Introduction & Motivation

EE599 Deep Learning

Keith M. Chugg
Spring 2020

=2 USC University of
11V Southern California



Teaching Team

Prof. Keith Chugg (instructor)
Hardware Accelerated Learning

Kuan-Wen (James) Huang
(50% TA):
PhD student (Chugg)

deep learning

Olaoluwa (Oliver) Adigun (50% TA):
PhD student (Kosko)

B ——— deep learning

Arnab Sanyal (25% TA):
PhD student (Chugg/Beerel)

Jiali Duan (25% TA):
PhD student (Kuo)

hardware acceleration of Nnets computer vision

© Keith M. Chugg, 2020


https://hal.usc.edu/
https://hal.usc.edu/

Syllabus Review and Tools/VVebsites

e Piazza page (piazza.com/usc/spring2020/ee599chugg/home)

® C(Class discussion for all students, instructors, TAs
® Use Piazza over email whenever possible

® Handouts, lecture slides, etc.
e Canvus Page (URLTBD)

® All homework assignments and grades (no Blackboard!)
e AWS Educate (URLTBD)

® Used to run long training runs and other computer resources as needed.

® You will get some AWS credit to train!

® You will have accounts set up for you for each of these
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Note on Adding/Dropping

e EE510 and EE503 are pre-reqgs for this class
® students added from waitlist with D-clearances
e All MSEE students added have pre-regs.
® Wiaitlist period is over

® With these spots and drops, we should be able to add most students who
wish to add

®  Subject to pre-regs or instructor approval

® Lecture room is large enough that you can monitor (try-before-buy)

© Keith M. Chugg, 2020



Why this Class?

® Highly popular and relevant for ECE

students, yet no Deep Learning class = ' nEEP I.EAII"I"G |

® ML sequence in ECE is deep and
not focused on neural networks

® Different than CS point of view

® ML is a combination of ECE topics
taught for years, but with a greater
emphasis on data

{3
[
¥/

Y gL
® Place into the context of ECE courses Tnlﬁl'“' "0“

and culture

® Hit the right balance between theory
and hands-on programming projects

This class could be titled “Neural Networks with Applications™
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Comments on Class Format and Status

® Class will combine theory and practice

® We will cover some material from:

® FEE562,EE563, EE583, EE517, EE500, EES59, EE660, EE564, EE565, EE588, EE5 19,
EE569

® Not a replacement for these classes, just for context, tools, and applications
® |n Spring 2019, first time for:
® Deep Learning class at USC Ming Hsieh Department
® Teaching such a large class (esp. with programming/data projects)
® |Lots of experience gained, lessons learned, and materials developed
® Not a trial course anymore

® Graded like any other 500-level ECE class
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Course Topics (from Syllabus)

® Course Introduction
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Graphical Outline — Topics

statistical models

MMSE Estimation

data driven




Graphical Outline — Topics

computing skills

homework / projects

resources

getting started with Python

background topics:

plotting, collecting and exchanging data

numpy, scipy, scikit-learn

Neural Network Preliminaries:

feedforward inference MLP; BP training MLP; basic model exploration;
LMS; data analysis

keras and tf.keras

Training Neural Networks

collecting and training on data, training CNN:s, training RNNs

unix basics & AWS

Training Neural Networks

GPU-based training using AWS credits

© Keith M. Chugg, 2020

Lecture
no formal
programming
instruction in
(examples given)

Discussion
helpful tutorials, no
formal
programming
instruction

Supplemental
Office hours, piazza,
slackedit, google,

PROJECTS, etc.
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Course Overview

Machine Learning, Deep Learning, and ECE

Classical EE view: Estimation and Decision/Detection Theory
Regression and Classification from data

Steepest descent and stochastic gradient descent

Types of neural networks

Practical tools and topics

® Python and important packages

® AWS

® Working with data



Machine Learning, Deep Learning and EE

Machine Learning

detection and
estimation

Electrical .,

Engineering physics
and
materials

circuits

Deep Learning
(multilayer Neural
Networks)

computer
architecture

languages

CS theory compluting

databases

Most ML topics are part of the traditional EE curriculum
® Inference (detection/estimation), optimization, pattern recognition

