem with a finite
support size has not been performed. For an arbitrary support, it can
be shown that the problem is NP-Hard [Th00] (see [Co90, DaLu93] for
other considerations of the computational complexity of general infer-
ence problems). Translation of these results to a finite support channel
is difficult and has not been done. This subclass of 2D detection prob-
lems based on a finite support region, however, may be the most relevant
question regarding complexity. For example, in the 1D case, the general
class of sequence detection problems is NP-Hard, yet for the finite sup-
port channel, the Viterbi algorithm provides an efficient solution. Based
largely on intuitive arguments, we conjecture that optimal detection for
a relatively simple 2D channel (e.g., a 3 ×3 support region), requires
complexity that is exponential in the perimeter of the observation re-
gion used (see Problem 5.3). Similarly, the theoretical complexity of
the dmin search, even relative to that of the MAP-PgD problem, is not
clear.

1D One Dimensional
2D Two Dimensional
2D4 2D Distributed Data Detection (algorithm)
2D-GM1(2) Graphical Model 1(2) for 2D systems
CCD Charge Coupled Device
COL-row Column-Row (concatenated)
DFVA Decision Feedback VA
FPA1(2) Full-Parallel Algorithm 1 (2)
LSE Least Squared Error
LSIH Least Squared (Error) Image Halftoning
LUT Look Up Table
MMSE Minimum Mean Squared Error
NP Non-deterministic Polynomial

Table 5.2. Table of abbreviations specific to Chapter 5 (continued on next page)

310 ITERATIVE DETECTION

POM Page-access Optical Memory
ROW-col Row-Column (concatenated)
TH Threshold detector

Table 5.2. (Continuation) Table of abbreviations specific to Chapter 5

5.7 Problems

5.1. Consider the support region P = {(m,n) : m = 0, 0 ≤ n ≤ L}
which corresponds to the 1D simple FSM relation. Show that
simple 2D patterns for this case are the simple sequences from
Chapter 1.

5.2. Discuss how the Viterbi algorithm applied as shown in Fig-5.1
could be used to search for small distances for an ISI channel.

5.3. Consider making a pairwise decision between any two data hy-
potheses which agree on a certain region.

II

II

II

(a)

(b)

I
I

Figure 5.30. Moats of agreements for (a) a 3 × 3 (Lr = Lc = 1) support region and
(b) a 1D ISI channel with L = 2. Agreements are shown as shaded pixels.

(a) Consider the case shown in Fig-5.30(a) with a 3 × 3 support
region. Show that this pairwise decision can be made sepa-
rately on the interior region I and the exterior region II.

(b) Repeat this argument for the support region corresponding
to a 1D channel with L = 2 and the regions shown in Fig-
5.30(b).

(c) Explain how the decoupling in the case of the above 1D ex-
ample enables the Viterbi algorithm. What is the relation
between the “moat” of agreements and the states used in the
trellis?

Applications in Two Dimensional Systems 311

(d) Describe the analogous “2D Viterbi algorithm” that arises
from the applying the above reasoning to the case shown in
Fig-5.30(a).

(e) Compare the growth in “moat-conditions” as the size of the
interior region I grows in each of the two cases in Fig-5.30.
What is the reduction in complexity relative to exhaustive
search for the 1D and 2D algorithms?

5.4. Consider finding the worst 1D ISI channel with memory length L.
Specifically, the worst channel is the one with smallest normalized
minimum distance. Show that, given L, there exists at least one
worst channel which has either even or odd symmetry around its
center tap.

5.5. Show that the conclusion from Problem 5.4 extends to 2D ISI
channels. Specifically, show that for a given L = Lr = Lc, there
is a worst channel that has either even or odd symmetry around
its center tap.

5.6. Consider the ISI-AWGN channel where the input a(i, j) is actu-
ally the output of a 2D error correction code. Specifically, sup-
pose that the page a(i, j) is produced by an uncoded binary page
b(m,n) such that each 3 × 3 “transition” on the uncoded data
page defines four coded bits (i.e., a rate 1/4, 2D convolutional
code) so that there are four times as many binary variables in
the coded page A than in the uncoded page B. Describe how this
serial concatenation of 2D systems may be decoded iteratively
using two 2D SISOs.

5.7. Compare the complexity of the COL-row and ROW-col concate-
nated 2D SISOs when Lr = 3 and Lc = 1. In general, when
Lr �= Lc, which model is simpler?

5.8. Repeat Example 5.4 for the ROW-col version of the concatenated
2D SISO algorithm.

5.9. Consider separable 2D ISI channels of the form F = ghT – i.e.,
F is the outer produce of two 1D ISI channels. Can all 2D ISI
channels be written in this form? If not, describe the restriction
on g and h for the channel in (5.7) to be separable. Show that
the cardinality of the inner (hidden) symbols in the concatenated
model can be reduced in the case of a separable channel.

5.10. [Th00] Draw the implicit index diagram for the COL-row con-
catenated model.

5.11. Based on the correspondence between Fig-5.5 and Fig-5.7 de-
scribe how the iterative detector for a serially concatenated TCM-

312 ITERATIVE DETECTION

ISI system with block interleaving can be implemented in a par-
allel fashion. Is this the case if the initial and/or final states of
the TCM and ISI FSMs is unknown?

5.12. [ChChNe98] In the 2D4 algorithm, given {z(i, j), z(i±1, j), z(i, j±
1)}, develop a combining scheme at t(i, j) node and simplify as
much as possible. Consider some larger observation combining
regions. Compare the resulting complexities of the combining
scheme.

5.13. Consider the column-row activation schedule for the message
passing algorithm on 2D-GM2 described in Section 5.5.4 for data
detection. Specifically, simulate this under the conditions used to
produce Fig-5.20. Does filtering help with this activation sched-
ule?

5.14. Consider the 2D-GM2 model with the non-rectangular support re-
gions shown in Fig-5.31. Determine the auxiliary variables r(i, j)
and c(i, j) in each case. Discuss the applicability and relative
complexity of the concatenated model and the 2D-GM1 model to
these support regions.

(a) (b)

Figure 5.31. Non-rectangular 2D support regions.

5.15. For the threshold (TH) detector show that for the channel in (5.7)
there exists an error floor when (g+h) > 0.25 and this error floor
is

1
28

4∑
i=0

4∑
j=ji

(
4
i

)(
4
j

)

where ji is the minimum value of j such that ig + jh ≥ mz.

5.16. The noise-free output signal of a coherent POM channel may be
modeled by [ChChNe99]

x(i, j) =
L∑

k,l,m,n=−L

R((k, l); (m,n))a(i − k, j − l)a(i−m, j − n)

(5.30)

Applications in Two Dimensional Systems 313

where R(·) is a known function characterizing the incoherent de-
tection of the coherent signal. Consider the case where this signal
is distorted by some form of pixel-wise independent noise. Which,
if any, of the algorithms presented in this chapter applicable to
this channel?

Chapter 6

IMPLEMENTATION ISSUES: A TURBO
DECODER DESIGN CASE STUDY

with

PETER A. BEEREL
University of Southern California

An overview of the key steps associated with implementing a turbo
decoder is presented in this chapter. We focus on the specific design of a
decoder for the PCCC system of the example in Section 2.4.3.1. Specifi-
cally, for that rate 1/2 PCCC with K = 1024 interleaver and 4-state RSC
constituent codes, we outline the design of a decoder using fixed-interval,
MSM-based SISOs. Our motivation for selecting min-sum processing for
the PCCC decoder is primarily pedagogical. More precisely, as shown in
Fig-2.30, the APP-based decoder yields an improvement of up to approx-
imately 0.5 dB in coding gain, and betters the MSM-based decoder per-
formance in only 6 iterations. Bitwidth analysis and the like, however,
are most easily explained for the min-sum version and then extended to
the min∗-sum version as required. Furthermore, our development does
not exploit the specific structure of the constituent codes, except for the
purposes of concrete examples. Thus, we address general issues in hard-
ware design that should be applicable to the implementation of many
iterative detection algorithms. In all applications except the (low-SNR)
decoding of turbo-like codes, the min-sum version is preferred over the
min∗-sum version because of negligible performance differences and sim-
pler implementation. All the design issues and considerations assume a
traditional design methodology for synchronous circuits as described in
a variety of good textbooks (e.g., [WeEs93]).

315

316 ITERATIVE DETECTION

6.1 Quantization Effects and Bitwidth Analysis
All simulation results in the previous chapters demonstrating iterative

detection techniques were based on high precision floating-point com-
puter simulations (e.g., at least 32-bit floating-point precision). When
implementing these algorithms in hardware, however, fixed-point arith-
metic requiring fewer bits is often used. The meaning of fixed-point
arithmetic is that the number of bits used to represent a number (e.g., 7
bits) and the location of the decimal (binary) point within the number
(e.g., between the 3rd and 4th bit) are fixed. Representing numbers as
fixed-point is equivalent to using integers to approximate real numbers
after scaling. Fixed-point representation often simultaneously leads to
significant reductions in hardware area and energy consumption, while
increasing the hardware speed. Care must be taken to ensure that using
fixed-point representations and arithmetic does not induce quantization
error large enough to cause a substantial degradation in coding perfor-
mance. Thus, there is an important tradeoff between hardware com-
plexity and coding performance that requires careful bitwidth analysis.

Bitwidth analysis is typically first performed on the inputs and out-
puts of a chip or block. The bitwidths of internal variables may then
be derived using subsequent analysis. If the operations of the block
are reasonably simple, then one can perform a worst-case analysis to
determine the internal bitwidths required to ensure that the only quan-
tization effects are those associated with the quantization of the block
inputs. That is, using the fixed-point representation of these internal
quantities mimics the infinite precision processing of the quantized in-
puts. However, when the operations of a block are more complicated or
when the worst-case analysis yields too many bits to be practical, more
careful analysis/simulation is needed.

6.1.1 Quantization of Channel Metrics
For many decoding algorithms, the inputs to the decoding block are

often obtained from the channel through an analog-to-digital (A/D) con-
verter. In this section, we are not concerned with the details of an A/D
implementation; rather, we focus on the number of bits required at the
output of the converter.

Example 6.1.
For the turbo decoder in the example of Section 2.4.3.1, the inputs are
the soft-in metrics from the channel – i.e., {MI[ck(0)]}, {MI[ck(1)]} , and
{MI[dk(1)]} which are derived from M[xk(i)]. Thus, a first step in under-
standing the quantization effects is to characterize different fixed-point

Implementation Issues: A Turbo Decoder Design Case Study 317

representations of these quantities while representing all other quanti-
ties using infinite precision. For example, the soft information on the
uncoded symbols, as well as all quantities internal to the two SISOs, will
be considered unquantized for this example.

As in the example of Section 2.4.3.1, we would like to use only one
number (i.e., the negative log-likelihood ratio) for soft information on
each binary variable. Since this information will take positive and neg-
ative values, a 2’s complement binary representation is convenient for
performing all of the internal integer arithmetic. The quantizer is spec-
ified by the quantization regions, the reconstruction levels, and the bit
labels of the reconstruction levels. In addition, there may be some pre-
processing of the input to the quantizer to adjust the range. It is de-
sirable that the reconstruction levels correspond directly to the value
represented by the bit label in 2’s complement. To simplify the expo-
sition, we assume that the quantizer reconstruction levels are integers,
but this discussion generalizes to fixed-point approaches with the binary-
point at any location. For example, if 3 bits are used, then the integers
−4,−3, . . . 2, 3 can be represented. The asymmetry around the origin is
not desired, but is a result of the 2’s complement representation.

Recall that the associated channel model for the PCCC system is

zk(i) =
√

Esxk(i) + wk(i) (6.1)

where xk(i) = ±1 according to the value of the underlying coded symbol
and wk(i) is a real AWGN sequence with variance N0/2. Also, recall
that, for min-sum processing, this was the input metric associated with
a +1 on the channel and that it could be multiplied by an arbitrary
positive constant for all time indices. For a given value of Eb/N0, this
scaling is equivalent to specifying the value of Es in (6.1) – i.e., we may
consider (6.1) to model the output of a gain control circuit that sets
the signal level to some known value. Since the reconstruction values
are fixed, the selection of this gain will affect performance. An example
of this is shown in Fig-6.1, where a uniform quantizer is shown with√

Es = 2 and Eb/N0 = 2.0 dB.
In Fig-6.2, we show simulation results for 3 and 4 bit quantizers de-

signed as described above for the system in the example of Section
2.4.3.1. In each curve, the choice of

√
Es has been optimized empirically.

The curves labeled “5 or more” and “6 or more” in Fig-6.2 show the per-
formance of a decoder that uses infinite precision internal data represen-
tation and therefore shows the degradation associated only with channel
metric quantization. The meaning of this terminology and the other
curves shown in Fig-6.2 are discussed in Section 6.1.3. Similar simula-
tion results can be found in the literature [HsWa99, WuWo99, AuMc99].

318 ITERATIVE DETECTION

��������������
��������������

���������������
���������������

0

0
0

2

p(zk(i)| − 1) p(zk(i)|+ 1)

z

co
nd

it
io

na
lp

df
of

ob
se

rv
at

io
n

−6

−4

−4

−3 −2

−2

−1 +1 +2 +3

4 6

0.1

0.2

0.3

Figure 6.1. A three bit quantizer having integer reconstruction levels corresponding
to the 2’s complement encoding. Also shown is the pdf of the associated channel
metrics under the conditional data values for Eb/N0 = 2.0 dB and

√
Es = 2.

