
© Keith M. Chugg, 2020

Working With Data

EE599 Deep Learning

Keith M. Chugg
Spring 2020

1

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

2

© Keith M. Chugg, 2020

Principles for Designing Datasets

3

“Neural Networks are Lazy”
training data

trained network
classification

“cat”

“cat”

neural networks will always find the easiest way to solve a problem
(e.g., green background means “cat”)

contributions from Sourya Dey

© Keith M. Chugg, 2020

Principles for Designing Datasets

4

“Neural Networks are Lazy”

• Include maximum diversity in your dataset

•Think lazy like a neural network and design your dataset for
maximum coverage

• Include difficult and extremely difficult examples in your
dataset (even if you have to create them!)

•Giving tough examples will not make your trained network
worse at the easy cases!

•You can never have too much (valid) data

is the principle that should guide your dataset design

You want to maximize the coverage in your dataset

e.g., cats with non-green backgrounds were not covered in previous example

© Keith M. Chugg, 2020

How Much Data is Needed (MLPs)?

4 EE 599 Syllabus – c�K. M. Chugg – January 13, 2019

– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

razor, the essence of which is to select the “simplest” function in the absence of any prior
knowledge to the contrary. In the context of our present discussion, the simplest function
means the smoothest function that approximates the mapping for a given error criterion,
because such a choice generally demands the fewest computational resources. Smooth-
ness is also natural in many applications, depending on the scale of the phenomenon
being studied. It is therefore important to seek a smooth nonlinear mapping for ill-posed
input–output relationships, so that the network is able to classify novel patterns correctly
with respect to the training patterns (Wieland and Leighton, 1987).

Sufficient Training-Sample Size for a Valid Generalization

Generalization is influenced by three factors: (1) the size of the training sample and
how representative the training sample is of the environment of interest, (2) the archi-
tecture of the neural network, and (3) the physical complexity of the problem at hand.
Clearly, we have no control over the lattermost factor. In the context of the other two
factors, we may view the issue of generalization from two different perspectives:

• The architecture of the network is fixed (hopefully in accordance with the physical
complexity of the underlying problem), and the issue to be resolved is that of deter-
mining the size of the training sample needed for a good generalization to occur.

• The size of the training sample is fixed, and the issue of interest is that of deter-
mining the best architecture of network for achieving good generalization.

Both of these viewpoints are valid in their own individual ways.
In practice, it seems that all we really need for a good generalization is to have the

size of the training sample, N, satisfy the condition

(4.87)

where W is the total number of free parameters (i.e., synaptic weights and biases) in the
network, ! denotes the fraction of classification errors permitted on test data (as in pat-
tern classification), and O(·) denotes the order of quantity enclosed within. For exam-
ple, with an error of 10 percent, the number of training examples needed should be
about 10 times the number of free parameters in the network.

Equation (4.87) is in accordance with Widrow’s rule of thumb for the LMS algo-
rithm, which states that the settling time for adaptation in linear adaptive temporal fil-
tering is approximately equal to the memory span of an adaptive tapped-delay-line filter
divided by the misadjustment (Widrow and Stearns, 1985; Haykin, 2002). The misad-
justment in the LMS algorithm plays a role somewhat analogous to the error ! in
Eq. (4.87). Further justification for this empirical rule is presented in the next section.

4.12 APPROXIMATIONS OF FUNCTIONS

A multilayer perceptron trained with the back-propagation algorithm may be viewed
as a practical vehicle for performing a nonlinear input–output mapping of a general
nature.To be specific, let m0 denote the number of input (source) nodes of a multilayer

N = O aW
! b

166 Chapter 4 Multilayer Perceptrons

(Number of
parameters)
divided by

 (target error rate)

Fashion MNIST
Example

error rate ~ 0.1

training examples ~ 60,000

Suggests ~ 600K trainable
parameters!

Obviously, this is a big-
O rule of thumb!

5

© Keith M. Chugg, 2020

How Much Data is Needed (general)?
Vapnik-Chervonenkis (VC) Dimension

4 EE 599 Syllabus – c�K. M. Chugg – January 13, 2019

– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

http://www.cs.rpi.edu/~magdon/courses/LFD-Slides/SlidesLect07.pdf

The VC Dimension dvc

mH(N) ∼ Nk−1

The tightest bound is obtained with the smallest break point k∗.

