
© Keith M. Chugg, 2020

Generative Adversarial Networks 
(GANs) 

EE599 Deep Learning

Keith M. Chugg
Spring 2020

1



© Keith M. Chugg, 2020

Outline for Slides

• Generative models


• GANs


• Sample code


• Conditional GANs


• Style transfer with Cycle-GANs
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Generative Models

3contributions from Brandon Franzke

Generative Model

canonical distribution distribution of real-world dataset

Implicit 
Generative Model

canonical distribution

sample of real-world data example
sample realization

distribution of real-world dataset

GANs are Implicit 
Generative Models
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Using a Trained GAN
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Put “noise” into the model and it generates real-world images as 
determined by the training set!

Trained GAN

sample realization from 
canonical distribution

Very realistic high-resolution results have been obtained 
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We Touched on GAN Results Briefly Already
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GANs

https://thispersondoesnotexist.com

not real people — output of a GAN driven by random noise!

https://thispersondoesnotexist.com
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How Can We Use GANs?
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GANs

AI version of 
“paint” (Nvidia Video) Video games

synthetic data to train 
networks 


(avoid the labeling problem)

style transfer

super-resolution 
(enhance images)

https://www.youtube.com/watch?v=p5U4NgVGAwg&feature=emb_logo
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Basic Idea of GANs
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GANs
TensorFlow: Deep Convolutional GAN

A generator network and a discriminator network are trained together 

Generator: make fakes so well, the discriminator cannot tell them from real examples

Discriminator: classify fakes from real examples

https://www.tensorflow.org/tutorials/generative/dcgan
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Training a GAN
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GANs

Discriminator: input is mixture of real (r) and fake (f) input images, 
trained as a typical binary classifier (i.e., binary cross entropy loss)

generator neural 
network

discriminator 
neural network

real data 
examples 
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preal
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(binary classifier)

Generator: must be trained with a cost function that encourages the generator to 
fool the discriminator and must backdrop through the discriminator

“code” or 
“latent” vector
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Training a GAN - Discriminator
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GANs

real <—> 1
generator neural 

network

discriminator 
neural network

real data 
examples 
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(binary classifier)

standard binary cross-entropy 
loss for binary classification

fake <—> 0
labeling

showing both (hard) labels and 
both probabilities for clarity
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Training a GAN - Generator
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real <—> 1
generator neural 

network

discriminator 
neural network

real data 
examples 
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(binary classifier)

trains the generator to fool the 
discriminator — i.e., if standard BCE 
~minimizes classification error, this 
~minimizes classification accuracy

fake <—> 0
labeling

when training the generator, we only give 
fake examples, so the loss is simply:
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this can be accomplished by labeling the 
fakes as reals and using standard BCE!
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Training a GAN - All Together
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generator neural 
network

discriminator 
neural network

real data 
examples 
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(binary classifier)

generate fakes and use reals, backprop 
only through the discriminator and update 

the discriminator parameters
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Discriminator Training

generator neural 
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neural network


pfake
preal

�


pfake
preal

�

f z r


pfake
preal

�

f z r


pfake
preal

�

f z r x

(binary classifier)


pfake
preal

�

f z r x

CD = CE

✓
`fake
`real

�
,


pfake
preal

�◆

= �(`real log preal)� (`fake log pfake)

=

(
� log pfake = � log(1� preal) x is fake

� log preal x is real

CG = CE

✓
`fake
`real

�
,


preal
pfake

�◆

= �(`real log pfake)� (`fake log preal)

=

(
� log preal x is fake

� log pfake = � log(1� preal) x is real

CG = � log preal

CD = �`real log pfake � (1� `real) log(1� preal)

forward computation
back-prop. gradient computation
parameter updates

generate fakes, label as real, backprop 
through the discriminator and update the 

generator weights

Generator Training
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GAN — Code Examples
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TensorFlow tutorial with tf.keras model definition

pytorch example from U Toronto CSC321

tf.keras example by overloading model.fit

All of these generate fake examples of MNIST

blog post: using standard keras!

https://www.tensorflow.org/tutorials/generative/dcgan
https://nbviewer.jupyter.org/url/www.cs.toronto.edu/~rgrosse/courses/csc321_2018/tutorials/tut9_GAN.ipynb
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Aside: Conv2DTranspose layer
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this is an “up-sampling” layer where the size of the output 
image is larger than the size of the input image

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).
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4.1 Convolution as a matrix operation
Take for example the convolution represented in Figure 2.1. If the input and
output were to be unrolled into vectors from left to right, top to bottom, the
convolution could be represented as a sparse matrix C where the non-zero ele-
ments are the elements wi,j of the kernel (with i and j being the row and column
of the kernel respectively):
0

BB@

w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0
0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2

1

CCA

This linear operation takes the input matrix flattened as a 16-dimensional
vector and produces a 4-dimensional vector that is later reshaped as the 2 ⇥ 2
output matrix.