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

100

10−1

10−2

10−3

10−4

10−5

0 0.5 1 1.5 2

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

no quantization

(3,3)
(3,≥ 5)
(4,4)
(4,≥ 6)

quantization (bits)
(MI, MO-clipped)

Figure 6.2. The effect of quantization of the channel metrics on the performance for
the MSM-based iterative decoder. The clipping effects shown are discussed in Section
6.1.3.

From these results, we conclude that representing the channel soft-in
metrics with 4 bits is sufficient to achieve coding performance close
to that obtained with infinite precision. Note that this is a factor
of 8 smaller than the 32-bit floating-point representations of a naive
microprocessor-based implementation.

The effect of scaling the observation is also shown for this example in
Fig-6.3. For a larger number of quantization levels, the performance is
less sensitive to the scaling factor used. Also note that Fig-6.1 represents
the best choice for scaling for the 3-bit quantizer at the value of Eb/N0

Implementation Issues: A Turbo Decoder Design Case Study 319

10−2

10−3

10−4

10−5

0 1 2

B
it

E
rr

or
R

at
e

3 bits

4 bits

√
Es at Eb/N0 = 2 dB

3 4 5 6 7

Figure 6.3. The effect of observation (channel metric) scaling on the performance
for the MSM-based iterative decoder.

shown.
End Example

The conclusion drawn in Example 6.1 is dependent upon a number of
factors. For example, the normalization strategy requires that only one
number be stored for soft information on each binary variable. How-
ever, this implicitly makes this soft information take on both positive
and negative values. If two numbers were stored (e.g., using (zk−

√
Es)2

and (zk +
√

Es)2), one would need only unsigned arithmetic and the re-
quired bit-widths for these soft-in values may change (see Problem 6.1).
In hardware, however, handling signed arithmetic is not more complex
than handling unsigned arithmetic. Moreover, because the area of the
design considered turns out to be dominated by memory, using the nor-
malization strategy significantly reduces the required chip area.

The result of Example 6.1 is intuitive given knowledge of soft-in quan-
tization requirements for a Viterbi decoder of a convolutional code in
isolation. Specifically, most of the gain associated with soft-in Viterbi
decoding over hard-in Viterbi decoding can be achieved with 3-bit (8
level) quantization [LiCo83]. However, the turbo decoder operation dif-
fers significantly in several ways. For example, the soft-in metrics from
the channel are used once each iteration. The range and resolution re-
quirements for each iteration could differ. For example, in subsequent
iterations the soft-in on the uncoded bits (i.e., MI[bk] and MI[ak]) will
change as the data beliefs become more reliable. It is expected that the

320 ITERATIVE DETECTION

most demanding of these quantization requirements will determine the
overall quantization requirements.

The simulations in Fig-6.2 use floating-point representations of all soft
measures other than the channel soft-in information. When the channel
metrics are quantized, all internal soft information can be represented
in fixed-point without any additional performance degradation so long
as the bitwidths of these variables are sufficiently large (i.e., to prevent
overflow). In the next sections we consider the required bitwidths for
the forward and backward state metrics and the soft-information on the
uncoded bits.

6.1.2 Bitwidth Analysis of the Forward/Backward
State Metrics

The first step in analyzing the required bitwidths of internal com-
putations is to determine the dynamic range of the quantities involved
in the algorithm. To represent a quantity in 2’s complement notation
with dynamic range [−∆,∆) requires n∆ = �log2 2∆� bits, where �x�
represents the smallest integer larger than x.

At first glance, the key quantities in the forward-backward algorithm
are the forward and backward state metrics. These values grow with
each ACS step which suggests a large dynamic range requiring many
bits to represent. One possible way to avoid using a large number of
bits is to normalize the state metrics either every step or intermittently.
For example, the smallest state metric can be subtracted off of all state
metrics. This can be done without changing the results of the algorithm,
but it incurs significant costs in hardware area, latency, and energy con-
sumption.

With more careful analysis, however, one may observe that the algo-
rithm refers to state metrics only in the form of differences between pairs
of state metrics. More precisely, the algorithm uses differences of path
metrics to perform the forward and backward ACS operations as well as
slightly modified path metric differences to compute soft-outputs during
the completion operation. This is important because this characteristic
of the forward-backward algorithm limits the dynamic range of these
differences.

In hardware, one can take advantage of the limited dynamic range
using 2’s complement representation and modulo-2 arithmetic [He89].
The underlying principle behind this approach is that when the dynamic
range of the result of a sequence of 2’s complement additions and sub-
tractions lies within the range [−∆,∆), the computation can be safely
performed using module 2n∆ arithmetic. For example, if two numbers
a, b are to be compared using subtraction and |a− b| < ∆, which implies

Implementation Issues: A Turbo Decoder Design Case Study 321

the result is within the range [−∆,∆), then the subtraction can be eval-
uated as (a− b) mod 2∆ [He89]. This implies that n∆ bits are required
and that any under or over flow of the various adders/subtracters in
the design can be ignored. For our design this implies that the state
metrics may under and over flow but the final results will be accurately
represented.

Example 6.2.
Consider the case where ∆ = 3 which means that �log2(2 · 3)� = 3 bits
are required to represent the dynamic range. Thus, from the above
discussion, using 3 bits to represent the quantities allows over and un-
der flow conditions to be ignored in ACS operations. These three bits
can represent the numbers −4,−3, . . . , 2, 3. Consider the ACS opera-
tions illustrated in Fig-6.4. The comparison is implemented by examin-

+2
4
−1

3

2

010 (2)
x = min(2 + 2, 0 + 1) = 0 + 1 = 1

001 (1)

010 (2)

000 (0)

001 is selected because
decimal binary

010

100

011

+010

+111
(overflow, = −4)

(underflow)
is positive, despite the overflow and underflow

Figure 6.4. Example of modulo arithmetic applied to an ACS operation.

ing the sign of the result of subtracting the two quantities. Thus, the
ACS operation comparing (2 + 2) and (1 + 0) is carried out by com-
puting (2 + 2) − (1 + 0) and comparing against zero. First, when the
additions are performed (i.e., 1 + 0 and 2 + 2), the 2 + 2 operation
causes an overflow: 010 + 010 = 100, yielding a somewhat surprising
intermediate answer of −4. Continuing with the subtraction, we have
−4 + (−1) = 100 + 111 = 011, which represents an underflow.1 Because
the carry bit is discarded, this yields the correct answer, 3. Since this
is a positive number we correctly declare 2 + 2 > 1 + 0 and select the
lower branch.

End Example

This simple modulo-2 technique for ACS-based (i.e., min-sum) algori-
thms may be applied to determine the required bitwidth for the forward

1Recall that -1 in 2’s complement arithmetic with 3 bits is 111

322 ITERATIVE DETECTION

and backward state metrics given the bitwidths of the soft-in metrics.
This is illustrated in the following detailed example.

Example 6.3.
Continuing with Example 6.1, we can determine the bitwidths required
for the forward and backward state metrics for each SISO given the
bitwidths selected for the soft-in metrics. Specifically, based on Ex-
ample 6.1, we use 4 bits to represent the quantized channel metrics.
Furthermore, assume that the current soft-in on the uncoded bits (i.e.,
bk or ak) is also represented by 4 bits. Without the modulo arithmetic
technique of Example 6.2, the bitwidth of the forward metrics could be
conservatively taken to be 16 bits. This follows from the fact that every
subpath through two steps of the trellis introduces at most five 4-bit
numbers (three from the even index and two from the odd index) to
the path metric. For an interleaver of length K this means that paths
consist of the sum of 5K/2 4-bit numbers. This requires log2(5K/2) + 4
bits to represent, which for K = 1024, amounts to 16 bits.

Using the modulo arithmetic technique we can reduce the number
of required bits dramatically. The first step is to determine the dy-
namic range of the differences between forward metrics at any given
time. Specifically, one must determine how large |Fk−1[sk] − Fk−1[s′k]|
for sk �= s′k may be. It can be shown by a simple argument that, for the
constituent codes described in the example of Section 2.4.3.1, the differ-
ence between state metrics lies within the range [−5·2w−1, 5·2w−1], where
w is the bitwidth of the 2’s complement soft-in information on both the
FSM input and output (see Problem 6.2). Thus, for this example, 4-bit
soft-in metrics imply that the dynamic range of differences between for-
ward state metrics lies within [−40, 40], implying that the state metrics
can be represented in 7 bits. However, one must be careful to realize
that the numbers which will be input to the comparators are partial path
metrics equal to the state metrics plus one set of branch metrics. It is
the dynamic range of the difference between inputs that determines the
required bit-widths of the ACS units because the comparison of these
numbers is done with subtraction and the result must be accurate for
the correct selection to take place. In particular, the dynamic range of
the result of the subtractor is [−64, 64], which is 3 · 2w−1 larger than
that of the state metrics. This range is slightly larger than that which
can be represented with 7 bits. Consequently, to be conservative, the
ACS units should use 8 bits. Alternatively, however, 7 bits can be used,
in which case the overflow that occurs when the difference is exactly 64
will cause some degradation in coding performance. If this performance
degradation is sufficiently small, this tradeoff may be worthwhile.

Implementation Issues: A Turbo Decoder Design Case Study 323

In general, it can be shown that modulo arithmetic requires at most
one extra bit compared to the method of normalizing to the smallest
state metric. For example, the resulting dynamic range using such nor-
malization would be [0, 64], which in unsigned arithmetic can be repre-
sented in 7 bits.

End Example

In Example 6.3, using modulo arithmetic saved 8 bits for the represen-
tation of the state metrics. If a min∗-sum algorithm was used instead of
the min-sum version considered, this analysis becomes somewhat more
complicated. In particular, the bitwidth analysis depends on the de-
tails of how the min∗(·) function is implemented. For example, the
− ln(1+exp(−|x−y|)) component may be implemented using a look-up
table that stores m-bit 2’s complement values. Then, each state met-
ric would have an additional m-bit number added to it which must be
considered during bitwidth analysis. In particular, the dynamic range of
the inputs to the comparators would increase by 4 times 2m−1, because
the maximum absolute difference between partial path metrics would in-
crease by no more than 4 table look-up terms (i.e., see Problem 6.6). If
these terms were represented with 4 bits, then the dynamic range would
increase by 32, requiring the state metrics to be represented by only one
extra bit.

The value of m selected for the bit-width of the min∗(·) look-up table
typically cannot be found using worst case analysis because the value of
− ln(1+exp(−|x−y|)) generally does not have a finite binary expansion
when x and y do (e.g., see Problem 6.5). Therefore, implementation of
a min∗-sum processor inherently has internal quantization effects that
must be evaluated via further fixed-point simulations. Furthermore, be-
cause a min∗-sum algorithm is not invariant to metric multiplication by
a global constant, care must be exercised in considering the quantization
levels and the definition of the min∗(·) look-up table. Specifically, one
cannot scale up the observation to fit a specific set of quantizer recon-
struction levels (as done in Fig-6.1 for the min-sum case) and still use
the standard definition of min∗(·) (i.e., see Problem 6.4).

6.1.3 Soft-Out Metric Bitwidths
The soft-outputs produced by one SISO will be used as soft-input

information for the next SISO operation. Typically the soft-inputs are
assumed to be represented with fewer bits than the soft-outputs. Conse-
quently, some form of mapping of soft-output to soft-input information
is required. This is illustrated by the following example.

324 ITERATIVE DETECTION

Example 6.4.
The completion operation is also an ACS operation, so that the dis-
cussion in Section 6.1.2 is applicable. Continuing with Example 6.3,
we can determine the required bitwidths for the soft-outputs based on
the soft-in bitwidths. Specifically, the inputs to the comparators in the
ACS operation in the completion operation are the sums of one forward
metric, one backward metric, and one branch metric. The maximum
absolute difference between these two inputs is thus 2 · 40 + 24 = 104,
implying the ACS units for the completion step can safely be represented
in 8 bits. The soft-output is the difference between these two quantities
summed with one additional soft-in metric and can also be accurately
represented with 8 bits.

End Example

Example 6.4 illustrates a fundamental issue with iterative detection
hardware: worst-case analysis on the bitwidths of the internal reliabil-
ity metrics suggest that after each SISO activation, additional bits be
allocated to the soft-information. Intuitively, this is satisfying for the
theoretician, since, as beliefs become more reliable, the negative log like-
lihoods will diverge. Carrying through this worst-case allocation of bits,
however, is not practical in most hardware designs of interest. For exam-
ple, in the scenario of Example 6.4, after each SISO activation, 4 more
bits should be allocated for the soft information on the uncoded bits.
After the 20 such activations associated with ten iterations, the 4-bits
allocated to the channel metrics has grown to approximately 80 bits for
the final soft outputs which is overly conservative in practice.

It is reasonable, therefore, to re-map the soft-out metrics into a smaller
dynamic range by some method. One way to do this is to clip the soft-
out metrics to a certain bitwidth. For example, if one were to clip 5-bit
2’s complement integers to the corresponding 3-bit representation, the
values {−16,−15 · · · − 5} and {+4,+5, . . . + 15} would be mapped to
−4 and +3, respectively (e.g., see Fig-6.1). In the example design this
would mean that the 8-bit soft-out metrics would be clipped down to
smaller bitwidth m by forcing any soft-output value that is outside the
range of m-bits to that of the closest value that can be represented in
m bits. A particularly attractive version of clipping is to clip the soft-
out metrics to the same bitwidth as the soft-in metrics. Note that this
clipping process changes the turbo decoding algorithm. Specifically, it
is no longer guaranteed that the performance will be the same as that of
the turbo decoder using quantized channel metrics but infinite precision
internal representations.