Definition [VC Dimension] dvc = k∗ − 1.

The VC dimension is the largest N which can be shattered (mH(N) = 2N).
N ≤ dvc: H could shatter your data (H can shatter some N points).

N > dvc: N is a break point for H; H cannot possibly shatter your data.

mH(N) ≤ Ndvc + 1 ∼ Ndvc

Eout(g) ≤ Ein(g) + O

(√

dvc logN
N

)

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 3 /22 dvc versus number of parameters −→

A Single Parameter Characterizes Complexity

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|
δ

in-sample error

model complexity

out-of-sample error

|H|

E
rr
or

|H|∗

↓

Eout(g) ≤ Ein(g) +

√

8

N
log

4((2N)dvc + 1)

δ

︸ ︷︷ ︸

penalty for model complexity

Ω(dvc)
in-sample error

model complexity

out-of-sample error

VC dimension, dvc

E
rr
or

d∗
vc

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 8 /22 Sample complexity −→

Sample Complexity: How Many Data Points Do You Need?

Set the error bar at ε.

ε =

√

8

N
ln
4((2N)dvc + 1)

δ

Solve for N :

N =
8

ε2
ln
4((2N)dvc + 1)

δ
= O (dvc lnN)

Example. dvc = 3; error bar ε = 0.1; confidence 90% (δ = 0.1).
A simple iterative method works well. Trying N = 1000 we get

N ≈
1

0.12
log

(
4(2000)3 + 4

0.1

)

≈ 21192.

We continue iteratively, and converge to N ≈ 30000.
If dvc = 4, N ≈ 40000; for dvc = 5, N ≈ 50000.

(N ∝ dvc, but gross overestimates)

Practical Rule of Thumb: N = 10× dvc

c© AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 9 /22 Theory versus practice −→

VC Dimension difficult
to compute for complex
(deep learning models)

6

© Keith M. Chugg, 2020

Principles for Designing Datasets

7

data (and ML) evaluated via end-to-end performance

“all datasets are incomplete, but some have
enough coverage to be useful”

much of the attention is here, but in practice, more
iteration/time spent on data engineering

collect, augment,
synthesis dataset

Machine Learning
algorithm

works
sufficiently

well?

done

yes

no

© Keith M. Chugg, 2020

Principles for Designing Datasets

8

Coverage

accept that there will be mislabeled data in huge datasets due to
human error or ambiguities

correct contamination effects, remove misleading or ambiguous
examples. Automate this.

use synthetic means to produce better coverage and more difficult
examples from your baseline data. In some cases, you may create

synthetic data to augment your data

make your neural network work (not be lazy) by giving examples of
every scenario you expect it to work in

Contamination

Cleaning

Augmentation

Collection make your neural network work (not be lazy) by giving examples of
every scenario you expect it to work in

Labeling labor intensive task

(ways around this: synthetic data, use ML to label, $$$)

© Keith M. Chugg, 2020

Principles for Designing Datasets

9

In practice, designing your dataset is the most important aspect
in developing a deep-learning solution

90% of effort is spent on dataset design and maintenance

(my experience)

this is not apparent from reading papers and books because most materials
focus on using publicly available datasets that serve as test benches

in our class, we are crowd-sourcing two datasets to try to
illustrate the practical issues, but still not at a practical scale

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

10

“cat?”

many datasets contain mislabeled or ambiguous data

“dog?”

Ground	truth	

Predicted

contributions from Sourya Dey

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

11

Contamination may be relative to the inference task

https://youtu.be/D9J91Iq52Bk?t=29

example: Google’s audioset

sample of “engine”:

also has people speaking…

is this contamination?

task dependent

ex1: classify speech vs engines

ex2: classify jet engines vs car engines

https://youtu.be/D9J91Iq52Bk?t=29
https://research.google.com/audioset/

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

12

Not unusual to have 5-10% contamination in your dataset

training will still work

if you expect ~99.9% accuracy on your task, contamination is
more important than if you expect ~ 70% accuracy on your task

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

13

What could go wrong with this masking method in this example?

