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• Some useful packages for NLP

• Word embeddings

• word2vec example

• RNNs for NLP tasks

• Attention-based Approaches

• Transformers and BERTs
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Natural Language Tool Kit (NLTK) https://www.nltk.org/book/

NLTK book on Amazon

 

“shallow” NLP

tokenize, word counts, 
regular expressions, etc

https://www.nltk.org/book/
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495/ref=sr_1_3?keywords=NLTK+book&qid=1553727622&s=gateway&sr=8-3
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495/ref=sr_1_3?keywords=NLTK+book&qid=1553727622&s=gateway&sr=8-3
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GenSim

 

has some more advanced 
functionality than NLTK, but 
does not replicate everything 

useful in NLTK…

e.g., topic identification and 
text summarization

https://radimrehurek.com/gensim/
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495/ref=sr_1_3?keywords=NLTK+book&qid=1553727622&s=gateway&sr=8-3
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NLTK and Gensim have tools for preparing text 
data to be processed…

To use deep-learning for NLP tasks we need to convert 
text to numerical data

this is the role of an embedding
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int between 1 and V 
(one-to-one)text from a vocabulary 

of size V (e.g., 
V=10,000)

word embedding (vector) 
dim = D (e.g., 300)

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

1 Word Embeddings

vw =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

w “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

this is essentially feature extraction for text
(could be done at the character or gram-level as well, but usually word 

embeddings)
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how to choose the vectors?

ideally it would capture 
relations and context

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

1 Word Embeddings

vw =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

w “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

dog
cat

wolf
lion

wolf - dog + cat

canine feline
domesticated

wild

and allow for a sort of 
word-math

PCA used to reduce from D to 2 dimensions
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Gender ~ status/familiarity

PCA used to reduce from 
D to 2 dimensions

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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company ~ ecoPCA used to reduce from 
D to 2 dimensions

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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city ~ zip code PCA used to reduce from 
D to 2 dimensions

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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comparative ~ superlativePCA used to reduce from 
D to 2 dimensions

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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measure the similarity of two vectors

this is standard linear algebra 
(Euclidian geometry)

called the “cosine distance” in the ML world

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

cos ✓x,y = ⇢xy =
ytx

kxkkyk

cat

wolf

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house” ✓

cos ✓x,y = ⇢xy =
ytx

kxkkyk

(not limited to 2D)
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lots of applications — full NLP beyond scope:

topic identification (e.g., sports article vs. politics)

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

neural 
network

classification decision or 
word-vec output

often this is 
convolutional/RNN

sentiment analysis (e.g., happy vs. angry tweet)

language translation (e.g., English to Spanish)

text generation (e.g., GAN)
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most methods rely on context

the young child smiled when she saw the clown

context size 2 for “smile” here is: {young, child, when she}

context allows words with similar roles to be identified

e.g., “smiled” and “frowned” may be observed to be similar 
words in terms of their roles
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Google’s word2vec - “skip-gram” model

minimize this over a 
parametrized p(.|.) function

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and 
phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

https://code.google.com/archive/p/word2vec/

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j #=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

"vwI

)

∑W
w=1 exp

(

v′w
"vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
"
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

"
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

"
vwI

)
]

(4)

3

use a softmax for the 
probability…

the v-values are the desired embeddings

the v-prime-values are associated with context

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://code.google.com/archive/p/word2vec/
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Google’s word2vec - “skip-gram” model

train a single hidden layer MLP to predict the 
context for a given target word (e.g., smile)

.

.

.

“smiled”
dictionary one-hot 

encoder

321

0
0
0
0
0
1
0
0
0
0

0
0
0

.

.

.

321

V input nodes 
(e.g., 10,000)

embedding layer 
(e.g., 300 nodes)

linear 
activation 

.

.

.

output layer
(e.g., 10,000 nodes)

softmax 
activation 

1

1

0

0

0

0

0

0

1

1

297 “young”

52 “when”

9421 “she”

1262 “child”

321 “smile”

labels for target 
word “smiled”
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Google’s word2vec - “skip-gram” model

rows for the first-junction W matrix are the vector 
representations for the target (v)

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

"vwI

)

∑W
w=1 exp

(

v′w
"vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
"
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

"
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

"
vwI

)
]

(4)

3

train this network and throw-out the output soft:

the embedding is the combination of the dictionary, 
one-hot encode, and first layer weight vectors

.

.

.

“smiled”
dictionary one-hot 

encoder

321

0
0
0
0
0
1
0
0
0
0

0
0
0

.

.

.

321

V input nodes 
(e.g., 10,000)

embedding layer 
(e.g., 300 nodes)

linear 
activation 

.

.

.

output layer
(e.g., 10,000 nodes)

softmax 
activation 

1

1

0

0

0

0

0

0

1

1

297 “young”

52 “when”

9421 “she”

1262 “child”

321 “smile”

labels for target 
word “smiled”
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Google’s word2vec - “skip-gram” model

train this network and throw-out the output layer:

the embedding is the combination of the dictionary, 
one-hot encode, and first layer weight vectors

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

1 Word Embeddings

vw =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

w “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”
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There is another variant of word2vec that

predicts the target (output) from the context (inputs)
training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

"vwI

)

∑W
w=1 exp

(

v′w
"vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
"
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

"
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

"
vwI

)
]

(4)

3

in this case the embeddings are the v-prime vectors and 
they are the columns of the output layer

this is called “continuous bag of words” (CBOW)

(I think skip-gram is more widely used)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and 
phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

https://code.google.com/archive/p/word2vec/

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://code.google.com/archive/p/word2vec/
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Problem:

this can be very complex due to desire to work with large vocabulary training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

"vwI

)

∑W
w=1 exp

(

v′w
"vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
"
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

"
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

"
vwI

)
]

(4)

3

the word2vec paper suggests a complexity-reduction 
method called negative sampling

basic idea is to not label all non-context outputs — 
just a subset…

don’t train all of the weights for each example…
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Problem:

https://github.com/adventuresinML/adventures-in-ml-code

a “negative context” word is a word that is not a 
context word for the target

keras_word2vec.pylet’s try this out…

https://adventuresinmachinelearning.com/word2vec-keras-tutorial/

https://github.com/adventuresinML/adventures-in-ml-code
https://adventuresinmachinelearning.com/word2vec-keras-tutorial/
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keras_word2vec.py

obviously, this is a concept demo and not ready for 
prime time…

Not sure of the best platform to train a word2vec 
platform in a serious manner…

https://adventuresinmachinelearning.com/gensim-word2vec-tutorial/

Gensim has pre-trained word2vec capability — typical use 
pattern is to use pre-trained embeddings…

https://code.google.com/archive/p/word2vec/

Google source code

https://mccormickml.com/2016/04/12/googles-pretrained-word2vec-model-in-python/

https://adventuresinmachinelearning.com/gensim-word2vec-tutorial/
https://code.google.com/archive/p/word2vec/
https://mccormickml.com/2016/04/12/googles-pretrained-word2vec-model-in-python/
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tf.keras has an Embedding layer

V input_dim: int > 0. Size of the vocabulary, i.e. maximum integer index + 1

output_dim: int >= 0. Dimension of the dense embedding.D

must be the first layer (feature extraction)

can be trainable or non-trainable

trainable: train your embedding for the specific application

non-trainable: use a pre-trained embedding since:
 - in many cases word relations are similar across applications
 - take a long time to train!