Implementation Issues: A Turbo Decoder Design Case Study 325

Example 6.5.
Consider the extension of Example 6.4 where the 8-bit soft-output met-
rics are clipped back to 4 bits. A simple circuit to perform this 8-to-4 bit
clipping is shown in Fig-6.5. Since this clipping affects the performance

O

1

1

0

1

2

0 1 2

4

4

7

−8

I[0:3]

1

4I

1

8

I[7]

I[7]

I[3:6]

I[3:6]

I < −8

I > 7

Figure 6.5. An example of clipping circuitry (after [Pa00]). The gates shown with in-
put I[3:6] are short-hand for the corresponding gates with multiple inputs: I[3],I[4],I[5]
and I[6].

in general, simulations have been run to assess the impact of clipping
with the results shown in Fig-6.2. Specifically, results are shown for 3
and 4 bit quantization of the channel metrics with clipping to various bit
widths. For 3-bit quantization, clipping to 5 or more bits does not affect
the performance in practice. For 4-bit quantization of the channel met-
rics, clipping to 6 or more bits does not affect the observed performance.
The 8-to-4 bit clipping with 4-bit input metric quantization suffers only
a small performance degradation and, thus, this clipping is adopted in
the reference design. Also, in general, the best choice of the quantizer
parameters may be different with and without clipping.

End Example

Clipping may be viewed as a re-mapping of the soft-out metrics to
the quantization region supported by the channel metric quantizer. It
reduces the dynamic range in favor of precision and is best suited to
conditions where the soft-out information has low reliability (i.e., small
metric differences). This concept may be generalized to allow for other
methods of requantization or warping of soft-outputs and channel metrics
that are the inputs to a SISO. For example, it is also possible to pre-
multiply all soft-inputs (soft-outputs from the previous iteration and

326 ITERATIVE DETECTION

channel metrics) by a negative power of two by means of a simple right
shift before quantization[MaPiRoZa99]. This effectively reduces the pre-
cision of the soft-inputs in favor of a larger dynamic range.2 This may
yield improved results for conditions where the soft-out information has
high reliability (i.e., large metric differences).

Slightly different methods apply when the soft inputs are represented
with positive numbers (recall that this can be done with a different
normalization but requires more storage). For example, it is possible
to identify the smallest soft-input (channel metric and/or soft-output
from the previous iteration) and subtract it from all soft-inputs, making
the soft-inputs range from 0 to a modified maximum value. At the same
time, the most significant bits of the soft-inputs that are all the same can
be identified and dropped [MaPiRoZa99]. After both of these operations
are done, the result can be forced into the allocated number of bits by
dropping the necessary number of least significant bits. This warping
maximizes the dynamic range of the SISO inputs.

Warping and requantization alters the turbo algorithm from its fixed-
point implementation that assumes floating-point internal precision.
Consequently, the coding performance of the modified algorithm must
be evaluated, usually using refined fixed-point simulations.

6.2 Initialization of State Metrics
In theory, the value of infinity can be assigned to a state metric or

transition metric when there is certainty about this quantity according
to some known initialization information. Specifically, in the example of
Section 2.4.3.1, the forward and backward state metrics were initialized
according to the fact that each edge state is zero. Thus, the forward and
backward metrics associated with the zero state are set to zero, with
all other state metrics at these times set to infinity. In a software im-
plementation, a very large floating-point number can be used in place
of infinity. In fixed-point implementations, however, more care is re-
quired in this initialization process. Directly implementing this special
value convention in hardware is inefficient at best. Alternatively, setting
the infinite-valued metrics to the maximum value of the finite-precision
representation may also not work because it violates the expected maxi-
mum dynamic range of path metric differences necessary for the modulo
arithmetic to work. For the min-sum algorithm the goal is to initialize

2This is equivalent to scaling all metrics by a single positive constant. Thus, from the
discussion in Section 2.4.1, it follows that this is strictly valid for min-sum based algorithms,
but not for min∗-sum algorithms. In the latter, such scaling alters the algorithm and the
effects of this modification must be assessed by further fixed-point simulations.

Implementation Issues: A Turbo Decoder Design Case Study 327

the other state metrics to numbers which guarantee they do not violate
the bounds on path metric differences and also do not become part of
survivor paths. More precisely, they should not affect the state met-
ric values. For the four-state trellis of the example of Section 2.4.3.1,
these constraints can be easily hand generated, as the following example
illustrates.

Example 6.6.
Continuing with the design example, let F−1[i], for i = 0, . . . , 3 represent
the 7-bit initial forward state metrics and let Mk[i, j] refer to the metric
of the transition tk between states sk = i and sk+1 = j. To guarantee
state s0 = 2 does not effect the metric of state s1 = 0 we have

F−1[0] + M0[0, 0] ≤ F−1[2] + M0[2, 0] (6.2)

Similarly, to guarantee that s0 = 2 does not effect the metric of state
s1 = 1, we have

F−1[0] + M0[0, 1] ≤ F−1[2] + M0[2, 1] (6.3)

Combined with the constraints that F−1[0] = 0 and no two state metrics
should differ by more than 40 to ensure the module-2 arithmetic works
properly, this yields the two-sided constraint

max {(M[0, 0] −M[2, 0]) , (M[0, 1] −M[2, 1])} ≤ F−1[2] ≤ 40. (6.4)

Initializing F−1[2] and F−1[3] to ensure that s0 = 2 and s0 = 3 do not
effect any state metrics is slightly more complicated because they are
not directly compared with the initial value F−1[0]. For an ML state
standard trellis, the general rule for state s0 = i, i �= 0 not to effect any
state metric is as follows.

The (unique) path metric from s0 = i to any state s reachable from
s0 = i in the first L steps of the trellis should be no smaller than the
(unique) path metric from state s0 = 0 to state s.

F−1[i] ≤ 40.

For our four-state trellis, it can easily be shown that choosing F−1[i] = 40
for i �= 0 satisfies the above two-sided constraints.

End Example

Notice that the same analysis does not apply for implementations of
the min∗-sum algorithm because in finite precision it is not possible to
initialize the state metrics at time 0 such that they do not influence

328 ITERATIVE DETECTION

state metrics at later times. Consequently, one must initialize the state
metrics to the largest value that does not violate the modulo arithmetic
and analyze the effect on coding performance using further refined simu-
lation. In fact, it may be possible that the effect of this on initialization
motivates using more bits (i.e., see Problem 6.7).

6.3 Interleaver Design and State Metric Memory
The forward-backward algorithm requires numerous quantities to be

stored. The interleaver/de-interleaver stores soft-outputs and an input-
buffer is needed to store the soft-inputs from the channel. In addition,
for activation schedules in which the forward and backward state metrics
are computed before needed, storing these is also required.

One basic means of storing these quantities is to use several all-
purpose static random-access-memories (RAMs). These are well-known
structures that densely store many bits of data. The basic RAM consists,
of an address decoder, a 2-D array of memory cells, and row/column mul-
tiplexors, as illustrated in Fig-6.6. For the case of the interleaver design

ro
w

de
co

de
r

I/O

WE

column address

ro
w

ad
dr

es
s

Se
ns

e
A

m
p.

memroy
cell
array

I/
O

bu
ffe

r
column decoder

Figure 6.6. Basic architecture of a random access memory (RAM).

an additional read-only-memory (ROM) is typically used to store the
pseudo-random, but fixed, interleaving pattern. A ROM has much the
same structure as that of a RAM but has simpler and smaller array of
memory cells whose contents are hard-coded.

The latency of these memories depends largely on their size; the larger
the memory the more challenging it is to make them fast. Consequently,
to ensure that the memories do not overly constrain the clock cycle time,
breaking them up into smaller memories, where possible, is advisable.
When this is not possible, the speed of these memories may be raised
using analog sense-amplifiers that quickly react to changes in voltages of

Implementation Issues: A Turbo Decoder Design Case Study 329

internal bit lines, at the cost of some hardware complexity. In addition,
the energy consumption can be reduced using self-timed circuitry which
reduces the internal voltage-swing of the high-capacitive internal wires.

One interesting feature of the forward-backward algorithm is that
the memory accesses for the state and soft-inputs are sequential. Con-
sequently, one can use a sequential access memory (SAM) instead of a
RAM. Note that the sequential nature of accessing enables pairs of quan-
tities needed in successive steps to be grouped together in the memory
and read/written as one quantity with twice the bit-width. Thus, read-
ing/writing can take up to two clock cycles without impacting the clock
cycle time. Larger groupings schemes are also possible if the memory
access times are particularly slow. One implementation of a SAM in-
volves replacing the address decoder of a RAM with a shift register that
contains a single ‘1’ bit that identifies which row of memory cells should
be read from or written to. This reduces the required area and latency
to some degree.

In the activation schedule with concurrent forward and backward op-
eration (i.e., see Fig-2.40(b)), the type of SAM needed is more precisely
a last-in first-output (LIFO) buffer also known as a stack. These units
can be implemented with a bank of registers with multiplexed inputs,
as shown in Fig-6.7. They are substantially less dense than RAM-based

1

0

1

0
in

write

1

0
d

q
d

q
d

q

Figure 6.7. Circuitry for a last-in-first-out (LIFO) memory.

memories, but can be made with extremely low latency. They may also
consume more energy because of high switching activity on all internal
wires. To reduce energy consumption, a LIFO buffer can be implemented
with a tree based configuration of storage elements instead of the linear
configuration shown. Additional multiplexors and control are used to
choose which branches of the tree should be updated and in what di-
rection. As a consequence, the number of storage elements that must
be updated during one step can be significantly reduced, thereby saving
energy. In fact, it may be possible for this type of design to consume
lower energy than traditional RAM-based designs.

330 ITERATIVE DETECTION

Example 6.7.
An estimate of the area required for both RAM-based and LIFO mem-
ories is given in [Pa00]. A 1-bit LIFO unit incorporating a mux and a
1-bit register required 134×256 λ2, where λ represents the basic dimen-
sions of our layout. This is in contrast to a 1-bit RAM cell that requires
34× 56λ. To be fair, we should also add approximately 10% additional
area to the RAM cell to consider the additional area of the decoder and
multiplexor amortized over all cells. This yields an estimate that the
LIFO requires 15 times more area than the RAM-based memory.

End Example

6.4 Determination of Clock Cycle Time and
Throughput

The basic activation schedules described in Fig-2.40(b) provide a ba-
sis for which a more refined schedule should be designed. This refined
schedule should describe in detail all the operations to occur in each
clock cycle. The clock cycle time is then dictated by the longest latency
of any sequence of operations scheduled to operate in one clock cycle.

It is well-known that the performance bottleneck of forward-backward
algorithm lies in the ACS operation. The reason is that the algorithm
requires one step of ACS to be completed before the next step begins.
Consequently, the clock cycle time of high-throughput designs should
target the latency of an ACS unit.

However, the peripheral parts of the ACS operation that involve
branch metric calculation, memory accesses of state metrics, or calcula-
tion of control signals, may or may not be scheduled in the same clock
cycle as the central add-compare-select operation. If they are, the clock
cycle time may have to be much larger than the core ACS operation
alone requires. In addition to the forward and backward recursions, the
completion operation is also an ACS operation. If the ACS unit has
enough bits to support both operations, it can perform both the state
metric recursions and the completion operations. In this case, however,
the clock cycle time may be determined by the logic that implements
the more complex ACS operation required for the completion opera-
tion. While in many cases designs with longer clock cycle time often are
simpler to understand and build, they are not necessarily significantly
smaller nor do they necessarily consume significantly less energy per de-
coded bit than more aggressive designs with higher clock frequencies.
In other words, careful architecture design can yield much higher clock
rates with little cost in area and energy consumption.

Implementation Issues: A Turbo Decoder Design Case Study 331

The key architectural feature that we are alluding to above is called
pipelining. Pipelining is the decomposition of the algorithm into stages of
logic, each stage concurrently operating in a single clock cycle. The idea
is that stages earlier in the pipeline pre-compute quantities needed later
in the pipeline and are stored in pipeline registers (storage elements)
until needed. For example, an early pipeline stage may access memory to
retrieve quantities that are needed in the ACS operation in subsequent
pipeline stages, thereby helping ensure that the memory access time
does not impact the clock cycle time. We now describe one pipelined
architecture designed to ensure that the clock cycle time is determined
by the latency of an ACS unit.

