Inference from Statistical
Models and from Data

Nylzz

EE599 Deep Learning

Keith M. Chugg
Spring 2020

i

'USCUniversity of

Southern California

Course Topics (from Syllabus)

® Course Introduction

® Estimation and Detection with Statistical Descriptions

© Keith M. Chugg, 2020

Detection, Estimation, Regression

statistical models data driven

MMSE Estimation

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Key ldeas for Random Vectors

Nx| random vectors — generalization of 2xI|

Complete statistical descriptions vs Second moment descriptions
® Direction preference (KL expansion)

Gaussian processes and linear processing

Linearity of the expectation operator

Eil(z(u))} = LE{z(u)})

expectation commutes with any linear operation

Random Vectors

_ (e _
z1(u)
random vector x(u) = . (N x 1)
EASION
Complete
statistical Px(w) (X) = Pao(u).1 (u). oy (u) (20,21, -@n—1) - (pdf or cdf or pmf)
description
m-. — E {X(U)} mean vector
=
t
RX al {X U)X)} correlation matrix
Second [Rx]z’,j = E {zi(u)z;(u)}
Moment _ t
Description Kx=E {(X(u) B mx)(X(u) _ mx))}

B t . .
= R, — mymy covariance matrix

[Kx]i,j = cov |z;(u), zj(u)]

© Keith M. Chugg, 2020

Random Vectors

(m x n)

Special case
P example math

(u) = b'x(u) (1 x1)
’ R, = E {y(u)y"(u))

my = b'my = E {(Hx(u))(Hx(u))"}
E{y”(u)} = b'Rxb i iéﬁxguingui?;}t
o, = b'Kyb ; HR, H'

Note that covariance/correlation matrices are symmetric, non-negative definite

© Keith M. Chugg, 2020

KL-Expansion

Can always find orthonormal set of e-vectors of K
These are an alternate coordinate systems (rotations, reflections)

in this eigen-coordinate system, the components are uncorrelated

(brinciple components)

The eigen-values are the variance (energy) in each of these principle directions

(can be used to reduce dimensions by throwing out components with low energy)

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

KL-Expansion

Kxek:)\kek k:O,l,...N—l

ete; =0k —1 M\ >0

N—-1
KX =)\kekei = E[\Et
k=0
N—-1
E{|lx(w)|’} = tr (Kx) = Y M
k=0

(Eigen equation)

(orthonormal e-vectors)

(change of coordinates)

(uncorrelated components)

(Mercer’s Theorem)

(Total Energy)

Always exists because K is nnd-symmetric

KL-Expansion Examples

x(u) = Hw(u) E— O B
_ _ i 5 —3] V2 +1 —1
K = HK,,H' = HH' = i
1 2
H = -3 5 _ _
_)) 2 0
I 1 2 | A —
0 8

generated with w(u) Gaussian Gaussian pdf contours

© Keith M. Chugg, 2020

KL-Expansion Examples

x(u) = Hw(u) B 1L+
_ _ i 5 —3] V2 +1 -1
K = HKWHt — HHt _ _
1 2
H = -3 5 _ _
_ i i 2 0
1 =2 A —
0 8

2+ -

generated with w(u) uniform Chebychev bound regions

© Keith M. Chugg, 2020

KL-Expansion Examples

x(u) = Hw(u) B 1L+
_ _ i 5 —3] V2 +1 —1
K = HK,H' = HH' = - -
1 2
H = -3 5 _ i
_)) 2 0
I 1 2 | A —
0 8
PR {(x(u) — my) K (x(u) — my) > €2} < 632

generated with w(u) exponential Chebychev bound regions

© Keith M. Chugg, 2020

Gaussian Random Vectors

Px(u) (%) = Ny (x;0; 1)
px(u) (X) — NN (X§ M, Kx)

1
= exp
N/2_ / N-1
(27) K| =[] M(zn:0;1)
n=0

2
01 PO102]

2
PO102 09

macOS plotter — source posted

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

if

Gaussian Random Vectors

x(u) y(u)
[} oo
oo
b n(u)

any linear processing of Gaussians yields Gaussians

x(u)

niu

] is Gaussian (X(u) and w(u) jointly-Gaussian), then:

y(u) is Gaussian

x(u)] i« Gaussian . jointly-Gaussian is
common in EE...

n(u) | js Gaussian

any subset of these random variables is also Gaussian

13

© Keith M. Chugg, 2020

Linear/Affine MMSE

estimate y(u) from X(u)=x

rgg;r;E {lly(u) — £(x(uw))]|*}

with no constraint, this is the conditional expectation function

fOpt (X) — my|x(X)

— E {y(u)lx(u) = x)

= / Y Py (u)|x(u) (¥]X)dy

Minimum Mean-Square Error Estimation (MMSE)

estimate y(u) from X(u)=x “cross covariance matrix”
Kyx = E{(y(u) — my)(x(u) - my)"} = [Kxy]'

Affine MMSE:

FAayvMsE = KyXK;1 bAMMSE = m, — F aMMsEmy

f(x)rili{lwbE Uy (u) — f(X(u))||2}

. 2
minE[ly(u) = Fx(w) b7} 5 — KoK (x — my) +my AMMSE = tr (Ky — Ky Ky Kyy)

Linear MMSE:

min E {[ly(u) — f£(x(u))]?} Fryvumse = Ry Ry
f(x)=Fx LMMSE = tr (Ry — Ryngley)

minE {|ly () - Fx(u)|*}

notes:
- affine often called linear... same when means are zero
- Conditional Expectation better than Affine, better than Linear

© Keith M. Chugg, 2020 |5

Proof for LMMSE

minE {|ly(u) — Fx(u)|’}

use:
y(u) — Fx(u)]*}

viw = tr (th)
(y(w) = Foprx(w)) + (Fopy — F)x(u)|[*}

(y(u) — FOP’GX(U))”Q} +tr ((FOpt — F)RX<F0pt - F>t)

+ 2tr ((Ryx — FoptRX)(FOPt o F)t>

Proof
MSE(F) =E {
—F {
= F {
if:
FoptRx — Ryx
(Wiener-Hopf eq.)

(aka Orthogonality Principle)

Y

space of all estimates/approximations

© Keith M. Chugg, 2020

then:

MSE(F) = E {||(y(u) — Foptx(u))[*} + tr (Fopt — F)Rx(Fopt — F)*)

>0 V F, since Rx is nnd

because of orthogonality principle

|
E{lly(u) —y@]?} =E{[ly(w)*} —E {lly(w)]?*}
= tr (Ry — RyxRy 'Rxy)

MMSE Estimation: special case jointly-Gaussian
estimate y(u) from X(u)=x

Conditional Gaussian pdf:
jointly-Gaussian is

 Px(u)y(u) (X, Y) common in EE...
Py (u)|x(u) (Y|X) = Pt ()
. don’t need ML or
N x| [me | | K Ky deep learning in
M+N (;| m, : Ky K,) this case!
N T Na(xmy Ky) _

= Ny (y3 my + nyKgl(X —my); Ky — KYXKXlKXY)

TV
the AMMSE estimator the error covariance

For jointly-Gaussian observation and desired, E{Y|x} is the Affine MMSE estimator

© Keith M. Chugg, 2020

Affine MMSE:

LMMSE Special Case: scalars

estimate y(u) from x(u)=x

© Keith M. Chugg, 2020

2 2
AMMSE = o,/(1 — pz,)

LMMSE Special Case: scalar desired, vector observed

estimate y(u) from X(u)=x

Linear MMSE (typ. means are zero):

Iy = Rxy = E{x(w)y(v)} = [E {y(u)x"(u) }

_ 2t p-l
LMMSE = 0, — ry, R "1yy

This is an important special case, so let’s develop it...

we will use gradients so that we arrive at stochastic gradient and LMS

© Keith M. Chugg, 2020

LMMSE Special Case: scalar desired, vector observed

estimate y(u) from X(u)=x
Linear MMSE (typ. means are zero):
E(w)=E { y(u) — WtX]2}

= E {[y(u)]* + w'x(u)x"(u)w — 2y(u)w'x(u) }

Let’s differentiate and seeks critical point:

OF
owo

OF
VwE=| o

OF
L 810]\[_1 -

VwE = VwE{[y(u)]* + w'x(u)x* (uv)w — 2y(u)w'x(u) }

= E{Vawly(w)]? + Vu [wix(u)xt (u)w] — 2y(u) Ve, [wx(u)] }

© Keith M. Chugg, 2020

this is a linear operation so...