similar to using some pre-
trained convolutional layers 

from large CV networks

tf.keras.layers.Embedding(
    input_dim, output_dim, embeddings_initializer='uniform',
    embeddings_regularizer=None, activity_regularizer=None,
    embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs
)
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keras blog: using pre-trained word embeddings in keras

had sample code (should be easy to update to tf.keras)

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
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Glove has pre-trained embeddings available

P(j|i) = probability that word j is context word for word i

https://nlp.stanford.edu/projects/glove/

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings 
of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion

cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio k = solid k = gas k = water k = fashion

P(k |ice) 1.9 ⇥ 10�4 6.6 ⇥ 10�5 3.0 ⇥ 10�3 1.7 ⇥ 10�5

P(k |steam) 2.2 ⇥ 10�5 7.8 ⇥ 10�4 2.2 ⇥ 10�3 1.8 ⇥ 10�5

P(k |ice)/P(k |steam) 8.9 8.5 ⇥ 10�2 1.36 0.96

context of word i.
We begin with a simple example that showcases

how certain aspects of meaning can be extracted
directly from co-occurrence probabilities. Con-
sider two words i and j that exhibit a particular as-
pect of interest; for concreteness, suppose we are
interested in the concept of thermodynamic phase,
for which we might take i = ice and j = steam.
The relationship of these words can be examined
by studying the ratio of their co-occurrence prob-
abilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we
expect the ratio Pik/Pjk will be large. Similarly,
for words k related to steam but not ice, say k =

gas, the ratio should be small. For words k like
water or fashion, that are either related to both ice
and steam, or to neither, the ratio should be close
to one. Table 1 shows these probabilities and their
ratios for a large corpus, and the numbers confirm
these expectations. Compared to the raw probabil-
ities, the ratio is better able to distinguish relevant
words (solid and gas) from irrelevant words (water

and fashion) and it is also better able to discrimi-
nate between the two relevant words.

The above argument suggests that the appropri-
ate starting point for word vector learning should
be with ratios of co-occurrence probabilities rather
than the probabilities themselves. Noting that the
ratio Pik/Pjk depends on three words i, j, and k,
the most general model takes the form,

F (wi ,w j , w̃k ) =
Pik

Pjk
, (1)

where w 2 Rd are word vectors and w̃ 2 Rd

are separate context word vectors whose role will
be discussed in Section 4.2. In this equation, the
right-hand side is extracted from the corpus, and
F may depend on some as-of-yet unspecified pa-
rameters. The number of possibilities for F is vast,
but by enforcing a few desiderata we can select a
unique choice. First, we would like F to encode

the information present the ratio Pik/Pjk in the
word vector space. Since vector spaces are inher-
ently linear structures, the most natural way to do
this is with vector differences. With this aim, we
can restrict our consideration to those functions F

that depend only on the difference of the two target
words, modifying Eqn. (1) to,

F (wi � w j , w̃k ) =
Pik

Pjk
. (2)

Next, we note that the arguments of F in Eqn. (2)
are vectors while the right-hand side is a scalar.
While F could be taken to be a complicated func-
tion parameterized by, e.g., a neural network, do-
ing so would obfuscate the linear structure we are
trying to capture. To avoid this issue, we can first
take the dot product of the arguments,

F

⇣
(wi � w j )T w̃k

⌘
=

Pik

Pjk
, (3)

which prevents F from mixing the vector dimen-
sions in undesirable ways. Next, note that for
word-word co-occurrence matrices, the distinction
between a word and a context word is arbitrary and
that we are free to exchange the two roles. To do so
consistently, we must not only exchange w $ w̃
but also X $ X

T . Our final model should be in-
variant under this relabeling, but Eqn. (3) is not.
However, the symmetry can be restored in two
steps. First, we require that F be a homomorphism
between the groups (R,+) and (R>0,⇥ ), i.e.,

F

⇣
(wi � w j )T w̃k

⌘
=

F (wT
i w̃k )

F (wT
j w̃k )

, (4)

which, by Eqn. (3), is solved by,

F (wT
i w̃k ) = Pik =

Xik

Xi
. (5)

The solution to Eqn. (4) is F = exp, or,

wT
i w̃k = log(Pik ) = log(Xik ) � log(Xi ) . (6)

approach is based on observation that ratios of 
these probabilities are highly informative

Next, we note that Eqn. (6) would exhibit the ex-
change symmetry if not for the log(Xi ) on the
right-hand side. However, this term is indepen-
dent of k so it can be absorbed into a bias bi for
wi . Finally, adding an additional bias b̃k for w̃k

restores the symmetry,

wT
i w̃k + bi + b̃k = log(Xik ) . (7)

Eqn. (7) is a drastic simplification over Eqn. (1),
but it is actually ill-defined since the logarithm di-
verges whenever its argument is zero. One reso-
lution to this issue is to include an additive shift
in the logarithm, log(Xik ) ! log(1 + Xik ), which
maintains the sparsity of X while avoiding the di-
vergences. The idea of factorizing the log of the
co-occurrence matrix is closely related to LSA and
we will use the resulting model as a baseline in
our experiments. A main drawback to this model
is that it weighs all co-occurrences equally, even
those that happen rarely or never. Such rare co-
occurrences are noisy and carry less information
than the more frequent ones — yet even just the
zero entries account for 75–95% of the data in X ,
depending on the vocabulary size and corpus.

We propose a new weighted least squares re-
gression model that addresses these problems.
Casting Eqn. (7) as a least squares problem and
introducing a weighting function f (Xi j ) into the
cost function gives us the model

J =

VX

i, j=1

f

⇣
Xi j

⌘ ⇣
wT
i w̃ j + bi + b̃j � log Xi j

⌘2
,

(8)
where V is the size of the vocabulary. The weight-
ing function should obey the following properties:

1. f (0) = 0. If f is viewed as a continuous
function, it should vanish as x ! 0 fast
enough that the limx!0 f (x) log2

x is finite.

2. f (x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f (x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

f (x) =
(

(x/xmax)↵ if x < xmax
1 otherwise . (9)

0.2

0.4

0.6

0.8

1.0

0.0

Figure 1: Weighting function f with ↵ = 3/4.

The performance of the model depends weakly on
the cutoff, which we fix to xmax = 100 for all our
experiments. We found that ↵ = 3/4 gives a mod-
est improvement over a linear version with ↵ = 1.
Although we offer only empirical motivation for
choosing the value 3/4, it is interesting that a sim-
ilar fractional power scaling was found to give the
best performance in (Mikolov et al., 2013a).

3.1 Relationship to Other Models

Because all unsupervised methods for learning
word vectors are ultimately based on the occur-
rence statistics of a corpus, there should be com-
monalities between the models. Nevertheless, cer-
tain models remain somewhat opaque in this re-
gard, particularly the recent window-based meth-
ods like skip-gram and ivLBL. Therefore, in this
subsection we show how these models are related
to our proposed model, as defined in Eqn. (8).

