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Universal Approximation Theorem

A single hidden layer MLP with squashing activation in the hidden layer 
and linear output layer can approximate any “engineering function”

perceptron, and let M ! mL denote the number of neurons in the output layer of the
network. The input–output relationship of the network defines a mapping from an
m0-dimensional Euclidean input space to an M-dimensional Euclidean output space,
which is infinitely continuously differentiable when the activation function is likewise. In
assessing the capability of the multilayer perceptron from this viewpoint of input–output
mapping, the following fundamental question arises:

What is the minimum number of hidden layers in a multilayer perceptron with an input–output
mapping that provides an approximate realization of any continuous mapping?

Universal Approximation Theorem

The answer to this question is embodied in the universal approximation theorem8 for a
nonlinear input–output mapping, which may be stated as follows:

Let "(·) be a nonconstant, bounded, and monotone-increasing continuous function. Let Im0

Section 4.12 Approximations of Functions 167

denote the m0-dimensional unit hypercube . The space of continuous functions on Im0
[0, 1]m0

is denoted by . Then, given any function and # 0, there exist an integer $f ! C(Im0
)C(Im0

)
m1 and sets of real constants %i, bi, and wij, where i ! 1, m1 and j ! 1, m0 such that we
may define

(4.88)

as an approximate realization of the function f(·); that is,

for all that lie in the input space.

The universal approximation theorem is directly applicable to multilayer percep-
trons. We first note, for example, that the hyperbolic tangent function used as the non-
linearity in a neural model for the construction of a multilayer perceptron is indeed a
nonconstant, bounded, and monotone-increasing function; it therefore satisfies the con-
ditions imposed on the function "(·) Next, we note that Eq. (4.88) represents the out-
put of a multilayer perceptron described as follows:

1. The network has m0 input nodes and a single hidden layer consisting of m1 neu-
rons; the inputs are denoted by .

2. Hidden neuron i has synaptic weights , and bias bi.
3. The network output is a linear combination of the outputs of the hidden neurons,

with defining the synaptic weights of the output layer.

The universal approximation theorem is an existence theorem in the sense that it
provides the mathematical justification for the approximation of an arbitrary continu-
ous function as opposed to exact representation. Equation (4.88), which is the back-
bone of the theorem, merely generalizes approximations by finite Fourier series. In
effect, the theorem states that a single hidden layer is sufficient for a multilayer percep-
tron to compute a uniform approximation to a given training set represented by the
set of inputs and a desired (target) output . However, the theoremf(x1, ..., xm0

)x1, ..., xm0

$

%1, ..., %m1

wi1
, ..., wm0

x1, ... , xm0

x1, x2, ..., xm0

!F(x1, ..., xm0
) - f(x1, ..., xm0

)!
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– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).
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Universal Approximation Theorem
how does the intuition behind this work?

http://neuralnetworksanddeeplearning.com/chap4.html

can create a 
“bump” function

done by choosing large 
weights in layer 1

combine bump 
functions to get a 

Riemann-like 
approximation with 

many nodes in 
hidden layers = -b/w (step position)
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Universal Approximation Theorem
What happens when we train a neural net on like this?

http://neuralnetworksanddeeplearning.com/chap4.html
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Universal Approximation Theorem
What happens when we train a neural net on Neilson’s crazy function?

http://neuralnetworksanddeeplearning.com/chap4.html

no dropout dropout (we will see later)

3 hidden layers, 64 nodes each, relu activations

6
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Universal Approximation Theorem
why go deep?

1) single hidden layer may need to be huge 

2) not clear that SGD-BP will actually learn this good approximation 

3) There are inherent advantages to more hidden layers

multiple layers can learn stages of classification or “case switches” 

e.g.,  
Layer1: detect if case A or case B holds 

Layer 2: if case A, do algorithm A, else, do algorithm B

many problems suitable to Neural Nets have these properties (I called these “clamps/
conditionals” and multiple layers can model this more effectively/efficiently

7
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Example From Class Project (2019)

20 hidden nodes, shows whether rely is ON/OFF for each element in the dataset

2.3 Weight filter evaluation 

There is some work in evaluating the importance of filters in CNN[2][3]. Combined with the explanation 

of block status vectors, we use a similar idea to evaluate and interpret the weight in DNN-ReLU. This 

could help us to find unnecessary network’s weight and prune the network. 

	
Figure 6 example of weight filter generate block status vector 

The block status vector not only represents the on-off status in next layer weight, but also represents 

the outcome of current layer’s dot product with input sample. (Figure 6) 

For a single hidden layer DNN-ReLU network, we denote the #$% row of weight matrix !*2", we call this 

a weight filter. 

	
Figure 7 Figure of block status matrix of samples in class 0 and 1. Each row is a block status vector of sample. Red represents 

value 1 and blue represents 0. 

Since for samples from same classes the block status forms clusters. For sample in each class, it has some 

unique block status patterns. 

Figure 7 gives a block status pattern in class 0 and class 1 in MNIST dataset, with a trained one 20 units 

hidden layer DNN-ReLU network. The third entry in block status corresponding to the third weight filter, 

!Y	which is almost 1 in class 0 and 0 in class 0. 

Conditional Linear Regression: An alternative structure to Deep neural network with ReLU activation 
Qianmu Yu, Runmian Chang, Mo Shi 

can think of a relu-based MLP as configuring switches (classifying) and then applying a linear mapping 
(these are like the clamps/conditonals)
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Universal Approximation Theorem
why go deep?
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1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.
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– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

deeper models tend to perform better
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Universal Approximation Theorem
why go deep?
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Gentle Introduction to tf.keras

TAs will help you install (when ready)

Use tensorflow 2.1 (tf.keras included)

Tensorflow is not part of anaconda…

best to set up virtual-environment in anaconda

(or use pyenv to do minimal virtualenvs and manage easily)

I use: pyenv, tf 2.1, macOS, ubuntu 18.0.4, Python 3.7.4
12
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Gentle Introduction to tf.keras
Let’s use the “train_fashion_mnist.py” as a starting point

typical import

https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb

keras has some standard dataset 
built in (will download for you)

reshape so that the input is a 1-
dim array for an MLP. (done before 
with a flatten layer)

defines a model using the 
Sequential method

before training, you need to 
compile the model which tells it 
what loss and optimizer to use

this does the training

save the model so that you can 
read it in and use it for inference

13

https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
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Gentle Introduction to tf.keras
Does exactly the same thing, but uses the “Functional API” 

for defining the model

defines a model using the 
Functional API method

14

(layer name is optional, 

but good practice)
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tf.keras — defining the model

Sequential Functional API

simple, quick

not very flexible

only allows for models 
that are a sequence of 
layers (line-graph)

layer 1

layer 2

layer N

maybe a little more work?

much more powerful:

• Models with shared layers


• Multi-input, multi-output models


• Directed acyclic graphs (DAGs)


• Custom layer


• Custom function on 
intermediate layer’s output

concatenate 

I only use the Functional API 
and recommend you use it too

15
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tf.keras — viewing model structure

16

pydot and graphviz are utilities for plotting block diagrams and graphs
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tf.keras — viewing model structure

17

model summary prints out the layer shapes and number of trainable parameters
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tf.keras — viewing model structure

18

plot_model() produces this diagram

shows the names we 
gave to the layers

the ? is there 
because we did 
not specify the 

batch size when 
defining the 

model. 

will work with 
any batch size.
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tf.keras — checking performance 
the model.fit returns a dictionary that has all of the train/val losses 

each of these is a numpy array

19

just standard plotting
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tf.keras — checking performance 
results of our training run…

20

over-fitting (bad!)
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tf.keras — checking performance 
let’s try running inference on an image…

21

the first test image is an Ankle Boot (class 9)
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tf.keras — checking performance 
let’s try running inference on an image…

22

need to reshape the input to the network so it has shape:
(prediction_batch_size, input_shape)

reshape the output because it also returns a multi-dimensional tensor (has batch dimension)
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tf.keras — checking performance 
let’s try running inference on an image…

23

Yeah!  It worked on that one (despite the over fitting)

You can pass many images to model.predict (batch >1) 
and it will return all of the “predictions”
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tf.keras — checking performance 
Use model.evaluate to get the loss and metrics for the test set…

24

Test Loss:  0.50
Test Accuracy:  88.44%

result:

Note that this is very similar to the 
performance on the validation set
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What’s left to know about tf.keras?

• Options…  that is next — learn the ideas and show how done in tf.keras.


• Custom callbacks


• Using tensorflow.keras.callbacks.Callback class and methods


• Can save (best) model at epoch end, plot learning curves, etc.


