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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it
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Principles for Designing Datasets
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“Neural Networks are Lazy”
training data

trained network 
classification 

“cat”

“cat”

neural networks will always find the easiest way to solve a problem 
(e.g., green background means “cat”)

contributions from Sourya Dey
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Principles for Designing Datasets
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“Neural Networks are Lazy”

• Include maximum diversity in your dataset

•Think lazy like a neural network and design your dataset for 
maximum coverage

• Include difficult and extremely difficult examples in your 
dataset (even if you have to create them!)

•Giving tough examples will not make your trained network 
worse at the easy cases!


•You can never have too much (valid) data

is the principle that should guide your dataset design

You want to maximize the coverage in your dataset

e.g., cats with non-green backgrounds were not covered in previous example
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How Much Data is Needed (MLPs)?

4 EE 599 Syllabus – c�K. M. Chugg – January 13, 2019

– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

razor, the essence of which is to select the “simplest” function in the absence of any prior
knowledge to the contrary. In the context of our present discussion, the simplest function
means the smoothest function that approximates the mapping for a given error criterion,
because such a choice generally demands the fewest computational resources. Smooth-
ness is also natural in many applications, depending on the scale of the phenomenon
being studied. It is therefore important to seek a smooth nonlinear mapping for ill-posed
input–output relationships, so that the network is able to classify novel patterns correctly
with respect to the training patterns (Wieland and Leighton, 1987).

Sufficient Training-Sample Size for a Valid Generalization

Generalization is influenced by three factors: (1) the size of the training sample and
how representative the training sample is of the environment of interest, (2) the archi-
tecture of the neural network, and (3) the physical complexity of the problem at hand.
Clearly, we have no control over the lattermost factor. In the context of the other two
factors, we may view the issue of generalization from two different perspectives:

• The architecture of the network is fixed (hopefully in accordance with the physical
complexity of the underlying problem), and the issue to be resolved is that of deter-
mining the size of the training sample needed for a good generalization to occur.

• The size of the training sample is fixed, and the issue of interest is that of deter-
mining the best architecture of network for achieving good generalization.

Both of these viewpoints are valid in their own individual ways.
In practice, it seems that all we really need for a good generalization is to have the

size of the training sample, N, satisfy the condition

(4.87)

where W is the total number of free parameters (i.e., synaptic weights and biases) in the
network, ! denotes the fraction of classification errors permitted on test data (as in pat-
tern classification), and O(·) denotes the order of quantity enclosed within. For exam-
ple, with an error of 10 percent, the number of training examples needed should be
about 10 times the number of free parameters in the network.

Equation (4.87) is in accordance with Widrow’s rule of thumb for the LMS algo-
rithm, which states that the settling time for adaptation in linear adaptive temporal fil-
tering is approximately equal to the memory span of an adaptive tapped-delay-line filter
divided by the misadjustment (Widrow and Stearns, 1985; Haykin, 2002). The misad-
justment in the LMS algorithm plays a role somewhat analogous to the error ! in
Eq. (4.87). Further justification for this empirical rule is presented in the next section.

4.12 APPROXIMATIONS OF FUNCTIONS

A multilayer perceptron trained with the back-propagation algorithm may be viewed
as a practical vehicle for performing a nonlinear input–output mapping of a general
nature.To be specific, let m0 denote the number of input (source) nodes of a multilayer

N = O aW
! b  

166 Chapter 4 Multilayer Perceptrons

(Number of 
parameters) 
divided by 

 (target error rate)

Fashion MNIST 
Example

error rate ~ 0.1

training examples ~ 60,000

Suggests ~ 600K trainable 
parameters! 

Obviously, this is a big-
O rule of thumb!
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How Much Data is Needed (general)?
Vapnik-Chervonenkis (VC) Dimension

4 EE 599 Syllabus – c�K. M. Chugg – January 13, 2019

– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

http://www.cs.rpi.edu/~magdon/courses/LFD-Slides/SlidesLect07.pdf

The VC Dimension dvc

mH(N) ∼ Nk−1

The tightest bound is obtained with the smallest break point k∗.

Definition [VC Dimension] dvc = k∗ − 1.

The VC dimension is the largest N which can be shattered (mH(N) = 2N).
N ≤ dvc: H could shatter your data (H can shatter some N points).