20

© Keith M. Chugg, 2020

Some Vector Derivative Results

These are simple to verify

As we build up more of these relations, | will make a table to post on Piazza

21

© Keith M. Chugg, 2020

LMMSE Special Case: scalar desired, vector observed
estimate y(u) from X(u)=x

E(w)=E { [y(u) — wtx(u)} 2}

Let’s differentiate and seeks critical point:

VwE =2 (E {wx(u)x"(u) — y(u)x(u)})

= 2(Ww'Rx — rxy)
VwFE =0 S Rxw =ryx, (Wiener-Hopf equation)

This yields our solution
(can verify global minimum)

22

Steepest Descent and LMS
estimate y(u) from X(u)=x
B(w) = E { [y(u) - wix(w)”} Ve L =2 (E {wx(u)x'(u) - y(u)x(w)})
= 2(Ww'Rx — rxy)
Steepest descent using (ensemble average) gradient:

Wit = Wa — (0/2) Vo E
— Wn + 77<rxy — RXVAVn)

Single Point Stochastic Gradient Descent:

1
—§VWE = Txy — Ryw this is called “on-line learning”

=K {y(u)X(u) — X(U>Xt (U)W} when n ~ time, this is the Least Mean Square

A YnXn — Xanl W (LMS) adaptive filter

— (yn o szvAVn)Xn

A when n does not represent time, we can
Wntl = Wp + n(yn - ann)Xn easily average the gradient over more data
points for a better approximation (batches)

© Keith M. Chugg, 2020

23

LMS Algorithm as Adaptive FIR filter

) SN, AR AR .
NI NI NI NI Yn
A Y A)
Wo) w1 i W2 wr—2 | wr—-1 4
n > D > D > —— D > D U[’)’L—L]
L—1 Wo T,
Uy = E WLy —
yn lLn—1 wl T
=0 W — n n—1
¢ Vn = Xp_(L-1) =
=WV,
wr,—
L LD | Tn—L+1 |

Single Point Stochastic Gradient Descent:

1
—§VWE = Ty,y, — Rv,W

= E {y(u)vp(u) — vy (u) vy (u)w} : =[

— W, V) Vy

© Keith M. Chugg, 2020

t

LMS Algorithm

Wil = Wy + 0(Yn — VAszVn)Vn

Wn—l—l — VAVn + n(yn - yAn)Vn

Wn+1 = Wp + NEnVn

(this is an on-line linear regressor)

L,

LMS Algorithm as Adaptive FIR filter

LMS algorithm:

Wit1 = Wy + 0(Yn — VAV;VH)VTL

If R,, and r.,, =E{v.(v)y(v)} do not change with n,

. N -1
W, —~ WLMMSE = Ry Tyy

If these correlations vary with time, the LMS filter will adaptively track them

© Keith M. Chugg, 2020

|

®
Vi
77[

\

€n \

LMS Experiment Example

Impulse response

data generated using: 107
0.8 1
x y 0.6 1
this is the ideal case as the T o] [
n 0.0 1
mOdeI and data are matChed q 0,60 0,'25 0,'50 0.'75 160 12'5 l;’:O 155 Z(')O
: *
Tn N An
you have HW with mismatches i

eta = 0.05,SNR = [0 dB 0 2

noisy target

Learning Curve

Coefficents Coefficents (averaged)
A, 0
101 W%% 2
0.9 1
. 0.8 1 0.8 1 -4 4
g v 07 s
E 061 5 =
g M = Ahﬁ/“w & — VAMA g 0.6 - g -6 1
200 [l WHYW MW W {05
. 0.4 -8 1
0.2 1
03
T T T T T T 02 =10 A
0 100 200 300 400 500 T T T T T T : . - . . -
updates 0 100 200 300 400 500 0 100 200 300 400 500
updates updates
single run averaged over 500 runs averaged over 500 runs

© Keith M. Chugg, 2020

LMS Experiment Example

Impulse response

data generated using: {7

0.8 1
Ln Yn o 06 |
- by, @—’
0.4 1
T 0.2 1
qn

0.0 1

000 025 050 075 100 125 150 175 200

Learning Curve n
-~ 10dB, eta = 0.15
] —— 1048, eta = 0.05
_4.
g larger learning rate means faster
B -6 . .
= convergence but more misalighment
1 (gradient noise)
-10 1 4
(') 160 260 360 460 5(')0
updates
Learning Curve
—— 3dB, eta=0.05
01 ~—— 10 dB, eta = 0.05
-2
g even the optimal Wiener (LMMSE) filter will
= have higher MMSE when the SNR is lower
_8.
=10 M
0 100 200 300 400 500
updates

© Keith M. Chugg, 2020

LMS History/Example

10~1
1072 le—| g
1950 1985 2000 2015 2056

<

—_— 1011

R 109 0
ctopus

E 08 s

T 107

§> 106

= 10°

% 104

5 108

§ 102 w.

5 10° e

E

=

z,

Figure 1.11: Increasing neural network size over time. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. Biological
neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)
2. Adaptive linear element (Widrow and Hoff, 1960) <
3. Neocognitron (Ifukushima, 1920)
4. Early back-propagation network (Iiumelhart et al., 1986b)
5. Recurrent neural network for speech recognition (IRobinson and Fallside, 1991)
6. Multilayer perceptron for speech recognition (Bengio et al., 1991)
7. Mean field sigmoid belief network (Saul et al., 1996)
8. LeNet-5 (LeCun et al.,, 1998b)
9. Echo state network (Jacger and Haas, 2004)
10. Deep belief network (Ilinton et al., 2006)
11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
12. Deep Boltzmann machine (Salakhutdinov and Ilinton, 20092)
13. GPU-accelerated deep belief network (Raina et al., 2009)
14. Unsupervised convolutional network (Jarrett et al., 2009)
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
16. OMP-1 network (Coates and Ng, 2011)
17. Distributed autoencoder (Le et al., 2012)
18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
19. COTS HPC unsupervised convolutional network (Coates ef al., 2013)
20. GoogLeNet (Szegedy et al., 2014a)

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

ifixit.com

LMS History/Example

Widrow and Hoff, Adaptive Linear Element (ADALINE)
(developed LMS for adaptive antenna array processing)

Side lobes

Main lobe

Back lobe

90°

point a beam at the desired speaker and learn to cancel
noise energy in other directions using LMS

29

https://www.ifixit.com/Teardown/Amazon+Echo+Teardown/33953

© Keith M. Chugg, 2020

MMSE Summary

|. Estimation using statistical models
2. Best MMSE estimator (unconstrained) is conditional expectation

I .Requires complete statistical description of observed and desired — i.e., p(y|x)
3. Linear/affine MMSE estimator have closed form equations

I .Require only the second moment description of observed and desired — i.e.,
means, correlations

4. For jointly Gaussian observed and desired, 2 & 3 are the same!

5. The LMS algorithm may be viewed as approximating the gradient of the LMMSE
cost function by a single realization.

30

© Keith M. Chugg, 2020

Regression Overview

Regression is data fitting to a specific parameterized function class
Linear regression

® Same as LMMSE, but with data averages replacing expectation
(ensemble averages)

® [inear least-squares

® Generalize on-line learning to full-batch and mini-batches

31

General Regression Problem

Given a data set: D = {(%Xn,Yn) oy
General regression problem:
min (C(y,g(x;0)))p Oy = arg min (C(y, g(x;©)))p $ = g(x; Oopt)
X ~ regressor (observed)
Empirical expectation (average over data): y ~ target (desired)
A 1
(h(x,y))s = ﬁ Z h(xn,yn)
(men)es