•  Custom Layers and Losses


• Dataloaders — can’t fit the entire dataset in RAM…


• Using tensorflow.keras.utils.Sequence class and methods


• Tensorboard (if you want…)

25
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Vanishing Gradient Problem

27

the gradient can get small 
as we back-prop

See section 10.7 of Deep Learning 
book for further discussion

[GBC - Deep Learning]

due to the squashing activation 
compounded effects
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Vanishing Gradient Problem - Squashing Activations

28

the gradient can get small 
as we back-prop

due to the squashing activation 
compounded effects

contributions from Sourya Dey
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Vanishing Gradient Problem - Squashing Activations

29

the maximum value of sigma(.) 
is 0.25…

1 Activations and Vanishing Gradient

���L = Ċ(y,aL)� ȧL (delta initialization)

���l = ȧl �
⇥
Wt

l+1���l+1

⇤
(delta recursion)

���1 =
�
�̇(s1)�

⇥
Wt

2���2
⇤� �

�̇(s2)�
⇥
Wt

3���3
⇤� �

�̇(s3)�
⇥
Wt

4���4
⇤� �

�̇(s4)�
⇥
Wt

5���5
⇤� ⇣

Ċ(y,a5)� �̇(s5)
⌘

contributions from Sourya Dey



© Keith M. Chugg, 2020

Vanishing Gradient Problem - ReLu Activations

30

Biologically	inspired	-	neurons	firing	vs	not	firing	
Solves	vanishing	gradient	problem	
Non-differentiable	at	0,	replace	with	anything	in	
[0,1]	

ReLU	can	die	if	x<0	
Leaky	ReLU	solves	this,	but	inconsistent	results	
ELU	saturates	for	x<0,	so	less	resistant	to	noise

Clevert,	Djork-Arné;	Unterthiner,	Thomas;	Hochreiter,	Sepp	(2015-11-23).	"Fast	and	Accurate	
Deep	Network	Learning	by	Exponential	Linear	Units	(ELUs)".	arXiv:1511.07289

contributions from Sourya Dey

https://arxiv.org/pdf/1511.07289.pdf


© Keith M. Chugg, 2020

Activations in tf.keras

31

https://keras.io/activations/

https://www.tensorflow.org/api_docs/python/tf/keras/activations

https://keras.io/activations/
https://www.tensorflow.org/api_docs/python/tf/keras/activations
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Activations in tf.keras

32

https://www.tensorflow.org/
api_docs/python/tf/keras/activations

layers have a default activations in tf.keras…

dense, convolutional have linear as default
RNNs use, tanh, sigmoid, hard_sigmoid 

depending on variant

https://www.tensorflow.org/api_docs/python/tf/keras/activations
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Activations in tf.keras

33

hard_sigmoid sometimes used to reduce computation
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Activations in tf.keras

34

soft-max:  
produces M x 1 probability mass function


use for M-ary classification between mutual 
exclusive classes 

c�K.M. Chugg, B. Franzke - February 8, 2020– EE599 Deep Learning 4

in (2) actually vary with n. There is a dataset called timevarying_coefficents that has the 3 coef-

ficients as they change with time. Plot these coe�cients vs. time (n). Run the LMS algorithm using

the x and z datasets and and vary the learning rate to find a good value of ⌘ where the LMS algorithm

tracks the coe�cient variations well. Plot the estimated coe�cients along with the true coe�cients for

this case.

4. In this part, use the dataset with key mismatched_x and mismatched_y. This is also a set of 600

sequences of length 501 samples each. This data was generated with a model that is not linear and is

unknown to you.

(a) Run the LMS algorithm over all 600 sequences and plot the average learning curve for a goods

choice of ⌘. Note: in this case, you only have access to yn, which may contain noise.

(b) Using the entire data set, compute R̂vn and r̂n and the corresponding LLSE. Is this lower than

the LMS learning curve after convergence?

4 Human vs Computer random sequences

Note: Portions of this problem will be worked in class.

1. Use the file binary_random_sp2030.hdf5. This file has all of the data generated by students in HW1

and also has an equal number of sequences generated using numpy. Using this data, construct the

(20 ⇥ 20) matrix R̂ – i.e., the sample correlation matrix for the data. Note that the data has been

converted from 0 and 1 to ±1.

2. Find the eigen-vectors and eigen-values for R̂. What is the variance of the most significant two

components of the data? What percentage of the total variance is captured by these two components?

Can you see any significance in the eigen-vectors e0 and e1 that would suggest why they capture much

of the variation? Plot �k vs. k on a stem plot.

3. Create label data to indicate human or computer – i.e., computer: y = +1, human: �1 and merge

the two data sets. Compute the linear classifier weight vector w that maps the (20 ⇥ 1) vector to an

estimate of the label. What is the error rate when you threshold ŷ to a hard decision?

4. Visualize the data and classifier in two dimensions. Take a reasonable number of samples from each

the computer and human data – e.g., 100 each. Project these onto e0 and e1 and plot a scatter plot

of the data. Add to this plot the decision boundary projection in this 2D space.

5. Compute the logistical regression weight vector w that maps the (20 ⇥ 1) vector to an estimate of the

probability of the label. What is the error rate when you threshold ŷ to a hard decision?

5 Backprop Initialization for Multiclass Classification

Recall that the softmax function h(·) takes an M -dimensional input vector s and outputs an M -dimensional

output vector a given as

a = h(s) =
1

PM�1
m=0 esm

2

6664

es0

es1

.

.

.

esM�1

3

7775
(5)

Recall that multiclass cross-entropy cost is given as

C = �
nX

i=1

yi ln ai (6)

1 Activations and Vanishing Gradient

���L = Ċ(y,aL)� ȧL (delta initialization)

���l = ȧl �
⇥
Wt

l+1���l+1

⇤
(delta recursion)

���1 =
�
�̇(s1)�

⇥
Wt

2���2
⇤� �

�̇(s2)�
⇥
Wt

3���3
⇤� �

�̇(s3)�
⇥
Wt

4���4
⇤� �

�̇(s4)�
⇥
Wt

5���5
⇤� ⇣

Ċ(y,a5)� �̇(s5)
⌘

a = h(s) =
1

PM�1
m=0 esm

2

6664

es0

es1
...

esM�1

3

7775

�(s) =
1

1 + e�s

sigmoid:  
produces probability of “class 1” for a binary 

classification test

binary classification: 

1 output neuron with sigmoid and BCE 

vs.

2 output neurons with softmax and MCE



© Keith M. Chugg, 2020

Outline for Slides

• Universal Approximation Theorem


• Why Deep?


• A Gentle Introduction to tensorflow.keras


• Vanishing gradient and activations


• Weight initialization


• Cost functions, regularization, dropout


• Optimizers


• Hyperparameter optimization


• Batch Normalization

35



© Keith M. Chugg, 2020

Weight (and bias) Initialization

36

what do we initialize parameter theta with?

empirical observation: some initializations are better than others

zero initialization?  
all linear activations are 0…


the detas will be 0 too…

1 Activations and Vanishing Gradient

���L = Ċ(y,aL)� ȧL (delta initialization)

���l = ȧl �
⇥
Wt

l+1���l+1

⇤
(delta recursion)

���1 =
�
�̇(s1)�

⇥
Wt

2���2
⇤� �

�̇(s2)�
⇥
Wt

3���3
⇤� �

�̇(s3)�
⇥
Wt

4���4
⇤� �

�̇(s4)�
⇥
Wt

5���5
⇤� ⇣

Ċ(y,a5)� �̇(s5)
⌘

a = h(s) =
1

PM�1
m=0 esm

2

6664

es0

es1
...

esM�1

3

7775

�(s) =
1

1 + e�s

p p� ⌘rpC

use random initialization…

1 Activations and Vanishing Gradient

���L = Ċ(y,aL)� ȧL (delta initialization)

���l = ȧl �
⇥
Wt

l+1���l+1

⇤
(delta recursion)

���1 =
�
�̇(s1)�

⇥
Wt

2���2
⇤� �

�̇(s2)�
⇥
Wt

3���3
⇤� �

�̇(s3)�
⇥
Wt

4���4
⇤� �

�̇(s4)�
⇥
Wt

5���5
⇤� ⇣
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⌘

a = h(s) =
1

PM�1
m=0 esm

2

6664

es0

es1
...

esM�1

3

7775

�(s) =
1

1 + e�s

✓  ✓ � ⌘
@C

@✓

Feedforward: �2
w

(l)
i,j

⇡ 1

Nl�1

Backprop: �2
w

(l)
i,j

⇡ 1

Nl

w(l)
i,j ⇠ N

✓
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2

Nl�1 +Nl

◆

w(l)
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�2
w
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3
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6
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Glorot (Xavier) Normal Initialization

Consider	a	linear	function:	
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Ċ(a) =
@C

@a
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ḣ(s) =
dh(s)

ds

1 Feedforward Processing (inference)

w(l)
i,0 w(l)

i,1 w(l)
i,2 w(l)

i,3 w(l)
i,N�2 w(l)

i,N�1

a(l�1)
0 a(l�1)

1 a(l�1)
2 a(l�1)

3 a(l�1)
N�2 a(l�1)

N�1

2 Back-propagation

w(l)
i,j  w(l)

i,j � ⌘
@C

@w(l)
i,j

b(l)i  b(l)i � ⌘
@C

@b(l)i
8 l 2 {1, 2, . . . L}, i, j

2.1 Scalar Case

w(·) + b

↵ w b s h(·) a y C

@s

@w
= ↵

@s

@b
= 1

@C

@w
=

@C

@s

@s

@w
= ↵

@C

@s
@C

@b
=

@C

@s

@s

@b
=

@C

@s

s
@C

@s
=

@C

@a

@a

@s

=
@C

@a

@h(s)

@s
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Glorot (Xavier) Uniform Initialization
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http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
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He Initailization

Glorot does not account for nonlinear activations (e.g., ReLU)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	Jian	Sun.	Delving	Deep	into	Rectifiers:	Surpassing	Human-Level	Performance	
on	ImageNet	Classification.	Proceedings	of	ICCV	’15,	pp	1026-1034.		
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He Normal Initialization

He Uniform Initialization
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https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
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MNIST [784,200,10]

Regularization: None

Histograms of a few weights in 2nd 
junction after training for 10 epochs

contributions from Sourya Dey

Weights	
initialized	
with	all	0s

Weights	
stay	as	
all	0s	!!
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Bias initialization typically does not affect performance as much as 
weight initialization

often the bias is initialized to zeros

may want to initialize to a small positive number 
when using ReLU activations to prevent “dying"
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Initializers in tf.keras
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https://keras.io/initializers/
https://www.tensorflow.org/api_docs/python/tf/keras/initializers