N > dvc: N is a break point for H; H cannot possibly shatter your data.

mH(N) ≤ Ndvc + 1 ∼ Ndvc

Eout(g) ≤ Ein(g) + O

(√

dvc logN
N

)

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 3 /22 dvc versus number of parameters −→

A Single Parameter Characterizes Complexity

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|
δ

in-sample error

model complexity

out-of-sample error

|H|

E
rr
or

|H|∗

↓

Eout(g) ≤ Ein(g) +

√

8

N
log

4((2N)dvc + 1)

δ

︸ ︷︷ ︸

penalty for model complexity

Ω(dvc)
in-sample error

model complexity

out-of-sample error

VC dimension, dvc

E
rr
or

d∗
vc

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 8 /22 Sample complexity −→

Sample Complexity: How Many Data Points Do You Need?

Set the error bar at ε.

ε =

√

8

N
ln
4((2N)dvc + 1)

δ

Solve for N :

N =
8

ε2
ln
4((2N)dvc + 1)

δ
= O (dvc lnN)

Example. dvc = 3; error bar ε = 0.1; confidence 90% (δ = 0.1).
A simple iterative method works well. Trying N = 1000 we get

N ≈
1

0.12
log

(
4(2000)3 + 4

0.1

)

≈ 21192.

We continue iteratively, and converge to N ≈ 30000.
If dvc = 4, N ≈ 40000; for dvc = 5, N ≈ 50000.

(N ∝ dvc, but gross overestimates)

Practical Rule of Thumb: N = 10× dvc

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 9 /22 Theory versus practice −→

VC Dimension difficult 
to compute for complex 
(deep learning models)
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Principles for Designing Datasets
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data (and ML) evaluated via end-to-end performance

“all datasets are incomplete, but some have 
enough coverage to be useful”

much of the attention is here, but in practice, more 
iteration/time spent on data engineering

collect, augment, 
synthesis dataset

Machine Learning 
algorithm

works 
sufficiently 

well?

done

yes

no
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Principles for Designing Datasets
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Coverage

accept that there will be mislabeled data in huge datasets due to 
human error or ambiguities

correct contamination effects, remove misleading or ambiguous 
examples.  Automate this.

use synthetic means to produce better coverage and more difficult 
examples from your baseline data.  In some cases, you may create 

synthetic data to augment your data

make your neural network work (not be lazy) by giving examples of 
every scenario you expect it to work in

Contamination

Cleaning

Augmentation

Collection make your neural network work (not be lazy) by giving examples of 
every scenario you expect it to work in

Labeling labor intensive task

(ways around this: synthetic data, use ML to label, $$$)
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Principles for Designing Datasets
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In practice, designing your dataset is the most important aspect 
in developing a deep-learning solution

90% of effort is spent on dataset design and maintenance 

(my experience)

this is not apparent from reading papers and books because most materials 
focus on using publicly available datasets that serve as test benches

in our class, we are crowd-sourcing two datasets to try to 
illustrate the practical issues, but still not at a practical scale
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Dataset Contamination / Cleaning
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“cat?”

many datasets contain mislabeled or ambiguous data

“dog?”

Ground	truth	

Predicted

contributions from Sourya Dey
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Dataset Contamination / Cleaning
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Contamination may be relative to the inference task

https://youtu.be/D9J91Iq52Bk?t=29

example: Google’s audioset

sample of “engine”:

also has people speaking…

is this contamination?

task dependent

ex1: classify speech vs engines

ex2: classify jet engines vs car engines

https://youtu.be/D9J91Iq52Bk?t=29
https://research.google.com/audioset/
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Dataset Contamination / Cleaning
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Not unusual to have 5-10% contamination in your dataset

training will still work

if you expect ~99.9% accuracy on your task, contamination is 
more important than if you expect ~ 70% accuracy on your task
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Dataset Contamination / Cleaning
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What could go wrong with this masking method in this example?

Correct labels that are incorrect

Remove ambiguous examples

Mask/modify to make ambiguous 
examples less ambiguous
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Dataset Contamination / Cleaning
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Example: Adult Dataset

https://archive.ics.uci.edu/ml/datasets/adult

Features:

• Age

• Working class

• Education

• Marital status

• Occupation

• Race

• Sex

• Capital gain

• Hours per week

• Native country

how to handle missing fields in datasets?

Delete an entry — does this create a bias?

e.g., do low education responses leave blank fields?

Fill-in for missing data

replace numerical data by mean, e.g., age = 40

replace categorical data by mode, e.g., education = high school

replace missing data with a marker that can be incorporated into your loss — 
e.g., age = -1 and write custom loss to not account for this age
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Dataset Contamination / Cleaning
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this is a joke from twitter, but makes the point

(Imagenet is one of the largest image classification datasets and often used as a benchmark)

https://twitter.com/karpathy/status/1231378194948706306
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Augmentation
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increase the diversity and/or difficulty of your training data 
through pre-processing

rotate

Examples (images):
flip reflect blur (change resolution)

add noise
“cut-out”

(remove 
patches)

translate

Examples (audio):

add noise add 
reverb

filter/
equalize

camera 
modeling

resample 
(change 
sample 
rates)

mic/speaker 
modeling

Will see in CNNs that there are some nice 
built in image augmentation tools in python
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Example: English vs. Hindi vs. Mandarin

17

HW4: Computer Vision (CNN) problem (Jaili designing)

silence?