The starting point for the skip-gram or ivLBL
methods is a model Qi j for the probability that
word j appears in the context of word i. For con-
creteness, let us assume that Qi j is a softmax,

Qi j =
exp(wT

i w̃ j )
PV

k=1 exp(wT
i w̃k )

. (10)

Most of the details of these models are irrelevant
for our purposes, aside from the the fact that they
attempt to maximize the log probability as a con-
text window scans over the corpus. Training pro-
ceeds in an on-line, stochastic fashion, but the im-
plied global objective function can be written as,

J = �
X

i2corpus
j2context(i)

log Qi j . (11)

Evaluating the normalization factor of the soft-
max for each term in this sum is costly. To al-
low for efficient training, the skip-gram and ivLBL
models introduce approximations to Qi j . How-
ever, the sum in Eqn. (11) can be evaluated much

regression cost function:

https://nlp.stanford.edu/projects/glove/
https://www.aclweb.org/anthology/D14-1162.pdf
https://www.aclweb.org/anthology/D14-1162.pdf
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Glove has pre-trained embeddings available

https://nlp.stanford.edu/projects/glove/

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings 
of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

Next, we note that Eqn. (6) would exhibit the ex-
change symmetry if not for the log(Xi ) on the
right-hand side. However, this term is indepen-
dent of k so it can be absorbed into a bias bi for
wi . Finally, adding an additional bias b̃k for w̃k

restores the symmetry,

wT
i w̃k + bi + b̃k = log(Xik ) . (7)

Eqn. (7) is a drastic simplification over Eqn. (1),
but it is actually ill-defined since the logarithm di-
verges whenever its argument is zero. One reso-
lution to this issue is to include an additive shift
in the logarithm, log(Xik ) ! log(1 + Xik ), which
maintains the sparsity of X while avoiding the di-
vergences. The idea of factorizing the log of the
co-occurrence matrix is closely related to LSA and
we will use the resulting model as a baseline in
our experiments. A main drawback to this model
is that it weighs all co-occurrences equally, even
those that happen rarely or never. Such rare co-
occurrences are noisy and carry less information
than the more frequent ones — yet even just the
zero entries account for 75–95% of the data in X ,
depending on the vocabulary size and corpus.

We propose a new weighted least squares re-
gression model that addresses these problems.
Casting Eqn. (7) as a least squares problem and
introducing a weighting function f (Xi j ) into the
cost function gives us the model

J =

VX

i, j=1

f

⇣
Xi j

⌘ ⇣
wT
i w̃ j + bi + b̃j � log Xi j

⌘2
,

(8)
where V is the size of the vocabulary. The weight-
ing function should obey the following properties:

1. f (0) = 0. If f is viewed as a continuous
function, it should vanish as x ! 0 fast
enough that the limx!0 f (x) log2

x is finite.

2. f (x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f (x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

f (x) =
(

(x/xmax)↵ if x < xmax
1 otherwise . (9)
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The performance of the model depends weakly on
the cutoff, which we fix to xmax = 100 for all our
experiments. We found that ↵ = 3/4 gives a mod-
est improvement over a linear version with ↵ = 1.
Although we offer only empirical motivation for
choosing the value 3/4, it is interesting that a sim-
ilar fractional power scaling was found to give the
best performance in (Mikolov et al., 2013a).

3.1 Relationship to Other Models

Because all unsupervised methods for learning
word vectors are ultimately based on the occur-
rence statistics of a corpus, there should be com-
monalities between the models. Nevertheless, cer-
tain models remain somewhat opaque in this re-
gard, particularly the recent window-based meth-
ods like skip-gram and ivLBL. Therefore, in this
subsection we show how these models are related
to our proposed model, as defined in Eqn. (8).

The starting point for the skip-gram or ivLBL
methods is a model Qi j for the probability that
word j appears in the context of word i. For con-
creteness, let us assume that Qi j is a softmax,

Qi j =
exp(wT

i w̃ j )
PV

k=1 exp(wT
i w̃k )

. (10)

Most of the details of these models are irrelevant
for our purposes, aside from the the fact that they
attempt to maximize the log probability as a con-
text window scans over the corpus. Training pro-
ceeds in an on-line, stochastic fashion, but the im-
plied global objective function can be written as,

J = �
X

i2corpus
j2context(i)

log Qi j . (11)

Evaluating the normalization factor of the soft-
max for each term in this sum is costly. To al-
low for efficient training, the skip-gram and ivLBL
models introduce approximations to Qi j . How-
ever, the sum in Eqn. (11) can be evaluated much

regression cost function:

Next, we note that Eqn. (6) would exhibit the ex-
change symmetry if not for the log(Xi ) on the
right-hand side. However, this term is indepen-
dent of k so it can be absorbed into a bias bi for
wi . Finally, adding an additional bias b̃k for w̃k

restores the symmetry,

wT
i w̃k + bi + b̃k = log(Xik ) . (7)

Eqn. (7) is a drastic simplification over Eqn. (1),
but it is actually ill-defined since the logarithm di-
verges whenever its argument is zero. One reso-
lution to this issue is to include an additive shift
in the logarithm, log(Xik ) ! log(1 + Xik ), which
maintains the sparsity of X while avoiding the di-
vergences. The idea of factorizing the log of the
co-occurrence matrix is closely related to LSA and
we will use the resulting model as a baseline in
our experiments. A main drawback to this model
is that it weighs all co-occurrences equally, even
those that happen rarely or never. Such rare co-
occurrences are noisy and carry less information
than the more frequent ones — yet even just the
zero entries account for 75–95% of the data in X ,
depending on the vocabulary size and corpus.

We propose a new weighted least squares re-
gression model that addresses these problems.
Casting Eqn. (7) as a least squares problem and
introducing a weighting function f (Xi j ) into the
cost function gives us the model

J =

VX

i, j=1
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⇣
Xi j

⌘ ⇣
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i w̃ j + bi + b̃j � log Xi j

⌘2
,

(8)
where V is the size of the vocabulary. The weight-
ing function should obey the following properties:

1. f (0) = 0. If f is viewed as a continuous
function, it should vanish as x ! 0 fast
enough that the limx!0 f (x) log2

x is finite.

2. f (x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f (x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

f (x) =
(

(x/xmax)↵ if x < xmax
1 otherwise . (9)
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Figure 1: Weighting function f with ↵ = 3/4.

The performance of the model depends weakly on
the cutoff, which we fix to xmax = 100 for all our
experiments. We found that ↵ = 3/4 gives a mod-
est improvement over a linear version with ↵ = 1.
Although we offer only empirical motivation for
choosing the value 3/4, it is interesting that a sim-
ilar fractional power scaling was found to give the
best performance in (Mikolov et al., 2013a).

3.1 Relationship to Other Models

Because all unsupervised methods for learning
word vectors are ultimately based on the occur-
rence statistics of a corpus, there should be com-
monalities between the models. Nevertheless, cer-
tain models remain somewhat opaque in this re-
gard, particularly the recent window-based meth-
ods like skip-gram and ivLBL. Therefore, in this
subsection we show how these models are related
to our proposed model, as defined in Eqn. (8).

The starting point for the skip-gram or ivLBL
methods is a model Qi j for the probability that
word j appears in the context of word i. For con-
creteness, let us assume that Qi j is a softmax,

Qi j =
exp(wT

i w̃ j )
PV

k=1 exp(wT
i w̃k )

. (10)

Most of the details of these models are irrelevant
for our purposes, aside from the the fact that they
attempt to maximize the log probability as a con-
text window scans over the corpus. Training pro-
ceeds in an on-line, stochastic fashion, but the im-
plied global objective function can be written as,

J = �
X

i2corpus
j2context(i)

log Qi j . (11)

Evaluating the normalization factor of the soft-
max for each term in this sum is costly. To al-
low for efficient training, the skip-gram and ivLBL
models introduce approximations to Qi j . How-
ever, the sum in Eqn. (11) can be evaluated much

(to handle X[i,j] ~~0)

X[i,j] = count of how many times word j was seen as context for word i

https://nlp.stanford.edu/projects/glove/

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings 
of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

https://nlp.stanford.edu/projects/glove/
https://www.aclweb.org/anthology/D14-1162.pdf
https://www.aclweb.org/anthology/D14-1162.pdf
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two examples using the Glove pre-trained embeddings…

Sentiment analysis of movie reviews in IMBD database:

4 EE 599 Syllabus – c�K. M. Chugg – February 27, 2019

– All exams/quizzes are cumulative, but with an emphasis on material presented since the last exam.