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, 
                          activity_regularizer=None, kernel_constraint=None, bias_constraint=None) 

layers have default initializers (they work well…)

https://keras.io/initializers/
https://www.tensorflow.org/api_docs/python/tf/keras/initializers
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these are already covered, but let’s review and see how they translate to tf.keras

simplified notation:c�K.M. Chugg - February 16, 2020– TITLE 2
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c�K.M. Chugg - February 16, 2020– TITLE 2
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last layer pre-activation (linear activation)

last layer activation

labels

Assume M output nodes, so these are M x 1 vectors
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(squared) L2 norm of error

or sum of squared error

these are equivalent

c�K.M. Chugg - February 16, 2020– TITLE 2
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average squared error

tf.keras implements the average (good since it is normalized for 
number of classes)

model.compile('sgd', loss=tf.keras.losses.MeanSquaredError())

Note: used to be mean_squared_error()
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for BP Initialization

ms = tf.keras.losses.MeanSquaredError()
ms([[1, 1, 1], [2,2,2]], [[0, 0, 0], [3,3,3]]).numpy().numpy()  # Loss: 1
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L1 norm of error

or sum of absolute error

these are equivalent

average absolute error

tf.keras implements the average (good since it is normalized for 
number of classes)

model.compile('sgd', loss=tf.keras.losses.MeanAbsoluteError())

Note: used to be mean_absolute_error()

c�K.M. Chugg - February 16, 2020– TITLE 2

2 Cost and Regularization

C = ky � ak22 =
MX

i=1

(yi � ai)
2

C =
1

M
ky � ak22 =

1

M

MX

i=1

(yi � ai)
2

C = ky � ak1 =
MX

i=1

|yi � ai|

C =
1

M
ky � ak1 =

1

M

MX

i=1

|yi � ai|

C = �
MX

i=1

yi ln ai =
MX

i=1

yi ln

✓
1

ai

◆

C = �
MX

i=1

yi ln

"
esiP
j e

sj

#

c�K.M. Chugg - February 16, 2020– TITLE 2

2 Cost and Regularization

C = ky � ak22 =
MX

i=1

(yi � ai)
2

C =
1

M
ky � ak22 =

1

M

MX

i=1

(yi � ai)
2

C = ky � ak1 =
MX

i=1

|yi � ai|

C =
1

M
ky � ak1 =

1

M

MX

i=1

|yi � ai|

C = �
MX

i=1

yi ln ai =
MX

i=1

yi ln

✓
1

ai

◆

C = �
MX

i=1

yi ln

"
esiP
j e

sj

#

for BP Initialization
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�ȳs)
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L2 corresponds to power/energy for ECE

L2 penalizes large error more than L1

L1 will typically induce sparsity in your 
weights - allows some large weights and 

many other weights are near 0
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Cost (Loss) Functions — Multicategory Cross Entropy
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Activations are outputs of a softmax, so interpreted as probability of class i
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BP gradient initialization:
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Cost (Loss) Functions — Multicategory Cross Entropy
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Recall that with one-hot (hard labels) we have

cce = tf.keras.losses.CategoricalCrossentropy()
loss = cce(
  [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
  [[.9, .05, .05], [.05, .89, .06], [.05, .01, .94]])
print('Loss: ', loss.numpy())  # Loss: 0.0945

( np.log(0.9) + np.log(0.89) + np.log(0.94) ) / 3  = -0.09458991187728844

recall, in this cases, MCE is the negative-log-liklihood with regression error model:
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Recall that with soft labels we use the general form

cce = tf.keras.losses.CategoricalCrossentropy()
loss = cce(
  [[0.7, 0.2, 0.1], [0.05, 0.9, 0.05], [0.3, 0.3, 0.4]],
  [[.9, .05, .05], [.05, .89, .06], [.05, .01, .94]])
print('Loss: ', loss.numpy())  # Loss: 1.22

y = np.asarray([[0.7, 0.2, 0.1], [0.05, 0.9, 0.05], [0.3, 0.3, 0.4]]).reshape(9)
a = np.asarray([[.9, .05, .05], [.05, .89, .06], [.05, .01, .94]]).reshape(9)
np.dot( y, -1 * np.log(a) ) / 3
1.22

recall, in this cases, MCE is a constant offset from the KL-divergence between the y 
and a probability mass functions

how do these two numerical examples compare?
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for M=2 outputs — binary classification

tf.keras uses this

Same as MCE with a_0 = a, a_1 = 1-a

bce = tf.keras.losses.BinaryCrossentropy()
bce([[0, 1, 0]], [[0.6, 0.8, 0.1]]).numpy()  # Loss: 0.415

def bce(y,a):
    return -1*y*np.log(a+1e-10) -(1-y)*np.log(1-a+1e-10)
np.mean( bce( np.array([0,1,0]), np.array([0.6, 0.8, 0.1]) ) )
0.41493159945336
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numerically simpler (and more stable) to compute Loss(activation(s)) in one step

example: binary cross entropy
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computed directly from linear activation

Use this if you do not need a pmf out of your trained model
— i.e., if you will threshold the outputs of the trained model

use “from_logits=True” in cost and linear activation on final layer
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numerically simpler (and more stable) to compute Loss(activation(s)) in one step

example: multicategory cross entropy

computed directly from linear activation:


use “from_logits=True” in cost and linear activation on final layer
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numerically stable approach

computed directly from linear activation:

use “from_logits=True” in cost and linear activation on final layer

c�K.M. Chugg - February 16, 2020– TITLE 3

C = �
MX

i=1

yi ln

"
esiP
j e

sj

#

= �
MX

i=1

yi [si �K(s)]

= �
MX

i=1

yisi +K(s)

K(s) = ln

0

@
X

j

esj

1

A

C = K(s)�
MX

i=1

yisi

C = K(s)� sm Class m is true, hard labels

K(s) = ln

0

@
X

j

esj

1

A

= max⇤j sj

max⇤(x, y) = ln(ex + ey)

= max(x, y) + ln
⇣
1 + e�|x�y|

⌘

max⇤(x, y, z) = ln(ex + ey + ez)

= max⇤ (max⇤(x, y), z)

c�K.M. Chugg - February 16, 2020– TITLE 3

C = �
MX

i=1

yi ln

"
esiP
j e

sj

#

= �
MX

i=1

yi [si �K(s)]

= �
MX

i=1

yisi +K(s)

K(s) = ln

0

@
X

j

esj

1

A

C = K(s)�
MX

i=1

yisi

C = K(s)� sm Class m is true, hard labels

K(s) = ln

0

@
X

j

esj

1

A

= max⇤j sj

max⇤(x, y) = ln(ex + ey)

= max(x, y) + ln
⇣
1 + e�|x�y|

⌘

max⇤(x, y, z) = ln(ex + ey + ez)

= max⇤ (max⇤(x, y), z)

C = max⇤j sj �
MX

i=1

yisi

C = max⇤j sj � sm Class m is true, hard labels



© Keith M. Chugg, 2020

Cross Entropy Loss — Variation

55

 tf.keras.losses.CategoricalCrossentropy()

when your labels are Mx1 pmfs: 

 tf.keras.losses.SparseCategoricalCrossentropy()

y = [0, 0, 0, 0, 0, 0, 0, 0, 1]

when your labels are hard and just the true category: 

y = 9

y = 9 y = [0, 0, 0, 0, 0, 0, 0, 0, 1]tf.keras.utils.to_categorical()
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for binary classifier (target/labels in {-1,+1})

typically use linear output activation
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2.1 Hinge

C = max(1� ya, 0) a = s, y 2 {�1,+1}

model.compile('sgd', loss=tf.keras.losses.Hinge())
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Default loss is None, so you need to specify the loss to run 
model.compile()

https://www.tensorflow.org/api_docs/python/tf/keras/losses

https://www.tensorflow.org/api_docs/python/tf/keras/losses
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the trade-off between over and under fitting is 
often called the Bias-Variance trade-off

Main goal of Machine Learning is to 
GENERALIZE

I.	Goodfellow,	Y.	Bengio,	and	A.	Courville,	Deep	Learning.	MIT	Press,	2016,	http://www.deeplearningbook.org.

optimize on 
some dataset

will it work on 
different data 
(with same 
statistical 
model)?

will it work on 
similar data, 

but from 
different 
models 

(ostensibly)?

D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

generalization

accuracy
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Main goal of Machine Learning is to 
GENERALIZE

regularization is anything you do in training that is aimed at improving 
generalization over accuracy — 

i.e., anything that does not optimize the cost on the training data

When people say “regularizer” they usually are using 
a narrower definition: 

an additive term to the loss function that prevents 
weights from getting too large
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Why do large weights correspond to over-fitting???

weight evolution

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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39.3: Training the single neuron as a binary classifier 477

Figure 39.4. A single neuron learning to classify by gradient descent. The neuron has two weights w1

and w2 and a bias w0. The learning rate was set to η = 0.01 and batch-mode gradient
descent was performed using the code displayed in algorithm 39.5. (a) The training data.
(b) Evolution of weights w0, w1 and w2 as a function of number of iterations (on log scale).
(c) Evolution of weights w1 and w2 in weight space. (d) The objective function G(w) as a
function of number of iterations. (e) The magnitude of the weights EW (w) as a function of
time. (f–k) The function performed by the neuron (shown by three of its contours) after 30,
80, 500, 3000, 10 000 and 40 000 iterations. The contours shown are those corresponding to
a = 0,±1, namely y = 0.5, 0.27 and 0.73. Also shown is a vector proportional to (w1, w2).
The larger the weights are, the bigger this vector becomes, and the closer together are the
contours.
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and w2 and a bias w0. The learning rate was set to η = 0.01 and batch-mode gradient
descent was performed using the code displayed in algorithm 39.5. (a) The training data.
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The larger the weights are, the bigger this vector becomes, and the closer together are the
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time. (f–k) The function performed by the neuron (shown by three of its contours) after 30,
80, 500, 3000, 10 000 and 40 000 iterations. The contours shown are those corresponding to
a = 0,±1, namely y = 0.5, 0.27 and 0.73. Also shown is a vector proportional to (w1, w2).
The larger the weights are, the bigger this vector becomes, and the closer together are the
contours.