Example 6.8.
Continuing with the reference design for the decoder in the example of
Section 2.4.3.1, we consider a high-performance SISO architecture for
the fixed-interval forward-backward algorithm with parallel forward and
backward ACS recursions (i.e., see Fig-2.40(b)) as illustrated in Fig-6.8.
This architecture is decomposed into five pipeline stages and has two

–Af

(add)

Comp

Clip

Comp

Clip

Comp

x
[0

:3
]f

y
[0

:3
]f

F
[0

:3
]

B
[0

:3
]

M
[0

:3
]f

B
[0

:3
]
L
IF

O

SOf

S
O

te
m

p
[0

:1
]f

–CSb

(add)

Comp

SOb

S
O

te
m

p
[0

:1
]b

y
[0

:3
]b

x
[0

:3
]b

–Ab

B
[0

:3
]

F
[0

:3
]
L
IF

O

F
[0

:3
]

M
[0

:3
]b

Compf

Compb

Sum

Sum

(compare)

(select)

(compare)

(select)

–CSf

(ACS)

start2

write2

last-iter-ff

0

1write1

F–cal
(ACS)

LIFO–SIb

start2

write2

last-iter-ff

0

1

SIb-LIFO

SIb-LIFO

write1

SIf-LIFO

B–cal

SIf-LIFO

LIFO–SIf SIf1

SIb1

SIb

data1B

SIf

data1F

write2

write2 write1

write1

stage 1stage 4 stage 3 stage 2/b stage 2/astage 5

LIFO-B

LIFO-F

Mf

Mb

addr1[0]

addr1[0]

Figure 6.8. A pipelined SISO architecture (after [Pa00]).

332 ITERATIVE DETECTION

halves, the top half for computing the forward operation path and the
bottom for simultaneously computing the backward operation path.

Stage 1 is responsible for generating branch metrics. Stage 2 is re-
sponsible for performing 7-bit ACS operations to compute the forward
and backward state metrics. Notice that the results of these ACS oper-
ations are stored in a LIFO buffer to be used later for the completion
operation. In particular, notice that only the first two stages are active
for the first half of the total number of clock cycles. Once the forward
and backward pointers cross, the next two stages are responsible for
the completion operation, and the last stage is responsible for output
clipping.

The goal of the architecture is to ensure that the critical path that
determines the cycle time is dictated by the ACS unit in Stage 2/1.
The detailed architecture of this block is illustrated in Fig-6.9. The two

State Metrics

LSB MSB

Xor

Update State Metric Decision

B
ra

nc
h

M
et

ri
cs

A

C

S

Critical Paths
Parallel Ripple Carry

Add

Add

Carry

2:1 Mux

Reg/Buffer

Figure 6.9. ACS architecture and critical path (after [Bl93]).

adders are implemented with a basic adder architecture called a ripple
carry architecture which requires relatively low area. The comparison
can be implemented using subtraction implemented by a stripped-down
version of an adder with one of the inputs inverted and the sum logic
for all but the most significant bit removed. In particular, the most
significant sum bit of the result indicates the result of the comparison.
One advantage of this choice is that all three units operate in parallel.
That is, the comparator begins computing its result as soon as the least

Implementation Issues: A Turbo Decoder Design Case Study 333

significant output bit of the adders are available. Consequently, the
critical path is not much longer than that of a single ripple carry adder.

Simulations of this component laid-out using the Hewlett-Packard
0.25µ CMOS process at 3.3V yielded an achievable clock frequency of
approximately 75 MHz. The area of the SISO design, not including the
LIFO buffers is 3300 × 8000 λ2. For our 0.25µ process, λ = 0.15µm,
meaning the SISO requires area of only 0.5× 1.2 = 0.6mm2.

The area of the memory, on the other hand, is substantially more for
this K = 1024 example. Using LIFOs for the soft-input and state metrics
and a RAM-based interleaver, the total area required for a decoder can
be estimated at 2.2 × 2 = 4.4mm2.

In retrospect, it seems wise to replace the LIFOs with small, fast
RAMs and thereby save significant area. In particular, this would yield
an estimated area of 2.0mm2, or a savings of more than a factor of two.
If designed carefully, we believe that the RAMs will have little or no
impact on clock cycle time.

The forward-backward algorithm for a block-size of 1024 with concur-
rent forward and backward processing requires approximately 1030 clock
cycles, with pipelining similar to the above example. For 10 iterations,
this means the algorithm requires approximately 20,600 total clocks to
complete. We saw in the above design, that an estimated 75 MHz is
achievable. This means that the above design can achieve a throughput
of

1024 bits
(13.3 ns/clock cycle × 20, 600 clock cycles)

= 3.7Mb/sec (6.5)

End Example

6.5 Advanced Design Methods
The above basic design can be improved in a number of ways to im-

prove throughput, latency, and power.

6.5.1 Block-level Parallelism
One means of increasing the throughput of turbo decoders is to use

multiple SISOs and interleaver/deinterleavers and pipeline across blocks
of data [MaPiRoZa99]. Masera et al. suggested using 20 SISOs, 20
interleavers, and 20 de-interleavers in which case 20 different blocks can
be processed in parallel, yielding an increase in throughput of 20 with
a similar increase in area. For example, applying this method to the
reference design in Example 6.8 would provide a throughput of 74 Mbps.
It is also possible to use fewer than 20 (e.g., a design with 2 is proposed
in [Pa00]) with the obvious linear scaling in both throughput and area.

334 ITERATIVE DETECTION

6.5.2 Radix-4 SISO Architectures
Another well-known idea to increase throughput is to process two

steps of the trellis at a time. This is often called a “radix-4” archi-
tecture [Bl93]. The advantage of radix-4 architectures is that the SISO
operations requires approximately half as many clock cycles to compute.
The disadvantage is that the ACS operations in the forward/backward
recursions and in the completion operations are more complex. The re-
sult is either a significantly larger design or a slightly slower clock cycle.

Example 6.9.
The ACS operation required in the forward/backward recursion opera-
tions of radix-4, 4-state trellis involves 4 incoming paths. This can be
done with a bank of four adders and a tree of 2-way comparators. The
tree of 2-way comparators increases the latency of the ACS operation
demanding a larger clock cycle time. This extra latency can be avoided,
however, by using 6 (i.e., 4 choose 2) comparators and simple select logic
[Bl93], as illustrated in Fig-6.10.

S

C

A

B
ra

nc
h

M
et

ri
cs

Decision

Se
le

ct
L
og

ic

State Metrics

Update State Metric

Reg/Buffer

Carry
Carry
Carry
Carry
Carry
Carry

Xor
Xor
Xor
Xor
Xor

4:1 Mux

Xor

Add
Add
Add
Add

Figure 6.10. Fast 4-way ACS architecture (after [Bl93]).

The ACS operation required in the completion step of a radix-4 4-
state trellis involves comparing 8 different quantities. A similar parallel

Implementation Issues: A Turbo Decoder Design Case Study 335

8-way ACS can be implemented but it would require 8 choose 2, or 28
comparators. This large increase in area can be avoided by using a more
traditional tree of comparators requiring 7 comparators. Scheduling this
tree of comparators in one clock may require a significantly larger clock
cycle time than otherwise would be needed. Consequently, it makes sense
to break-up the tree of comparators into two halves, each half scheduled
in one clock cycle.

End Example

6.5.3 Fixed and Minimum Lag SISOs
Recall that one attractive alternative to fixed-interval SISOs is the

fixed-lag SISOs described in Section 2.5. Masera et al. in [MaPiRoZa99]
propose an efficient implementation of FL-SISOs that uses D banks of
ACS units in a pipelined fashion to implement the backward recursions
as illustrated in Fig-2.44. This implementation requires many more
banks of ACS units than our fixed-interval approach but the number
of forward and backward state metrics that must be stored is dramati-
cally reduced.

A detailed implementation of a minimum-lag SISO with pipelined
backward recursions is also described in [MaPiRoZa99]. This architec-
ture is the result combining of the minimum-lag concept described in
Section 2.5.6 and the pipelining method in Fig-2.44 for the specific choice
of H = D. This architecture, which was initially suggested by Viterbi
[Vi98], performs D completion operations for each backward recursion
of length 2D − 1. This requires only 2 ACS banks to implement the
pipelined backward recursion with a modest amount of additional mem-
ory compared to the fixed-lag implementation. The architecture can be
generalized to any value of H (see Problem 6.8).

Note that the overall latency of decoding a block of data for these
designs is limited by the calculation of the forward state metric and is
thus linear in the interleaver block size. Consequently, the throughput
is no different than that of the fixed-interval SISOs described earlier.

6.5.4 Minimum Half Window (Tiled) SISOs
As described in Section 2.5.6, the minimum-half window SISOs with

overlapping combining windows, or tiles, can also be activated in parallel,
thereby yielding even lower latency and higher throughput than the fixed
and minimum-lag approaches.

The latency of the minimum-half window implementations is approx-
imately linear in the size of each tile (i.e., 2D + H in Fig-2.50). Conse-

336 ITERATIVE DETECTION

quently, the increase in decoding throughput is the block size divided by
the tile size. This increase is upper bounded by the sliding-window SISO
special case (i.e., H = 1), where the latency is 2D + 1 ACS clock times.
For acceptable performance, the minimum value of D should be several
times the constraint length of the code to ensure reasonable coding gain
(e.g., see Example 2.11).

6.5.5 Sliding Window SISOs
An important property of the sliding-window SISO is that it com-

pletely decouples the soft-output computations. Each soft-output com-
putation can be viewed as simply two sequences of ACS units, one to
compute the forward state metrics and one to compute the backward
state metrics, followed by an ACS completion step (see Fig-2.45). This
effectively breaks the ACS feedback loop which limits the throughput of
other SISO algorithms [ViMaPiRo00].

In particular, the sliding-window SISO promotes the use of internally-
pipelined ACS units that can operate with much higher clock frequen-
cies. For example, it is possible to fully-pipeline the ACS unit down to
the bit-level where the clock cycle time is now dictated approximately
by the latency of the computation of a single bit (e.g., a 1-bit addi-
tion) [ViMaPiRo00]. The only tricky part of this bit-level pipelining
is that the adder outputs must be appropriately delayed using inter-
nal shift-registers to be aligned with the results of the subtracter-based
comparator which may not be ready until several clock cycles after the
additions are completed.

Analog simulations of such ACS units in a conventional 0.5µ
CMOS process suggest that a 1GHz clock frequency can be achieved
[ViMaPiRo00]. Note that this is over 5 times faster than the estimated
latency of a complete non-internally-pipelined ACS unit, thereby signif-
icantly reducing overall decoding latency and increasing throughput.

6.5.6 Tree SISOs
The latency of computing each tile3 is the size of the tile because

of the inherent sequential nature of the ACS recursions. While radix-4
and sliding-window algorithms alleviate this bottleneck, more aggressive
tree SISOs (e.g., see Section 2.5.5) architectures completely eliminate it.
They are the highest performance architectures known to date but also
require the most hardware resources.

3Recall that the fixed-interval SISO can be viewed as the special case of a tiled SISO with
one tile.

Implementation Issues: A Turbo Decoder Design Case Study 337

In particular, tree SISOs allow tiles to be computed in time that is log-
arithmic in the tile size. Furthermore, there is no “overlap” penalty with
tiled tree-SISOs [BeCh00]. Specifically, note that in the tiled forward-
backward SISOs in Fig-2.50, there is overlap between the recursions per-
formed in each sub-window. This overlap is not required for tree-SISOs
when implemented in the form of Fig-2.48. Rough area and perfor-
mance estimates of a tile-based architecture appear in [BeCh00]. It is
estimated that, for the same PCCC code considered here with K = 1024,
the proposed tiled tree SISO (D = 16) would require roughly 40 million
transistors, but have a latency of only 14 clock cycles. The clock cycle
time was estimated to be 5 ns yielding a total block latency for 10 it-
erations of just 700 ns. This translates to a throughput of almost 1.5
Gb/second. The tree-SISO in Example 2.19 and [ThCh00], which has
much lower complexity with roughly twice the latency, is also a potential
solution to extremely high throughput or low-latency processing.

For even higher throughput needs, it is also possible to pipeline the
tree-SISO architectures across interleaver blocks (as described in Sec-
tion 6.5.1). In particular, 20 such tiled tree-SISOs and associated inter-
leavers can be used to achieve a factor of 20 in increased throughput,
yielding a throughput of 30 Gb/second.

Moreover, unlike architectures based on the forward-backward algo-
rithm, the tree-SISOs can easily be internally pipelined, yielding even
higher throughputs with linear hardware scaling. In particular, if ded-
icated hardware is used for each stage of the tree-SISO, pipelining the
tree-SISO internally may yield another factor of 4 to 5 in throughput,
with no increase in latency. The tree-based architecture could thus sup-
port over 120 Gb/second.

While the hardware costs of such an aggressive architecture may be
beyond practical limits today, given the continued increasing densities of
VLSI technology, such systems may become cost-effective in the future
for very high-speed applications.

6.5.7 Low-Power Turbo Decoding
A few other turbo coding works have focused on activation schedules

and architectures that reduce power consumption. We refer the inter-
ested reader to [ScCaEn99, LiTsCh97, GaSt98].

338 ITERATIVE DETECTION

CMOS Complementary Metal Oxide Semiconductor
LIFO Last In First Out
RAM Random Access Memory
ROM Read Only Memory
SAM Sequential Access Memory
VLSI Very Large Scale Integration

Table 6.1. Table of abbreviations specific to Chapter 6

6.6 Problems

6.1. Simulate the K = 1024, rate 1/2 PCCC considered using soft-
in information on the channel of the form α(zk −

√
Es)2 and

α(zk +
√

Es)2 using different quantization methods. Specifically,
by varying α > 0, find a good quantizer for the region [0,∞)
which has the reproduction labels naturally labeled as integers.
For example, the label 010 should correspond to the real value of
2. Reproduce the Fig-6.2 and Fig-6.3 (including the pdfs). What
bit width is required for each of the channel soft-in values for
good performance?