– Approximately 4 quizzes will be given during the semester. These quizzes will be announced at least
1 week ahead of time. Quiz duration will be 40 mins.

• Final Projects (TBR)

– Final project teams will be 4 students each.

– Proposals will be due two weeks after the midterm.

– Topics can be suggested by the students or taken from a list of suggested topics to be provided.

– Each team will produce:

⇤ A final report of approximately 10 pages.

⇤ A 5 minute video, uploaded to youtube, describing your project.

⇤ A 20 min presentation to be made on a projects-day event at the end of the semester.

Textbooks: There is no required textbook for this class. The lecture slides will be based on a number of
textbooks and other reference materials. The following is a list of books, some of which are legally available for
free on the internet. They are ordered roughly by how central they are to the material covered.

• [GBC] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

• [Nielsen] Michael Nielsen, Neural Networks and Deep Learning, on-line.

• [Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009.

• [Chollet] Francois Chollet, Deep Learning with Python, Manning, 2018.

• [Aggarwal] Charu C. Aggarwal, Neural Networks and Deep Learning, A Textbook, Springer International
Publishing, 2018. PDF is available online from usc.edu domain.

• [HDBJ] Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, Orlando De Jesús, Neural Network
Design, 2nd Edition.

• [Bishop] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016.

• [Murphy] Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.

• [AML] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Yien Lin, Learning from Data, A Short Course,
AMLbook.com.

• [Haykin-AF] Simon Haykin, Adaptive Filter Theory (4th Edition), Pearson, 2002.

• [Scholtz] Robert A. Scholtz, Supplemental Notes on Random Processes, 2013 (provided via piazza).

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/6.1-using-word-embeddings.ipynb

tries to use very small amount of training data and LSTM with mixed 
results..

classify newsgroup posts by newsgroup

https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py

uses 1D convolutional layers — haven’t tried this yet…

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/6.1-using-word-embeddings.ipynb
https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py
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• Some useful packages for NLP

• Word embeddings

• word2vec example

• RNNs for NLP tasks

• Attention-based Approaches

• Transformers and BERTs
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when we talked about RNNs, I showed this example

machine translation (common and challenging NLP task)

the dog is happy

felizel perro es
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when we talked about RNNs, I showed this example

encoder

decoder

embedding for the entire sentence (aka context)

this seems to be asking a lot of the single vector embedding!

(especially for long sentences)

the dog is happy

felizel perro es
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let’s show some more of the details of this baseline

the dog is happy <start>

el pero es feliz

word embedding (e.g., word2vec) dense with softmax layer

goal is to produce:

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house” ✓

cos ✓x,y = ⇢xy =
ytx

kxkkyk

p(w) =
N�1Y

n=0

p(wn|wn�1, wn�2 . . . w0)

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house” ✓

cos ✓x,y = ⇢xy =
ytx

kxkkyk

p(w) =
N�1Y

n=0

p(wn|wn�1, wn�2 . . . w0)

p(wn|w<n)Decoder RNN out at location n: ~
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the dog is happy <start>

el pero es feliz

word embedding (e.g., word2vec) dense with softmax layer

A partial solution to the second issue is here is to provide 
the sentence embedding to each step of the decoder RNN

1.Embedding into final state only

2.This embedding must propagate through 
the decoder RNN

3.Sequential dependency of state machine 
means that it is hard to use parallelization 
in training

the dog is happy <start>

el pero es feliz

word embedding (e.g., word2vec) dense with softmax layer

cDoes not 
address issues 

1 or 3

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-
decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014). (this is the GRU paper too)

https://arxiv.org/pdf/1406.1078.pdf?source=post_page---------------------------
https://arxiv.org/pdf/1406.1078.pdf?source=post_page---------------------------
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This is repeated for each index in the decoder

1. Embedding into final state only

2. This embedding must propagate through 
the decoder RNN

3. Sequential dependency of state 
machine means that it is hard to 
use parallelization in training

the dog is happy <start>

el pero es feliz

word embedding (e.g., word2vec) dense with softmax layer

c

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation 
by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
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Encoder RNN out is 
concatenated bidirectional state

The context for decoder position i 
is a learned average (E{.}) over all 

of the encoder sates

attention model

decoder is learning where to look in the input 
sentence for each output sentence location

https://arxiv.org/pdf/1409.0473)
https://arxiv.org/pdf/1409.0473)
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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This is effective for RNN-based models

1. Embedding into final state only

2. This embedding must propagate through the decoder 
RNN

3. Sequential dependency of state machine 
means that it is hard to use parallelization in 
training
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The third issue remains — can we do something to get rid of the sequential 
nature of an RNN while still capitalizing on the “time” ordering traits?
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Based on an Encoder-Decoder 
architecture

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

No recursive computations, replace 
recurrent state machines with:

• Positional encoding

• embed the position in sentence of word

• Attention, attention, attention

• self-attention in encoder

• self-attention in decoder

• decoder-to-encoder attention

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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I found the paper to be a little unclear at points and many 
of the “tutorials” just repeat the paper…

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

very nice video tutorial:

https://www.youtube.com/watch?v=z1xs9jdZnuY

Transformer (Attention is all you need)
Minsuk Heo 허민석

let’s watch that!

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.youtube.com/watch?v=z1xs9jdZnuY
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Notes from the video…

The key, value, and query are three different embeddings of the original 
words (and positional info) that utilize the entire sentence structure

query: (embedding for) word for which you would like to find 
attention region

key: (embedding for) candidate attention words

value: context embeddings to be averaged by softmax( q . k ) 
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~ query

~ key
~ value

interpreting the previous attention-based RNN 
encoder,  the key and the value are the same
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For word 0, form dot product of q-0 with all keys:
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Induce a pmf to average the values:
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packed matrix notation (column vectors)
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

from paper (row vectors?):
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Why multihead attention?

Because of ambiguity in what “it” refers to in this sentence, different 
members multihead attention can look at different regions

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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Overview of the information flow

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

there is a GIF on 
this page :-)

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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where can I get one?

Transformers are now built into PyTorch (vers. >= 1.2)

Huggingface — implementations of transformers and related architectures

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://github.com/huggingface/transformers
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Transformers-XL

Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond a fixed-length 
context." arXiv preprint arXiv:1901.02860 (2019).

Segment 1

x1 x2 x4x3

Segment 2

x8x5 x6 x7

(a) Train phase.

Limited Context

x1 x2 x4x3 x5 x6

Limited Context

x2 x3 x5x4 x6x1

Limited Context

x3 x4 x6x5x2x1

(b) Evaluation phase.

Figure 1: Illustration of the vanilla model with a segment length 4.

ageable sizes, and only train the model within
each segment, ignoring all contextual information
from previous segments. This is the idea adopted
by Al-Rfou et al. (2018). We call it the vanilla
model and visualize it in Fig. 1a. Under this
training paradigm, information never flows across
segments in either the forward or backward pass.
There are two critical limitations of using a fixed-
length context. First, the largest possible depen-
dency length is upper bounded by the segment
length, which is a few hundred on character-level
language modeling (Al-Rfou et al., 2018). There-
fore, although the self-attention mechanism is less
affected by the vanishing gradient problem com-
pared to RNNs, the vanilla model is not able to
fully exploit this optimization advantage. Second,
though it is possible to use padding to respect the
sentence or other semantic boundaries, in practice
it has been standard practice to simply chunk long
text into fixed-length segments due to improved
efficiency (Peters et al., 2018; Devlin et al., 2018;
Al-Rfou et al., 2018). However, simply chunking
a sequence into fixed-length segments will lead to
the context fragmentation problem as discussed in
Section 1.