CS has leveraged and added/emphasized

® Applications, data, and programming methods and tools
® [Effective branding and ownership
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Types of ML: Supervised Learning

Training (Learning) Supervised

- Train with input and output
Data: { (. Yo }oo0 # Optimize © . .
,f (desired response) pairs

Parameterized Function Vi Loss Function

v

\

y = g(%0) Eo(yn¥a) |77

/

G ={g(;0) : VO € RP}
“hypothesis set”
(class of possible inference functions)

® Examples

Inference Mode (after trained) e Automatic Speech Recognition

(ASR)

New Data Point

Trained ML Model
X

D

\

1 ® [mage classification
g(X; C:)opt) ‘

® Signal filtering and processing
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Types of ML: Unsupervised Learning

Training (Learning) Unsupervised
Data: {xn 1, Train with “input” data only
and identify patterns
Xn Discover Patterns 1 Breamaiesl
=
Simple Representation ‘
Possible Assumptions on Data
® Examples
e Community detection in social
networks
Inference Mode (after trained) e Political donor analysis / targeted ads
New Data Point Data Knowledge ® Sorting photos by people (unknown
Trained SEt)
= | ML System
e Radio interference (situation

awareness)

© Keith M. Chugg, 2020 I 3



Types of ML: Unsupervised Learning
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

D. Easley and J. Kleinberg, Networks,Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
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Communities are
discovered, but not
identified with topics
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ML Example: Unsupervised/Supervised

Multiparty
conversation
audio

B

Speaker ID and
segmentation

\
p
w/

ML system

—_

unsupervised

Speaker 1

ASR

Speaker 1

ASR

Speaker N
ASR

—

supervised
ML systems

combine

Speaker-
labeled
transcript



Types of ML: Reinforcement Learning

Learning is typically initialized .
with supervised model and Reinforcement

then refined online Learn with feedback from
environment

reward
(score of effectiveness)

action

\

Agent \

(e.g., Neural Net) '@"’\Onment

state ® Examples

e Game playing

® Autonomous systems navigation

Amazon’s Deep Racer

© Keith M. Chugg, 2020 I 6



Inference from Statistical Descriptions

Design/Derivation Phase

joint statistical
description of desired
and observed

\/

derive best inference
function

\

constraints on inference function (e.g., linear)

(may or may not include parameters)

Inference Mode

sample realization of
observation

VA

\/

© Keith M. Chugg, 2020

derived inference
function

f(-)

I

i)
~—

N
~—

v

Examples

® Digital comm, Radar

® Filtering, prediction, smoothing

e Algorithms:

Traditionally, EE is heavily based on this approach

Kalman Filter
Wiener Filter
MMSE Estimator

Viterbi Algorithm



Inference from Statistical Descriptions

Design/Derivation Phase

Desired: d(u)

joint statistical
description of desired

and observed £() Observed: Z(u)
derive best inference _
function -
This model can vary °
constraints on inference function (e.g., linear)
(may or may not include parameters)
Complete Statistical Description Second Moment Description
e _ ¢ observation
Pa(u)(d) a-priori distribution K, = E{z(u)z'(u)

covariance matrix

Pz(w)ld(w)(Zzld)  likelihood . .
Ka, = E {d(u)z*(u)} desired/observation

covariance

m, =E{z(u)}, mq=E{d(u)} means

© Keith M. Chugg, 2020



Inference from Statistical Descriptions

Design/Derivation Phase

joint statistical
description of desired
and observed

This model can vary

derive best inference
function

\

constraints on inference function (e.g., linear)
(may or may not include parameters)

Statistical Model
often comes from a signal model

d

| signal relation

desired

© Keith M. Chugg, 2020

VA

»

model

P

observed

Desired: d(u)

Observed: z(u)

Example:

z(u)

Hd(u) + w(u)



Inference from Statistical Descriptions

Design/Derivation Phase

joint statistical

description of desired rrequn‘es SPeCIﬁcatl,on

and observed

\

derierence
orction

f(-)

|

constraints on inference function (e.g., linear)
(may or may not include parameters)