Correct labels that are incorrect

Remove ambiguous examples

Mask/modify to make ambiguous
examples less ambiguous

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

14

Example: Adult Dataset

https://archive.ics.uci.edu/ml/datasets/adult

Features:

• Age

• Working class

• Education

• Marital status

• Occupation

• Race

• Sex

• Capital gain

• Hours per week

• Native country

how to handle missing fields in datasets?

Delete an entry — does this create a bias?

e.g., do low education responses leave blank fields?

Fill-in for missing data

replace numerical data by mean, e.g., age = 40

replace categorical data by mode, e.g., education = high school

replace missing data with a marker that can be incorporated into your loss —
e.g., age = -1 and write custom loss to not account for this age

© Keith M. Chugg, 2020

Dataset Contamination / Cleaning

15

this is a joke from twitter, but makes the point

(Imagenet is one of the largest image classification datasets and often used as a benchmark)

https://twitter.com/karpathy/status/1231378194948706306

© Keith M. Chugg, 2020

Augmentation

16

increase the diversity and/or difficulty of your training data
through pre-processing

rotate

Examples (images):
flip reflect blur (change resolution)

add noise
“cut-out”

(remove
patches)

translate

Examples (audio):

add noise add
reverb

filter/
equalize

camera
modeling

resample
(change
sample
rates)

mic/speaker
modeling

Will see in CNNs that there are some nice
built in image augmentation tools in python

© Keith M. Chugg, 2020

Example: English vs. Hindi vs. Mandarin

17

HW4: Computer Vision (CNN) problem (Jaili designing)

silence?

HW5: RNN for language classification

part of HW4 will be for you to generate audio samples for
the language classification problem

what to do about….

noise?
mic (sample rate)?

speaker gender, age, accent?

without the class to generate, where would you get your data?

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

18

© Keith M. Chugg, 2020

Typical Flow for Deep Learning Development

19

General Good Practice

Get a good baseline:

solve the problem without a neural network first if possible

use a published baseline network as a baseline if you know the problem
requires deep learning

Develop a Full Dev Pipeline (scripts):

viewing/interpreting datasets and examples

cultivating/updating your dataset

training with version control and auto-documentation

testing and visualization of the result on real-world data

keep your training simple to start

overfit a subset of data to make sure all is
working before going big

© Keith M. Chugg, 2020

Typical Flow for Deep Learning Development

20

automate everything (python, bash, db, git)

inspect everything with the human eye

sources of data harvesting
tools

(public internet, public datasets,
private, synthetic)

wget, youtubedl, web
scrapers

labeling

do during collection if
possible

cleaning

dataset design
data analysis,

inspection,
visualization

augmentation

may also be part of data
loader depending on

storage vs computation

train

format
organize

for data loader and
low OS filesystem

display/query system for
error inspection

e.g., webpage for viewing labels,
decisions, and performance on real

world examples

store models, learning
curves, scripts, SHA, MDA

popular blog by Telsa Sr. Director of AI hits many of these same points

http://karpathy.github.io/2019/04/25/recipe/

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

21

© Keith M. Chugg, 2020

Common Data Normalization Methods

22

example: rating football (soccer) players

Feature Units Range

Height Meters 1.5	to	2

Weight Kilograms 50	to	100

Shot	speed Kmph 120	to	180

Shot	curve Degrees 0	to	10

Age Years 20	to	35

Minutes	played Minutes 5,000	to	20,000

Fake	diving? -- Yes	/	No

contributions from Sourya Dey

different features on different scales…

normalize the data

© Keith M. Chugg, 2020

Common Data Normalization Methods

23

recall: data matrix

contributions from Sourya Dey

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2 () min
w

ky �Xwk2

y =

2

6666664

y0

y1
...

yN�1

3

7777775
x =

2

6666664

x0

x1
...

xN�1

3

7777775

ŷ = wtx

w = R̂
�1
x r̂xy

r̂xy = R̂xy = hxy i
LLSE = r̂2y � rtxyR

�1
x rxy

R̂xw = r̂xy

X =

2

6666664

xt
0

xt
1
...

xt
N�1

3

7777775
Xt =

h
x0 x1 · · · xN�1

i

wLLSE =
r̂yx
r̂x

ŷ =
r̂yx
r̂x

x

r̂x =
⌦
x2

↵
=

1

N

N�1X

n=0

x2n

r̂yx = h yx i = 1

N

N�1X

n=0

ynxn

LLSE =
⌦
[y � wLLSEx]