During evaluation, at each step, the vanilla
model also consumes a segment of the same length
as in training, but only makes one prediction at the
last position. Then, at the next step, the segment
is shifted to the right by only one position, and the
new segment has to be processed all from scratch.
As shown in Fig. 1b, this procedure ensures that
each prediction utilizes the longest possible con-
text exposed during training, and also relieves con-
text fragmentation issue encountered in training.
However, this evaluation procedure is extremely
expensive. We will show that our proposed archi-
tecture is able to substantially improve the evalua-
tion speed.

3.2 Segment-Level Recurrence with State

Reuse

To address the limitations of using a fixed-length
context, we propose to introduce a recurrence
mechanism to the Transformer architecture. Dur-
ing training, the hidden state sequence computed
for the previous segment is fixed and cached to
be reused as an extended context when the model
processes the next new segment, as shown in Fig.
2a. Although the gradient still remains within a
segment, this additional input allows the network
to exploit information in the history, leading to an
ability of modeling longer-term dependency and
avoiding context fragmentation. Formally, let the
two consecutive segments of length L be s⌧ =
[x⌧,1, · · · , x⌧,L] and s⌧+1 = [x⌧+1,1, · · · , x⌧+1,L]
respectively. Denoting the n-th layer hidden state
sequence produced for the ⌧ -th segment s⌧ by
hn
⌧ 2 RL⇥d, where d is the hidden dimension.

Then, the n-th layer hidden state for segment s⌧+1

is produced (schematically) as follows,
ehn�1
⌧+1 =

⇥
SG(hn�1

⌧ ) � hn�1
⌧+1

⇤
,

qn
⌧+1,k

n
⌧+1,v

n
⌧+1 = hn�1

⌧+1W
>
q , ehn�1

⌧+1W
>
k , ehn�1

⌧+1W
>
v ,

hn
⌧+1 = Transformer-Layer (qn

⌧+1,k
n
⌧+1,v

n
⌧+1) .

where the function SG(·) stands for stop-gradient,
the notation [hu � hv] indicates the concatenation
of two hidden sequences along the length dimen-
sion, and W· denotes model parameters. Com-
pared to the standard Transformer, the critical dif-
ference lies in that the key kn

⌧+1 and value vn
⌧+1

are conditioned on the extended context ehn�1
⌧+1 and

hence hn�1
⌧ cached from the previous segment.

We emphasize this particular design by the green
paths in Fig. 2a.

With this recurrence mechanism applied to ev-
ery two consecutive segments of a corpus, it es-
sentially creates a segment-level recurrence in the
hidden states. As a result, the effective context be-
ing utilized can go way beyond just two segments.
However, notice that the recurrent dependency be-
tween hn

⌧+1 and hn�1
⌧ shifts one layer downwards

x1 x2 x4x3 x8x5 x6 x7

New Segment

x12x9 x10 x11

Fixed (No Grad)

x1 x2 x4x3 x8x5 x6 x7

Fixed (No Grad) New Segment

(a) Training phase.

x1 x2 x4x3 x8x5 x6 x7 x12x9 x10 x11

Extended Context

(b) Evaluation phase.

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

per-segment, which differs from the same-layer
recurrence in conventional RNN-LMs. Conse-
quently, the largest possible dependency length
grows linearly w.r.t. the number of layers as well
as the segment length, i.e., O(N ⇥ L), as vi-
sualized by the shaded area in Fig. 2b. This
is analogous to truncated BPTT (Mikolov et al.,
2010), a technique developed for training RNN-
LMs. However, different from truncated BPTT,
our method caches a sequence of hidden states in-
stead of the last one, and should be applied to-
gether with the relative positional encoding tech-
nique described in Section 3.3.

Besides achieving extra long context and re-
solving fragmentation, another benefit that comes
with the recurrence scheme is significantly faster
evaluation. Specifically, during evaluation, the
representations from the previous segments can
be reused instead of being computed from scratch
as in the case of the vanilla model. In our ex-
periments on enwiki8, Transformer-XL is up to
1,800+ times faster than the vanilla model during
evaluation (see Section 4).

Finally, notice that the recurrence scheme does
not need to be restricted to only the previous seg-
ment. In theory, we can cache as many previous
segments as the GPU memory allows, and reuse
all of them as the extra context when processing
the current segment. Thus, we can cache a prede-
fined length-M old hidden states spanning (pos-
sibly) multiple segments, and refer to them as the
memory mn

⌧ 2 RM⇥d, due to a clear connection to
the memory augmented neural networks (Graves
et al., 2014; Weston et al., 2014). In our experi-
ments, we set M equal to the segment length dur-
ing training, and increase it by multiple times dur-
ing evaluation.

3.3 Relative Positional Encodings

While we found the idea presented in the pre-
vious subsection very appealing, there is a cru-
cial technical challenge we haven’t solved in or-

der to reuse the hidden states. That is, how can
we keep the positional information coherent when
we reuse the states? Recall that, in the standard
Transformer, the information of sequence order is
provided by a set of positional encodings, denoted
as U 2 RLmax⇥d, where the i-th row Ui corre-
sponds to the i-th absolute position within a seg-
ment and Lmax prescribes the maximum possible
length to be modeled. Then, the actual input to the
Transformer is the element-wise addition of the
word embeddings and the positional encodings. If
we simply adapt this positional encoding to our
recurrence mechanism, the hidden state sequence
would be computed schematically by

h⌧+1 = f(h⌧ ,Es⌧+1 +U1:L)

h⌧ = f(h⌧�1,Es⌧ +U1:L),

where Es⌧ 2 RL⇥d is the word embedding se-
quence of s⌧ , and f represents a transformation
function. Notice that, both Es⌧ and Es⌧+1 are as-
sociated with the same positional encoding U1:L.
As a result, the model has no information to dis-
tinguish the positional difference between x⌧,j and
x⌧+1,j for any j = 1, . . . , L, resulting in a sheer
performance loss.

In order to avoid this failure mode, the funda-
mental idea is to only encode the relative posi-
tional information in the hidden states. Concep-
tually, the positional encoding gives the model a
temporal clue or “bias” about how information
should be gathered, i.e., where to attend. For the
same purpose, instead of incorporating bias stati-
cally into the initial embedding, one can inject the
same information into the attention score of each
layer. More importantly, it is more intuitive and
generalizable to define the temporal bias in a rela-
tive manner. For instance, when a query vector q⌧,i
attends on the key vectors k⌧,i, it does not need
to know the absolute position of each key vector
to identify the temporal order of the segment. In-
stead, it suffices to know the relative distance be-
tween each key vector k⌧,j and itself q⌧,i, i.e. i�j.
Practically, one can create a set of relative posi-
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Transformers-XL

Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond a fixed-length 
context." arXiv preprint arXiv:1901.02860 (2019).

Main advantages:

Lower complexity in inference mode (reuse computations)

Has longer term context

https://arxiv.org/pdf/1901.02860.pdf%5D
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Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond 
a fixed-length context." arXiv preprint arXiv:1901.02860 (2019).