»
>

Detection/Decision/Classification:
when desired is digital (discrete and finite set)

Estimation:
when desired is continuous

© Keith M. Chugg, 2020

Reminder

you should have seen some
of this in EES03

P

common performance criterion:
minimize probability of decision error

common performance criterion:
minimize mean squared error

20
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Inference from Statistical Descriptions

Summary:

Design/Derive Inference Rule from statistical model for desired/observed

Use Inference Rule on data (realizations of observed)

Primary Result:

f() inference function that is optimal in
some defined sense over the
ensemble of realizations

d = f(z) inference function used a given
realization of the observation

21



Regression and Classification from Data

Note

Data: {(x,, )} V=] < Optimize © same as supervised ML

Xn Parameterized/F/unction Vi | Loss Function | /\_// .
" 7 = &(5/0) | Balm¥e) [
/ G = {g(10): vO e RP}
“““““““““““““““““““““““““““““““““““““““““““ “hypothesis set”
(class of possible inference functions)
Classification: commonhn performance criterion:

when Yy is digital (discrete and finite set)

Regression:
when Yy is continuous

© Keith M. Chugg, 2020

minimize cross entropy cost

common performance criterion:
minimize average squared error

22



Inference from

inference fu

© Keith M. Chugg, 2020

Relation Between Two Views

Statistical Models: Inference from Data (Supervised ML):

observation: z X  regressor or input
desired: d Y  target or output

g(+;0) parameterized inference function

nction (designed): f() (Theta learned)

Connection

Probabilistic Viewpoint:
Given statistical model: generate lots of realizations for (d,z)
Use (x=z, y=d) as data and perform regression/classification from data

If g(.;Theta) is rich enough, g(.;Theta) ~= f(.)

23



Note on Notation

Statistical Model

often comes from a (forward) signal model

z

»

Desired: d(u) x(u)
Observed: Z(U) Y(U) d _| signal relation
desired model
y

It is awkward to think of input Yy and output X for the signal model

|

observed

X

X and Yy are engrained in the data-driven models (regression aka curve fitting)

will maintain two separate notations for now (z, d) and
(x,y), but will use just (x,y) eventually

© Keith M. Chugg, 2020
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Regression from Data

Regression is Curve-Fitting

Example: Linear Regression in Python

from scipy import stats ®
import numpy as np 30 -
import matplotlib.pyplot as plt
X = np.arange(10) =
y = 3*x+4 > *
y = Yy + np.random.normal(@,2,10) o il
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) %
y_hat = intercept + slope * x _g 15 4
w
fig = plt.figure() i
plt.plot(x,y_hat, color="r") 10 -
plt.scatter(x,y)
plt.xlabel("x") 5 4
plt.ylabel("estimate of y")
#axes = plt.gca(Q) . . . . .
#axes.set_xlim([-1, 4]) 0 2 4 6 8

Notes:
® data generated with a known (linear) model + noise

® in typical application, we are given the data without any model
® and need to pick a model use for the fit

© Keith M. Chugg, 2020
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Regression from Data

under-fitting

desired behavior | over-fitting

0 - 1 0 - 1

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

Choosing the right model (complexity) is challenging given a finite
data set and no good model for what generated it!!!

© Keith M. Chugg, 2020 [Bishop] 26



Classification from Data

Classification using LMS with distance = —4, radius = 10, and width = 6

binary classification using a
linear constraint on g(.)

binary classification using a
nonlinear constraint on g(.)

© Keith M. Chugg, 2020 [Haykin-NN] 27
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Steepest (Gradient) Descent

joint statistical
description of desired ‘
and observed f(-)
derive best inference
function

\

\/

constraints on inference function (e.g., linear)
(may or may not include parameters)

Example: linear constraint and Mean-square Error optimality criterion

E(W) =E {||d(u) — Wz(u)||*}

—

Wt = in E(W
pt = argmin - E(W)

Steepest Descent: solve this iteratively using a first-order expansion
around current bets value of W

Wit = W, — nVwE(W,)