HW5: RNN for language classification

part of HW4 will be for you to generate audio samples for 
the language classification problem

what to do about….

noise?
mic (sample rate)?

speaker gender, age, accent?

without the class to generate, where would you get your data?
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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it
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Typical Flow for Deep Learning Development  

19

General Good Practice

Get a good baseline:

solve the problem without a neural network first if possible

use a published baseline network as a baseline if you know the problem 
requires deep learning

Develop a Full Dev Pipeline (scripts):

viewing/interpreting datasets and examples

cultivating/updating your dataset

training with version control and auto-documentation

testing and visualization of the result on real-world data

keep your training simple to start

overfit a subset of data to make sure all is 
working before going big
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Typical Flow for Deep Learning Development  
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automate everything (python, bash, db, git)

inspect everything with the human eye

sources of data harvesting 
tools

(public internet, public datasets, 
private, synthetic)

wget, youtubedl, web 
scrapers 

labeling

do during collection if 
possible

cleaning

dataset design
data analysis, 

inspection, 
visualization

augmentation

may also be part of data 
loader depending on 

storage vs computation

train

format 
organize

for data loader and 
low OS filesystem

display/query system for 
error inspection

e.g., webpage for viewing labels, 
decisions, and performance on real 

world examples

store models, learning 
curves, scripts, SHA, MDA

popular blog by Telsa Sr. Director of AI hits many of these same points

http://karpathy.github.io/2019/04/25/recipe/
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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it
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Common Data Normalization Methods
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example: rating football (soccer) players

Feature Units Range

Height Meters 1.5	to	2

Weight Kilograms 50	to	100

Shot	speed Kmph 120	to	180

Shot	curve Degrees 0	to	10

Age Years 20	to	35

Minutes	played Minutes 5,000	to	20,000

Fake	diving? -- Yes	/	No

contributions from Sourya Dey

different features on different scales…

normalize the data
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Common Data Normalization Methods
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recall: data matrix 

contributions from Sourya Dey

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2 () min
w

ky �Xwk2

y =

2

6666664

y0

y1
...

yN�1

3

7777775
x =

2

6666664

x0

x1
...

xN�1

3

7777775

ŷ = wtx

w = R̂
�1
x r̂xy

r̂xy = R̂xy = hxy i
LLSE = r̂2y � rtxyR

�1
x rxy

R̂xw = r̂xy

X =

2

6666664

xt
0

xt
1
...

xt
N�1

3

7777775
Xt =

h
x0 x1 · · · xN�1

i

wLLSE =
r̂yx
r̂x

ŷ =
r̂yx
r̂x

x

r̂x =
⌦
x2

↵
=

1

N

N�1X

n=0

x2n

r̂yx = h yx i = 1

N

N�1X

n=0

ynxn

LLSE =
⌦
[y � wLLSEx]

2
↵

=
⌦
y2

↵
�
⌦
[wLLSEx]

2
↵

= r̂y � r̂2yxr̂x

= �̂2
y(1� ⇢̂2)

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

K̂x = R̂x � m̂xm̂
t
x (3)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (4)

=
1

N

N�1X
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t (5)

m̂x = hx iD =
1

N

N�1X
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xn (1)

R̂x =
⌦
xxt

↵
D =

1

N
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t
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t
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=
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⌦
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Common Data Normalization Methods
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feature-wise standardization

contributions from Sourya Dey

scale each dimension of feature vector to mean 0, variance 1

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
XtX (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

feature-wise “minmax” normalization

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
XtX (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

scale each dimension of feature vector to range [0,1]

Or
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d
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nda
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Common Data Normalization Methods
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previous methods do not account for feature correlation across dimensions…

contributions from Sourya Dey

do this by “whitening” the feature vector

yields a feature vector with uncorrelated, standard components
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KL-Expansion

Always exists because K is nnd-symmetric

26

c�K.M. Chugg - February 25, 2020– TITLE 3

1.3 KL Expansion

Kxek = �kek k = 0, 1, . . . D � 1 (Eigen equation)

etkel = �[k � l] �k � 0 (orthonormal e-vectors )

x(u) =
D�1X

k=0

Xk(u)ek (change of coordinates)