(a)

x1

x2

0

2

4

6

8

10

0 2 4 6 8 10
(c)

w1

w2

-0.5
0

0.5
1

1.5
2

2.5
3

-0.5 0 0.5 1 1.5 2 2.5 3

(f) 0

2

4

6

8

10

0 2 4 6 8 10
(g) 0

2

4

6

8

10

0 2 4 6 8 10

(h) 0

2

4

6

8

10

0 2 4 6 8 10
(i) 0

2

4

6

8

10

0 2 4 6 8 10

(j) 0

2

4

6

8

10

0 2 4 6 8 10
(k) 0

2

4

6

8

10

0 2 4 6 8 10

(b)
-12

-10

-8

-6

-4

-2

0

2

1 10 100 1000 10000 100000

w0
w1
w2

(d)
0

1

2

3

4

5

6

7

1 10 100 1000 10000 100000

G(w)

(e)
0

50

100

150

200

250

300

350

400

1 10 100 1000 10000 100000

E_W(w)

learning curve (loss) L2 norm of weights

MacKay, Information Theory and Inference, Cambridge 
University Press, 2003



© Keith M. Chugg, 2020

Regularizers — How?

61

This is an experimental observation

weight evolution

(with L2 regularization)

learning curve (loss)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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478 39 — The Single Neuron as a Classifier

Algorithm 39.5. Octave source
code for a gradient descent
optimizer of a single neuron,
batch learning, with optional
weight decay (rate alpha).
Octave notation: the instruction
a = x * w causes the (N × I)
matrix x consisting of all the
input vectors to be multiplied by
the weight vector w, giving the
vector a listing the activations for
all N input vectors; x’ means
x-transpose; the single command
y = sigmoid(a) computes the
sigmoid function of all elements of
the vector a.

global x ; # x is an N * I matrix containing all the input vectors
global t ; # t is a vector of length N containing all the targets

for l = 1:L # loop L times

a = x * w ; # compute all activations
y = sigmoid(a) ; # compute outputs
e = t - y ; # compute errors
g = - x’ * e ; # compute the gradient vector
w = w - eta * ( g + alpha * w ) ; # make step, using learning rate eta

# and weight decay alpha
endfor

function f = sigmoid ( v )
f = 1.0 ./ ( 1.0 .+ exp ( - v ) ) ;

endfunction

α = 0.01 α = 0.1 α = 1
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Figure 39.6. The influence of
weight decay on a single neuron’s
learning. The objective function is
M(w) = G(w) + αEW (w). The
learning method was as in
figure 39.4. (a) Evolution of
weights w0, w1 and w2. (b)
Evolution of weights w1 and w2 in
weight space shown by points,
contrasted with the trajectory
followed in the case of zero weight
decay, shown by a thin line (from
figure 39.4). Notice that for this
problem weight decay has an
effect very similar to ‘early
stopping’. (c) The objective
function M(w) and the error
function G(w) as a function of
number of iterations. (d) The
function performed by the neuron
after 40 000 iterations.
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478 39 — The Single Neuron as a Classifier

Algorithm 39.5. Octave source
code for a gradient descent
optimizer of a single neuron,
batch learning, with optional
weight decay (rate alpha).
Octave notation: the instruction
a = x * w causes the (N × I)
matrix x consisting of all the
input vectors to be multiplied by
the weight vector w, giving the
vector a listing the activations for
all N input vectors; x’ means
x-transpose; the single command
y = sigmoid(a) computes the
sigmoid function of all elements of
the vector a.

global x ; # x is an N * I matrix containing all the input vectors
global t ; # t is a vector of length N containing all the targets

for l = 1:L # loop L times

a = x * w ; # compute all activations
y = sigmoid(a) ; # compute outputs
e = t - y ; # compute errors
g = - x’ * e ; # compute the gradient vector
w = w - eta * ( g + alpha * w ) ; # make step, using learning rate eta

# and weight decay alpha
endfor

function f = sigmoid ( v )
f = 1.0 ./ ( 1.0 .+ exp ( - v ) ) ;

endfunction

α = 0.01 α = 0.1 α = 1
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Figure 39.6. The influence of
weight decay on a single neuron’s
learning. The objective function is
M(w) = G(w) + αEW (w). The
learning method was as in
figure 39.4. (a) Evolution of
weights w0, w1 and w2. (b)
Evolution of weights w1 and w2 in
weight space shown by points,
contrasted with the trajectory
followed in the case of zero weight
decay, shown by a thin line (from
figure 39.4). Notice that for this
problem weight decay has an
effect very similar to ‘early
stopping’. (c) The objective
function M(w) and the error
function G(w) as a function of
number of iterations. (d) The
function performed by the neuron
after 40 000 iterations.
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regularizer coefficient
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Regularizers — L1, L2
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As seen earlier, these can be viewed as 
being induced by an a priori distribution on 

the weights with MAP weight estimation
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could be over-fitting, depends on capacity of 
model, dataset properties, and inference problem
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default regularizer is None

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, 
                          activity_regularizer=None, kernel_constraint=None, bias_constraint=None) 

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Let’s Try Regularization Out…
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added a L2 regularizer to both layers -- used same regularizer 
coefficient for all weights and biases

 

demonstrate a different 
import pattern….

4_fmnist.py

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Let’s Try L2 Regularization Out…
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just using regularization, we need lambda ~ 1e-3 to prevent 
over-fitting, but the loss is much higher (~0.45 vs 0.1)

 

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Let’s Try L2 Regularization Out…

67

same trend as the loss… 

(note: this is with 80/20 train/loss split)

 

this is not totally satisfying!

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Dropout — A Different Type of Regularization
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Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

N.	Srivastava,	G.	Hinton,	A.	Krizhevsky,	I.	Sutskever,	and	R.	Salakhutdinov,	“Dropout:	A	simple	way	to	prevent	neural	
networks	from	overfitting,”	Journal	of	Machine	Learning	Research,	vol.	15,	pp.	1929–1958,	2014

remove nodes in a layer with some dropout probability/rate

the random pattern is generated at the start of each mini-batch and 
held fixed during that mini-batch

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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N.	Srivastava,	G.	Hinton,	A.	Krizhevsky,	I.	Sutskever,	and	R.	Salakhutdinov,	“Dropout:	A	simple	way	to	prevent	neural	
networks	from	overfitting,”	Journal	of	Machine	Learning	Research,	vol.	15,	pp.	1929–1958,	2014

very effective at reducing over fitting and improving generalization

Dropout

setting that do not use dropout or unsupervised pretraining achieve an error of about
1.60% (Simard et al., 2003). With dropout the error reduces to 1.35%. Replacing logistic
units with rectified linear units (ReLUs) (Jarrett et al., 2009) further reduces the error to
1.25%. Adding max-norm regularization again reduces it to 1.06%. Increasing the size of
the network leads to better results. A neural net with 2 layers and 8192 units per layer
gets down to 0.95% error. Note that this network has more than 65 million parameters and
is being trained on a data set of size 60,000. Training a network of this size to give good
generalization error is very hard with standard regularization methods and early stopping.
Dropout, on the other hand, prevents overfitting, even in this case. It does not even need
early stopping. Goodfellow et al. (2013) showed that results can be further improved to
0.94% by replacing ReLU units with maxout units. All dropout nets use p = 0.5 for hidden
units and p = 0.8 for input units. More experimental details can be found in Appendix B.1.

Dropout nets pretrained with stacks of RBMs and Deep Boltzmann Machines also give
improvements as shown in Table 2. DBM—pretrained dropout nets achieve a test error of
0.79% which is the best performance ever reported for the permutation invariant setting.
We note that it possible to obtain better results by using 2-D spatial information and
augmenting the training set with distorted versions of images from the standard training
set. We demonstrate the e↵ectiveness of dropout in that setting on more interesting data
sets.

With dropout

Without dropout

@R

@
@R

Figure 4: Test error for di↵erent architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

In order to test the robustness of
dropout, classification experiments were
done with networks of many di↵erent ar-
chitectures keeping all hyperparameters, in-
cluding p, fixed. Figure 4 shows the test
error rates obtained for these di↵erent ar-
chitectures as training progresses. The
same architectures trained with and with-
out dropout have drastically di↵erent test
errors as seen as by the two separate clus-
ters of trajectories. Dropout gives a huge
improvement across all architectures, with-
out using hyperparameters that were tuned
specifically for each architecture.

6.1.2 Street View House Numbers

The Street View House Numbers (SVHN)
Data Set (Netzer et al., 2011) consists of
color images of house numbers collected by
Google Street View. Figure 5a shows some examples of images from this data set. The
part of the data set that we use in our experiments consists of 32⇥ 32 color images roughly
centered on a digit in a house number. The task is to identify that digit.

For this data set, we applied dropout to convolutional neural networks (LeCun et al.,
1989). The best architecture that we found has three convolutional layers followed by 2
fully connected hidden layers. All hidden units were ReLUs. Each convolutional layer was

1937

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout — Only During Training!
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N.	Srivastava,	G.	Hinton,	A.	Krizhevsky,	I.	Sutskever,	and	R.	Salakhutdinov,	“Dropout:	A	simple	way	to	prevent	neural	
networks	from	overfitting,”	Journal	of	Machine	Learning	Research,	vol.	15,	pp.	1929–1958,	2014

Dropout is used during training, but in inference mode, all the nodes are presentDropout

Present with

probability p

w

-

(a) At training time

Always

present

pw

-

(b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Applying dropout to a neural network amounts to sampling a “thinned” network from
it. The thinned network consists of all the units that survived dropout (Figure 1b). A
neural net with n units, can be seen as a collection of 2n possible thinned neural networks.
These networks all share weights so that the total number of parameters is still O(n2), or
less. For each presentation of each training case, a new thinned network is sampled and
trained. So training a neural network with dropout can be seen as training a collection of 2n

thinned networks with extensive weight sharing, where each thinned network gets trained
very rarely, if at all.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well in
practice. The idea is to use a single neural net at test time without dropout. The weights
of this network are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied by p at test
time as shown in Figure 2. This ensures that for any hidden unit the expected output (under
the distribution used to drop units at training time) is the same as the actual output at
test time. By doing this scaling, 2n networks with shared weights can be combined into
a single neural network to be used at test time. We found that training a network with
dropout and using this approximate averaging method at test time leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods.