Despite the overall excellence of the generation quality, the model can only perceive the seed context
and hallucinate what to generate based on the limited knowledge (100M tokens only) it is trained on.
As a result, the generated text sometimes looks clearly relevant but not close enough or to the point
compared to what human writer would do. That said, we believe this issue is mostly a problem of limited
training data size and could be alleviated by using a larger training set.

Context:

Kershaw started the 2010 season by posting a 3.07 ERA in April, but did so by walking 22 batters in 29 innings. On May 4, he had his worst start of his career
against the Milwaukee Brewers at Dodger Stadium, throwing just 57 pitches in 11 / 3 innings, while retiring only four of the 13 batters he faced — including the
pitcher. He was booed loudly upon being pulled from the game. Kershaw said after the game, " I didn’t give our team any kind of chance. It’s just not a good
feeling to let your teammates down, let everybody down. It stings, it hurts. I ’ve got to figure things out. " Kershaw rebounded his next start by pitching an 8 inning
two-hitter and out-dueling the then undefeated Ubaldo Jiménez. He credited his control of the slider being the major turning point for him. Later in the season, he
was suspended for five games after hitting Aaron Rowand of the Giants with a pitch in a game on July 20. The incident occurred after both teams were given a
warning following Giants ace Tim Lincecum hitting Matt Kemp earlier in the game. He threw his first career complete game shutout on September 14, 2010 also
against San Francisco and finished the season with a record of 13 – 10 and a 2.91 ERA in 32 starts, pitching 2041 / 3 innings and recording 212 strikeouts.
= = = = 2011 season: 1st Cy Young Award = = = =
After finishing the 2010 season strong, the Dodgers named Kershaw as the Opening Day Starter for the 2011 season. On May 29, he pitched the second complete-
game shutout of his career, striking out 10 while winning a two-hitter against the Florida Marlins, 8 – 0; he also had two singles and an RBI, scoring twice in the
game. He produced his third career shutout on June 20, a two-hit, 11-strikeout effort against the Detroit Tigers. Kershaw became the first Dodgers starter to strike
out the side in the 9th inning since Sandy Koufax’s perfect game. In his next start, on June 26, Kershaw pitched another complete game (against the Los Angeles
Angels of Anaheim ). He became the first Dodger starter to have back-to-back complete game victories since Jeff Weaver in the 2005 season and the first Dodger
to have double-digit strikeouts in consecutive starts since Chan-Ho Park in the 2000 season. He was awarded the National League Player of the Week award for the
week of June 20 – 26 as a result of those two starts. Midway through June, Kershaw had amassed 32 career victories

XL Generation: Reference:

, tying him with Luis Castillo for the third best start total in the league and trail-
ing only Johnny Bench and Eddie Mathews (37). The Dodgers signed Kershaw
to a one-year deal on July 14, 2011, with a player option for 2012, in a deal
worth just under $ 300,000. The Dodgers entered the 2011 season as the major
league leaders, and Kershaw had the best record in the National League in saves
(39), games started (78) and walks (120); he also had the lowest win / loss ratio
in the league (1.87), and he had the worst on-base percentage (.349). He had
the best ERA (2.00 ), most wins (16 ), or most shutouts (29) in his career (25),
while leading the league in losses per nine innings pitched (4.01). Following the
2011 season, the Dodgers traded Kershaw to the Kansas City Royals on July 29
for pitcher Javier Torres.
= = = Kansas City Royals = = =
= = = = 2012 season = = = =
During spring training, Kershaw played very well. He was selected to spring
training as a relief pitcher for the Royals for the 2012 season. After an injury
to closer Javier Vázquez, he was activated on April 29 to replace Matt Holliday
in the Royals ’ starting rotation. In his only start with the Royals, on August 6,
2012, Kershaw struck out five batters in seven innings pitched to help the Royals
to their first victory in franchise history. On September 27, 2012, it appeared
Kershaw was going to pitch a complete game shutout against the Detroit Tigers,
but did not manage to do so since the Tigers won 3 – 1. At the conclusion
of the season, Kershaw was named Major League Baseball’s Most Valuable
Player, was chosen to the All-Star Game at Busch Stadium and was named to
the All-Star Game as the starting pitcher at shortstop. The Royals announced on
February 4, 2013 that Kershaw would spend 2013 as starting pitcher, though he
was expected to miss the season as a result of a shoulder injury.
= = = = 2013 season = = = =
On May 17, 2013, Kershaw sustained another back injury and did not start in
August and October 2013. He appeared in 22 starts, all starts, finishing with
a strikeout-to-walk ratio of 1.50 and a 2.91 ERA. He also had the third most
strikeouts in the league: 10. On May 20, 2013, he

, a 3.15 ERA and 593 career strikeouts in 568.2 innings. According to the Elias
Sports Bureau, Kershaw was the first 23-year-old pitcher to have that many
victories, an ERA that low and an average of more than one strikeout per inning
since ERA became an official statistic in 1910. Kershaw was selected to the
National League team for the 2011 Major League Baseball All-Star Game, his
first All-Star selection. In the month of July, Kershaw was 4 – 1 with a 2.02
ERA and NL-leading 45 strikeouts, earning him the National League Pitcher of
the Month Award. On August 23, he struck out Matt Holliday of the St. Louis
Cardinals for his 200th strikeout of the season and became the 10th Dodger
pitcher to record back-to-back 200 strikeout seasons and the first since Chan-
Ho Park did it in the 2001 season. Kershaw finished the 2011 season by leading
the NL with 21 wins, 248 strikeouts and a 2.28 ERA, winning the NL pitching
Triple Crown, the first Triple Crown winner since Jake Peavy of the 2007 San
Diego Padres and the first Dodger since Sandy Koufax won it in the 1966 season.
Justin Verlander of the Detroit Tigers won the American League Triple Crown
the same season, marking the first major-league season since 1924 to feature
Triple Crown-winning pitchers in both leagues. Kershaw’s 21 wins were the
most by a Dodger pitcher since Orel Hershiser won 23 during the 1988 season.
His ERA was the lowest by a Dodger since Hershiser’s 2.03 in the 1985 season,
his strikeouts were the most by a Dodger since Koufax’s 317 in 1966 and his 233
1 / 3 innings pitched were the most since Chan Ho Park pitched 234 in 2001.
Since 1965 when Koufax did it, Peavy and Kershaw are only two pitchers in the
National League have led the league in wins, strikeouts, ERA, and WHIP (walks
plus hits per inning pitched). Kershaw also became just the second <unk> to
have a 240-plus strikeouts in a season before the age of 24, joining Vida Blue.
After the season, Kershaw was awarded the Warren Spahn Award as the best
left-handed pitcher in 2011, the Players Choice Award for Most Outstanding
National League pitcher, the Gold Glove Award as the top fielding pitcher in
the NL and the Sporting News (TSN) National League Pitcher of the Year. He
was additionally selected as the starting pitcher for the TSN NL All-Star Team.
On November 17, he was honored with the National League Cy Young Award,
making him the youngest Cy Young winner since Dwight Gooden

Table 11: Example 1 – 500 tokens generated by XL using a snippet from the Wikitext-103 test set as initial context. The
sample is randomly generated without any cherry picking.
Original Wikipedia page: https://en.wikipedia.org/wiki/Clayton_Kershaw
There are many interesting observations from this example:
• Firstly, Kershaw never went to Royals in real life. Despite that, Transformer-XL stays on the fully imagined topic and keeps

hallucinating the experience of Kershaw in Royals across the generated text.
• Secondly, notice that XL correctly tracks the chronological order from 2011 to 2012 and to the finally 2013 season in the

section titles.
• In addition, notice that Transformer-XL accurately uses the the phrase “another back injury” in the 2013 season paragraph,

since it has talked about one earlier injure in the 2012 season. This shows again Transformer-XL’s ability of capturing
long-term dependency.

note consistent language 
and long-term context
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Bidirectional Encoder Representations from Transformers

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language 
understanding." arXiv preprint arXiv:1810.04805 (2018).