For large averaging sets (i.e., many realizations):

E {h(x(u), y(u))} = / h(%, ¥)Dxu) y () (% 3)dx dy 2 (h(x,¥))
sample mean

Monte Carlo method

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Least-Squares Regression Problem

N-1
min ([ly — g(x;0)[))p = min } _ |lyn — g(xn; 0)|I”

n=0
@opt = arg mén< Hy _ g<X; @>||2 >D

Squared-error is a common cost function in (electrical) engineering

this corresponds to power or energy in many applications

33

Linear and Affine (LS) Regression

Linear regression problem:

N—-1
win ([ly = Wx|*),, <= min D [lyn — Wx||
n=0
_ : 2
WilsE = arg T%%,n< ly — Wx|[|“)
y = WLLSEX
Affine regression problem: (aka: Linear regression)

WALSE, baLsE = arg {}Hvi%< ly — [Wx + b]||?)p

Yy = Warse X + barse

© Keith M. Chugg, 2020

34

© Keith M. Chugg, 2020

Linear and Affine (LS) Regression Solution

Note that the data averaging operator has the same linearity property as
the expectation operator

EL(z(u))} = L(E{z(u)}) (L(z)) = L((z))

This means the solutions are the same as the MMSE
solutions with the expectation replaces by data averaging

For example, Linear LS regression:

A . LLSE = < ||y — WLLSEXH2 >

WiLse = RyxRy

= ([lyl” = (IWrLsex[]*)),

y = RyxR, x) .
= tr (Ry — RyxRy Ruy)
Ry = <th >D IA{Xy = <th >D
, N-1 t , N1 t
— N XnXp = N Xn¥Yn
n=0 n=0

35

Proof for LLSE Regression

i ([y — Wx|*),

use.

Proof:
LSE(G) = (|ly — Gx|*) / viw = tr (wv?)
= < (¥ — Goptx) + (Gopt — G)X||2 >
(B .
) .

+ 2tr ((Ryx GoptRX)(GOpt T G)t>
if: | then:
Goptf{x — IA{yx 2 ®
LSE(G) = (||(y — Go + 11 ((Gopt — G)Rx(Gopt — G)')
(Normal Equation(s)) (&) < Ity el > \r (Gop R Gops) L
(aka Orthogonality Principle) S0V @ Si;ge R, is nnd

because of orthogonality principle

v l
(Nly =31%) = Clyl*) = (v l®
g = tr (Ry — RyuR Roy)
space of all estimates/approximations

looks familiar. ..

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Linear and Affine (LS) Regression Solution

This makes perfect intuitive sense:

if you did not know the second moments and wanted to do LMMSE estimation,
you would estimate these correlations from data

in addition to optimality in the Gaussian case, linear MMSE estimation is extremely
popular because it takes much less data to accurately estimate second
moments than to do so for complete statistical descriptions (or higher moments)

37

© Keith M. Chugg, 2020

To Engineer is Human

there is no purely “model based” approach to any engineering

cannot really separate modeling/data or frequentist/Bayesian views

TO ENGINEER big part of engineering
IS HUMAN

The Role of Failure in Successful Design

trial and error,
design - test - refine,
iterative design

if you want to be a good
engineer, you should be
w (ha new aH‘erword by th author adventuresome and make IOts

a ;:;j':j;c:;::;;_j mistakes to learn from

HENRY PETROSKI

of THE EVOLUTION OF USEFUL THINGS

38

Data, Experiments, and Models

Formulate
hypothesis

Define experiment to

test hypothesis .
| " | there is no purely “model based” approach
‘ ' to any engineering problem
Physical Model Modify
process/system

Observations | /ll\ | Predictions

Sufficient No

agreeny
\ “All models are wrong, but some are useful”

No All aspects
of interest
investigated?

George Box (paraphrased)

Stop

FIGURE 1.1
The modeling process.

[Leon-Garcia, Probability Statistics, and Random Processes for Engineers]

© Keith M. Chugg, 2020 39

https://en.wikipedia.org/wiki/All_models_are_wrong

Data Driven Version of this Design Process

|

collect, augment,
synthesis dataset

data (and ML) evaluated via
end-to-end performance

4

Machine Learning
algorithm

much of the attention is here, but
in practice, more iteration/time

no works

© Keith M. Chugg, 2020

sufficiently
well?

spent on data engineering

done “all data are wrong, but some are useful”

40

LLSE Regression: scalar on scalar special case

approximate y from x

Linear regression problem: N-1

Solution (special case):

WLLSE — fyx
xr
LLSE = ([y — wriLsez]”)]
. ’Fyx pL
i= = ()~ {lwussr?) ;.
= Fy — Frgla E
=,)
. 2 2
r., = T = — xr]
> =(2") N nz:% " when sample means are 0:

— 51—)

© Keith M. Chugg, 2020

LLSE Regression: scalar on scalar special case

approximate y from x

Linear regression problem:

1
. 2 . 2 2
mu1)n< (y—wz)®) <= min — Z (yn — wxy) = |y —wx|
n=0
Yo 0
Y1 L1
. . y f— X =
Solution (special case):
| YN-1 | | TN-1 |
y'x 2 y'x) 2
wiase = Yo (MLSE= Iy - (XX x|
. Y'x , (y'x)°
y = EX — ||YH o ||X||2
y this “stacked” approach yields the same as

the <.> approach on the previous slides!!
v y-hat stacked in a vector

space of all estimates/approximations

© Keith M. Chugg, 2020 4?

LLSE Regression: scalar on vector special case

approximate y from X

Linear regression problem:

xy Normal Equations

again, just change E{.} to <.> from LMMSE result

what about the “stacked” approach for this case??

© Keith M. Chugg, 2020

LLSE Regression: scalar on vector special case

approximate y from X
Linear regression problem:

1
min ((y —w'x)?) = min_ nzo(yn -w'x)? = min|y - Xw]|?
X
X]
Solution (special case):
| X1
y = Xw
—1
w = (X'X) X'y (N)LLSE = tr (|ly[I* — [[Pxyl?)
X'X = X'y
normal equations
p— ny

e this is the same as <.> case, with all y-hat stacked in a vector

1, | U Nl I
i RX Ixy = NXX. NXY

space of all estimates/approximations

© Keith M. Chugg, 2020

44

LLSE Regression: scalar on vector special case

approximate y from X
Linear regression problem:

1
min ((y —w'x)?) = min_ nzo(yn -w'x)? = min|y - Xw]|?
X
X]
Solution (special case):
| X1
y = Xw
—1
w = (X'X) X'y (N)LLSE = tr (|ly[I* — [[Pxyl?)
X'X = X'y
normal equations
p— ny

e this is the same as <.> case, with all y-hat stacked in a vector

1, | U Nl I
i RX Ixy = NXX. NXY

space of all estimates/approximations

© Keith M. Chugg, 2020

45

© Keith M. Chugg, 2020

“stacked” vs < .> approach

The stacked approach is used by all of the books | see...

maybe because they start from frequentist (data first) perspective

for EE students with MMSE background, < .> makes it obvious
what is going on in Linear LSE regression

also makes it simple to see the case when regression vector y on vector X
(this would require 3D tensors in stacked approach)

will show the general case (Projection Theorem), but first, what
about using Gradient Descent??