2
↵

=
⌦
y2

↵
�
⌦
[wLLSEx]

2
↵

= r̂y � r̂2yxr̂x

= �̂2
y(1� ⇢̂2)

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

K̂x = R̂x � m̂xm̂
t
x (3)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (4)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (5)

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

K̂x = R̂x � m̂xm̂
t
x (3)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (4)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (5)

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
XtX (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

© Keith M. Chugg, 2020

Common Data Normalization Methods

24

feature-wise standardization

contributions from Sourya Dey

scale each dimension of feature vector to mean 0, variance 1

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
XtX (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

feature-wise “minmax” normalization

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xxt

↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
XtX (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

scale each dimension of feature vector to range [0,1]

Or
igin

al
Cen

tere
d

sta
nda

rdiz
ed

MM
N

© Keith M. Chugg, 2020

Common Data Normalization Methods

25

previous methods do not account for feature correlation across dimensions…

contributions from Sourya Dey

do this by “whitening” the feature vector

yields a feature vector with uncorrelated, standard components

© Keith M. Chugg, 2020

KL-Expansion

Always exists because K is nnd-symmetric

26

c�K.M. Chugg - February 25, 2020– TITLE 3

1.3 KL Expansion

Kxek = �kek k = 0, 1, . . . D � 1 (Eigen equation)

etkel = �[k � l] �k � 0 (orthonormal e-vectors)

x(u) =
D�1X

k=0

Xk(u)ek (change of coordinates)

Xk(u) = etkx(u)

E {Xk(u)Xl(u)} = etkKxel = �k�[k � l] (uncorrelated components)

Kx =

N�1X

k=0

�keke
t
k = E⇤Et

(Mercer’s Theorem)

E
�
kx(u)k2

= tr (Kx) =

D�1X

k=0

�k (Total Energy)

K =


�
2
1 ⇢�1�2

⇢�1�2 �
2
2

�

K =


1 0

0 1

�

K =


1 0.7

0.7 1

�

K =


1 �0.4

�0.4 1

�

K =


2 0

0 1

�

2 MMSE Estimation

fopt(x)

min
f(·)

E
�
ky(u)� f(x(u))k2

fMMSE(x) = my|x(x)

= E {y(u)|x(u) = x}

=

Z
ypy(u)|x(u)(y|x)dy

© Keith M. Chugg, 2020

KL-Expansion

Can always find orthonormal set of e-vectors of K

These are an alternate coordinate systems (rotations, reflections)

in this eigen-coordinate system, the components are uncorrelated

The eigen-values are the variant (energy) in each of these principle directions

(principle components)

(can be used to reduce dimensions by throwing out components with low energy)

27

© Keith M. Chugg, 2020

KL-Expansion

Multiplying by E^t makes the components
uncorrelated

vk(u) = Xk(u) = etkx(u) k = 0, 1, . . . D � 1

v(u) = Etx(u)

Kv = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et

vk(u) = Xk(u) = etkx(u) k = 0, 1, . . . T � 1

v(u) = Et
[:T]x(u) first T components

Kv = ⇤[:T] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kv(u)k2

=

T�1X

k=0

�k

E
�
kv(u)� x(u)k2

=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

dk(u) = etkx(u) k = 0, 1, . . . D � 1

d(u) = Etx(u)

Kd = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et

x̃k(u) = etkx(u) k = 0, 1, . . . T � 1

x̃(u) = Et
[:T]x(u) first T components

Kx̃ = ⇤[:T] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kx̃(u)k2

=

T�1X

k=0

�k

E
�
kx(u)� x̃(u)k2

=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

28

© Keith M. Chugg, 2020

Random Vectors

x(u) y(u) = Hx(u)
H

(n⇥ 1) (m⇥ 1)

(m⇥ n)

my = Hmx

Ry = HRxH
t

Ky = HKxH
t

Special case

y(u) = btx(u) (1⇥ 1)

my = btmx

E
�
y2(u)

= btRxb

�2
y = btKxb

Ry = E
�
y(u)yt(u)