Train a transformer encoder for two generic language 
tasks to capture general language representations

Use fine-tuning to adapt this baseline model to solve a 
large number of specific NLP tasks

Fine-tuning the publicly-available baseline models produces 
SOTA performance on a wide range of NLP tasks
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Bidirectional Encoder Representations from Transformers

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language 
understanding." arXiv preprint arXiv:1810.04805 (2018).

Pre-training (original) training takes ~ week on multiple GPUs

Fine-tuning for a specific task can be achieved in ~ 2 hours on a GPU

Fine-tuning involves training the entire network (not just an add-on layer)

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
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Devlin, Jacob, et al. "Bert: Pre-training of deep 
bidirectional transformers for language 

understanding." arXiv preprint 
arXiv:1810.04805 (2018).

Pre-training involves two tasks:
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1. Masked Language Model (MLM)

2. Next Sentence Prediction (MLM)

can accommodate one- or 
two-sentence inputs
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https://github.com/google-research/bert

Masked Language Model (MLM)

mask 15% of words in sentences

Note that self-attention method in the Transformer encoder make this a 
truly bidirectional model at all layers ~ “deeply bidirectional”
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https://github.com/google-research/bert

Example of why deep bidirectionality is powerful

I made a bank deposit

I made a bank shot from the free-throw line

I made a bank along the creek

BERT is “deeply bidirectional” since all of the self-
attention layers utilize bidirectional context

https://github.com/google-research/bert
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https://github.com/google-research/bert

Masked Language Model (MLM)

mask 15% of words in sentences

Since [mask] token will not be in fine-tuning data, some of the deleted 
words are replaced with randomly selected words instead of [mask]

https://github.com/google-research/bert
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Next Sentence Prediction

This is a binary classification problem

https://github.com/google-research/bert
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can be trained on unlabeled text corpus
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

Devlin, Jacob, et al. "Bert: Pre-training of deep 
bidirectional transformers for language 

understanding." arXiv preprint 
arXiv:1810.04805 (2018).

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
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models:

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

similar in size to the larger CNNs, but no parameter 
reuse, so should have lower computational complexity

BERT_base: 12 Transformer blocks
768 dimensional k/v/q

12 attention heads

110 Million 
parameters

BERT_large: 24 Transformer blocks
1024 dimensional k/v/q

16 attention heads

340 Million 
parameters

other variants since then (see GitHub page)

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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L: number of transformer blocks

https://github.com/google-research/bert

H: k/v/q vector dimension

A: number of attention heads

https://github.com/google-research/bert
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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pre-training data:

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

important that sentences come from contiguous text (no 
shuffling sentences) for the next-sentence prediction task

Books Corpus (800 million words)

English Wikipedia (2,500 million words)

pre-training computation:

"4 days on 4 to 16 parallel TPUs” 

TPU = tensor processor unit ~ google’s highly optimized GPU

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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positional and segment embeddings added to word (token) embedding
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-

rectional cross attention between two sentences.
For each task, we simply plug in the task-

specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW

T )).
7For example, the BERT SQuAD model can be trained in

around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

uses WordPiece embeddings (which use some word fragments)

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
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GLUE (General Language Understanding Evaluation):

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

fine-tuning add a classification layer (H x N_classes)

“diverse natural language understanding tasks”

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.8 BERT and OpenAI GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

We use a batch size of 32 and fine-tune for 3
epochs over the data for all GLUE tasks. For each
task, we selected the best fine-tuning learning rate
(among 5e-5, 4e-5, 3e-5, and 2e-5) on the Dev set.
Additionally, for BERTLARGE we found that fine-
tuning was sometimes unstable on small datasets,
so we ran several random restarts and selected the
best model on the Dev set. With random restarts,
we use the same pre-trained checkpoint but per-
form different fine-tuning data shuffling and clas-
sifier layer initialization.9

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all sys-
tems on all tasks by a substantial margin, obtaining
4.5% and 7.0% respective average accuracy im-
provement over the prior state of the art. Note that
BERTBASE and OpenAI GPT are nearly identical
in terms of model architecture apart from the at-
tention masking. For the largest and most widely
reported GLUE task, MNLI, BERT obtains a 4.6%
absolute accuracy improvement. On the official
GLUE leaderboard10, BERTLARGE obtains a score
of 80.5, compared to OpenAI GPT, which obtains
72.8 as of the date of writing.

We find that BERTLARGE significantly outper-
forms BERTBASE across all tasks, especially those
with very little training data. The effect of model
size is explored more thoroughly in Section 5.2.

4.2 SQuAD v1.1

The Stanford Question Answering Dataset
(SQuAD v1.1) is a collection of 100k crowd-
sourced question/answer pairs (Rajpurkar et al.,
2016). Given a question and a passage from

9The GLUE data set distribution does not include the Test
labels, and we only made a single GLUE evaluation server
submission for each of BERTBASE and BERTLARGE.

10https://gluebenchmark.com/leaderboard

Wikipedia containing the answer, the task is to
predict the answer text span in the passage.

As shown in Figure 1, in the question answer-
ing task, we represent the input question and pas-
sage as a single packed sequence, with the ques-
tion using the A embedding and the passage using
the B embedding. We only introduce a start vec-
tor S 2 RH and an end vector E 2 RH during
fine-tuning. The probability of word i being the
start of the answer span is computed as a dot prod-
uct between Ti and S followed by a softmax over
all of the words in the paragraph: Pi =

e
S·TiP
j e

S·Tj .

The analogous formula is used for the end of the
answer span. The score of a candidate span from
position i to position j is defined as S·Ti + E·Tj ,
and the maximum scoring span where j � i is
used as a prediction. The training objective is the
sum of the log-likelihoods of the correct start and
end positions. We fine-tune for 3 epochs with a
learning rate of 5e-5 and a batch size of 32.

Table 2 shows top leaderboard entries as well
as results from top published systems (Seo et al.,
2017; Clark and Gardner, 2018; Peters et al.,
2018a; Hu et al., 2018). The top results from the
SQuAD leaderboard do not have up-to-date public
system descriptions available,11 and are allowed to
use any public data when training their systems.
We therefore use modest data augmentation in
our system by first fine-tuning on TriviaQA (Joshi
et al., 2017) befor fine-tuning on SQuAD.

Our best performing system outperforms the top
leaderboard system by +1.5 F1 in ensembling and
+1.3 F1 as a single system. In fact, our single
BERT model outperforms the top ensemble sys-
tem in terms of F1 score. Without TriviaQA fine-

11QANet is described in Yu et al. (2018), but the system
has improved substantially after publication.

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
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SQuAD (Stanford Question and Answer Dataset):

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Question with a passage that contains the answer

introduce start and stop markers in training to 
delineate the answer

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 85.6 - 85.8
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5

Ours
BERTBASE (Single) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLARGE (Ensemble) 85.8 91.8 - -
BERTLARGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8

BERTLARGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 74.8 78.0
#2 Single - nlnet - - 74.2 77.1

Published
unet (Ensemble) - - 71.4 74.9
SLQA+ (Single) - 71.4 74.4

Ours
BERTLARGE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

tuning data, we only lose 0.1-0.4 F1, still outper-
forming all existing systems by a wide margin.12

4.3 SQuAD v2.0

The SQuAD 2.0 task extends the SQuAD 1.1
problem definition by allowing for the possibility
that no short answer exists in the provided para-
graph, making the problem more realistic.