The idea of dropout is not limited to feed-forward neural nets. It can be more generally
applied to graphical models such as Boltzmann Machines. In this paper, we introduce
the dropout Restricted Boltzmann Machine model and compare it to standard Restricted
Boltzmann Machines (RBM). Our experiments show that dropout RBMs are better than
standard RBMs in certain respects.

This paper is structured as follows. Section 2 describes the motivation for this idea.
Section 3 describes relevant previous work. Section 4 formally describes the dropout model.
Section 5 gives an algorithm for training dropout networks. In Section 6, we present our
experimental results where we apply dropout to problems in di↵erent domains and compare
it with other forms of regularization and model combination. Section 7 analyzes the e↵ect of
dropout on di↵erent properties of a neural network and describes how dropout interacts with
the network’s hyperparameters. Section 8 describes the Dropout RBM model. In Section 9
we explore the idea of marginalizing dropout. In Appendix A we present a practical guide

1931

for inference, replace the trained weights with p*w, where (1-p) is the dropout rate

(sort of ad hoc because of nonlinearities, but this works!)

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout Example
What happens when we train a neural net on Neilson’s crazy function?

http://neuralnetworksanddeeplearning.com/chap4.html

no dropout 20% Dropout

3 hidden layers, 64 nodes each, relu activations

71
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Dropout Intuition
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Drop Drop

Drop

Drop

Dropout can be viewed as an efficient way to do this in a single network
Ensemble methods: train multiple networks for same task and average

individual (or small groups of) nodes have to be able to do a 
reasonable job on the task w/o the deleted nodes ==> 

Robustness/Generalization

contributions from Sourya Dey
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Dropout in tf.keras
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Dropout layer has no trainable parameters — think of it as just the on/off 
mask that follows each node in the Dense layer

some layers have dropout built-in (e.g., RNNs)
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Dropout with no L2 Regularization
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with dropout of ~ 60%, we are not over-fitting and we have a loss of ~ 0.35

 

(better than L2 regularization in this case)

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Dropout with no L2 Regularization
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similar trend as loss

 

(better than L2 regularization in this case)

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Dropout and L2 Regularization

76
this achieves a test loss ~0.4, test accuracy ~ 88%

 

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de
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Main goal of Machine Learning is to 
GENERALIZE

A combination of dropout and L2 regularization worked best

This required a pretty high dropout rate plus 
regularization to not over-fit…

What does this suggest to you??

Note: we will see that we can get ~94% accuracy with CNNs on this problem

Nominal Values:

dropout rate ~ 20%

L2 Regularization: [1e-5, 1e-3]
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Smaller Model, Less Regularization
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similar results with 100 hidden neurons
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Smaller Model, Less Regularization
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similar results with 48 hidden neurons
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Another Regularization Method
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“early stopping” 

just stop when you val starts doing consistently better than 
your train 

stop at ~10 epochs
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Outline for Slides

• Universal Approximation Theorem


• Why Deep?


• A Gentle Introduction to tensorflow.keras


• Vanishing gradient and activations


• Weight initialization


• Cost functions, regularization, dropout


• Optimizers


• Hyperparameter optimization


• Batch Normalization
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Optimizers
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Optimizers are simply modifications and tweaks to the 
basic Stochastic Gradient Descent (SGD)

Main kinds of modifications:

1. Gradient filtering

2. Gradient normalization

3. Learning rate schedule

1 and 2 are usually associated with the “optimizer” and the learning 
rate schedule is seen as a separate design task
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this is a canonical block 
diagram for an Lth order filter

D D D D D

...

...

...

b[0]

a[1] a[2] a[L� 2] a[L� 1] a[L]

b[1] b[2] b[L� 2] b[L� 1] b[L]

x[n]

y[n]

v[n] v[n� 1]

v[n� L]

y[n] = b[0]v[n] + b[1]v[n� 1] + b[2]v[n� 2] + · · ·+ b[L]v[n� L]

v[n] = x[n]� (a[1]v[n� 1] + a[2]v[n� 2] + · · · a[L]v[n� L])

state[n] = (v[n� 1], v[n� 1], . . . v[n� L])

y[n] =
LX

i=0

b[i]x[n� i]�
LX

i=1

a[i]y[n� i]

implements this difference equation:

�

Frequency response:

H(z) =
b[0] + b[1]z�1 + b[2]z�2 · · ·+ b[L]z�L

1 + a[1]z�1 + a[2]z�2 · · ·+ a[L]z�L z = ej2⇡⌫
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Moving Average component

Autoregressive component
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special cases for AR1:
One pole, one zero

D
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v[n] v[n� 1]

�

ARMA

D
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y[n]

v[n] v[n� 1]

�
One pole

AR
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Unit DC-Gain AR1:

Unit input-Gain AR1:
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Recall: as alpha approaches 1, the filter has more 
memory and becomes more low-pass

this has DC-gain = 1/(1-alpha)

this has input-gain = (1-alpha)
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special cases for AR1:

Unit DC-Gain AR1:

Unit input-Gain AR1:
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Recall: as alpha approaches 1, the filter has more memory and becomes more low-pass

this has DC-gain = 1/(1-alpha)

this has input-gain = (1-alpha)

unit step response with alpha = 0.9
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Unit input Gain AR1: pole dependent DC gain

Unit DC-Gain AR1:
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transient compensation
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Unit DC Gain AR1: transient to reach steady stay DC response

AR1 
unit DC gain
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transient compensated step response

this works for any scaled step input!
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transient compensation AR1 
unit DC gain
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this example is a cosine in noise

(alpha = 0.9)

nice signal processing idea 

(comes from deep learning AFAIK)
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gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov 
Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer separate, but gradient norm 
does alter

Adadelta none yes AR1, unit DC gain separate, but gradient norm 
does alter

RMSprop none yes AR1, unit DC gain separate, but gradient norm 
does alter

Adam AR1, unit input gain, transient 
compensation yes AR1, unit input gain, transient 

compensation
separate, but gradient norm 

does alter

Nadam (Adam w/ Nesterov) ARMA1, transient 
compensation yes ARMA1, transient 

compensation
separate, but gradient norm 

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

https://arxiv.org/pdf/1609.04747.pdf
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SGD:
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SGD with 
momentum:

v is called the “velocity”
alpha is called the 

“momentum”
(alpha ~ 0.9)

Momentum: low-pass filter on the gradient  — 
removes high-free gradient noise
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c�K.M. Chugg - February 17, 2020– TITLE 5

1

1� ↵n+1

r[i] =
@C

@✓[i� 1]

g[i] = �⌘
@C

@✓[i� 1]

�[i] = r[i]

✓[i] = ✓[i� 1] +�[i]

�[i] = g[i]

v[i] = ↵v[i� 1] + (1� ↵)g[n]

�[i] = v[i]

c�K.M. Chugg - February 17, 2020– TITLE 5

1

1� ↵n+1

r[i] =
@C

@✓[i� 1]

g[i] = �⌘
@C

@✓[i� 1]

�[i] = r[i]

✓[i] = ✓[i� 1] +�[i]

�[i] = g[i]

v[i] = ↵v[i� 1] + (1� ↵)g[n]

�[i] = v[i]

c�K.M. Chugg - February 17, 2020– TITLE 4

C = Cno-reg + �kwk1

w  w � ⌘

✓
@C

@w
+ �sgn(w)

◆

� =
Importance of small weights

Importance of minimizing training loss

� = 0

�!1
w⇤ ⇠ argminCno-reg(w)

w⇤ ⇠ 0

Typically:10�5 . � . 10�3

2.3 Optimizers

y[n] = �a[0]y[n� 1] + b[0]x[n] + b[1]x[n� 1]

H(z) =
b[0] + b[1]z�1

1 + a[1]z�1

y[n] = �a[0]y[n� 1] + b[0]x[n]

H(z) =
b[0]

1 + a[1]z�1

y[n] = ↵y[n� 1] + (1� ↵)x[n]

H(z) =
(1� ↵)

1� ↵z�1

y[n] = ↵y[n� 1] + x[n]

H(z) =
1

1� ↵z�1

s[n] =
1� ↵

n+1

1� ↵

s[n] = 1� ↵
n+1

pole at ↵

1

1� ↵n+1

c�K.M. Chugg - February 24, 2020– TITLE 4

C = Cno-reg + �kwk1

w  w � ⌘

✓
@C

@w
+ �sgn(w)

◆

� =
Importance of small weights

Importance of minimizing training loss

� = 0

�!1
w⇤ ⇠ argminCno-reg(w)

w⇤ ⇠ 0

Typically:10�5 . � . 10�3

2.3 Optimizers

y[n] = �a[0]y[n� 1] + b[0]x[n] + b[1]x[n� 1]

H(z) =
b[0] + b[1]z�1

1 + a[1]z�1

y[n] = �a[0]y[n� 1] + b[0]x[n]

H(z) =
b[0]

1 + a[1]z�1

y[n] = ↵y[n� 1] + (1� ↵)x[n]

H(z) =
(1� ↵)

1� ↵z�1

y[n] = ↵y[n� 1] + x[n]

H(z) =
1

1� ↵z�1

s[n] =
1� ↵

n+1

1� ↵

s[n] = 1� ↵
n+1

pole at ↵

c�K.M. Chugg - February 26, 2020– TITLE 5

1

1� ↵n+1

r[i] =
@C

@✓[i� 1]

g[i] = �⌘
@C

@✓[i� 1]

�[i] = r[i]