6.2. Using the metrics defined in Fig-2.29, show that if the input met-
rics for all quantities are represented by w bits, the dynamic range
of state metrics is upper bounded by 5·2w−1. Hint: Consider the
case where sk = i is part of a surviving path entering sk+2 = j
where sk+2 = j has the minimum metric among states at time
k + 2. What is an upper bound of the metrics Fk+1[sk+2] for the
other values of sk+2.

6.3. Repeat the hand computation of the PCCC decoder for a fixed-
point implementation as described in Problem 2.11. Specifically,
based on Fig-6.3 and the fact that the data in Table 2.5 was gen-
erated with

√
Es = 1, multiply the observations by 3.5 and quan-

tize to 4-bit 2’s complement integers using a uniform quantizer
and symmetric quantization bins (i.e., analogous to the quantizer
shown in Fig-6.1). Produce the tables requested in Problem 2.11
first assuming no clipping. Repeat this exercise with clipping of
the output metrics to 4-bits. Do the decisions after two iterations
vary in the three cases?

6.4. Recall that from (2.26), that the min∗-sum processing uses the
input metrics 4

√
Es

N0
zk(i).

Implementation Issues: A Turbo Decoder Design Case Study 339

(a) Show that based on the model in (6.1), vk(i) = 4
√

Es
N0

zk(i) has
the model

vk(i) = 2
Eb

N0
xk(i) + nk(i) (6.6)

where xk(i) ∈ {−1,+1} (as before) and nk(i) is an AWGN
sequence with zero mean and variance 4Eb/N0. Note that
Eb = Es/2.

(b) Explain why, in order to use the standard definition of

min∗(x, y) = min(x, y) − ln(1 + e−|x−y|)

these metrics cannot be scaled by a multiplicative constant in
order to meet a desired quantizer dynamic range.

(c) For the example shown in Fig-6.1, since Eb/N0 = 2 dB it fol-
lows that Eb/N0 = 1.58 (not in dB). Plot the conditional pdfs
for vk(i) analogous to those shown in Fig-6.1. Consider using
fixed-point (not necessarily integer), 2’s complement repre-
sentation of vk(i) that is approximately equivalent to quanti-
zation of zk(i) shown in Fig-6.1. Where would you place the
quantizer reconstruction levels to accomplish this?

(d) Suppose, that instead of moving the reconstruction levels,
vk(i) was multiplied by 1/1.58 and the integer reconstruction
levels shown in Fig-6.1 were used. Describe how the “min∗(·)”
look-up table must be modified. Hint: see Problem 2.8.

6.5. Suppose that x and y are represented using fixed-point, 2’s com-
plement with 3 bits as determined in Problem 6.4c. What values
does − ln(1+exp(−|x−y|)) take on? What does this imply about
representing this term using 2’s complement?

6.6. Consider a min∗-sum implementation where − ln(1 + exp(−|x −
y|)) is represented by m bits in 2’s complement fixed-point nota-
tion. Show that ∆F for the PCCC considered is increased by no
more than 4 · 2m−1 relative to ∆F for the min-sum case. Assum-
ing m = 4 and all other soft-inputs are also represented using 4
bits, what is ∆F. What is the minimum required bitwidth of the
ACS units?

6.7. Consider the implementation of the min∗-sum algorithm de-
scribed in Problem 6.6. What is the maximum value that state
metrics can be initialized to without violating the state metric
constraints required by modulo arithmetic. Simulate the effect
of this initialization strategy and determine the degradation (if

340 ITERATIVE DETECTION

any) on coding performance compared with that of using infinite-
precision initialization.

6.8. Consider the minimum-lag SISO described in Section 2.5.6 with
H = 2. Draw the architecture for this minimum-lag SISO with
a parallel backward recursion. How many ACS units are needed
for the backward recursion? How much total memory (in bits) is
required?

6.9. Compute ∆F for a min-sum forward-backward algorithm run on
standard radix-4 trellis for 4-bit input metric quantization.

References

[Ag99] D. Agrawal. GMD decoding of Euclidean-space codes and itera-
tive decoding of turbo codes. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, 1999.

[Aj99] S. M. Aji. Graphical Models and Iterative Decoding. PhD thesis,
California Institute of Tech., 1999.

[AjMc00] S. M. Aji and R. J. McEliece. The generalized distributive law.
IEEE Trans. Inform. Theory, 46(2):325–343, March 2000.

[AlReAsSc99] P. D. Alexander, M. C. Reed, J. A. Asenstorfer, and C. B.
Schlegel. Iterative multiuser interference reduction: Turbo
CDMA. IEEE Trans. Commun., 47:1008–1014, July 1999.

[An99] A. Anastasopoulos. Adaptive Soft-Input Soft-Output Algorithms
for Iterative Detection. PhD thesis, University of Southern Cali-
fornia, Los Angeles, CA, August 1999.

[AnAl92] M. Analoui and J. P. Allebach. Model based halftoning using
direct binary search. In Human Vision, Visual Proc., and Digital
Display III, volume 1666 of Proc. SPIE, pages 96–108. SPIE,
February 1992.

[AnCh97] A. Anastasopoulos and K. M. Chugg. An efficient method for
simulation of frequency selective isotropic Rayleigh fading. In
Proc. Vehicular Tech. Conf., pages 2084–2088, Phoenix, AZ, May
1997.

[AnCh97b] A. Anastasopoulos and K. M. Chugg. Iterative equaliza-
tion/decoding of TCM for frequency-selective fading channels.
In Proc. Asilomar Conf. Signals, Systems, Comp., pages 177–181,
November 1997.

[AnCh98] A. Anastasopoulos and K. M. Chugg. TCM for frequency-
selective, interleaved fading channels using joint diversity com-
bining. In Proc. International Conf. Communications, Atlanta,
GA, June 1998.

[AnCh99] A. Anastasopoulos and K. M. Chugg. Adaptive iterative detection
for turbo codes with carrier-phase uncertainty. In Proc. Globecom
Conf., pages 2369–2374, Rio de Janeiro, Brazil, December 1999.

341

342 ITERATIVE DETECTION

[AnCh00] A. Anastasopoulos and K. M. Chugg. Adaptive Soft-Input Soft-
Output algorithms for iterative detection with parametric uncer-
tainty. IEEE Trans. Commun., 48(10), October 2000.

[AnFo75] R. R. Anderson and G. J. Foschini. The minimum distance
for MLSE digital data systems of limited complexity. IEEE
Trans. Inform. Theory, 21:544–551, September 1975.

[AnMo79] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice
Hall, Englewood Cliffs, NJ, 1979.

[AnMo84] J. B. Anderson and S. Mohan. Sequential coding algorithms: A
survey cost analysis. IEEE Trans. Commun., COM-32:169–176,
February 1984.

[AnPo98] A. Anastasopoulos and A. Polydoros. Adaptive soft-decision
algorithms for mobile fading channels. European Trans. Com-
mun., 9(2):183–190, March/April 1998.

[AuMc99] J. Au and P. J. McLane. Performance of turbo codes with quan-
tizaed channel measurements. In Proc. Globecom Conf., Dallas,
TX, December 1999. (Comm. Theory Symp.).

[Ba87] G. Battail. Pondération des symboles décodé par l’algorithme de
Viterbi. Ann. Télecommun., 42:31–38, January 1987. (in French).

[BaCu98] E. Baccarelli and R. Cusani. Combined channel estimation and
data detection using soft statistics for frequency-selective fast-
fading digital links. IEEE Trans. Commun., 46:424–427, April
1998.

[BaCoJeRa74] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding
of linear codes for minimizing symbol error rate. IEEE Trans. In-
form. Theory, IT-20:284–287, March 1974.

[Be63] P. A. Bello. Characterization of randomly time-variant linear
channels. IEEE Trans. Commun. Systems, 11:360–393, 1963.

[BeAdAnFa93] C. Berrou, P. Adde, E. Angui, and S. Faudeil. A low complexity
soft-output Viterbi decoder architecture. In Proc. International
Conf. Communications, pages 737–740, June 1993.

[BeBeMa98] N. Benvenuto, L. Bettella, and R. Marchesani. Performance of
the Viterbi algorithm for interleaved convolutional codes. IEEE
Trans. Vehic. Technol., 47(3):919–923, August 1998.

[BeCh00] P. A. Beerel and K. M. Chugg. An O(log2 N)-latency SISO with
application to broadband turbo decoding. In Proc. IEEE Military
Comm. Conf., Los Angeles, CA, October 2000. (see also the USC,
Comm. Sciences Inst. report CSI-00-05-01).

[BeDiMoPo98] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Soft-input
soft-output modules for the construction and distributed iterative
decoding of code networks. European Trans. Teleommun., 9(2),
March/April 1998.

[BeDiMoPo98b] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial
concatenation of interleaved codes: performance analysis, design,
and iterative decoding. IEEE Trans. Inform. Theory, 44(3):909–
926, May 1998.

References 343

[BeGl96] C. Berrou and A. Glavieux. Near optimum error correcting coding
and decoding: turbo-codes. IEEE Trans. Commun., 44(10):1261–
1271, October 1996.

[BeGlTh93] C. Berrou, A. Glavieux, and P. Thitmajshima. Near shannon
limit error-correcting coding and decoding: turbo-codes. In In-
ternational Conference on Communications, pages 1064–1070,
Geneva, Switzerland, May 1993.

[BeLuMa93] N. Benvenuto, G. Lubello, and R. Marchesani. Multitrellis decm-
position of the Viterbi algorithm for multipath channels. In Proc.
ICC’93, pages 746–750, Geneva, Switzerland, May 1993.

[BeMa96] N. Benvenuto and R. Marchesani. The Viterbi algorithm for
sparse channels. IEEE Trans. Commun., 44:287–289, March
1996.

[BeMo96] S. Benedetto and G. Montorsi. Unveiling turbo codes: some re-
sults on parallel concatenated coding schemes. IEEE Trans. In-
form. Theory, 42(2):408–428, March 1996.

[BeMoDiPo96] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara. A soft-
input soft-output maximum a posteriori (MAP) module to decode
parallel and serial concatenated codes. Technical report, JPL-
TDA, November 1996. 42–127.

[BePa79] C. A. Belfiore and Parks. Decision feedback equalization.
Proc. IEEE, 67, August 1979.

[BeSa94] N. Benvenuto and A. Salloum. Performance of the multitrellise
Viterbi algorithm for sparse channels. In Proc. GLOBECOM’93,
pages 1493–1497, San Francisco, CA, November 1994.

[BiDiMcSi91] E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon. Introduc-
tion to Trellis-Coded Modulation with Applications. Macmillian,
New York, 1991.

[Bl93] P. J. Black. Algorithms and Architectures for High Speed Viterbi
Decoding. PhD thesis, Stanford University, California, March
1993.

[Ca74] C. R. Cahn. Phase tracking and demodulation with delay. IEEE
Trans. Inform. Theory, IT-20:50–58, January 1974.

[CeMaSa79] E. Cerny, D. Mange, and E. Sanchez. Synthesis of minimal binary
decision trees. IEEE Transactions on Computers, 28:472–482,
1979.

[ChHa66] R. W. Chang and J. C. Hancock. On receiver structures for chan-
nels having memory. IEEE Trans. Inform. Theory, IT-12:463–
468, October 1966.

[Ch95] K. M. Chugg. Sequence Estimation in the Presence of Parametric
Uncertainty. PhD thesis, University of Southern California, Los
Angeles, CA, August 1995.

[Ch96] K. M. Chugg. Performance of optimal digital page detection
in a two-dimensional ISI/AWGN channel. In Proc. Asilomar
Conf. Signals, Systems, Comp., November 1996.

[Ch98] K. M. Chugg. The condition for the applicability of the Viterbi al-
gorithm with implications for fading channel MLSD. IEEE Trans.
Commun., 46(9):1112–1116, September 1998.

344 ITERATIVE DETECTION

[Ch99] X. Chen. Iterative Data Detection: Complexity Reduction and
Applications. PhD thesis, University of Southern California, Los
Angeles, CA, December 1999.

[ChAn00] K. M. Chugg and A. Anastasopoulos. On symbol error probabil-
ity bounds for ISI-like channels. submitted to IEEE Trans. Com-
mun. (see also: Technical Report CSI-00-04-01, Communication
Sciences Institute, USC), April 2000.

[ChCh98] X. Chen and K. M. Chugg. Near-optimal page detection for two-
dimensional ISI/AWGN channels using concatenated modeling
and iterative detection. In Proc. International Conf. Communi-
cations, Atlanta, GA, 1998.

[ChCh98b] K. M. Chugg and X. Chen. Efficient architectures for soft-output
algorithms. In Proc. International Conf. Communications, At-
lanta, GA, 1998.

[ChCh00] X. Chen and K. M. Chugg. Reduced state soft-in/soft-out for
complexity reduction in iterative and non-iterative data detec-
tion. In Proc. International Conf. Communications, New Orleans,
LA, 2000.

[ChCh00b] X. Chen and K. M. Chugg. Iterative soft-in/soft-out algorithms
for arbitrary sparse channels. IEEE Trans. Commun. (submitted
for publication, Jan. 2000).