46

Trick for Doing Affine with Linear Math

allows for compact notation while including the b (bias) term

© Keith M. Chugg, 2020

Recall: Steepest Descent and LMS
estimate y(u) from X(u)=x

E(w)=F { [y(u) — th(u)]2} VwE =2 (E {wx(u)x"(u) — y(u)x(u)})

= 2(Ww'Rx — rxy)

Steepest descent using (ensemble average) gradient:

W1 = W — (1/2) Vo B
Wy, + 1(rxy — RxWy)

Single Point Stochastic Gradient Descent:

1
—§VWE = I'xy — Rxw this is called “on-line learning”
t
=K {y(u)x(u) — x(u)x (U)W} when n ~ time, this is the Least Mean Square
t (LMS) adaptive filter

N YnXn — XnX, W

— (yn o szvAVn)Xn

A , when n ~! time, we can easily average the
Wnt1l = Wy + U(yn — ann)Xn gradient over more data points for a better
approximation (batches)

© Keith M. Chugg, 2020

48

LMS/Stochastic Gradient from LLSE Regression POV

approximate y from X

: b2
m“l,n<(y w'x)") vw<(y—WtX)2>:2(<XXW—Xy>)
= 2(Rxw — I'yxy)
Steepest descent using (data average) gradient:
vAVn—|—1 — VAVn - (77/2>VW < (y R WtX)2 >
= VAVn + n(f'xy —];A{XVAVn>
Stochastic Gradient Descent with mini-batches:
SGD with mini-batch updating £ \9 A A
(average the gradient over subset of data) _ng (y — w'x) > = I'xy — Rxw
= <Xy — xx'w >D
. . 1 . ~ (xy — xx'w
Wntl = Wy + 77@ { Z (Yn — X;szn)xn:| <1 Y >Bn
(nyn)€Bn — E Z (yn X:,GzVAVn)Xn

(xn,yn)EBn
mini-batch size | is on-line learning (LMS is an example)

© Keith M. Chugg, 2020

A Word on the “Exact Gradient”

Model Based
View

approximate data
average gradient

approximate data
average gradient
(more noisy)

Exact gradient

© Keith M. Chugg, 2020

Data Driven
View

exact (full-batch)
gradient

mini-batch gradient
approximates full-batch

(noisy)

hypothetical model for
data (unreliable?)

50

Hilbert Space Projection Theorem (advanced topic)

This is why we see the same results so often —

y .
many spaces are Hilbert spaces

space of all estimates/approximations

in machine learning, we also consider costs that are not squared error and are not
in a Hilbert space (do not come from inner product)

in most cases, we use SGD regardless

Note: in all of the cases of gradient descent, the gradient is zero when the
orthogonality principle holds (e.g.,Wiener-Hopf, Normal Equations)

© Keith M. Chugg, 2020 51

space of all estimates/approximations

© Keith M. Chugg, 2020

Hilbert Space Projection Theorem (advanced topic)

Theorem (HSPT): Let H be a Hilbert space, M be a closed subspace of H, and y € H. Then

there is a unique y € M which is closest to y:

ly -9l <lly—yl| YyeM, y#y.

Furthermore, a necessary and sufficient condition for ¢y to be the closest point is that it satisfy the
Orthogonality Principle:
(y—9,9)=0 VyeM.
, , , L <x,y> is inner product here
A direct result of this orthogonality condition is

A 112 2 2 A 112
ly —4l|” = llel|” = |ly]|” — lly]|]".

Here (x,y) denotes the inner product defined on H and ||x| = /{x, x) is the associated norm.
linear space
y metric space (linear combinations)

(measure distances)

g inner product space
linear space
with norm

(Banach) Hilbert space

finite-dim IPS

Detection, Estimation, Regression

statistical models data driven
MMSE Estimation general regression
Linear/Affine MMSE Est. linear LS regression
FIR Wiener filtering stochastic gradient and batches
— GD, SGD, LMS

Bayesian decision theory
Hard decisions

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Decision/Detection Theory

® Bayesian Decision Theory

® Bayes decision rule

® MARP rule - minimum error probability rule
® Maximum Likelihood

® Likelihood, Negative-Log-Likelihood, Likelihood ratios
® Neyman-Pearson test and the ROC

® Detection and False Alarm trade off

54

© Keith M. Chugg, 2020

Decision Theory Framework (Statistical Model Based)

Pa(u)|d(w) (Z2m) = p(z|Hm)
T(AZ|Z)
likelihood (of H, given z(u) = z)

decision rule

decision
(action)
space

hypothesis
(class)
space

observation
space

p(Hm) — Pr {d(u) _ m} = T A; : take action i, typically: “decide d=m?

a priori probability

Goal: design a good decision rule using the statistical model

observation space

typically try to implement the decision
rule as a partitioning of the sample space

q a Z,, = decision region m = {z € Z : r(An|z) =1}

55

Decision Theory Framework (Statistical Model Based)

payes risk for Risk(r) = [p(s) | 3 r(A)C(4500) | d
decision rule r z I
Cost for taking C(4jlz) = Z C(Hi, Aj)p(Hilz)
action m given
observation zZ Ci; = C(H;i, A;j) = Cost of deciding H; when H; is true
Bayes decision rule _J1 m=argmin; C(A;|z)
L : T'bayes(Am|2) =
(minimizes Bayes risk) 0 else
p(2[Hm)Tm
: Hm|z) =
APP factoring p(Hml2) p(z)
a posteriori probability (APP)
= p(2z|Hm)Tm

equivalent for making decisions (p(z) not dependent on hypothesis)

© Keith M. Chugg, 2020 56

Maximum A Posteriori Probability (MAP) Rule

MAP is special case of Bayesian Decision Rule

0 1 1 1
1 0 1 1
C=1]110 1
1 1 1 1

11 1 0
MAP rule

max p(Hm,|z) <= maxp(z|Hp)mTm

© Keith M. Chugg, 2020

For these costs, the Bayes risk is the
probability of decision error

MAP rule minimizes probably of decision
error over finite number of hypotheses

57

Aside: MAP and MMSE Estimation

Consider MMSE Estimation of a digital/discrete random variable

MMSE estimator: E {d(u)\z(u) = Z} = Z dm Pd(w)|z(u) (dm’Z)

T APPs

the optimal MMSE estimator for a digital/discrete desirable requires APPs

© Keith M. Chugg, 2020

58

Aside: Hard Decisions and Soft Decisions

Consider MMSE Estimation of a digital/discrete random variable

A

Hard decision: d=3

~ ~ ~ ~

Soft Decision A: p(d=10)=0.09 p(d=1)=039 pd=2)=01 p(d=3)=04

~ ~ ~

Soft Decision B: p(d=0)=0.01 p(d=1)=0.01 p(d=2)=0.01 p(d=3)=0.97
Both soft decisions A and B are consistent with the same hard decision, but
B corresponds to much higher confidence

APPs are the ideal soft decisions (typically)

Soft decisions are often desired when the output
of the classifier feeds additional processing — eg,
Automatic Speech Recognition (ASR):

feature

audio samples vectors

soft
neural

transcript
decisions | dictionary &
> > language
[network | on [model
phonemes

feature
computation

© Keith M. Chugg, 2020

59

© Keith M. Chugg, 2020

Binary MAP Rule

likelihood ratio

when M>2; still work with p(z|Hm) / p(z|HO)

Likelihood Ratio Test

60

MAP Rule for the Binary AWGN Channel

M=2
Hp o z(u) =s, +w(u) (D x1)
fz(u) (Z‘Hm)ﬂ-m
P(Hnm
= fz(u) (Z‘Hm)ﬂ-m
= Np(z;8m; (No/2)D)mm
B Tm —1 9
(7 [12 ol
fmax PHp|z) <= mn%n—ln (P(Hm|2z))
1)
= My €XP FHZ_SmH 1
0 <= min [— In(7mm,) + FHZ — Sm||2]
m 0
: 9 1
< min |1z — s || (When Tm = M)
_ J

© Keith M. Chugg, 2020 61

MAP reduces to ML when a
priori probabilities are

© Keith M. Chugg, 2020

uniform

Other Rules (MAP Special Cases)

Maximum Likelihood (ML):

Minimum Distance:

Min. Euclidean (squared) distance:

max f(z|Hm)

min d(z, Sy,)

min ||z — s,
m

_

Maximum Likelihood (ML):

Minimum Distance:

Min. Euclidean (squared) distance:

62

© Keith M. Chugg, 2020

MAP

Other Rules (MAP Special Cases)

> ML >

uniform AWGN
priors

Minimum
Euclidean
Distance

63

Binary MAP Decisions (equal priors)

[Hi 2 2 h
(s1—s0)'z > Is1]]* — [Isol|* — No In(m/mo)
o 2
So N y

Error probability given
hypothesis 0O is the probability
that noise throws observation

over decision boundary

Contours of fy, ., (z|Ho)

© Keith M. Chugg, 2020 64

Performance of Binary MAP Decisions (equal priors)

I
I
a2
1
!
1
1
,

P(E|Ho) = PR 1 (s1 — So)tz(u) > Is1]%—lIsol[* = No In(m1 /7o)

5 ’Ho} >

s1]|?—||so||*—No In(m1 /7o)

— Pr{(sy — s0)8(s0 + w(u)) > | 2 ! >

— P 2 s1]12=|lsol|?— n(my /7

- R{(Slis() - HSOH)‘|— (Sl — So)tw(u) > Is1]1*—I[sol[*—No In(71/ 0)}
+ —2stsy— n(mwy/m

{(Sl 'SO)tW(u) > ||Sl||2 ||SO||2 1S0—No In(m1/ O)}

V(U) > % [HSl — S()H2 — N() ln(ﬂ'l/ﬂ'o)]}

© Keith M. Chugg, 2019

65

Performance of Binary MAP Decisions (equal priors)

A2
P(5|HO) =Q (ZNO)

= [ls1 —so|® (m1 = mo)

_

P(&) = P(&|Ho)mo + P(E|H1)m1
P(E|Ho)(1/2) + P(E|H1)(1/2)
P(&)=Q (‘/2%) (\/31 sﬂ)

© Keith M. Chugg, 2019

/
T

\A, Cont ff()(|H)

Note: not a function of dimension

66

M=8 (8-PSK) Example Min. Distance Rule

y @
o\
PR RN
/// \\ \
% %
: Y '
/
el
2 ,
\\
\ ¥\ ,/
. 4/

some pairwise
decision regions for
signal 0

© Keith M. Chugg, 2019

global decision region

for signal O
A Q g
s A
/% *\
) V Es
v
20
\\
\ /
\ /
S S5
\\2\%//

the global decision region for
. H_m is the intersection of all

pairwise decision regions for
H m

67

© Keith M. Chugg, 2019

Bounds on Error Probability

Error probability for M-ary decisions can be found using the exact error
probability of error in a pairwise test & the union bound

a simple resulting form for M-ary signals in AWGN:

Lo (/%) < pe) < ar - 1)q [|
M 2Ng | — - 2Ny

dominated by the minimum distance between two signals

68

© Keith M. Chugg, 2020

Other Decision Criterion (non-Bayes)

minimax rule: the Bayes full for the worst case a priori probabilities

Neyman-Pearson rule:
maximize detection probability for a given false alarm probability

Pp = P(decide H1|H1) Detection Probability

Pra = P(decide H1|Ho) False Alarm Probability

NP rule example:
Given P_fa < 0.1, maximize P_d

Can always maximize detection probability by always deciding HI, but this
will have high false alarm probability.

Note: N-P and minimax rules do not need knowledge of priors

69

Neyman-Pearson Theorem

Neyman-Pearson Theorem:
The rule that maximizes detection probability under a limit on the
false alarm probability is a likelihood ration test

example: detect a signal in AWGN

Ho: z(u) =n(u)

Hi: z(u)=S+n(u) S>0

per)
P .
’ Ppa=Q (a)
Hl T/ — —1
1 0nQ (PFA)
< exp [— (2% = [2 — S]Q)] - T -
207, ' Py =0 (T S)
On
1 Hl 1 S2
< exp [ﬁ (252 — 52)] z T =Q|Q " (Pra) — —
n 0 n
_ S2
— le/ PD:Q<Q1(PFA)_ 0—%>
0

© Keith M. Chugg, 2020

70

Neyman-Pearson Example: ROC

1 52
Pp=Q | Q (Pra) — | =
O-n
1.0 -
0.8 -
0.6 1
o
0.4 - —— SNR = -5.0 dB
—— SNR =-1.6 dB
—— SNR=1.8dB
0.21 —— SNR=5.2dB
—— SNR = 8.6 dB
0.0 - —— SNR =12.0dB
0.0 0.2 0.4 0.6 0.8 1.0

Pra

Receiver Operating Characteristic (ROC):
characterizes the trade-off between detection and false alarm probabilities

changes with the problem, but is another way to characterize classification performance

© Keith M. Chugg, 2020

Detection, Estimation, Regression

statistical models data driven
MMSE Estimation general regression
Linear/Affine MMSE Est. linear LS regression
FIR Wiener filtering stochastic gradient and batches

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Linear Classifier

perform linear regression and then threshold to get a hard decision

Example:

yE{_17+1}
§j = sign(w'x)
en(v) +1 v=>0
sign(v) =
5 -1 v<0

standard LLSE regression with thresholding of the prediction

Review: linear_classifier _examples.ipynb

73

Example: Linear and Affine Regression

for the case with no bias term, the decision
threshold has to pass through the origin

© Keith M. Chugg, 2020

adding the bias term allows for offset
from the origin

74

Maximum Likelihood Parameter Estimation

Theta is a (non-random) parameter set

Omr = (:)ML(y) — arg mgxpy(u)(y; ©)

Alternate notation: Py(w)(y]©) recall: likelihood of Theta (given y)

The ML estimate is the parameters values that best explain the
observation y under the statistical model for y(u)

May be based on a conditional or joint distribution:

Oz = Ounr(y,x) = arg max py u)jx(u) (4/%; ©)

@ML = @ML(% X) = arg mgxpx(u),y(u) (x,1;0)

© Keith M. Chugg, 2020

75

ML Estimation Example

this is a model for the data { (x_n,y _n) }:

Yn = WXy +vp, n=01,..

y = Xw + v(u)

Py(w) (V) = Nn(v; 0;0.T)

Py ()X () (Y1 X5 W) = pyp (y — Xw) = Ny (y; Xw; 0.1)

© Keith M. Chugg, 2020

NLL(w) = —In (py(u) (v [X; W)

1 —1 5
— —In ((%02)% exp [20% ly — Xw]| D

1 N
5oz Iy = Xw|* + S n(2ra?)

N —1

max Py ()| x (u) (¥ 1 X; W)

<~

min [ly — Xw]]
W

Maximum Likelihood <==> min Neg-Log-Likelihood <==> LLSE regression

(under this model for the data)

76

© Keith M. Chugg, 2020

Properties of ML Estimators

Asymptotically Gaussian:

® For large amounts of data, the ML estimate is Gaussian with
mean equal to the true parameter (models matched)

Consistent:

® The limit in probability of the ML estimate is the true parameter
(model matched)

The ML estimate minimizes the KL Divergence between the model
distribution and the empirical data distribution. KL divergence
measures the difference between two distribution (Info. Theory).

® Minimizing KL divergence in this case also corresponds to
minimizing the cross entropy

77

Logistic Regression Motivation

Note that a linear classifier has hard decision:

t

y = sign(w'x)

with corresponding soft decision:

Nagt
|
>
s

Note that this is a real number — the magnitude is the
“confidence” and the hard decision is the sign

How can we convert this to a soft decision that is a probability?

© Keith M. Chugg, 2020

Yy € {_L +1}

78

Logistic Regression

Z(Q

wo labels
T1 w1 ye{—-1,+1} g € {0,1}
i) w2 Q ﬁ
W3 m m .
- N N(~ ()
b

Two problems to address:

|. What is a good “sigma” function to map from reals targeting +/- | to a
probability of a |?

2.What is a good loss function between the binary labels {0,1} and the regressor
output p-hat ~ P(1)?