✓[i] = ✓[i� 1] +�[i]

�[i] = g[i]

v[i] = ↵v[i� 1] + g[i]

�[i] = v[i]

�[i] = g[i]

v[i] = ↵v[i� 1] + g[i]

�[i] = (1 + ↵)v[i]� ↵v[i� 1]

(1 + ↵)� ↵z
�1

1� ↵z�1

zero at (1 + ↵)/↵

v[i] = ↵v[i� 1] + g[i]

✓[i] = ✓[i� 1] + (1 + ↵)v[i]� ↵v[i� 1]

�[i] = (1 + ↵)v[i]� ↵v[i� 1]

= v[i] + ↵ (v[i]� v[i� 1])| {z }
⇠ acceleration

(•)2

X

ji



© Keith M. Chugg, 2020

(standard) Momentum

90

Momentum: low-pass filter on the gradient  — 
removes high-free gradient noise

note that your momentum and learning rate are coupled

choosing larger momentum, effectively increases your learning rate
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SGD with Nesterov momentum:

v is called the “velocity”
alpha is called the 

“momentum”
(alpha ~ 0.9)
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Momentum: low-pass filter on the gradient  — 
removes high-free gradient noise
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note that your momentum and learning rate are coupled

choosing larger momentum, effectively increases your learning rate
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Nesterov

Nesterov does not attenuate the 
high frequencies as much as 

standard momentum 
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Usually motivated as doing a “preliminary” parameter update based 
before updating velocity and then adjusting for velocity update

https://jlmelville.github.io/mize/nesterov.html

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent networks." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.

3.4. Sparser Gradients via Sparse Output Regularization and
Rectified Outputs

[7] hypothesized that one reason for the difficulty in optimizing
deep networks is that in ordinary neural networks gradients diffuse
through the layers, diffusing credit and blame through many units,
maybe making it difficult for hidden units to specialize. When
the gradient on hidden units is more sparse, one could imagine
that symmetries would be broken more easily and credit or blame
assigned less uniformly. This is what was advocated in [27], ex-
ploiting the idea of rectifier non-linearities introduced earlier in
[28], i.e., the neuron non-linearity is out = max(0, in) instead
of out = tanh(in) or out = sigmoid(in). This approach was
very successful in recent work on deep learning for object recog-
nition [29], beating by far the state-of-the-art on ImageNet (1000
classes). Here, we apply this deep learning idea to RNNs, using
an L1 penalty on outputs of hidden units to promote sparsity of
activations. The underlying hypothesis is that if the gradient is con-
centrated in a few paths (in the unfolded computation graph of the
RNN), it will reduce the vanishing gradients effect.

3.5. Simplified Nesterov Momentum

Nesterov accelerated gradient (NAG) [30] is a first-order optimiza-
tion method to improve stability and convergence of regular gradient
descent. Recently, [6] showed that NAG could be computed by the
following update rules:

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (1)
θt = θt−1 + vt (2)

where θt are the model parameters, vt the velocity, µt ∈ [0, 1] the
momentum (decay) coefficient and εt > 0 the learning rate at it-
eration t, f(θ) is the objective function and ∇f(θ′) is a shorthand
notation for the gradient ∂f(θ)

∂θ
|θ=θ′ . These equations have a form

similar to standard momentum updates:

vt = µt−1vt−1 − εt−1∇f(θt−1) (3)
θt = θt−1 + vt (4)

= θt−1 + µt−1vt−1 − εt−1∇f(θt−1) (5)

and differ only in the evaluation point of the gradient at each itera-
tion. This important difference, thought to counterbalance too high
velocities by “peeking ahead” actual objective values in the candi-
date search direction, results in significantly improved RNN perfor-
mance on a number of tasks.

In this section, we derive a new formulation of Nesterov mo-
mentum differing from (3) and (5) only in the linear combination
coefficients of the velocity and gradient contributions at each itera-
tion, and we offer an alternative interpretation of the method. The
key departure from (1) and (2) resides in committing to the “peeked-
ahead” parameters Θt−1 ≡ θt−1 + µt−1vt−1 and backtracking by
the same amount before each update. Our new parameters Θt up-
dates become:

vt = µt−1vt−1 − εt−1∇f(Θt−1) (6)
Θt = Θt−1 − µt−1vt−1 + µtvt + vt

= Θt−1 + µtµt−1vt−1 − (1 + µt)εt−1∇f(Θt−1) (7)

Assuming a zero initial velocity v1 = 0 and velocity at convergence
of optimization vT % 0, the parameters Θ are a completely equiva-
lent replacement of θ.

Note that equation (7) is identical to regular momentum (5)
with different linear combination coefficients. More precisely, for an
equivalent velocity update (6), the velocity contribution to the new
parameters µtµt−1 < µt is reduced relatively to the gradient con-
tribution (1 + µt)εt−1 > εt−1. This allows storing past velocities
for a longer time with a higher µ, while actually using those veloci-
ties more conservatively during the updates. We suspect this mecha-
nism is a crucial ingredient for good empirical performance. While
the “peeking ahead” point of view suggests that a similar strategy
could be adapted for regular gradient descent (misleadingly, because
it would amount to a reduced learning rate εt), our derivation shows
why it is important to choose search directions aligned with the cur-
rent velocity to yield substantial improvement. The general case is
also simpler to implement.

4. EXPERIMENTS

In the experimental section we compare vanilla SGD versus SGD
plus some of the enhancements discussed above. Specifically we
use the letter ‘C‘ to indicate that gradient clipping is used, ‘L‘ for
leaky-integration units, ‘R‘ if we use rectifier units with L1 penalty
and ‘M‘ for Nesterov momentum.

4.1. Music Data

We evaluate our models on the four polyphonic music datasets of
varying complexity used in [25]: classical piano music (Piano-
midi.de), folk tunes with chords instantiated from ABC nota-
tion (Nottingham), orchestral music (MuseData) and the four-part
chorales by J.S. Bach (JSB chorales). The symbolic sequences con-
tain high-level pitch and timing information in the form of a binary
matrix, or piano-roll, specifying precisely which notes occur at each
time-step. They form interesting benchmarks for RNNs because of
their high dimensionality and the complex temporal dependencies
involved at different time scales. Each dataset contains at least 7
hours of polyphonic music with an average polyphony (number of
simultaneous notes) of 3.9.

Piano-rolls were prepared by aligning each time-step (88 pitch
labels that cover the whole range of piano) on an integer fraction
of the beat (quarter note) and transposing each sequence in a com-
mon tonality (C major/minor) to facilitate learning. Source files and
preprocessed piano-rolls split in train, validation and test sets are
available on the authors’ website2.

4.1.1. Setup and Results

We select hyperparameters, such as the number of hidden units nh,
regularization coefficients λL1, the choice of non-linearity function,
or the momentum schedule µt, learning rate εt, number of leaky
units nleaky or leaky factors α according to log-likelihood on a val-
idation set and we report the final performance on the test set for the
best choice in each category. We do so by using random search [31]
on the following intervals:

nh ∈ [100, 400] εt ∈ [10−4, 10−1]
µt ∈ [10−3, 0.95] λL1 ∈ [10−6, 10−3]
nleaky ∈ {0%, 25%, 50%} α ∈ [0.02, 2]

The cutoff threshold for gradient clipping is set based on the
average norm of the gradient over one pass on the data, and we used
15 in this case for all music datasets. The data is split into sequences

2www-etud.iro.umontreal.ca/˜boulanni/icml2012

typical explanation

Geoffrey	Hinton’s	slides:	http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

what exactly is this?!?

3.4. Sparser Gradients via Sparse Output Regularization and
Rectified Outputs

[7] hypothesized that one reason for the difficulty in optimizing
deep networks is that in ordinary neural networks gradients diffuse
through the layers, diffusing credit and blame through many units,
maybe making it difficult for hidden units to specialize. When
the gradient on hidden units is more sparse, one could imagine
that symmetries would be broken more easily and credit or blame
assigned less uniformly. This is what was advocated in [27], ex-
ploiting the idea of rectifier non-linearities introduced earlier in
[28], i.e., the neuron non-linearity is out = max(0, in) instead
of out = tanh(in) or out = sigmoid(in). This approach was
very successful in recent work on deep learning for object recog-
nition [29], beating by far the state-of-the-art on ImageNet (1000
classes). Here, we apply this deep learning idea to RNNs, using
an L1 penalty on outputs of hidden units to promote sparsity of
activations. The underlying hypothesis is that if the gradient is con-
centrated in a few paths (in the unfolded computation graph of the
RNN), it will reduce the vanishing gradients effect.

3.5. Simplified Nesterov Momentum

Nesterov accelerated gradient (NAG) [30] is a first-order optimiza-
tion method to improve stability and convergence of regular gradient
descent. Recently, [6] showed that NAG could be computed by the
following update rules:

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (1)
θt = θt−1 + vt (2)

where θt are the model parameters, vt the velocity, µt ∈ [0, 1] the
momentum (decay) coefficient and εt > 0 the learning rate at it-
eration t, f(θ) is the objective function and ∇f(θ′) is a shorthand
notation for the gradient ∂f(θ)

∂θ
|θ=θ′ . These equations have a form

similar to standard momentum updates:

vt = µt−1vt−1 − εt−1∇f(θt−1) (3)
θt = θt−1 + vt (4)

= θt−1 + µt−1vt−1 − εt−1∇f(θt−1) (5)

and differ only in the evaluation point of the gradient at each itera-
tion. This important difference, thought to counterbalance too high
velocities by “peeking ahead” actual objective values in the candi-
date search direction, results in significantly improved RNN perfor-
mance on a number of tasks.