Xk(u) = etkx(u)

E {Xk(u)Xl(u)} = etkKxel = �k�[k � l] (uncorrelated components)

Kx =

N�1X

k=0

�keke
t
k = E⇤Et

(Mercer’s Theorem)

E
�
kx(u)k2

 
= tr (Kx) =

D�1X

k=0

�k (Total Energy)

K =


�
2
1 ⇢�1�2

⇢�1�2 �
2
2

�

K =


1 0

0 1

�

K =


1 0.7

0.7 1

�

K =


1 �0.4

�0.4 1

�

K =


2 0

0 1

�

2 MMSE Estimation

fopt(x)

min
f(·)

E
�
ky(u)� f(x(u))k2

 

fMMSE(x) = my|x(x)

= E {y(u)|x(u) = x}

=

Z
ypy(u)|x(u)(y|x)dy
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KL-Expansion

Can always find orthonormal set of e-vectors of K

These are an alternate coordinate systems (rotations, reflections)

in this eigen-coordinate system, the components are uncorrelated

The eigen-values are the variant (energy) in each of these principle directions

(principle components)

(can be used to reduce dimensions by throwing out components with low energy)

27
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KL-Expansion

Multiplying by E^t makes the components 
uncorrelated 

vk(u) = Xk(u) = etkx(u) k = 0, 1, . . . D � 1

v(u) = Etx(u)

Kv = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et

vk(u) = Xk(u) = etkx(u) k = 0, 1, . . . T � 1

v(u) = Et
[:T ]x(u) first T components

Kv = ⇤[:T ] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kv(u)k2

 
=

T�1X

k=0

�k

E
�
kv(u)� x(u)k2

 
=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

dk(u) = etkx(u) k = 0, 1, . . . D � 1

d(u) = Etx(u)

Kd = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et
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Random Vectors

x(u) y(u) = Hx(u)
H

(n⇥ 1) (m⇥ 1)

(m⇥ n)

my = Hmx

Ry = HRxH
t

Ky = HKxH
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Special case
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�
y2(u)

 
= btRxb
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�
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�
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�
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H

t

= HRxH
t

example math

Note that covariance/correlation matrices are symmetric, non-negative definite 
29
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KL-Expansion - Relation to Whitening

For any orthogonal matrix U, this 
whitening matrix also works:
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⇤
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Data Normalization - Whitening

31

Do this using the sample statistics over the training data

contributions from Sourya Dey

normalizes each feature vector component to mean 0, variance 1

whitened feature components are uncorrelated

all feature vector components are equally important

aka: “zero component analysis”
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Data Normalization - Global Contrast Normalization

32contributions from Sourya Dey

Increase contrast (standard deviation of pixels) of each image, one at a time
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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it

33
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KL-Expansion - Relation to PCA

PCA is simply taking only the T most important e-directions or 
principle components

c�K.M. Chugg - February 13, 2019– TITLE 2
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KL/PCA for Data
Everything is the same, except we use data-averaging instead 

of E{.}

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T ] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

Both KL/PCA can be applied to R or K.  Center x if you want to use 
K 

x <— x - m 
(same if mean is zero)

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2 () min
w

ky �Xwk2

y =

2

6666664

y0

y1
...

yN�1

3

7777775
x =

2

6666664

x0

x1
...

xN�1

3

7777775
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KL/PCA for Data
PCA for data

apply to the “stacked” data 
matrix
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SVD for an arbitrary matrix A
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U, V are orthogonal matrices, sigma is 
“diagonal” with singular values on 

diagonal
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Use SVD to expand matrix A^t A

The SVD for A provides the KL factorization for 
the non-negative definition, symmetric matrix A^t 

A
Note that this is also the SVD for A^t A
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KL/PCA for Data — relation to SVD
SVD for stacked data matrix X

Equivalent approaches:
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1) Find SVD of X, take V

2) Find Eigen decomposition of X^t X, take E = V

3) Find SVD of X^t X, take V = U = E
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KL/PCA for Data — relation to SVD
Equivalent approaches:

1) Find SVD of X, take V

2) Find Eigen decomposition of X^t X, take E = V

3) Find SVD of X^t X, take V = U = E
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Sourya noted that he uses method 3, with 
numpy.linalg.svd, instead of method 2, with 

numpy.linalg.eig, since the SVD returns the e-vectors in 
sorted order and Eig does not

39 contributions from Sourya Dey



© Keith M. Chugg, 2020

Linear Discriminant Analysis (LDA)

40

Similar to PCA but is supervised and for classification problem

Increase variance 
between classes

Decrease variance 
within a class

LDA keeps features which 
can discriminate well 

between classes

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html
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Linear Discriminant Analysis (LDA)
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Similar to PCA but is supervised and for classification problem