[ChChNe98] X. Chen, K. M. Chugg, and M. A. Neifeld. Near-optimal paral-
lel distributed data detection for page-oriented optical memories
(Special issue: Advanced optical storage technologies). IEEE J.
Select. Topics Quantum Electron., 4(5):866–879, Sept./Oct. 1998.

[ChChNe99] K. M. Chugg, X. Chen, , and M. A. Neifeld. Two-dimensional
equalization in coherent and incoherent page oriented optical
memory. J. Opt. Soc. Amer. A, 16(3):549–562, March 1999.

[ChChOrCh98] K. M. Chugg, X. Chen, A. Ortega, and C-W. Chang. An iterative
algorithm for two-dimensional digital least metric problems with
applications to digital image compression. In Proc. Intl. Conf. Im-
age Processing, Chicago, IL, 1998.

[ChChThAn00] K.M. Chugg, X. Chen, P. Thiennviboon, and A. Anastasopou-
los. Two-dimensional data detection: Achievable performance and
near-optimal algorithms. Technical Report CSI-00-11-01, Com-
munication Sciences Institute, USC, Los Angeles, CA, November
2000.

[ChDeOr99] K. M. Chugg, K. Demirciler, and A. Ortega. Soft information for
source channel coding and decoding. In Proc. Asilomar Conf. Sig-
nals, Systems, Comp., volume Sess. MP4-3, October 1999.

[ChLe98] K. M. Chugg and K. Lerdsuwanakij. Fading channel sequence
detection based on rational approximations to the Clarke doppler
spectrum. In Proc. International Conf. on Telecommunications,
Chalkidiki, Greece, 1998.

[ChPo96] K. M. Chugg and A. Polydoros. MLSE for an unknown chan-
nel – part I: Optimality considerations. IEEE Trans. Commun.,
44:836–846, July 1996.

References 345

[ChPo96b] K. M. Chugg and A. Polydoros. MLSE for an unknown channel
– part II: Tracking performance. IEEE Trans. Commun., pages
949–958, August 1996.

[Cl68] R. Clark. A statistical theory of mobile radio reception. Bell
Sys. Tech. J., 47:97–1000, 1968.

[Co90] G. F. Cooper. The computational complexity of probabilistic in-
ference using Bayesian belief networks. Artif. Intell., 42(2-3):393–
405, March 1990.

[CoFeRa00] G. Colavolpe, G. Ferrari, and R. Raheli. Noncoherent itera-
tive (turbo) detection. IEEE Trans. Commun., 48(9):1488–1498,
September 2000.

[CoXiXi99] Ling Cong, Wu Xiaofu, and Yi Xiaoxin. On SOVA for non-
binary codes. IEEE Communications Letters, 3:335–337, Decem-
ber 1999. (authors’ family names listed first on paper).

[CoLeRi90] T. H. Cormen, C.E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, Mass., 1990.

[CuMa99] R. Cusani and J. Mattila. Equalization of digital radio channels
with large multipath delay for cellular land mobile applications.
IEEE Trans. Commun., 47(3):348–351, March 1999.

[DaLu93] P. Dagum and M. Luby. Approximating probabilistic inference in
Bayesian belief networks is NP-hard. Artif. Intell., 60(1):141–153,
March 1993.

[DaMeVi94] A. N. D’Andrea, U. Mengali, and G. M. Vitetta. Approximate ML
decoding of coded PSK with no explicit carrier phase reference.
IEEE Trans. Commun., 42:1033–1040, Feb./Mar./April 1994.

[DaMo99] F. Daneshgaran and M. Mondin. Design of interleavers for turbo
codes: Iterative interleaver growth algorithms of polynomial com-
plexity. IEEE Trans. Inform. Theory, 45:1845–1859, September
1999.

[Di97] D. Divsalar. Serial and hybrid concatenations of codes with in-
terleavers. In IEEE Communcation Theory Workshop, Tucson,
AZ, April 1997.

[Di99] D. Divsalar. A simple tight bound on error probability of block
codes with application to turbo codes. Technical Report TDA
Progress Report 42-139, Jet Propulsion Labs., Pasadena, CA,
November 1999.

[DiPo97] D. Divsalar and F. Pollara. Serial and hybrid concatenated codes
with applications. In Intern. Symposium on Turbo Codes and
related topics, Brest, France, September 1997.

[DoDi95] S. Dolinar and D. Divsalar. Weight distributions for turbo codes
using random and nonrandom permutations. Technical Report
TDA Progress Report 42-122, Jet Propulsion Labs., Pasadena,
CA, August 1995.

[DuHe89] A. Duel-Hallen and C. Heegard. Delayed decision feedback esti-
mation. IEEE Trans. Commun., 37:428–436, May 1989.

[EyQu88] M. V. Eyuboğlu and S. U. Qureshi. Reduced-state sequence
estimation with set partitioning and decision feedback. IEEE
Trans. Commun., COM-38:13–20, January 1988.

346 ITERATIVE DETECTION

[FeGeFi98] I. J. Fevrier, S. B. Gelfand, and M. P. Fitz. Fast computation
of efficient decision feedback equalizers for high speed wireless
communications. In Proc. IEEE ICASSP’98, volume 6, pages
3493–3496, Seattle, WA, May 1998.

[FeMe89] G. Fettweis and H. Meyr. Parallel Viterbi algorithm implemen-
tation: Breaking the ACS-bottleneck. IEEE Trans. Commun.,
37:785–790, August 1989.

[Fo72] G. D. Forney, Jr. Lower bounds on error probability in the pres-
ence of large intersymbol interference. IEEE Trans. Commun.,
COM-20:76–77, February 1972.

[Fo72b] G. D. Forney, Jr. Maximum-likelihood sequence estimation of dig-
ital sequences in the presence of intersymbol interference. IEEE
Trans. Inform. Theory, IT-18:284–287, May 1972.

[Fo73] G. D. Forney, Jr. The Viterbi algorithm. Proc. IEEE, 61:268–278,
March 1973.

[Fo75] G. J. Foschini. Performance bound for maximum-likelihood re-
ception of digital data. IEEE Trans. Inform. Theory, 21:47–50,
January 1975.

[Fo97] G. D. Forney, Jr. Iterative decoding. In 26th Annual IEEE Com-
munication Theory Workshop, Tuscon, AZ, April 1997.

[Fo00] G. D. Forney, Jr. Codes on graphs: Normal realizations. IEEE
Trans. Inform. Theory. (submitted for publication, April 2000).

[FoBuLiHa98] M. P. C. Fossorier, F. Burkert, S. Lin, and J. Hagenauer. On the
equivalence between SOVA and max-log-MAP decodings. IEEE
Communications Letters, 5:137–139, May 1998.

[Fr98] B. J. Frey. Graphical Models for Machine Learning and Digital
Communications. MIT Press, Cambridge, MA, 1998.

[FrAn98] V. Franz and J. B. Anderson. Concatenated decoding with a
reduced-search BCJR algorithm. IEEE J. Select. Areas Com-
mun., 16(2):186–195, February 1998.

[FrKs98] B.J. Frey and F.R. Kschischang. Early detection and trellis spilic-
ing: Reduced complexity iterative decoding. IEEE J. Select. Ar-
eas Commun., pages 153–159, February 1998.

[FrMc98] B. J. Frey and D. J. C. MacKay. A revolution: Belief propaga-
tion in graphs with cycles. In M. I. Jordan, M. I. Kearns, and
S. A. Solla, editors, Advances in Neural Information Processing
Systems, pages 470–485. MIT Press, 1998.

[FrWe99] C. Fragouli and R. Wessel. Symbol interleaved parallel con-
catenated trellis coded modulation. In Proc. International
Conf. Communications, pages 42–46, Vancouver, B.C., Canada,
June 1999. (Comm. Theory Mini-Conf.).

[Ga62] R. G. Gallager. Low density parity check codes. IEEE Trans. In-
form. Theory, 8:21–28, January 1962.

[Ga63] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press,
Cambridge, MA, 1963.

References 347

[GaSt98] D. Garret and M. Stan. Low power architecture for the soft-
output Viterbi algorithm. In Proc. International Symposium on
Low-Power Electronics and Design, 1998.

[GeLo97] M. Gertsman and J. H. Lodge. Symbol-by-symbol MAP demod-
ulation of CPM and PSK on Rayleigh flat-fading channels. IEEE
Trans. Commun., 45(7):788–799, July 1997.

[GeReSu93] R. Geist, R. Reynolds, and D. Suggs. A Markovian framework for
digital halftoning. ACM Trans. Graph., 12:136–159, April 1993.

[Gi62] A. Gill. Finite-State Machines. McGraw-Hill, 1962.

[Go66] B. Goldberg. 300 kHz–30 MHz MF/HF. IEEE Trans. Commun.
Technol., COM-14(6):767–784, December 1966.

[Go68] J. W. Goodman. Introduction to Fourier Optics. McGraw-Hill,
Inc., 1968.

[GoCh00] R. Golshan and K. M. Chugg. Iterative coded multiuser detection
with a Verdú soft demodulator. In Proc. Asilomar Conf. Signals,
Systems, Comp., October 2000.

[GoVa89] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins Press, 2nd edition, 1989.

[Gr81] D. J. Granrath. The role of human visual models in image pro-
cessing. Proc. IEEE, 69(5):552–561, May 1981.

[Ha65] M. A. Harrison. Introduction to Switching and Automata Theory.
McGraw-Hill, 1965.

[Ha96] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood
Cliffs, NJ, 3rd edition, 1996.

[HaChAu00] A. Hansson, K. M. Chugg, and T. Aulin. A forward-backward al-
gorithm for fading channels using forward-only estimation. Tech-
nical Report CSI-00-11-02, Communication Sciences Institute,
USC, Los Angeles, CA, November 2000.

[HaEl00] A. R. Hammons, Jr. and H. El Gamal. On the convergence of
the turbo decoder. In Conference on Information Sciences and
Systems (CISS), March 2000. (WA6-3).

[HaHo89] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-
decision outputs and its applications. In Proc. Globecom Conf.,
pages 1680–1686, Dallas, TX, November 1989.

[HaOfPa96] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary
block and convolutional codes. IEEE Trans. Inform. Theory,
42(2):429–445, March 1996.

[HaRu76] C. R. P. Hartmann and L. D.Rudolph. An optimum symbol-
by-symbol decoding rule for linear codes. IEEE Trans. Inform.
Theory, IT-22(5):514–517, September 1976.

[HaSt97] A. Hafeez and W. E. Stark. Soft-output multiuser estimation for
asynchronous CDMA channels. In Proc. Vehicular Tech. Conf.,
pages 465–469, Phoenix, AZ, May 1997.

[He60] C. W. Helstrom. Statistical Theory of Signal Detection. Pergamon
Press, 1960.

[He89] A. P. Hekstra. An alternative to metric rescaling in Viterbi de-
coders. IEEE Trans. Commun., 37(11), November 1989.

348 ITERATIVE DETECTION

[He00] J. Heo. Adaptive iterative detection based on belief propaga-
tion. Technical Report CSI-00-05-03, Communication Sciences
Institute, USC, Los Angeles, CA, May 2000. (Ph. D. Disertation
proposal).

[HeCh00] J. Heo and K. M. Chugg. Adaptive iterative detection for turbo
codes on flat fading channels. In WCNC, Chicago, IL, September
2000.

[HeChAn00] J. Heo, K. M. Chugg, and A. Anastasopoulos. A compari-
son of forward-only and bi-directional fixed-lag adaptive SISOs.
In Proc. International Conf. Communications, pages 1660–1664,
New Orleans, LA, June 2000.

[HeGuHe96] J. F. Heanue, Gürkan, and L. Hesselink. Signal detection for page-
access optical memories with intersymbol interference. Applied
Optics, 35:2431–2438, May 1996.

[HeJa71] J. A. Heller and I.M. Jacobs. Viterbi decoding for satellite and
space communication. IEEE Trans. Commun. Technol., COM-
19:835–848, October 1971.

[HeWi98] C. Heegard and S. Wicker. Turbo Coding. Kluwer Academic
Publishers, 1998.

[HsWa99] J.-M. Hsu and C.-L. Wang. On finite-precision implementation
of a decoder for turbo-codes. In IEEE International Symposium
on Circuit and Applications, volume 4, pages 423–426, 1999.

[Il92] R. A. Iltis. A Bayesian maximum-likelihood sequence estima-
tion algorithm for a priori unknown channels and symbol timing.
IEEE J. Select. Areas Commun., 10:579–588, April 1992.

[IlShGi94] R. A. Iltis, J. J. Shynk, and K. Giridhar. Bayesian algorithms
for blind equalization using parallel adaptive filtering. IEEE
Trans. Commun., 42:1017–1032, Feb./Mar./Apr. 1994.

[Je96] F. V. Jensen. An Introduction to Bayesian Networks. Springer-
Verlag, 1996.

[JeJe94] F. V. Jensen and F. Jensen. Optimal junction trees. In Conf. Un-
certainty in Artificial Intelligence, pages 360–366, San Francisco,
CA, March 1994.

[JeLaOl90] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updat-
ing in causal probabilistic networks by local computation. Com-
putational Statistics Quarterly, 4:269–282, 1990.

[KeMa98] L. Ke and M. W. Marcellin. Near-lossless image compression:
Minimum-entropy, constrained-error DPCM. IEEE Trans. Imag.
Processing, 7(2):225–228, February 1998.