In this section, we derive a new formulation of Nesterov mo-
mentum differing from (3) and (5) only in the linear combination
coefficients of the velocity and gradient contributions at each itera-
tion, and we offer an alternative interpretation of the method. The
key departure from (1) and (2) resides in committing to the “peeked-
ahead” parameters Θt−1 ≡ θt−1 + µt−1vt−1 and backtracking by
the same amount before each update. Our new parameters Θt up-
dates become:

vt = µt−1vt−1 − εt−1∇f(Θt−1) (6)
Θt = Θt−1 − µt−1vt−1 + µtvt + vt

= Θt−1 + µtµt−1vt−1 − (1 + µt)εt−1∇f(Θt−1) (7)

Assuming a zero initial velocity v1 = 0 and velocity at convergence
of optimization vT % 0, the parameters Θ are a completely equiva-
lent replacement of θ.

Note that equation (7) is identical to regular momentum (5)
with different linear combination coefficients. More precisely, for an
equivalent velocity update (6), the velocity contribution to the new
parameters µtµt−1 < µt is reduced relatively to the gradient con-
tribution (1 + µt)εt−1 > εt−1. This allows storing past velocities
for a longer time with a higher µ, while actually using those veloci-
ties more conservatively during the updates. We suspect this mecha-
nism is a crucial ingredient for good empirical performance. While
the “peeking ahead” point of view suggests that a similar strategy
could be adapted for regular gradient descent (misleadingly, because
it would amount to a reduced learning rate εt), our derivation shows
why it is important to choose search directions aligned with the cur-
rent velocity to yield substantial improvement. The general case is
also simpler to implement.

4. EXPERIMENTS

In the experimental section we compare vanilla SGD versus SGD
plus some of the enhancements discussed above. Specifically we
use the letter ‘C‘ to indicate that gradient clipping is used, ‘L‘ for
leaky-integration units, ‘R‘ if we use rectifier units with L1 penalty
and ‘M‘ for Nesterov momentum.

4.1. Music Data

We evaluate our models on the four polyphonic music datasets of
varying complexity used in [25]: classical piano music (Piano-
midi.de), folk tunes with chords instantiated from ABC nota-
tion (Nottingham), orchestral music (MuseData) and the four-part
chorales by J.S. Bach (JSB chorales). The symbolic sequences con-
tain high-level pitch and timing information in the form of a binary
matrix, or piano-roll, specifying precisely which notes occur at each
time-step. They form interesting benchmarks for RNNs because of
their high dimensionality and the complex temporal dependencies
involved at different time scales. Each dataset contains at least 7
hours of polyphonic music with an average polyphony (number of
simultaneous notes) of 3.9.

Piano-rolls were prepared by aligning each time-step (88 pitch
labels that cover the whole range of piano) on an integer fraction
of the beat (quarter note) and transposing each sequence in a com-
mon tonality (C major/minor) to facilitate learning. Source files and
preprocessed piano-rolls split in train, validation and test sets are
available on the authors’ website2.

4.1.1. Setup and Results

We select hyperparameters, such as the number of hidden units nh,
regularization coefficients λL1, the choice of non-linearity function,
or the momentum schedule µt, learning rate εt, number of leaky
units nleaky or leaky factors α according to log-likelihood on a val-
idation set and we report the final performance on the test set for the
best choice in each category. We do so by using random search [31]
on the following intervals:

nh ∈ [100, 400] εt ∈ [10−4, 10−1]
µt ∈ [10−3, 0.95] λL1 ∈ [10−6, 10−3]
nleaky ∈ {0%, 25%, 50%} α ∈ [0.02, 2]

The cutoff threshold for gradient clipping is set based on the
average norm of the gradient over one pass on the data, and we used
15 in this case for all music datasets. The data is split into sequences

2www-etud.iro.umontreal.ca/˜boulanni/icml2012

“Bengio’s Formulation”

best references of this type I could find (still confusing!):

(this is what tf.keras does)

https://jlmelville.github.io/mize/nesterov.html
https://arxiv.org/pdf/1212.0901.pdf
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“Bengio’s Formulation”
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Basic Idea: estimate the RMS value of the gradient and normalize by that value

this is done by using some kind of low-pass filter on the the square of these 
quantities — i.e., like computing the sample second moment
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Adagrad:

RMSprop:

Adadelta:
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Adam (the best of all worlds?)

98

use unit-DC gain filters to for gradient filtering 
and computing the second moment

use transient compensation to reduce the start-
up effects on these filters Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �

t
1 and �

t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1,�2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0  0 (Initialize 1st moment vector)
v0  0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do
t t+ 1
gt  r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt  �1 ·mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt  �2 · vt�1 + (1� �2) · g2t (Update biased second raw moment estimate)
bmt  mt/(1� �

t
1) (Compute bias-corrected first moment estimate)

bvt  vt/(1� �
t
2) (Compute bias-corrected second raw moment estimate)

✓t  ✓t�1 � ↵ · bmt/(
p
bvt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1,�2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates bmt and bvt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

p
1� �t

2/(1� �
t
1) and ✓t  ✓t�1 � ↵t ·mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · bmt/

p
bvt. The effective stepsize has

two upper bounds: |�t|  ↵ · (1 � �1)/
p
1� �2 in the case (1 � �1) >

p
1� �2, and |�t|  ↵

2

Note: t starts from 1, I use i starting from 0
D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015
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my_adam = tf.keras.optimizers.adam(learning_rate=0.002, beta_1=0.92, beta_2=0.99, epsilon=1e-09)
our_first_model.compile(optimizer=my_adam, loss=SparseCategoricalCrossentropy(), metrics=['accuracy'])
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(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate bvt
vanishes to zeros after a few epochs and is dominated by the ✏ in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.
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gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov 
Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer separate, but gradient norm 
does alter

Adadelta none yes AR1, unit DC gain separate, but gradient norm 
does alter

RMSprop none yes AR1, unit DC gain separate, but gradient norm 
does alter

Adam AR1, unit input gain, transient 
compensation yes AR1, unit input gain, transient 

compensation
separate, but gradient norm 

does alter

Nadam (Adam w/ Nesterov) ARMA1, transient 
compensation yes ARMA1, transient 

compensation
separate, but gradient norm 

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

https://arxiv.org/pdf/1609.04747.pdf
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Comparison of Initializers
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https://twitter.com/AlecRad

https://imgur.com/a/Hqolp

https://twitter.com/AlecRad
https://imgur.com/a/Hqolp
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Learning Rate Schedules
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Change (typically decrease) the learning rate as 
we do more parameter updates (batches)

From LMS, we know that large learning rate 
implies faster convergences, but more 
“misadjustment error” (gradient noise)

Could also use a LR schedule to try to force the 
optimizer out of a local minimum

(to go to a better local minimum, likely)
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Learning Rate Schedules in tf.keras
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LearningRateScheduler() is a 
callback class built-in for you

From LMS, we know that large learning rate 
implies faster convergences, but more 
“misadjustment error” (gradient noise)

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/LearningRateScheduler

you just need to pass it a 
schedule which returns eta as a 

function i in {0,1,2…} (epoch)

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/LearningRateScheduler
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Aside: Callbacks in tf.keras
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These are built-in callbacks you can use

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks

You can create your own custom callback 
by building on this base class

(more details in discussion)

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/LearningRateScheduler
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contributions from Sourya Dey

Another common LR schedule is to decrease the LR at specific epochs in a stepwise manner

e.g., at 50% and 75% of the total number of epochs: LR <— LR * 0.2
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More Exotic LR Schedules 
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Triangular Schedules

https://www.jeremyjordan.me/nn-learning-rate/

L. N. Smith, “Cyclical Learning Rates for Training Neural Networks”, arXiv:1506.01186

Cosine Schedules

Loshchilov, Ilya, and Frank Hutter. “SGDR: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983 (2016).

Published as a conference paper at ICLR 2017

3 STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS (SGDR)

The existing restart techniques can also be used for stochastic gradient descent if the stochasticity
is taken into account. Since gradients and loss values can vary widely from one batch of the data
to another, one should denoise the incoming information: by considering averaged gradients and
losses, e.g., once per epoch, the above-mentioned restart techniques can be used again.

In this work, we consider one of the simplest warm restart approaches. We simulate a new warm-
started run / restart of SGD once Ti epochs are performed, where i is the index of the run. Impor-
tantly, the restarts are not performed from scratch but emulated by increasing the learning rate ⌘t
while the old value of xt is used as an initial solution. The amount of this increase controls to which
extent the previously acquired information (e.g., momentum) is used.

Within the i-th run, we decay the learning rate with a cosine annealing for each batch as follows:

⌘t = ⌘imin +
1

2
(⌘imax � ⌘imin)(1 + cos(

Tcur

Ti
⇡)), (5)

where ⌘imin and ⌘imax are ranges for the learning rate, and Tcur accounts for how many epochs
have been performed since the last restart. Since Tcur is updated at each batch iteration t, it can
take discredited values such as 0.1, 0.2, etc. Thus, ⌘t = ⌘imax when t = 0 and Tcur = 0. Once
Tcur = Ti, the cos function will output �1 and thus ⌘t = ⌘imin. The decrease of the learning rate
is shown in Figure 1 for fixed Ti = 50, Ti = 100 and Ti = 200; note that the logarithmic axis
obfuscates the typical shape of the cosine function.

In order to improve anytime performance, we suggest an option to start with an initially small Ti

and increase it by a factor of Tmult at every restart (see, e.g., Figure 1 for T0 = 1, Tmult = 2 and
T0 = 10, Tmult = 2). It might be of great interest to decrease ⌘imax and ⌘imin at every new restart.
However, for the sake of simplicity, here, we keep ⌘imax and ⌘imin the same for every i to reduce the
number of hyperparameters involved.