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html
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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it
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Linear Discriminant Analysis (LDA)
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Similar to PCA but is supervised and for classification problem

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html
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Pre-Processing (PCA, LDA, Normalization)

44

Use statistics collected from the Training Data only

apply same transformation to training, val, test data

Note that many of these techniques can be viewed as a fixed linear 
layer at the start of the network that is not trained as part of BP

alternative is to have a “bottleneck" layer for dimensionality 
reduction (i.e., learn ~ LDA during BP)

batch-normalization similarly is a method of learning normalization
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Outline for Slides

• Principles for designing datasets


• Typical flow for deep learning development


• Common normalization methods


• PCA and LDA for dimensionality reduction


• Where to find data and how to grab it
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Datasets Available in tf.keras

46

small number of “built-in” 
datasets to get started 

experimenting

https://keras.io/datasets/

https://www.tensorflow.org/api_docs/python/tf/keras/datasets

https://keras.io/datasets/
https://www.tensorflow.org/api_docs/python/tf/keras/datasets
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Datasets Available in tf.keras
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•MNIST (MLP / CNN): 
•28x28 images, 10 classes

• Initial benchmark

•SOTA testacc: >99%

•CIFAR-10, -100 (CNN): 
•32x32x3 images (RGB), 10 or 100 classes

•Widely used benchmark

•SOTA testacc: ~97%, ~84%

•Fashion MNIST (MLP / CNN): 
•28x28 images, 10 classes

•More challenging than 
MNIST, but same parameters

•SOTA testacc: ~94%
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Datasets Available in tf.keras
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•IMDB Movie reviews sentiment classification 
•25,000 movies reviews from IMDB

• labeled by sentiment (positive/negative)

•words are indexed by overall frequency in the dataset

•Reuters newswire topics classification 
•11,228 newswires from Reuters, labeled over 46 topics. 
As with the IMDB dataset, each wire is encoded as a 
sequence of word indexes (same conventions).

•Boston housing price 
•13 attributes (features) of 
houses at different locations 
around the Boston suburbs in 
the late 1970s

• labels are hous prices (late 
1970s)
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Datasets Available in Pytorch
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image datasets

“built-in” to tf.keras or pytorch just 
means that there is a loader and the 

framework will handle the initial 
download

text datasets audio datasets

https://pytorch.org/docs/stable/torchvision/datasets.html
https://pytorch.org/text/datasets.html
https://pytorch.org/audio/datasets.html
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Common Datasets in Computer Vision
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•Imagenet: 
•> 14M images, 224x224x3, with 1000 
classes

•Common benchmark for image 
classification

•SOTA testacc: >84%

https://keras.io/applications/
https://www.tensorflow.org/api_docs/python/tf/keras/applications

tf.keras has many of the 
popular image classification 

networks already pre-defined 
and also pre-trained on 

imagenet

https://keras.io/applications/
https://www.tensorflow.org/api_docs/python/tf/keras/applications
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Common Datasets in Computer Vision
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•Microsoft Coco (common objects in context): 
•330,000 images, 80 categories

•Labeling for segmentation and object detection

http://cocodataset.org/#home

http://cocodataset.org/#home
https://keras.io/applications/
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Common Datasets in Computer Vision
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Youtube-8M/#home

YouTube-8M Segments Dataset

https://research.google.com/youtube8m/
https://keras.io/applications/
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Datasets for Speech/Audio
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Libravox

1000 hours of speech and transcripts taken from free 
on-line audio book website

TIMIT

speech + transcript

Linguistic Data Consortium (LDC)

some free, some $$$

http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://catalog.ldc.upenn.edu/LDC93S1
https://www.ldc.upenn.edu
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Datasets for Speech/Audio
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Libravox

1000 hours of speech and transcripts taken from free 
on-line audio book website

TIMIT

speech + transcript
Linguistic Data Consortium (LDC)

(some free, some $$$)

Google’s audioset

audio events (tagged sounds)

http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://catalog.ldc.upenn.edu/LDC93S1
https://www.ldc.upenn.edu
https://research.google.com/audioset/
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Other Sources of Data
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Kaggle datasets for on-line ML competitions 

 

UCI ML Archive

Google Dataset Search

Amazon Web Services Open Data

https://www.kaggle.com/datasets
https://catalog.ldc.upenn.edu/LDC93S1
http://www.apple.com
http://archive.ics.uci.edu/ml/index.php
https://toolbox.google.com/datasetsearch
https://registry.opendata.aws/
https://www.kaggle.com/datasets