[Ko71] H. Kobayashi. Simultaneous adaptive estimation and decision al-
gorithm for carrier modulated data transmission sysytems. IEEE
Trans. Commun., 19:268–280, June 1971.

[KoBa90] W. Koch and A. Baier. Optimum and sub-optimum detection of
coded data disturbed by time-varying intersymbol interference.
In Proc. Globecom Conf., pages 807.5.1–5, December 1990.

[KoWe99] C. Komninakis and R. D. Wesel. Pilot-aided joint data and chan-
nel estimation in flat correlated fading. In Proc. Globecom Conf.,

References 349

pages 2534–2539, Rio de Janeiro, Brazil, 1999. (Comm. Theory
Symposium).

[KsFr98] F.R. Kschischang and B.J. Frey. Iterative decoding of compond
codes by probability propagation in graphical models. IEEE
J. Select. Areas Commun., pages 219–231, February 1998.

[KsFrLo00] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. Inform. Theory,
2000. submitted for publication.

[KwKa98] D. Kwan and S. Kallel. A truncated best-path algorithm. IEEE
Trans. Commun., 46:568–572, May 1998.

[LaArGa98] D. L. Lau, G. R. Arce, and N. C. Gallagher. Green-noise digital
halftoning. Proc. IEEE, 86(12):2424–2444, December 1998.

[LaSp88] S. L. Lauritzen and D. J. Spiegelhalter. Local computation with
probabilities on graphical structures and their application to ex-
pert systems. J. Roy. Statist. Soc. B, pages 157–224, 1988.

[Le74] L-N. Lee. Real-time minimal-bit-error probability decoding of
convolutional codes. IEEE Trans. Commun., 22:146–151, Febru-
ary 1974.

[LeChPo99] K. Lerdsuwanakij, K. M. Chugg, and A. Polydoros. Quanitzation-
based estimation. In Proc. Asilomar Conf. Signals, Systems,
Comp., volume 1, pages 37–41, 1999.

[LiAl96] D. J. Lieberman and J. P. Allebach. Digital halftoning using
the direct binary search algorithm. In Proc. IST Int. Conf. High
Technology, pages 114–124, Chiba, Japan, September 1996.

[LiCo83] S. Lin and D. Costello, Jr. Error Control Coding: Fundamentals
and Applications. Prentice-Hall, 1983.

[LiRi99] X. Li and J. A. Ritcey. Trellis-coded modulation with bit inter-
leaving and iterative decoding. IEEE J. Select. Areas Commun.,
17:715–724, April 1999.

[LiSi73] W. C. Lindsey and M. K. Simon. Telecommunication Systems
Engineering. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[LiTsCh97] L. Lin, C. Y. Tsui, and S. R. Cheng. Low power soft output
Viterbi decoder scheme for turbo decoding. In IEEE Intern.
Symp. on Circuits and Systems, pages 1369–1372, June 1997.

[LiVuSa95] Y. Li, B. Vucetic, and Y. Sato. Optimum soft-output detection
for channels with intersymbol interference. IEEE Trans. Inform.
Theory, 41:704–713, May 1995.

[LoMo90] J. Lodge and M. Moher. Maximum likelihood estimation of CPM
signals transmitted over Rayleigh flat fading channels. IEEE
Trans. Commun., 38:787–794, June 1990.

[LuWi98] L. Lu and S. W. Wilson. Synchronization of turbo coded modu-
lation systems at low SNR. Proc. International Conf. Communi-
cations, Atlanta, GA, June 1998.

[Ma99] D. J. C. MacKay. Good error correcting codes based on very
sparse matrices. IEEE Trans. Inform. Theory, 45:399–431, Febru-
ary 1999.

350 ITERATIVE DETECTION

[MaMa98] I. D. Marsland and P. T. Mathiopoulos. Multiple differential
detection of parallel concatenated convolutional (turbo) codes in
correlated fast Rayleigh fading. IEEE J. Select. Areas Commun.,
16(2):265–275, February 1998.

[MaNe96] D. J. C. MacKay and R. M. Neal. Near Shannon limit perfor-
mance of low density parity check codes. Electronics Letters,
32(18):1645–1646, August 1996.

[MaPiRoZa99] G. Masera, G. Piccinini, M. Ruo Roch, and M. Zamboni. VLSI
architectures for turbo codes. IEEE Transactions on VLSI, 7(3),
September 1999.

[MaPr73] F. R. Magee and J. G. Proakis. Adaptive maximum-likelihood
sequence estimation for digital signaling in the presence of inter-
symbol interference. IEEE Trans. Inform. Theory, 19:120–124,
January 1973.

[Ma75] J. E. Mazo. A geometric derivation of Forney’s upper bound.
Bell Sys. Tech. J., 54:1087–1094, Jul.–Aug. 1975.

[Ma75b] J. E. Mazo. Faster-than-Nyquist signaling. Bell Sys. Tech. J.,
54:1450–1462, October 1975.

[Mc74] P. L. McAdam. MAP bit decoding of convolutional codes. PhD
thesis, University of Southern California, Los Angeles, CA, 1974.

[Mc99] R. McEliece. Iterative decoding of RA codes. In 1999 IEEE
Comm. Theorey Workshop, Aptos, CA, 1999.

[McKe97] N. C. McGinty and R. A. Kennedy. Reduced-state sequence
estimator with reverse-time structure. IEEE Trans. Commun.,
45(3):265–268, March 1997.

[McKeHo98] N. C. McGinty, R. A. Kennedy, and P. Hoeher. Parallel trellis
Viterbi algorithm for sparse channels. IEEE Trans. Commun.,
pages 143–145, May 1998.

[McMaCh98] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo de-
coding as an instance of Pearl’s “belief propagation” algorithm.
IEEE J. Select. Areas Commun., 16:140–152, February 1998.

[McWeWe72] P. L. McAdam, L. R. Welch, and C. L. Weber. M.A.P. bit decod-
ing of convolutional codes. Proc. IEEE Int. Symp. Info. Theory,
1972.

[Me95] J. M. Mendel. Lessons in estimation theory for signal processing,
communications, and control. Prentice Hall, Englewood Cliffs,
NJ, 1995.

[Mi60] D. Middleton. An Introduction to Statistic Communication The-
ory. McGraw-Hill, New York, 1960.

[Mi99] C. L. Miller. Image Restoration Using Trellis-Search Methods.
PhD thesis, University of Arizona, 1999.

[Mo82] B. M. E. Moret. Decision trees and diagrams. Computing Surveys,
14:593–623, 1982.

[Mo97] G. Montorsi. Soft-input soft-output modules to iteratively decode
networks of concatenated codes. In 26th Annual IEEE Commu-
nication Theory Workshop, Tucson, AZ, April 1997.

References 351

[Mo97b] M. Moher. Cross-Entropy and Iterative Detection. PhD thesis,
Carelton University, Ottowa, Canada, May 1997. (OCIEE-97-05).

[Mo98] M. Moher. An iterative multiuser decoder for near-capacity com-
munications. IEEE Trans. Commun., 46:870–880, July 1998.

[MoAu99] P. Moqvist and T. Aulin. Improved lower bounds on the sym-
bol error probability for ISI channels. Technical report, Dept. of
Comp. Eng., Chalmers Univ. of Technology, Goteborg, Sweden,
January 1999. http://www.ce.chalmers.se/staff/pmoqvist/.

[MoAu99b] P. Moqvist and T. Aulin. Certain aspects on map algorithms
for turbo codes. In Radio Vetenskap och Kommunikation, Karl-
skrona, Sweden, June 1999. (in English).

[MoAu00] P. Moqvist and T. Aulin. Power and bandwidth efficient serially
concatenated CPM with iterative decoding. In Proc. Globecom
Conf., San Francisco, CA, December 2000.

[MoGu98] M. Moher and P. Guinand. An iterative algorithm for asyn-
chronous coded multiuser detection. IEEE Communications Let-
ters, pages 229–231, August 1998.

[MuAh92] J. B. Mulligan and A. J. Ahumada, Jr. Principled halftoning
based on models of human vision. In Human Vision, Visual Proc.,
and Digital Display III, volume 1666 of Proc. SPIE, pages 109–
121. SPIE, February 1992.

[MuGeHu96] S. H. Müller, W. H. Gerstacker, and J. B. Huber. Reduced-state
soft-output trellis-equalization incorporating soft feedback. In
Proc. IEEE Globecom’96, pages 95–100, Westminster, London,
November 1996.

[MuWeJo99] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propaga-
tion for approximate inference: an empirical study. In Uncertainty
in AI, pages 737–740, June 1993.

[NeChKi96] M. A. Neifeld, K. M. Chugg, and B. M. King. Parallel data de-
tection in page-oriented optical memory. Optic Letters, 21:1481–
1483, September 1996.

[NePa94] D. L. Neuhoff and T. N. Pappas. Perceptual coding of images for
halftone display. IEEE Trans. Imag. Processing, 3(4):341–354,
July 1994.

[Pa00] P. Pawawongsak. EE577b VLSI design project: A design of
a turbo decoder chip. Technical Report CENG-00-005, Com-
puter Engineering Division, University of Southern California,
July 2000.

[PaNe95] T. N. Pappas and D. L. Neuhoff. Printer models and error diffu-
sion. IEEE Trans. Imag. Processing, 4(1):66–80, January 1995.

[PaNe99] T. N. Pappas and D. L. Neuhoff. Least-square model-based
halftoning. IEEE Trans. Imag. Processing, 8(8):1102–1116, Au-
gust 1999.

[Pe86] J. Pearl. Fusion, propagation, and structuring in belief networks.
Artif. Intell., 29(3):241–288, September 1986.

[Pe88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

352 ITERATIVE DETECTION

[PeSeCo96] L. Perez, J. Seghers, and D. Costello. A distance spectrum inter-
pretation of turbo codes. IEEE Trans. Inform. Theory, 42:1698–
1709, November 1996.

[PiDiGl97] A. Picart, P. Didier, and A. Glavieux. Turbo-detection: A new
approach to combat channel frequency selectivity. In Proc. Inter-
national Conf. Communications, Montreal, Canada, 1997.

[Po94] H. V. Poor. An Introduction to Signal Detection and Estimation.
Springer-Verlag, 1994.

[Pr91] J. Proakis. Adaptive equalization for TDMA digital mobile radio.
IEEE Trans. Veh. Tech., pages 333–341, May 1991.

[Pr95] J. G. Proakis. Digital Communications. McGraw-Hill, Inc., New
York, 3rd edition, 1995.

[Ra89] L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc. IEEE, 77:257–
286, February 1989.

[RaPoTz95] R. Raheli, A. Polydoros, and C-K. Tzou. Per-survivor processing:
A general approach to MLSE in uncertain environments. IEEE
Trans. Commun., 43:354–364, Feb–Apr. 1995.

[ReScAlAs98] M. C. Reed, C. B. Schlegel, P. D. Alexander, and J. A. Asenstor-
fer. Iterative multiuser detection for CDMA with FEC: Near-
single-user performance. IEEE Trans. Commun., 46:1693–1699,
December 1998.

[Ri98] S. Riedel. New symbol-by-symbol map decoding algorithm for
high-rate convolutional codes that use reciprocal dual codes.
IEEE J. Select. Areas Commun., pages 175–185, February 1998.

[RiShUr00] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of prov-
ably good low density parity check codes. IEEE Trans. Inform.
Theory, 2000. (submitted for publication).

[RiUr00] T. Richardson and R. Urbanke. The capacity of good low den-
sity parity check codes under message passing decoding. IEEE
Trans. Inform. Theory, 2000. (submitted for publication).

[RoSi97] M. E. Rollins and S. J. Simmons. Simplified per-survivor Kalman
processing in fast-frequency-selective fading channels. IEEE
Trans. Commun., 45:544–553, May 1997.

[RoViHo95] P. Robertson, E. Villebrum, and P. Hoeher. A comparison of
optimal and suboptimal MAP decoding algorithms operating in
the log domain. In Proc. International Conf. Communications,
pages 1009–1013, Seattle, WA, 1995.

[ScCaEn99] C. Schurgers, F. Catthoor, and M. Engles. Energy efficient data
transfer and storage organization for a MAP turbo decoder mod-
ule. In Proc. International Symposium on Low-Power Electronics
and Design, 1999.

[ScPa94] M. A. Schulze and T. N. Pappas. Blue noise and model-based
halftoning. In Human Vision, Visual Proc., and Digital Display
V, volume 2179 of Proc. SPIE, pages 182–194. SPIE, February
1994.

References 353

[SeFi95] J. P. Seymour and M. P. Fitz. Near-optimal symbol-by-symbol
detection schemes for flat rayleigh fading. IEEE Trans. Commun.,
pages 1525–1533, February/March/April 1995.

[Sh91] W-H. Sheen. Performance Analysis of Sequence Estimation Tech-
niques for Intersymbol Interference Channels. PhD thesis, Geor-
gia Institute of Technology, May 1991.

[ShSh90] G. R. Shafer and P. P. Shenoy. Probability propagation.
Ann. Math. Art. Intel., 2:327–352, 1990.

[Si89] S. Simmons. Breadth-first trellis decoding with adaptive effort.
IEEE Trans. Commun., 38:3–12, 1989.

[SmBe97] J. E. Smee and N. C. Beauliue. On the equivalence of the simul-
taneous and separate MMSE optimization of a DFE FFF and
FBF. IEEE Trans. Commun., 45(2):156–158, February 1997.