= E
�
(Hx(u))(Hx(u))t

= E
�
Hx(u)xt(u)Ht

= HE
�
x(u)xt(u)

H

t

= HRxH
t

example math

Note that covariance/correlation matrices are symmetric, non-negative definite
29

© Keith M. Chugg, 2020

KL-Expansion - Relation to Whitening

For any orthogonal matrix U, this
whitening matrix also works:

vk(u) = Xk(u) = etkx(u) k = 0, 1, . . . D � 1

v(u) = Etx(u)

Kv = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et

dk(u) = etkx(u) k = 0, 1, . . . D � 1

d(u) = Etx(u)

Kd = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2⇤⇤�1/2

= I

G = U⇤�1/2Et

x̃k(u) = etkx(u) k = 0, 1, . . . T � 1

x̃(u) = Et
[:T]x(u) first T components

Kx̃ = ⇤[:T] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kx̃(u)k2

=

T�1X

k=0

�k

E
�
kx(u)� x̃(u)k2

=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

30

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xx

t
↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
X

t
X (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

1 PCA

dk(u) = e
t
kx(u) k = 0, 1, . . . D � 1

d(u) = E
t
x(u)

Kd = E
t
KxE

= E
t
�
E⇤E

t
�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

e
t
kx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤
�1/2

E
t
x(u)

Kw = ⇤
�1/2

E
t
KxE⇤

�1/2

= ⇤
�1/2

⇤⇤
�1/2

= I

G = U⇤
�1/2

E
t

Kx = HH
t =) G = H

�1

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xx

t
↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
X

t
X (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

1 PCA

dk(u) = e
t
kx(u) k = 0, 1, . . . D � 1

d(u) = E
t
x(u)

Kd = E
t
KxE

= E
t
�
E⇤E

t
�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

e
t
kx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤
�1/2

E
t
x(u)

Kw = ⇤
�1/2

E
t
KxE⇤

�1/2

= ⇤
�1/2

⇤⇤
�1/2

= I

G = U⇤
�1/2

E
t

Kx = HH
t =) G = H

�1

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xx

t
↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
X

t
X (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

1 PCA

dk(u) = e
t
kx(u) k = 0, 1, . . . D � 1

d(u) = E
t
x(u)

Kd = E
t
KxE

= E
t
�
E⇤E

t
�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

e
t
kx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤
�1/2

E
t
x(u)

Kw = ⇤
�1/2

E
t
KxE⇤

�1/2

= ⇤
�1/2

⇤⇤
�1/2

= I

G = U⇤
�1/2

E
t

Kx = HH
t =) G = H

�1

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xx

t
↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
X

t
X (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

1 PCA

mx

dk(u) = e
t
kx(u) k = 0, 1, . . . D � 1

d(u) = E
t
x(u)

Kd = E
t
KxE

= E
t
�
E⇤E

t
�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

e
t
kx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤
�1/2

E
t
x(u)

Kw = ⇤
�1/2

E
t
KxE⇤

�1/2

= ⇤
�1/2

⇤⇤
�1/2

= I

G = U⇤
�1/2

E
t

m̂x = hx iD =
1

N

N�1X

n=0

xn (1)

R̂x =
⌦
xx

t
↵
D =

1

N

N�1X

n=0

xnx
t
n (2)

=
1

N
X

t
X (3)

K̂x = R̂x � m̂xm̂
t
x (4)

=
⌦
[x� m̂x] [x� m̂x]

t ↵
D (5)

=
1

N

N�1X

n=0

[xn � m̂x] [xn � m̂x]
t (6)

vn[i] =
xn[i]� m̂x[i]

�̂x[i]

vn[i] =
xn[i]�minn xn[i]

maxn xn[i]�minn xn[i]

1 PCA

mx x(u)

dk(u) = e
t
kx(u) k = 0, 1, . . . D � 1

d(u) = E
t
x(u)

Kd = E
t
KxE

= E
t
�
E⇤E

t
�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

e
t
kx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤
�1/2

E
t
x(u)