© Keith M. Chugg, 2020

79

Recall from the ML interpretation of LLSE Regression

model for ML estimation of w:

y = w'x + v(u) p(v) = N (v;0;02)

if we adopt the convention that:

y=+1

Nag)
1
—_

y=-1

Nag)
|
)

Likelihood ratio for y (binary classification):

ply = +1x;w) N(+1;w'x;02)

(%

ply = —1|x;w) - N(—1;wix; 02)

Takeaway: w
dotted with X can be viewed
as a log-likelihood ratio or log
ration of (scaled)
probabilities

Log-likelihood ratio:

© Keith M. Chugg, 2020

80

Logistic Regression Motivation

First, suppose we have the log ratio of two probability-like measure (maybe not normalized)

L =1n (12)
Po

= Inp; —Inpg
— 0 — 0, logistic function maps a log-likelihood
ratio to the “probability of a |”
‘ el
(& 0 pl p—
e 1 14
Po 66 _I_ e:li 60 —|_ 61
FIXTHESE TYPOS1
1 _
T 1+l 1+et
A el 1

sigma is called the Logistic function or sigmoid function (sigmoid is overloaded term)

© Keith M. Chugg, 2020 8l

Logistic Regression Motivation

maps a log-likelihood ratio to a probability (pl or p_numerator)

1.0 A

sigmoid(x)
o
o

o
F SN
1

0.0 A

Note: sigmoid(0) = 0.5

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Logistic Regression Motivation

Other useful properties

o(s) = % [1 + tanh (g)}

83

© Keith M. Chugg, 2020

Logistic Regression Motivation
This motivates a model for a binary variable vy:

y(u) ~ Bernoulli(p)

1
1 4 exp(—w'x)

p=p = O'(WtX) —

1
1 + exp(+w'x)

(I1—p)=po=

Model the values of the binary targets

Jn ~ Bernoulli(c(w'x,)) iid

84

Logistic Regression

Take the ML approach to determining w for this model:

pn:U(

W X,

The negative log-likelihood is....

p(y|X;w) H Py |(mom)
N-1
_ H p;[yn—wtl] [1 . pn] lyn=—1]
n=0
Pl L= p)) (o) = JPn = L=
l—pn yn=20 (_1)
Example:

Labels (y-tilde): [, 0, |
Output (sigma(w . x)): 0.9,0.1,0.2
pP(Y|x, w): 0.9 0.9 * 0.2

© Keith M. Chugg, 2020

Logistic Regression

The negative log-likelihood is:

NLL(w (Z G log(py) + (1 = §n) log(1 — pn)>

Dn = O'(WtXn)

(Z n log(o(w'xy,)) + (1 — 3,) log((1 — a(wtxn)))>

N—-1
— Z log (]_ + exp [_ynwtxn}) This is called
n=0 the binary cross-entropy loss. We will

see that this can be viewed as a distance
between two distributions

Example:
Labels (y-tilde): |, 0, |
Output (sigma(w . x)): 0.9,0.1,0.2
NNL(w): 0.11 +0.11 + 1.6

© Keith M. Chugg, 2020 86

© Keith M. Chugg, 2020

Logistic Regression

Z(Q

wo labels
T1 w1 ye{—-1,+1} g € {0,1}
i) w2 Q ﬁ
W3 m m .
s N N(> o()
b

Two problems addressed:
|. Logistic function maps a LLR to P(1)

2. Binary cross-entropy is the loss that arises from a Bernoulli model and
maximum likelihood parameter estimation.

87

Logistic Regression

Summary:

Logistic regression is ML estimation of w for an iid Bernoulli model with
_ t
Pn = 0(W'Xy,)

which can be viewed as regression with the (empirical) binary cross-entropy
cost function

no closed form, usually use SGD to perform the regression

We will see that this is a special case of two concepts:

|. It is a single-perceptron and MLP (neural networks) are many of these
combined (with slight modification)

2. The loss function derived is the binary cross-entropy between the output
probability mass function (p, I-p) and the “one-hot” encoded label pmf y-
tilde.

© Keith M. Chugg, 2020

88

Single Perceptron History

=

—_— 1011

g 100 <[Human

Q2 109 o)
ctopus

g 108 5

& 109

< 10°

% 104

B (i)

= eech

g 102 . -

5 10° -

—g 10~1

= 10_2 U e S

Z 1950 1985 2000 2015 2056

Figure 1.11: Increasing neural network size over time. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. Biological
neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)
2. Adaptive linear element (Widrow and Hoff, 1960
3. Neocognitron (Ifukushima, 1920)
4. Early back-propagation network (Iiumelhart et al., 1986b) h' d I d o h . I
5. Recurrent neural network for speech recognition (IHobinson and Fallside, 1991) t IS mo e Was Propose Wlt a’ Slmp e
6. Multilayer perceptron for speech recognition (Bengio et al., 1991) I . I H h (: I f SG D)
7. Mean field sigmoid belief network (Saul et al., 1996) earnlng a gorlt m SPeCIa Case O
8. LeNet-5 (LeCun et al.,, 1998b)
9. Echo state network (Jacger and Haas, 2004)
10. Deep belief network (Ilinton et al., 2006)
11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
12. Deep Boltzmann machine (Salakhutdinov and Ilinton, 20092)
13. GPU-accelerated deep belief network (Raina et al., 2009)
14. Unsupervised convolutional network (Jarrett et al., 2009)
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
16. OMP-1 network (Coates and Ng, 2011)
17. Distributed autoencoder (Le et al., 2012)
18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
19. COTS HPC unsupervised convolutional network (Coates ef al., 2013)
20. GoogLeNet (Szegedy et al., 2014a)

© Keith M. Chugg, 2020

Notes on Logistic Regression / Single Perceptron

® |n the view of W * X as a log-likelihood, the value of sigma_v is
absorbed into learning the coefficients w

® |Labeling convention 0, | <—> -1, +| can be altered as long as you
keep the training labels consistent. The convention | followed is the
most common

® BCE minimization is a special case for Maximum Likelihood
Estimation — i.e., it always minimizes a Cross-Entropy measure

® Finds the parameter that minimizes the Kullback—Leibler
divergence (KL divergence) between the model distribution and
the empirical data distribution

® Delay the details of SGD for logistic regression since it is a special
case of back-propagation for a Multi-layer Perceptron (MLP)

© Keith M. Chugg, 2020 90

ML Estimation and Information Theory

Entropy: H(X(u)) =E {10g2 (px(u) (1X(U))> }
= zk:px(m(’“) log (px(j)(k))
= zk:pk log (pik)
Intuition:

events with low probability have large information
— e.g., ‘it will snow in Phoenix tomorrow”

the entropy is the average information learned when
the value of X(u) is revealed.

weather report in Phoenix has low entropy (almost
always the same), whereas in Sioux City, SD it has
high entropy (highly variant weather)

Examples:
fair die: H(X(u)) =logs(1/6) = 2.58 bits/roll
loaded die: H(X(u)) = —0.41log,(0.4) — 0.11og5(0.1) — 0.01 log,(0.01)

—0.0910g,(0.09) — 0.2510g,(0.25) — 0.151og,(0.15)
= 2.15 bits/roll

© Keith M. Chugg, 2020

91

ML Estimation and Information Theory

Entropy of iid Bernoulli Source (with success probability p)

H(p) = —plogy(p) — (1 — p) logy(1 — p)

1.0 -

0.8 -

0.6 -

H(p)

0.4 -

0.2 -

0.0 ~

0.0 0.2 0.4 0.6 0.8 1.0

© Keith M. Chugg, 2020

92

© Keith M. Chugg, 2020

ML Estimation and Information Theory

KL-Divergence D(p||p) = E, {log <pa;(

Cross-Entropy CE(p,p) = E, {log (D (1) }
Px

93

ML Estimation and Information Theory
ML parameter estimation minimizes empirical CE (and KL divergence)

Pdata(y|x) = data distribution of the data (typically unknown)

Pmodel (Y|x; ©) = modeled distribution of the data (function of parameters)