28



Y

Steepest (Gradient) Descent

T~ T~ T~

W,i1 = W, — nVwE(W,)

step size or learning rate

29



Steepest (Gradient) Descent

40 =+
% 0.0 f—t+—F+—F—F+—+—+ .
T small n
1 n=0
n=1
—40F + n=2
I I
4.0 0.0 4.0
wy(n)
(a)
40+ 4
gm 0.0H } f f f f f f f f f f f
3 n=0
4 / n=1
n=2
1 large n
—4.0+ T
I I
4.0 0.0 4.0
wy(n)
(b)

FIGURE 3.2 Trajectory of the method of steepest descent in a two-dimensional space for
two different values of learning-rate parameter: (a) small v (b) large m. The coordinates
w; and w, are elements of the weight vector w; they both lie in the W -plane.

© Keith M. Chugg, 2020

T~ T~ T~

W1 = W, — nVwE(W,)

[Haykin-NN]
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Stochastic Gradient Descent (SGD)

Data: {(Xn,yn) o /,‘ Optimize ©
Xn Parameterized Function N Loss Function
i y = g(§/;”@) - by, (yn7 S’n) _____________ |

In many cases, we do not have the exact form of the gradient or we wish to
have a rough approximation of the gradient to learn from new data

SGD: use averages over data (typically subset of data points) to approximate

ensemble averaging and therefore approximate the true gradient with a noisy
(stochastic) approximation

N~ P P

W11 =W, — nVwE(W,)

© Keith M. Chugg, 2020 3 I



Types of ML: Supervised Learning

Training (Learning)

Often done with Stochastic

Data: {(Xn,yn) 2 g * Optimize © . .
’ ; Gradient Descent (learning)
Xn Parameterized/Flmction Vi Loss Function
i y = g(§c’/é) g En(ynyn) |

Inference Mode (after trained)

New Data Point

Trained ML Model 1
X |

\

g(x; éom)

© Keith M. Chugg, 2020



Neural Networks

Training (Learning) Done with Stochastic Gradient Descent (learning)

Back-propagation

Data: {(Xp,yn)}2 5 < Optimize ©
Xn Parameterized Function N Loss Function
i y = g(y,’/@) g En(yn,¥n) | .
/ Neural nets just

define a very rich
“hypothesis set”

_ O - D
Inference Mode (after trained) G=18(10): VO e R}

New Data Point

¢ o 99
Trained ML Model 1 hXPOtheSIS set |
‘ - (class of possible inference functions)

X

g(X; éopt)

© Keith M. Chugg, 2020 33
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Types of Neural Networks

Feedforward Nnets (Multilayer Perceptrons)

Input

\ Output
signal

signal

Input First Second Output
layer hidden hidden layer
layer layer

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

“Deep” means more than one hidden layer

think of this as a generalization of a feedforward (MA of FIR) filter

[Haykin-NN] 34



_________

_________

© Keith M. Chugg, 2020

— v—a
layer . layer _ layer
1 2 3

Types of Neural Networks

Feedforward Nnets (Multilayer Perceptrons)

al) = h,(W1a® + b))  a® = h(WeaV + by)

(3)

=h

Zout

output layer

matrix-vector view of the previous diagram

>

(W3a® + bs)

35



© Keith M. Chugg, 2020

MLPs

Forward propagation (inference and training)

al) = h(W;al"Y 1 b)) ® = {W; b}/, (trainable parameters)

SN @ 9772 CSINGS @772 C N RN SK

{7

QAN XL /57 QXK LSS QXK XL L7 QXK XL 7
¥ 7V XX YL KX XX YL KX
IEEEIEEAN  SBEIEEEN L BB TIEI, - BRBEIERES
‘ AV'Q/ \§«YA ( ‘ Av’o/ \o(vA ( ‘ \v’o \o‘vA ( ‘ Av‘a/ \o(vA (

B SO & RS NPQ > ST NKPQ

W, v W, - W, - W, -

4/’&\\“\‘411&\\“\‘41)&\\\\\.41)&\\\\\ ‘

NGLL7
VAN

XX LT
QALK KI

X
NAYRS
K XS

LS T NI
/l% K \N

Backward propagation (training)

Learn the trainable parameters using SGD and the chain-rule
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Typical System using Nnet

raw inputs [ _ X y _ outputs
pre-processing Nnet post-processing

(feature extraction) (Nnet correction)