Kw = ⇤
�1/2

E
t
KxE⇤

�1/2

= ⇤
�1/2

⇤⇤
�1/2

= I

G = U⇤
�1/2

E
t

c�K.M. Chugg - February 25, 2020– TITLE 2

Kx = HH
t =) G = H

�1

Kw = I

mw = 0

x̃k(u) = e
t
kx(u) k = 0, 1, . . . T � 1

x̃(u) = E
t
[:T]x(u) first T components

Kx̃ = ⇤[:T] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kx̃(u)k2

=

T�1X

k=0

�k

E
�
kx(u)� x̃(u)k2

=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xx

t
↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
X

t
X

x̃n = E
t
[:T]xn first T components

X̃ =

2

6666664

⇣
E

t
[:T]x0

⌘t
⇣
E

t
[:T]x1

⌘t

...⇣
E

t
[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃
t =

h
E

t
[:T]x0 E

t
[:T]x1 · · · E

t
[:T]xN�1

i
= E

t
[:T]X

t

© Keith M. Chugg, 2020

Data Normalization - Whitening

31

Do this using the sample statistics over the training data

contributions from Sourya Dey

normalizes each feature vector component to mean 0, variance 1

whitened feature components are uncorrelated

all feature vector components are equally important

aka: “zero component analysis”

© Keith M. Chugg, 2020

Data Normalization - Global Contrast Normalization

32contributions from Sourya Dey

Increase contrast (standard deviation of pixels) of each image, one at a time

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

33

© Keith M. Chugg, 2020

KL-Expansion - Relation to PCA

PCA is simply taking only the T most important e-directions or
principle components

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

dk(u) = etkx(u) k = 0, 1, . . . D � 1

d(u) = Etx(u)

Kd = EtKxE

= Et
�
E⇤Et

�
E

= ⇤ = diag(�k)

wk(u) =
Xk(u)p

�k
=

etkx(u)p
�k

k = 0, 1, . . . D � 1

w(u) = ⇤�1/2Etx(u)

Kw = ⇤�1/2EtKxE⇤�1/2

= ⇤�1/2Et⇤E⇤�1/2

= I

G = U⇤�1/2Et

x̃k(u) = etkx(u) k = 0, 1, . . . T � 1

x̃(u) = Et
[:T]x(u) first T components

Kx̃ = ⇤[:T] assumes ordered e-values: �0 � �1 � . . .�D�1

E
�
kx̃(u)k2

=

T�1X

k=0

�k

E
�
kx(u)� x̃(u)k2

=

D�1X

k=T

�k minimizes approximation error (lossy compression)

E =
⇥
e0 e1 e2 · · · eD�1

⇤

34

© Keith M. Chugg, 2020

KL/PCA for Data
Everything is the same, except we use data-averaging instead

of E{.}

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

Both KL/PCA can be applied to R or K. Center x if you want to use
K

x <— x - m
(same if mean is zero)

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2

min
w

⌦
(y �wtx)2

↵
() min

w

1

N

N�1X

n=0

(yn �wtx)2 () min
w

ky �Xwk2

y =

2

6666664

y0

y1
...

yN�1

3

7777775
x =

2

6666664

x0

x1
...

xN�1

3

7777775

ŷ = wtx

w = R̂
�1
x r̂xy

r̂xy = R̂xy = hxy i
LLSE = r̂2y � rtxyR

�1
x rxy

R̂xw = r̂xy

X =

2

6666664

xt
0

xt
1
...

xt
N�1

3

7777775
Xt =

h
x0 x1 · · · xN�1

i

wLLSE =
r̂yx
r̂x

ŷ =
r̂yx
r̂x

x

r̂x =
⌦
x2

↵
=

1

N

N�1X

n=0

x2n

r̂yx = h yx i = 1

N

N�1X

n=0

ynxn

LLSE =
⌦
[y � wLLSEx]

2
↵

=
⌦
y2

↵
�
⌦
[wLLSEx]

2
↵

= r̂y � r̂2yxr̂x

= �̂2
y(1� ⇢̂2)

“stacked” data matrix

35

© Keith M. Chugg, 2020

KL/PCA for Data
PCA for data

apply to the “stacked” data
matrix

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

x̃n = Et
[:T]xn first T components

X̃ =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃t =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

x̃n = Et
[:T]xn first T components

X̃ =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃t =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

x̃n = Et
[:T]xn first T components

X̃ =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃t =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

x̃n = Et
[:T]xn first T components

X̃ =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃t =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