Max-

Likelihood Estimation of

neural network weights is always
minimizing the empirical cross

CE(pdatas Pmodel(©)) = Ep . (yl2) {10% (pmodel(y(iﬂx(u); @)) }

~ (—10g (Pmodel (¥[%5 ©)))

N—-1
—1
= — > 108 (Prmodel (Yn|%n; ©)) | e.ntrc?py between data
n=0 distribution and the modeled

distribution

mgxpmodd(y‘x; @) e mein (_ log(pmodel(Y‘X; @)))

N-1
= mein (Z 10g(Pmodel (Yn |Xn; @))) (iid v, assumed)
n=0

N-1
—1
= mein (N Z log(Pmodel (Yn |Xn; @))) (empirical Cross-Entropy)

n=0

© Keith M. Chugg, 2020 94

Logistic Regression — We found BCE

The negative log-likelihood is:
NLL(w (Z Yn log(pn) + (1 — gn) log(1 — pn)>

(Z n log(o(w'xy,)) + (1 — 3,) log((1 — O‘(thn)))>

N-1

— Z log (1 + exp [—ynwtxn})
n=0

Define the binary cross entropy function:

BCE(p,p) £ E, {log (zﬁ) }

1 1
=plog -+ (1 —p)log —
p APl

= — [plog(p) + (1 — p)log(1 — p)]

© Keith M. Chugg, 2020

Pn = 0(W'Xy)

special case of the general
derivation

95

Example:

Gaussian noise
model, CE is LSE

Example:

Bernoulli model,
CE is empirical

BCE

© Keith M. Chugg, 2020

ML Estimation and Information Theory

Only this binary cross-entropy and the multi-class cross-entropy (next slide)
are called “cross entropy” typically, the first example is called MSE loss in the deep
learning frameworks/literature

Yn :thn+vna n=0,1,...N -1 pv(u)(v):NN(V§O§Uz2;I)

MaX Py (u) X (u) (Y| X; W)

~— minly - Xw|*
%%

7 ~ Bernoulli(o(w'x,,

) id here, our p-data was a
point-mass pmf

Max Py (u) X (u) (Y] X5 W)

< m“i’n BCE(pdataa Pmodel; W)

96

ML Estimation and Information Theory

Example: yn = m, with probability p,, = softmax,,(Wx,), m=0,1,2,...M —1, ii.d.
etm , L . :
softmax, (v) = —5— direct generalization of logistic function
2 j—0 € — maps log-likelihoods to pmf

M-value model, -

CE is multi mvgxpy(uﬂX(u) (Y|X; W) — H%,‘i/_n MCE(pdataapmodeU W)
category

empirical CE

® Labels are usually “one-hot” (p_data is a point mass) — “hard labels”
® Like this: p(cat)=1, p(dog)=0, p(bird)=0

® Not this: p(cat)=0.9, p(dog)=0.15, p(bird)=0.05

N—-1M-1
—1

MCE(pdataapmodd(W)) N Z Z I[yn — m] log(pmodel(yn — m; W))

n=0 m=0

© Keith M. Chugg, 2020

97

Multi-class Cross Entropy Example

. cat: 0
One hot encoding: dog: |
bird: 2
Sample data labels: n=0:y=1 (dog)
n=1:y=2 (bird)
n=2:y=0 (cat)
Classifier Output: n=0:[0.3,0.5,0.2]
n=1:10,0, |] [p(cat), p(dog), p(bird)]
n=2:] 0.4,0.5,0.1]
Loss = -1 log(0.5) + log(1) + log(0.4)]
N-1Md
MCE(pdataapmodel(W)) — W Z Z I[yn — m] log(pmodel(yn — m, W))
n=0 m=0

98

© Keith M. Chugg, 2020

© Keith M. Chugg, 2020

Detection, Estimation, Regression

statistical models

MMSE Estimation
Linear/Affine MMSE Est.

FIR Wiener filtering

data driven

GD, SGD, LMS -

general regression
linear LS regression

stochastic gradient and batches

Bayesian decision theory

Hard decisions

soft decisions (APP)

Classification from data
linear classifier

logistic regression (perceptron)

e

Karhunen-Loeve expansion

sufficient statistics

neural networks

learning with SGD

99

Theorem of Reversibility

reversible
operation

z2 can be used to perform inference on d without a loss of information

This may complicate or simplify, but, for example, the Max-Likelihood
processing will yield same results

© Keith M. Chugg, 2019 I OO

© Keith M. Chugg, 2019

Theorem of Irrelevance

Suppose we have two observations
p(z1,z2|d) = p(z1|22, d)p(z2|d)

If the following holds
p(z1|z2,d) = p(z1]z2)

Then we say that zl is irrelevant given z2 for the purposes of
inferring d (i.e., detection/estimation)

This means that zI can be thrown away if we have z2 without loss of
information for the purposes of inferring d

some irreversible operation are ok!

101

© Keith M. Chugg, 2019

Set of Sufficient Statistics

A set of sufficient statistics for inferring d is a function of the
observation that makes the observation irrelevant

p(z,8(2)|d) = p(z|g(z), d)p(g(z)|d)
= p(zlg(2))p(g(2)|d)

= p(g(z)|d)

Example:

{2's,, } M7 is a set of sufficient stats for the vector AWGN channel

Note: this can be a large reduction in the number of
dimensions without any loss of optimality

sufficient statistics are the ideal features

102

EXAMPLE: Binary MAP Decisions (equal priors)

(H1 2 2 o
(s1—s0)'z > Is1]1* — lsoll* — No In(m1/mo)
H :
S0 g J
B ks
2 _
Error probability given < ;72
hypothesis 0 is the probability W Contours of fy(u)(2[Ho)
that noise throws observation S0

over decision boundary

© Keith M. Chugg, 2020 103

Sufficient Stat for this Problem...

9(z) = z"(s1 — s0) definitely not reversible!

Note: the original dimension may be 2 or 1,000,000 and the
sufficient stat still has only dimension |I.

this reduces the observation to the essential information relevant
to inferring between the two possibilities from the observation

(aside: the performance is not a function of dimension either in this case)

sufficient statistics are the ideal features

© Keith M. Chugg, 2019 | 04

More on PCA and LDA

| am going to delay this a bit...

105

© Keith M. Chugg, 2020

Detection, Estimation, Regression

statistical models

MMSE Estimation
Linear/Affine MMSE Est.

FIR Wiener filtering

data driven

GD, SGD, LMS -

general regression
linear LS regression

stochastic gradient and batches

Bayesian decision theory

Hard decisions

soft decisions (APP)

Classification from data
linear classifier

logistic regression (perceptron)

e

Karhunen-Loeve expansion

sufficient statistics

PCA

feature design

neural networks

learning with SGD

106

MAP Estimation (parameter estimation)

Theta is a parameter set with a known/modeled a priori distribution:

like ML, but with a prior distribution on Theta
Orap = Opap(y) = arg MAX Py () ©(u) (Y]0) Po(u) (0)

May be based on a conditional or joint distribution:

Orap = Onap(y,x) = arg IWAX Py () x(u) O(u) (Y[x, 0) Po(u)|x(u) (0]%)

éMAP — éMAP(Z/? X) — al'g mélx Py(u),x(u),0(u) (ya X, (9) Po(u) (0)

© Keith M. Chugg, 2020 I 07

Example of MAP estimation

Assumed model: now, we model w as

w(u) — i.e.,, model the weights
as random with some known
distribution

ynZWtXn-l-?Jn, n=0,1,N—1

= XWwW + v(u
Y (u) assume that w and v

are independent

Py(u) (v) = Ny (v;0;071)

P (W) = Np(w;0;021) Py ()X (w),w(w) (YI1X W) = Dy()w(u) (Y — Xw)
= DPv(u) (y — XW)
= Nn(y; Xw; 021)

Find the negative log of this...
—In [py(u)|X(u),W(u) (}’|X, W>pw(u) (W)] = —In [NN (y; XwW; UgI)ND (W; 0; O-’IQUI)]

1 D
— [5plly = Xw[P + J In(2na)

20

1 N
— [mHWH2 — 5 ln(27r0120)]

= [ly — Xw]|* + Allw]’

© Keith M. Chugg, 2020 I 08

Example of MAP estimation

t

Assumed model: Yo = WXy +v,, n=0,1,...N—1

y =Xw +v(u) assume that w and v

Do) (V) = N (v; 0; 02T) are independent

Pw(w) (W) = Np(w; 0;02T)

Find the negative log of this...