[St96] G. L. Stüber. Principles of Mobile Communication. Kluwer Aca-
demic Press, 1996.

[Ta81] R. M. Tanner. A recursive approach to low complexity codes.
IEEE Trans. Inform. Theory, IT-27:533–547, September 1981.

[Th00] P. Thiennviboon. Data detection for complex systems using
message-passing algorithms. Technical Report CSI-00-05-02,
Communication Sciences Institute, USC, Los Angeles, CA, May
2000. (Ph. D. Disertation proposal).

[Th00b] P. Thiennviboon, September 2000. Private communication.

[ThCh00] P. Thiennviboon and K. M. Chugg. A low-latency SISO via mes-
sage passing on a binary tree. In Proc. Allerton Conf., 2000.

[Ul87] R. A. Ulichney. Digital Halftoing. The MIT Press, Cambridge,
MA, 1987.

[Ul00] R. A. Ulichney. A review of halftoning techniques. In Color Imag-
ing: Device-Independent Color, Color Hardcopy, and Graphic
Arts V, volume 3963 of Proc. SPIE. SPIE, January 2000.

[Un74] G. Ungerboeck. Adaptive maximum likelihood receiver for
carrier-modulated data-transmission systems. IEEE Trans. Com-
mun., com-22:624–636, May 1974.

[Va68] H. L. Van Trees. Detection, Estimation, and Modulation Theory
Part I. John Wiley & Sons, 1968.

[VaFo91] G. Vannucci and G. J. Foschini. The minimum distance for dig-
ital magnetic recording partial responses. IEEE Trans. Inform.
Theory, 37(3):955–960, May 1991.

[VaWo98] M. C. Valenti and B. D. Woerner. Refined channel estimation
for coherent detection of turbo codes over flat-fading channels.
Electronics Letters, 34(17):1033–1039, August 1998.

[Ve84] S. Verdú. Optimum Multi-user Signal Detection. PhD thesis,
U. Illinois, Urbana-Champaign, August 1984.

[Ve86] S. Verdú. Minimum probability of error for asynchronous Gaus-
sian multiple-access channels. IEEE Trans. Inform. Theory,
32:85–96, January 1986.

354 ITERATIVE DETECTION

[Ve87] S. Verdú. Maximum likelihood sequence detection for intersymbol
interference channels: A new upper bound on error probability.
IEEE Trans. Inform. Theory, 33:62–68, January 1987.

[Ve98] S. Verdú. Multiuser Detection. Cambridge University Press, Cam-
bridge, UK, 1998.

[VePo84] S. Verdú and H. V. Poor. Backward, forward, and backward-
forward dynamic programming models under commutativity con-
ditions. In 23rd IEEE Conf. Decision Contr., pages 1081–1086,
December 1984.

[Vi67] A. J. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Trans. Inform. The-
ory, 13:259–260, April 1967.

[Vi98] A. J. Viterbi. Justification and implementation of the MAP de-
coder for convolutional codes. IEEE J. Select. Areas Commun.,
16:260–264, February 1998.

[ViMaPiRo00] F. Viglione, G. Masera, G. Piccinini, M. Ruo Roch, and M. Zam-
boni. A 50 Mbit/s iterative turbo-decoder. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibi-
tion, pages 176–80, March 2000.

[ViOm79] A. J. Viterbi and J. K. Omura. Principles of Digital Communi-
cation and Coding. McGraw-Hill, 1965.

[ViTa95] G. M. Vitetta and D. P. Taylor. Maximum likelihood de-
coding of uncoded and coded PSK signal sequences transmit-
ted over Rayleigh flat-fading channels. IEEE Trans. Commun.,
43(11):2750–2758, November 1995.

[Vu97] B. Vucetic. Wireless Communication: TDMA versus CDMA,
chapter Iterative Decoding Algorithms, pages 99–120. Kluwer
Academic Publishers, 1997. Eds.: S. G. Glisic and P. A. Leppänen.

[VuYu00] B. Vucetic and J. Yuan. Turbo Codes: Principles and Applica-
tions. Kluwer Academic Publishers, 2000.

[WaJuBe70] C. C. Watterson, J. R. Juroshek, and W. D. Bensema. Experi-
mental confirmation of an HF channel model. IEEE Trans. Com-
mun., COM-18(6):792–803, December 1970.

[WaPo99] X. Wang and H. V. Poor. Iterative (turbo) soft interference can-
cellation and decoding for coded CDMA. IEEE Trans. Commun.,
47:1046–1061, July 1999.

[We68] C. L. Weber. Elements of Detection and Signal Design. Springer-
Verlag, New York, 1968.

[We00] Y. Weiss. Correctness of local probability propagation in graph-
ical models with loops. Neural Comput., 12:1–41, 2000.

[WeEs93] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI
Design. Addison-Wesley, 2nd edition, 1993.

[Wi96] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis,
Linköping University (Sweden), 1996.

[WiLoKo95] N. Wiberg, H.-A. Loeliger, and R. Kötter. Codes and iterative
decoding on general graphs. In Proc. IEEE Symposium on Infor-
mation Theory, page 468, 1995.

References 355

[Wo97] P. W. Wong. Entropy constrained halftoning using multiple tree
coding. IEEE Trans. Imag. Processing, 6:1567–1579, November
1997.

[WoJa65] J. M. Wozencraft and I. M. Jacobs. Principles of Communication
Engineering. Waveland Press, 1990. (reprint of 1965 original from
John Wiley and Sons).

[WuWo99] Y. Wu and B. D. Woerner. The influence of quantization and fixed
point arithmetic upon the BER performance of turbo codes. In
Proc. Vehicular Tech. Conf., volume 2, pages 1683–1687, 1999.

[YuPa95] X. Yu and S. Pasupathy. Innovations-based MLSE for
Rayleigh fading channels. IEEE Trans. Commun., 43:1534–1544,
Feb./Mar./April 1995.

[ZhFiGe97] Y. Zhang, M. P. Fitz, and S. B. Gelfand. Soft output demod-

ulation on frequency-selective Rayleigh fading channels using

AR channel models. In Proc. Globecom Conf., pages 327–331,

Phoenix, Arizona, November 1997.

Index

2D channel model, 283
concatenated, 283
distributed, 290

2D SISO, 283, 286
2D4 algorithm, 292
concatenated, 286
complexity reduced, 289
composite, 288
modified, 287

2D system, 273

A-posteriori probability, 3, 16
Activation schedule, 97–98

on cycle-free graphs, 154
Adaptive SISO algorithm, 246

forward adaptive, 253
forward adaptive backward adaptive, 253
forward-backward fixed-lag, 250
forward-only fixed-lag, 252

Add-compare-select (ACS), 32, 130, 330

Backward survivor path, 206
Bayes decision rule, 3

average Bayes risk, 3
Belief degrading, 202
Belief network, 169
Bitwidth, 316
Block-level parallelism, 333
Broadcaster, 91

Carrier phase tracking, 259
for PCCC, 262
for SCCC, 259

Cellular mobile systems, 105
Channel state information, 105
Clarke spectrum, 107, 255
Clipping, 324
Clock cycle time, 330
Combining and marginalization problem, 21
Combining window, 129
Combining, 15

Completion operation, 38
Complexity reduction, 193
Concatenated detector, 78
Concatenated system, 77

parallel, 80
serial, 80

Connection cutting, 198
Continuous decoding algorithms, 131
Convergence slowing, 199
Convergence speedup, 202
Cross initial combining, 202, 291
Cycle-free graph, 150
Cycles, 145

Decision-feedback VA, 296
Deinterleaver, 88
Digital image halftoning, 300
Directed cycles, 146
Distance spectrum, 53, 62, 119
Duality principle, 19
Dynamic range, 320

Early detection, 197
Equalization, 105
Estimator-Correlator, 24, 243

forward recursive, 25, 243
forward-backward, 47, 243

Explicit index block diagram, 8
Extrinsic information, 87

Factor graph, 172
Fading, 105

frequency selective, 105
Finite state machine, 28
Finite state machine

simple, 29
Fixed-interval (FI), 129
Fixed-lag (FL), 129, 250
Fixed-point, 316
Floating-point, 316
Flooding schedule, 150

357

358 ITERATIVE DETECTION

Folding condition, 45
Forney structure, 42
Forward survivor path, 206
Forward-backward algorithm, 37
Forward-backward FI-SISO, 130
Forward-backward FL-SISO, 131
Forward-backward tree-SISO, 167
Forward-only FL-SISO, 133
Full state completion, 208
Fully-parallel algorithm 1 (FPA1), 291
Fully-parallel algorithm 2 (FPA2), 293
Fusion set, 216

Gaussian blur, 295
Generalized distributive law, 21
Global error event, 59
Global system, 78
Graph with cycles, 150
Graph, 145

bi-partite, 146
directed, 146
undirected, 172

Graphical model, 145

Hard decision feedback, 195

Implicit index block diagram, 7
Inner iteration, 212
Interleaver design, 328
Interleaver, 88

semi-random, 118
Intrinsic information, 87
Iteration, 96
Iterative detection, 98
Iterative detector, 96

Junction tree, 173

Kalman filter, 28

L-early completion, 142
Leaf nodes, 155
Least mean square (LMS), 247
Like-signal interference, 125
Likelihood, 4

average, 4
generalized, 5

Loopy graph, 150
Low density parity check code, 165

MAP decision rule, 4
page detection, 274
sequence detection, 8
symbol detection, 9

Marginal soft information, 78
Marginal soft inverse, 85

explicit indexed, 93
Marginalization, 15
Memoryless mapper, 88
Message passing, 144

on cycle-free graphs, 153
optimality condition, 146

Message passing algorithm, 145
min∗(·) operator, 14
Minimum distance, 53, 119
Minimum distance rule, 12
Minimum half-window, 142
Minimum-lag, 142
Multiple access interference, 125
Multiuser channel, 120

asynchronous, 123
synchronous, 127

Multiuser detection, 120

Neighborhood, 216
Non-minimum phase, 211
Non-zero tap, 215

adjacent, 215
grouped, 215
isolated, 215
pivot (set), 216

Normalization, 101
metric domain, 101
metric scaling, 102
probability domain, 101
sum-to-unity, 101, 196

Operation simplification, 194
Outer iteration, 212

Page detection, 274
Page-oriented optical memory (POM), 294
Pairwise (binary) decision, 50
Pairwise error event, 59
Pairwise error probability, 51, 63
Parallel concatenated convolutional code

(PCCC), 111, 262
Parallel to serial converter, 88
Pearl’s belief propagation algorithm (BPA),

169
Per-survivor processing, 247
Performance bound, 49

lower bound, 54, 278
union bound, 50
upper bound, 51, 277

Phase lock loop, 259
decision directed, 259
mixed-mode, 264

Pipelining, 135, 331
Prefix operation, 139
Probability truncation, 195

Quantization, 316
channel metric, 316
requantization, 325
soft-out metric, 323
state metric, 320

initialization, 326

Radix-r architecture, 334

Index 359

Random biasing, 302
Recursive least squares (RLS), 25
Recursive systematic convolutional code

(RSC), 112
Reduced-state SISO (RS-SISO), 205
Ripple carry architecture, 332

Self-iteration, 185, 203
RS-SISO, 208

Semi-ring algorithm, 19
Sequence and parameter marginalization,

241
joint (approximation), 248
joint (exact), 244
separate (approximation), 246
separate (exact), 243

Serial to parallel converter, 88
Serially concatenated convolutional code

(SCCC), 119, 259
Signature waveform, 121
Simple error pattern, 276
Simple error sequence, 61
Simple sequence, 60
SISO algorithm for FSM, 128
Sliding-window (SW), 129
Sliding-window SISO, 136
Soft information filtering, 200
Soft information, 9, 15

APP, 15
equivalent, 18
GAP, 15
isomorphic, 18
M∗SM, 15
MSM, 15
threshold-consistent, 18
thresholding, 9

Soft inverse, 85, 242
Soft output demodulator (SODEM), 89
Soft-in information, 85
Soft-in/soft-out algorithm (SISO), 87
Soft-out information, 85
Soft-output algorithm (SOA), 78
Soft-Output Viterbi Algorithm (SOVA), 143

improved, 144
Sparse ISI (S-ISI), 214

discrete, 215

regular, 215
simple, 215

Sparse SISO (S-SISO), 218
decision feedback, 222
distributed, 218
grouped, 220
multiple, 222

State metric memory, 328
State truncation, 205
Stopping criterion, 96, 99
Subsystem, 77
Sufficient set, 51
Sufficient statistics, 6
Suffix operation, 139
Super-state, 242
Super-transition, 242
Support region, 273
Support set, 216
Survivor sequence, 32
Survivor state, 206
System realization, 168

constructive, 169

Tanner-Wiberg graph, 172
Thresholding, 9
Throughput, 330
Time diversity, 105
Tree-structured SISO, 138, 166
Trellis diagram, 28
Trellis splicing, 197
Truncated trellis state, 205
Truncated trellis transition, 205
Turbo code, 111
Two-way schedule, 150

Undirected cycles, 150
Ungerboeck structure, 42

Ungerboeck metric, 43, 121
Uniform side information (USI), 55

pairwise, 55

Valid configuration check, 161
Vector symbol, 276, 284
Viterbi algorithm (VA), 32

Warping, 325
Whitened matched filter, 44