X̃
N⇥T

= X
N⇥D

E
D⇥T [:T]

X̃tX̃
T⇥T

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

dimension reduced from D to T

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

x̃n = Et
[:T]xn first T components

X̃ =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

X̃t =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

X̃
N⇥T

= X
N⇥D

E[:T]
D⇥T

X̃tX̃
T⇥T

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

36

© Keith M. Chugg, 2020

KL/PCA for Data — relation to SVD
SVD for an arbitrary matrix A

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

vn = Et
[:T]xn first T components

V =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

Vt =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

U, V are orthogonal matrices, sigma is
“diagonal” with singular values on

diagonal

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

vn = Et
[:T]xn first T components

V =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

Vt =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

Use SVD to expand matrix A^t A

The SVD for A provides the KL factorization for
the non-negative definition, symmetric matrix A^t

A
Note that this is also the SVD for A^t A

37

© Keith M. Chugg, 2020

KL/PCA for Data — relation to SVD
SVD for stacked data matrix X

Equivalent approaches:

c�K.M. Chugg - February 13, 2019– TITLE 2

E[:T] =
⇥
e0 e1 e2 · · · eT�1

⇤

R̂x =
⌦
xxt

↵
D

=
1

N

N�1X

n=0

xnx
t
n

=
1

N
XtX

vn = Et
[:T]xn first T components

V =

2

6666664

⇣
Et

[:T]x0

⌘t

⇣
Et

[:T]x1

⌘t

...⇣
Et

[:T]xN�1

⌘t

3

7777775
= XE[:T]

Vt =
h
Et

[:T]x0 Et
[:T]x1 · · · Et

[:T]xN�1

i
= Et

[:T]X
t

A
m⇥n

= U
m⇥m

⌃
m⇥n

Vt

n⇥n

AtA = (U⌃V)tU⌃V

= V⌃tUtU⌃V

= V
n⇥n

⌃⌃t

n⇥n
Vt

n⇥n

= E⇤Et

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

c�K.M. Chugg - February 13, 2019– TITLE 3

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

X̃
N⇥T

= X
N⇥D

V[:T]
D⇥T

1) Find SVD of X, take V

2) Find Eigen decomposition of X^t X, take E = V

3) Find SVD of X^t X, take V = U = E

38

© Keith M. Chugg, 2020

KL/PCA for Data — relation to SVD
Equivalent approaches:

1) Find SVD of X, take V

2) Find Eigen decomposition of X^t X, take E = V

3) Find SVD of X^t X, take V = U = E

c�K.M. Chugg - February 13, 2019– TITLE 3

X
N⇥D

= U
N⇥N

⌃
N⇥D

Vt

D⇥D

XtX
D⇥D

= V
D⇥D

⌃⌃t

D⇥D
Vt

D⇥D

= E⇤Et

X̃
N⇥T

= X
N⇥D

V[:T]
D⇥T

Sourya noted that he uses method 3, with
numpy.linalg.svd, instead of method 2, with

numpy.linalg.eig, since the SVD returns the e-vectors in
sorted order and Eig does not

39 contributions from Sourya Dey

© Keith M. Chugg, 2020

Linear Discriminant Analysis (LDA)

40

Similar to PCA but is supervised and for classification problem

Increase variance
between classes

Decrease variance
within a class

LDA keeps features which
can discriminate well

between classes

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html

© Keith M. Chugg, 2020

Linear Discriminant Analysis (LDA)

41

Similar to PCA but is supervised and for classification problem

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

42

© Keith M. Chugg, 2020

Linear Discriminant Analysis (LDA)

43

Similar to PCA but is supervised and for classification problem

contributions from Sourya Dey

best reference is this blog

https://sebastianraschka.com/Articles/2014_python_lda.html

© Keith M. Chugg, 2020

Pre-Processing (PCA, LDA, Normalization)