—In [Py ()X (w).w(w) (Y% WDy () (W)] = — In [Ny (y; Xw; ;D) Np(w; 050, 1)

1 D
— [WHY — XWH2 + B 1n(27rag)]

1 N
— [%‘%UHWHQ — 5} ln(QWU%U)]
= |ly — Xw||* + A|w]?
A= v
o2

© Keith M. Chugg, 2020 I 09

© Keith M. Chugg, 2019

Regularization Interpretation...

MAX Py (u) (), 0 (u) (Y%, 0) PO x(w) (F]x) == min|y - Xw||* 4 Allwl|’

The a-priori Gaussian distribution on the weights leads to “L2 regularization”

penalizes large w — even if large w cause smaller squared error

this can be viewed a method to combat over-fitting

lamba is called the regularization coefficient in this context

Larger lambda ==> penadlize larger weights more aggressively (at expense of SE)

110

Regularization Interpretation...

Another popular type of regularizer is “L| regularizer”

for example, for squared-error cost function with LI regularization:

min [ly — Xwl + Alw];

Questions:

- does this correspond to an a-priori distribution on the weights!?
- If so, which one!

- Qualitatively, what is the difference between LI and L2 regularization!?

© Keith M. Chugg, 2019 I I I

Regularization

What is regularization and why do it!

We have seen an example: enforce penalty on weights to bias toward a prior distribution.

effect is to reduce over-fitting (get smaller weights)

Not all regularization methods can be viewed this way

in some cases, intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

© Keith M. Chugg, 2019 I I 2

© Keith M. Chugg, 2019

Machine Learning Goal

optimize on
some dataset

accuracy

generalization

D/

will it work on
different data
(with same
statistical
model)?

capability

will it work on
similar data,
but from
different
models
(ostensibly)?

in the end, we do not really care about the performance on the dataset we have
(it is labeled, after all)

we care about performance on similar data that has no labels

Accuracy/Generalization trade-off (aka bias-variance trade):

generally, optimizing accuracy to the extreme will cause reduced generalization

113

generally, optimizing accuracy to the extreme will cause reduced generalization capability

© Keith M. Chugg, 2019

Machine Learning Goal

/\geieralization

D

accuracy

Accuracy/Generalization trade-off (aka bias-variance trade):

optimize on
some dataset

D/

will it work on
different data
(with same
statistical
model)?

extreme ML case:

will it work on
similar data,
but from
different
models
(ostensibly)?

just make a table of (x_n,y _n)

perfect accuracy, but no ability to generalize!

| 14

Regression from Data

under-fitting

desired behavior] over-fitting

0 - 1 0 - 1

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

Choosing the right model (complexity) is challenging given a finite
data set and no good model for what generated it!!!

© Keith M. Chugg, 2020 [Bishop] | |5

Training (+ Val)/Test Split

training

training

mini-batches

mini-batches

mini-batches

validation

mini-batches

test

test

validation

test

weights, biases

(training=-)training: use this for SGD learning — trainable parameters

(training-)validation: use this for SGD learning — hyper-parameters

test: only use this when you are done to verify

© Keith M. Chugg, 2019

learning rate, batch size,

etc.

|16

Training (+ Val)/Test Split

Typical Train/Val/Test split:

70/15/15

need your val and test splits to be large enough to capture natural variation in the data
need your val and test splits to be large enough to allow reliable classification error estimation

want lots of data

© Keith M. Chugg, 2019 I I 7

© Keith M. Chugg, 2019

Training (+ Val)/Test Split

mini-batches

mini-batches

shuffle data

mini-batches

mini-batches

mini-batches

mini-batches

validation

test

shuffle all data in training (not including validation) after each epoch

perm = np.random.permutation(N_train)

mini-batches

mini-batches

validation

test

X_train = x_train[perm]
y_train =y_train[perm]

good practice to shuffle all of the data once before the train/val/test split

118

© Keith M. Chugg, 2019

Training (+ Val)/Test Split

(mini)-batch: do one SGD update (averaging) per mini-batch

(mini)-batch size: number of data examples per mini-batch

epoch: one training run through all of the training data

iteration: number of mini-batches per epoch

typically, we “test” the model on the validation data at the end of each epoch

119

Training (+ Val)/Test Split

Example

100,000 total (x_n,y_n) (shuffle it all once)

70,000 train
15,000 val

5,00 test
batch size = 70:

1000 mini-batches in the training data (1000 iterations per epoch)
1000 gradient updates in an epoch, each averaged over 70 samples

these are typically processed serially: batch |, batch 2, etc.
gradient updates are serial

(can change with many parallel compute nodes)
run inference (forward only) on val data after each epoch

monitor learning curve, iteration hyper-hyper-parameter search...

when done, run on test

© Keith M. Chugg, 2019 120

Over-fitting

s - training - training
MSE val MSE val

epochs epochs

desired behavior typical over-fitting

Better performance on training and worse or non-improving
on val (for Prob Correct classification, it gets higher)

© Keith M. Chugg, 2019 121

Regularization

What is regularization and why do it!

We have seen an example: enforce penalty on weights to bias toward a prior distribution.

effect is to reduce over-fitting (get smaller weights)

Not all regularization methods can be viewed this way

in some cases, intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

regularization is anything you do in training that is aimed at
improving generalization over accuracy — i.e., anything that does
not optimize the cost on the training data

we will see very different versions of this — e.g., drop-out

© Keith M. Chugg, 2019

122

Main |deas from Background

® Random vectors

® Figenvalues of covariance matrix provides information regarding direction
preferences (principle components)

® May drop directions with very little energy/power
® Estimation
® MMSE estimator is conditional expectation — difficult to find
® |inear/Affine MMSE is simple and only depends on second moments
® For jointly-Gaussian observed/desired, affine is optimal
® Detection
® MAP rule is minimum error probability.

® Requires complete statistical description

© Keith M. Chugg, 2020 I 23

Main |deas from Background

® Regression (from data)

® |inear regression is same as affine/linear MMSE estimation, but with data
averaging replacing ensemble averaging

® Stacking interpretation
® ML parameter interpretation
® MAP parameter interpretation for regularization
® C(lassification (form data)
® |inear classifier: linear regression with +/- | target and “slicer”
® Logistic regression
® [nformation Theory:
® ML parameter estimation ==> Empirical Cross-entropy loss function

® Only called CE for classification tasks

© Keith M. Chugg, 2020 I 24

Learning More...

ECE 562: Covariance/Correlation, KLT, random vectors, sequences, waveforms, MMSE estimation

ECE 563: ML, MAP estimation, Kalman Filters, Least Squares, Recursive Least Squares, Consistency, Unbiased, etc.,
Decision theory

ECE 565: Information theory, limits of information storage and transmission

ECE 517: Statistics, regression, logistic regression, EM algorithm, Monte Carlo methods

ECE 583: LMS algorithm and spectral estimation

ECE 588: Gradient descent, SGD, more advanced numerical optimization, convex optimization, constrained optimization

ECE 564: decision theory and (loopy) belief propagation, digital comm/coding
ECE 559: most overlap with this class, less neural networks, more detail on material up until this point + SVMs

ECE 660: also overlap with this class, unsupervised learning, decision trees, boot-strap, SVMs, etc.

ECE 500: neural networks + related topics in statistics and inference including fuzzy logic

all of the above have less applied work, less python, etc.

© Keith M. Chugg, 2019 |25