Since our simulated warm restarts (the increase of the learning rate) often temporarily worsen per-
formance, we do not always use the last xt as our recommendation for the best solution (also called
the incumbent solution). While our recommendation during the first run (before the first restart) is
indeed the last xt, our recommendation after this is a solution obtained at the end of the last per-

formed run at ⌘t = ⌘imin. We emphasize that with the help of this strategy, our method does not
require a separate validation data set to determine a recommendation.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

We consider the problem of training Wide Residual Neural Networks (WRNs; see Zagoruyko &
Komodakis (2016) for details) on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009). We
will use the abbreviation WRN-d-k to denote a WRN with depth d and width k. Zagoruyko &
Komodakis (2016) obtained the best results with a WRN-28-10 architecture, i.e., a Residual Neural
Network with d = 28 layers and k = 10 times more filters per layer than used in the original
Residual Neural Networks (He et al., 2015; 2016).

The CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) consist of 32⇥32 color images drawn
from 10 and 100 classes, respectively, split into 50,000 train and 10,000 test images. For image
preprocessing Zagoruyko & Komodakis (2016) performed global contrast normalization and ZCA
whitening. For data augmentation they performed horizontal flips and random crops from the image
padded by 4 pixels on each side, filling missing pixels with reflections of the original image.

For training, Zagoruyko & Komodakis (2016) used SGD with Nesterov’s momentum with initial
learning rate set to ⌘0 = 0.1, weight decay to 0.0005, dampening to 0, momentum to 0.9 and
minibatch size to 128. The learning rate is dropped by a factor of 0.2 at 60, 120 and 160 epochs,
with a total budget of 200 epochs. We reproduce the results of Zagoruyko & Komodakis (2016) with
the same settings except that i) we subtract per-pixel mean only and do not use ZCA whitening; ii)
we use SGD with momentum as described by eq. (3-4) and not Nesterov’s momentum.

4

https://www.tensorflow.org/api_docs/python/tf/keras/experimental/CosineDecay

cosine schedule is "experimental" in tf.keras

contributions from Sourya Dey

https://www.jeremyjordan.me/nn-learning-rate/
https://arxiv.org/pdf/1506.01186.pdf%EF%BC%89%EF%BC%8C%E8%BF%99%E7%A7%8D%E5%A5%87%E6%8A%80%E6%B7%AB%E5%B7%A7%E5%B0%86%E8%8E%B7%E5%BE%97%E6%9B%B4%E9%AB%98%E7%9A%84%E6%B5%8B%E8%AF%95%E5%87%86%E7%A1%AE%E7%8E%87%EF%BC%8C%E4%BD%86%E6%98%AF%E4%BD%A0%E7%9C%8B%E8%BF%99%E4%B8%AAlearning
https://arxiv.org/pdf/1506.01186.pdf%EF%BC%89%EF%BC%8C%E8%BF%99%E7%A7%8D%E5%A5%87%E6%8A%80%E6%B7%AB%E5%B7%A7%E5%B0%86%E8%8E%B7%E5%BE%97%E6%9B%B4%E9%AB%98%E7%9A%84%E6%B5%8B%E8%AF%95%E5%87%86%E7%A1%AE%E7%8E%87%EF%BC%8C%E4%BD%86%E6%98%AF%E4%BD%A0%E7%9C%8B%E8%BF%99%E4%B8%AAlearning
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/experimental/CosineDecay


© Keith M. Chugg, 2020

Outline for Slides

• Universal Approximation Theorem


• Why Deep?


• A Gentle Introduction to tensorflow.keras


• Vanishing gradient and activations


• Weight initialization


• Cost functions, regularization, dropout


• Optimizers


• Hyperparameter optimization


• Batch Normalization

109



© Keith M. Chugg, 2020

Is this Hopelessly Complex??
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We need to search over:

1. Model Architecture 
1. Number of layers

2. Layer types

3. Number of nodes in each layer


2. Loss Functions 
3. Regularization Methods 

1. L1, L2, L1_L2

2. Vary with layer

3. Weight vs bias


4. Optimizers 
1. Type: SGD, Adam, etc

2. Parameters

3. Learning rate schedules
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Some Big-Picture Guidelines
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Binary Classification

M-ary Classification

Regression

Use sigmoid output activation with Binary Cross Entropy Loss

Use softmax output activation with Multi-Class Cross Entropy Loss

Use linear output activation with MSE loss (L2)

Loss Function

Regularization
Use some dropout and L2 regularization

Target network size so that:

dropout rate ~ 0.2, L2-reg coefficient ~ 1e-4

Optimizer
Adam with defaults is a good start

use the ReduceLROnPlateau() callback as a start to LR scheduling 
or simple step LR schedules

A lot of focus on this in the literature, but designing your dataset is more important

(this is fine tuning for real world applications IMO)
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Automated Network Architecture Search and 
Hyperparameter Optimization

112

We will have a guest 
lecture by Sourya Dey 
on this research topic

Sourya is a current 
PhD student

Approach combines Bayesian optimization with grid 
search while targeting a combination of classification 

accuracy and runtime complexity (CNNs)
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Batch Normalization Layer
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learn the best “level" for internal activations

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

this BN is done for each mini-batch, but what to do when using 
trained network for inference?

During inference, replace the min-batch data-average mean and 
variance by the data-average mean and variance over the entire dataset

gamma and beta are trainable parameters

commonly used and effective technique in deep CNNs

indicate that the parameters γ and β are to be learned,
but it should be noted that the BN transform does not
independently process the activation in each training ex-
ample. Rather, BNγ,β(x) depends both on the training
example and the other examples in the mini-batch. The
scaled and shifted values y are passed to other network
layers. The normalized activations x̂ are internal to our
transformation, but their presence is crucial. The distri-
butions of values of any x̂ has the expected value of 0
and the variance of 1, as long as the elements of each
mini-batch are sampled from the same distribution, and
if we neglect ε. This can be seen by observing that∑m

i=1 x̂i = 0 and 1
m

∑m
i=1 x̂

2
i = 1, and taking expec-

tations. Each normalized activation x̂(k) can be viewed as
an input to a sub-network composed of the linear trans-
form y(k) = γ(k)x̂(k) + β(k), followed by the other pro-
cessing done by the original network. These sub-network
inputs all have fixed means and variances, and although
the joint distribution of these normalized x̂(k) can change
over the course of training, we expect that the introduc-
tion of normalized inputs accelerates the training of the
sub-network and, consequently, the network as a whole.
During training we need to backpropagate the gradi-

ent of loss $ through this transformation, as well as com-
pute the gradients with respect to the parameters of the
BN transform. We use chain rule, as follows (before sim-
plification):

∂$
∂x̂i

= ∂$
∂yi

· γ
∂$
∂σ2

B

=
∑m

i=1
∂$
∂x̂i

· (xi − µB) · −1
2 (σ2

B + ε)−3/2

∂$
∂µB

=

(
∑m

i=1
∂$
∂x̂i

· −1√
σ2
B
+ε

)
+ ∂$

∂σ2
B

·
∑

m

i=1 −2(xi−µB)
m

∂$
∂xi

= ∂$
∂x̂i

· 1√
σ2
B
+ε

+ ∂$
∂σ2

B

· 2(xi−µB)
m + ∂$

∂µB
· 1
m

∂$
∂γ =

∑m
i=1

∂$
∂yi

· x̂i

∂$
∂β =

∑m
i=1

∂$
∂yi

Thus, BN transform is a differentiable transformation that
introduces normalized activations into the network. This
ensures that as the model is training, layers can continue
learning on input distributions that exhibit less internal co-
variate shift, thus accelerating the training. Furthermore,
the learned affine transform applied to these normalized
activations allows the BN transform to represent the iden-
tity transformation and preserves the network capacity.

3.1 Training and Inference with Batch-
Normalized Networks

To Batch-Normalize a network, we specify a subset of ac-
tivations and insert the BN transform for each of them,
according to Alg. 1. Any layer that previously received
x as the input, now receives BN(x). A model employing
Batch Normalization can be trained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
size m > 1, or with any of its variants such as Adagrad

(Duchi et al., 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, deterministically.
For this, once the network has been trained, we use the
normalization

x̂ =
x− E[x]√
Var[x] + ε

using the population, rather than mini-batch, statistics.
Neglecting ε, these normalized activations have the same
mean 0 and variance 1 as during training. We use the un-
biased variance estimate Var[x] = m

m−1 · EB[σ2
B], where

the expectation is over training mini-batches of sizem and
σ2
B are their sample variances. Using moving averages in-
stead, we can track the accuracy of a model as it trains.
Since the means and variances are fixed during inference,
the normalization is simply a linear transform applied to
each activation. It may further be composed with the scal-
ing by γ and shift by β, to yield a single linear transform
that replaces BN(x). Algorithm 2 summarizes the proce-
dure for training batch-normalized networks.

Input: Network N with trainable parametersΘ;
subset of activations {x(k)}Kk=1

Output: Batch-normalized network for inference, Ninf
BN

1: Ntr
BN ← N // Training BN network

2: for k = 1 . . .K do
3: Add transformation y(k) = BNγ(k),β(k)(x(k)) to

Ntr
BN (Alg. 1)

4: Modify each layer in Ntr
BN with input x(k) to take

y(k) instead
5: end for
6: Train Ntr

BN to optimize the parameters Θ ∪
{γ(k),β(k)}Kk=1

7: Ninf
BN ← Ntr

BN // Inference BN network with frozen
// parameters

8: for k = 1 . . .K do
9: // For clarity, x ≡ x(k), γ ≡ γ(k), µB ≡ µ(k)

B
, etc.

10: Process multiple training mini-batches B, each of
sizem, and average over them:

E[x]← EB[µB]

Var[x]← m
m−1EB[σ

2
B]

11: In Ninf
BN, replace the transform y = BNγ,β(x) with

y = γ√
Var[x]+ε

· x+
(
β − γ E[x]√

Var[x]+ε

)

12: end for
Algorithm 2: Training a Batch-Normalized Network

3.2 Batch-Normalized Convolutional Net-
works

Batch Normalization can be applied to any set of acti-
vations in the network. Here, we focus on transforms
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