44

Use statistics collected from the Training Data only

apply same transformation to training, val, test data

Note that many of these techniques can be viewed as a fixed linear
layer at the start of the network that is not trained as part of BP

alternative is to have a “bottleneck" layer for dimensionality
reduction (i.e., learn ~ LDA during BP)

batch-normalization similarly is a method of learning normalization

© Keith M. Chugg, 2020

Outline for Slides

• Principles for designing datasets

• Typical flow for deep learning development

• Common normalization methods

• PCA and LDA for dimensionality reduction

• Where to find data and how to grab it

45

© Keith M. Chugg, 2020

Datasets Available in tf.keras

46

small number of “built-in”
datasets to get started

experimenting

https://keras.io/datasets/

https://www.tensorflow.org/api_docs/python/tf/keras/datasets

https://keras.io/datasets/
https://www.tensorflow.org/api_docs/python/tf/keras/datasets

© Keith M. Chugg, 2020

Datasets Available in tf.keras

47

•MNIST (MLP / CNN):
•28x28 images, 10 classes

• Initial benchmark

•SOTA testacc: >99%

•CIFAR-10, -100 (CNN):
•32x32x3 images (RGB), 10 or 100 classes

•Widely used benchmark

•SOTA testacc: ~97%, ~84%

•Fashion MNIST (MLP / CNN):
•28x28 images, 10 classes

•More challenging than
MNIST, but same parameters

•SOTA testacc: ~94%

© Keith M. Chugg, 2020

Datasets Available in tf.keras

48

•IMDB Movie reviews sentiment classification
•25,000 movies reviews from IMDB

• labeled by sentiment (positive/negative)

•words are indexed by overall frequency in the dataset

•Reuters newswire topics classification
•11,228 newswires from Reuters, labeled over 46 topics.
As with the IMDB dataset, each wire is encoded as a
sequence of word indexes (same conventions).

•Boston housing price
•13 attributes (features) of
houses at different locations
around the Boston suburbs in
the late 1970s

• labels are hous prices (late
1970s)

© Keith M. Chugg, 2020

Datasets Available in Pytorch

49

image datasets

“built-in” to tf.keras or pytorch just
means that there is a loader and the

framework will handle the initial
download

text datasets audio datasets

https://pytorch.org/docs/stable/torchvision/datasets.html
https://pytorch.org/text/datasets.html
https://pytorch.org/audio/datasets.html

© Keith M. Chugg, 2020

Common Datasets in Computer Vision

50

•Imagenet:
•> 14M images, 224x224x3, with 1000
classes

•Common benchmark for image
classification

•SOTA testacc: >84%

https://keras.io/applications/
https://www.tensorflow.org/api_docs/python/tf/keras/applications

tf.keras has many of the
popular image classification

networks already pre-defined
and also pre-trained on

imagenet

https://keras.io/applications/
https://www.tensorflow.org/api_docs/python/tf/keras/applications

© Keith M. Chugg, 2020

Common Datasets in Computer Vision

51

•Microsoft Coco (common objects in context):
•330,000 images, 80 categories

•Labeling for segmentation and object detection

http://cocodataset.org/#home

http://cocodataset.org/#home
https://keras.io/applications/

© Keith M. Chugg, 2020

Common Datasets in Computer Vision

52

Youtube-8M/#home

YouTube-8M Segments Dataset

https://research.google.com/youtube8m/
https://keras.io/applications/

© Keith M. Chugg, 2020

Datasets for Speech/Audio

53

Libravox

1000 hours of speech and transcripts taken from free
on-line audio book website

TIMIT

speech + transcript

Linguistic Data Consortium (LDC)

some free, some $$$

http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://catalog.ldc.upenn.edu/LDC93S1
https://www.ldc.upenn.edu

© Keith M. Chugg, 2020

Datasets for Speech/Audio

54

Libravox

1000 hours of speech and transcripts taken from free
on-line audio book website

TIMIT

speech + transcript
Linguistic Data Consortium (LDC)

(some free, some $$$)

Google’s audioset

audio events (tagged sounds)

http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://catalog.ldc.upenn.edu/LDC93S1
https://www.ldc.upenn.edu
https://research.google.com/audioset/

© Keith M. Chugg, 2020

Other Sources of Data

55

Kaggle datasets for on-line ML competitions

UCI ML Archive

Google Dataset Search

Amazon Web Services Open Data

https://www.kaggle.com/datasets
https://catalog.ldc.upenn.edu/LDC93S1
http://www.apple.com
http://archive.ics.uci.edu/ml/index.php
https://toolbox.google.com/datasetsearch
https://registry.opendata.aws/
https://www.kaggle.com/datasets