We use a simple approach to extend the SQuAD
v1.1 BERT model for this task. We treat ques-
tions that do not have an answer as having an an-
swer span with start and end at the [CLS] to-
ken. The probability space for the start and end
answer span positions is extended to include the
position of the [CLS] token. For prediction, we
compare the score of the no-answer span: snull =
S·C + E·C to the score of the best non-null span

12The TriviaQA data we used consists of paragraphs from
TriviaQA-Wiki formed of the first 400 tokens in documents,
that contain at least one of the provided possible answers.

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAI GPT - 78.0

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. †Human per-
formance is measured with 100 samples, as reported in
the SWAG paper.

ˆsi,j = maxj�iS·Ti + E·Tj . We predict a non-null
answer when ˆsi,j > snull + ⌧ , where the thresh-
old ⌧ is selected on the dev set to maximize F1.
We did not use TriviaQA data for this model. We
fine-tuned for 2 epochs with a learning rate of 5e-5
and a batch size of 48.

The results compared to prior leaderboard en-
tries and top published work (Sun et al., 2018;
Wang et al., 2018b) are shown in Table 3, exclud-
ing systems that use BERT as one of their com-
ponents. We observe a +5.1 F1 improvement over
the previous best system.

4.4 SWAG

The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018). Given a sen-
tence, the task is to choose the most plausible con-
tinuation among four choices.

When fine-tuning on the SWAG dataset, we
construct four input sequences, each containing
the concatenation of the given sentence (sentence
A) and a possible continuation (sentence B). The
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C denotes a score for each choice
which is normalized with a softmax layer.

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1% and OpenAI GPT by 8.3%.

5 Ablation Studies

In this section, we perform ablation experiments
over a number of facets of BERT in order to better
understand their relative importance. Additional

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 85.6 - 85.8
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5

Ours
BERTBASE (Single) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLARGE (Ensemble) 85.8 91.8 - -
BERTLARGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8

BERTLARGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 74.8 78.0
#2 Single - nlnet - - 74.2 77.1

Published
unet (Ensemble) - - 71.4 74.9
SLQA+ (Single) - 71.4 74.4

Ours
BERTLARGE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

tuning data, we only lose 0.1-0.4 F1, still outper-
forming all existing systems by a wide margin.12

4.3 SQuAD v2.0

The SQuAD 2.0 task extends the SQuAD 1.1
problem definition by allowing for the possibility
that no short answer exists in the provided para-
graph, making the problem more realistic.

We use a simple approach to extend the SQuAD
v1.1 BERT model for this task. We treat ques-
tions that do not have an answer as having an an-
swer span with start and end at the [CLS] to-
ken. The probability space for the start and end
answer span positions is extended to include the
position of the [CLS] token. For prediction, we
compare the score of the no-answer span: snull =
S·C + E·C to the score of the best non-null span

12The TriviaQA data we used consists of paragraphs from
TriviaQA-Wiki formed of the first 400 tokens in documents,
that contain at least one of the provided possible answers.

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAI GPT - 78.0

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. †Human per-
formance is measured with 100 samples, as reported in
the SWAG paper.

ˆsi,j = maxj�iS·Ti + E·Tj . We predict a non-null
answer when ˆsi,j > snull + ⌧ , where the thresh-
old ⌧ is selected on the dev set to maximize F1.
We did not use TriviaQA data for this model. We
fine-tuned for 2 epochs with a learning rate of 5e-5
and a batch size of 48.

The results compared to prior leaderboard en-
tries and top published work (Sun et al., 2018;
Wang et al., 2018b) are shown in Table 3, exclud-
ing systems that use BERT as one of their com-
ponents. We observe a +5.1 F1 improvement over
the previous best system.

4.4 SWAG

The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018). Given a sen-
tence, the task is to choose the most plausible con-
tinuation among four choices.

When fine-tuning on the SWAG dataset, we
construct four input sequences, each containing
the concatenation of the given sentence (sentence
A) and a possible continuation (sentence B). The
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C denotes a score for each choice
which is normalized with a softmax layer.

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1% and OpenAI GPT by 8.3%.

5 Ablation Studies

In this section, we perform ablation experiments
over a number of facets of BERT in order to better
understand their relative importance. Additional
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SWAG (Situations With Adversarial Generations):

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Given a sentence, choose most plausible continuation 

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 85.6 - 85.8
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5

Ours
BERTBASE (Single) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLARGE (Ensemble) 85.8 91.8 - -
BERTLARGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8

BERTLARGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 74.8 78.0
#2 Single - nlnet - - 74.2 77.1

Published
unet (Ensemble) - - 71.4 74.9
SLQA+ (Single) - 71.4 74.4

Ours
BERTLARGE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

tuning data, we only lose 0.1-0.4 F1, still outper-
forming all existing systems by a wide margin.12

4.3 SQuAD v2.0

The SQuAD 2.0 task extends the SQuAD 1.1
problem definition by allowing for the possibility
that no short answer exists in the provided para-
graph, making the problem more realistic.

We use a simple approach to extend the SQuAD
v1.1 BERT model for this task. We treat ques-
tions that do not have an answer as having an an-
swer span with start and end at the [CLS] to-
ken. The probability space for the start and end
answer span positions is extended to include the
position of the [CLS] token. For prediction, we
compare the score of the no-answer span: snull =
S·C + E·C to the score of the best non-null span

12The TriviaQA data we used consists of paragraphs from
TriviaQA-Wiki formed of the first 400 tokens in documents,
that contain at least one of the provided possible answers.

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAI GPT - 78.0

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. †Human per-
formance is measured with 100 samples, as reported in
the SWAG paper.

ˆsi,j = maxj�iS·Ti + E·Tj . We predict a non-null
answer when ˆsi,j > snull + ⌧ , where the thresh-
old ⌧ is selected on the dev set to maximize F1.
We did not use TriviaQA data for this model. We
fine-tuned for 2 epochs with a learning rate of 5e-5
and a batch size of 48.

The results compared to prior leaderboard en-
tries and top published work (Sun et al., 2018;
Wang et al., 2018b) are shown in Table 3, exclud-
ing systems that use BERT as one of their com-
ponents. We observe a +5.1 F1 improvement over
the previous best system.

4.4 SWAG

The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018). Given a sen-
tence, the task is to choose the most plausible con-
tinuation among four choices.

When fine-tuning on the SWAG dataset, we
construct four input sequences, each containing
the concatenation of the given sentence (sentence
A) and a possible continuation (sentence B). The
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C denotes a score for each choice
which is normalized with a softmax layer.

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1% and OpenAI GPT by 8.3%.

5 Ablation Studies

In this section, we perform ablation experiments
over a number of facets of BERT in order to better
understand their relative importance. Additional

https://arxiv.org/pdf/1810.04805.pdf?source=post_elevate_sequence_page---------------------------
http://Bahdanau,%20Dzmitry,%20Kyunghyun%20Cho,%20and%20Yoshua%20Bengio.%20%22Neural%20machine%20translation%20by%20jointly%20learning%20to%20align%20and%20translate.%22%20arXiv%20preprint%20arXiv:1409.0473%20(2014).
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