!

typically, reduces data dimension
and simplifies inference problem

(application dependent)

feature computation takes into account statistical properties
and perceptual properties of data and overall system

in the ideal case where a statistical model is known, the ideal
features are sufficient statistics for the inference problem

© Keith M. Chugg, 2020
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Types of Neural Networks

Convolutional Nnets

MLP layers

\\
.?

convolutional max-pooling
layer

(sub-sampling)

May be viewed as performing feature extraction before the MLP layers
(this feature extraction is learned)

© Keith M. Chugg, 2020



Types of Neural Networks

Recurrent Neural Networks

Unit-time delays

Z*l

Network has state — current output
y[n] is a function of current input X[n]
and state (e.g., previous X[n-i], y[n-i]

X1, n+1 o B Ou‘[put

\
N

Bias ©

”1, n ©
Inputs {
u

2,n ©

think of this as a generalization of a
feedback filter

Input Computation
layer layer

FIGURE 15.6 Fully connected recurrent network with two inputs, two hidden neurons, and one
output neuron. The feedback connections are shown in red to emphasize their global role.

© Keith M. Chugg, 2020 [Haykin-NN] 39
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“input layer - layer - layer
layer | 1 2 3

Types of Neural Networks

Recurrent Neural Networks

state state @ﬁte

_________

_________

output layer

matrix-vector view of the previous diagram
(with additional recurrent layers)

40



Some Connections to Simple Signal Processing

0.200 H
0.175 -

=
Pt
v
o

impulse response h[n]

o
o
(8]
o

0.025
0.000 -

© Keith M. Chugg, 2020

0.125
0.100 -

0.075 -

difference equation block diagram
o _ _ > y[n]
y\n| = ayln — 1] + Bx|n] z[n] . Lo
- - - - .:k‘/ | :: ]—‘
yn| = ayln — 1] 4+ (1 — a)z[n] o v
stable, low-pass filter when 0 < alpha <l
impulse response frequency response
° 0.0 1 —— alpha = 0.8
-2.5 -
i
-5.0 -
? & 751
* % ~10.0 -
o T
-12.5 -
[ [ -15.0 -
Ittrreenen.
00 25 50 75 100 125 150 175 By 0.1 0.2 03 0.4 05
n v (cycles/sample)
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Use for ARI Filter (preview)

variation on stochastic gradient descent

stochastic
(noisy) ﬁItEI‘Ed
gradient gradient

(momentum, adam optimizer, etc)

“gating” recurrent units

e state e state
U layer I > layer N
2 L3

output layer

_________

_________

(GRUs, LSTMs)

42



When to Use Deep Learning?

® Don’t use Deep Learning when...

® You have a good statistical model for the inference problem and you can derive and
implement the ideal inference function f(.)

® A simpler form of supervised ML performs well
® eg,Linear regression, logistical regression, Naive Bayes Classifier, etc
® Do use Deep Learning when... there is lots of data available and...
® Tough to model accurately

® You can use a classical approach, but there are many “clamps” in your algorithm
(conditional statements... hacking)

® Modeling is good, but implementing f(.) exactly is prohibitively complex

© Keith M. Chugg, 2020



Model-driven: Experiments, Models, Algorithms

Formulate
hypothesis

Define experiment to

test hypothesis
Physical Model Modify
process/system
Observations | /\ | Predictions

b

Sufficient

No

FIGURE 1.1
The modeling process.

[Leon-Garcia, Probability Statistics, and Random Processes for Engineers]

© Keith M. Chugg, 2019

All aspects
of interest
investigated?

Stop

there is no purely “model based” approach
to any engineering problem

agreenjent?/
\ “All models are wrong, but some are useful”

George Box (paraphrased)

44
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Data Driven Version of this Design Process

|

collect, augment,
synthesis dataset

data (and ML) evaluated via
end-to-end performance

4

Machine Learning
algorithm

much of the attention is here, but
in practice, more iteration/time

no works

© Keith M. Chugg, 2019

sufficiently
well?

spent on data engineering

done “all data are wrong, but some are useful”

45