Using this representation, the backward pass is easily obtained by trans-
posing C; in other words, the error is backpropagated by multiplying the loss
with CT . This operation takes a 4-dimensional vector as input and produces
a 16-dimensional vector as output, and its connectivity pattern is compatible
with C by construction.

Notably, the kernel w defines both the matrices C and CT used for the
forward and backward passes.

4.2 Transposed convolution
Let’s now consider what would be required to go the other way around, i.e.,
map from a 4-dimensional space to a 16-dimensional space, while keeping the
connectivity pattern of the convolution depicted in Figure 2.1. This operation
is known as a transposed convolution.

Transposed convolutions – also called fractionally strided convolutions or
deconvolutions1 – work by swapping the forward and backward passes of a con-
volution. One way to put it is to note that the kernel defines a convolution, but
whether it’s a direct convolution or a transposed convolution is determined by
how the forward and backward passes are computed.

For instance, although the kernel w defines a convolution whose forward and
backward passes are computed by multiplying with C and CT respectively, it
also defines a transposed convolution whose forward and backward passes are
computed by multiplying with CT and (CT )T = C respectively.2

Finally note that it is always possible to emulate a transposed convolution
with a direct convolution. The disadvantage is that it usually involves adding

1The term “deconvolution” is sometimes used in the literature, but we advocate against it
on the grounds that a deconvolution is mathematically defined as the inverse of a convolution,
which is different from a transposed convolution.

2The transposed convolution operation can be thought of as the gradient of some convolu-
tion with respect to its input, which is usually how transposed convolutions are implemented
in practice.

20

16 pixels —> 4
matrix mapping (16 —> 4)

left-to-right, top-to-bottom rastor scan

If we use the transpose of the convolution matrix, it will map 4 pixels to 16 pixel

this is the conv2DTranspose operation

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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Aside: Conv2DTranspose layer

14Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Note: carefully inspecting the CNN backprop equations shows that the “transpose” filter is used in the reverse direction

Figure 4.1: The transpose of convolving a 3⇥ 3 kernel over a 4⇥ 4 input using
unit strides (i.e., i = 4, k = 3, s = 1 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input padded with a 2⇥ 2 border of zeros using unit
strides (i.e., i0 = 2, k0 = k, s0 = 1 and p0 = 2).

Figure 4.2: The transpose of convolving a 4⇥4 kernel over a 5⇥5 input padded
with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5, k = 4, s = 1 and
p = 2). It is equivalent to convolving a 4 ⇥ 4 kernel over a 6 ⇥ 6 input padded
with a 1 ⇥ 1 border of zeros using unit strides (i.e., i0 = 6, k0 = k, s0 = 1 and
p0 = 1).

Figure 4.3: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1). It is
equivalent to convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5 input using half padding
and unit strides (i.e., i0 = 5, k0 = k, s0 = 1 and p0 = 1).

23

Example of 2D transpose Convolution corresponding to standard convolution on previous slide 

aka:  deconvolution and fractionally-stride convolution

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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GAN — Key References
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Karras, Tero, et al. "Progressive growing of GANs for 
improved quality, stability, and variation." arXiv preprint 

arXiv:1710.10196 (2017).

Goodfellow, Ian J., et al. "Generative adversarial networks." 
Proc. 27th Int. Conf. Neural Information Processing 

Systems. 2014.
Original GAN reference

Goodfellow, Ian J., et al. "Generative adversarial networks." 
Proc. 27th Int. Conf. Neural Information Processing 

Systems. 2014.

NuerIPS Tutorial

First excellent high-res deep-
fake human faces

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/I also used the notes from here:

https://arxiv.org/pdf/1710.10196.pdf?__hstc=200028081.1bb630f9cde2cb5f07430159d50a3c91.1524009600081.1524009600082.1524009600083.1&__hssc=200028081.1.1524009600084&__hsfp=1773666937
https://arxiv.org/pdf/1710.10196.pdf?__hstc=200028081.1bb630f9cde2cb5f07430159d50a3c91.1524009600081.1524009600082.1524009600083.1&__hssc=200028081.1.1524009600084&__hsfp=1773666937
https://arxiv.org/pdf/1710.10196.pdf?__hstc=200028081.1bb630f9cde2cb5f07430159d50a3c91.1524009600081.1524009600082.1524009600083.1&__hssc=200028081.1.1524009600084&__hsfp=1773666937
https://arxiv.org/pdf/1710.10196.pdf?__hstc=200028081.1bb630f9cde2cb5f07430159d50a3c91.1524009600081.1524009600082.1524009600083.1&__hssc=200028081.1.1524009600084&__hsfp=1773666937
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
https://arxiv.org/pdf/1701.00160.pdf%5D
https://arxiv.org/pdf/1701.00160.pdf%5D
https://arxiv.org/pdf/1701.00160.pdf%5D
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/
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GAN — Challenges
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Training GANs can be “finicky” since the generator and 
discriminator need to get better together

If one gets “ahead” of the other, the training process will 
degenerate into one “winning” — e.g., mode collapse

highly cited paper on improved techniques for training GANs

Salimans, Tim, et al. "Improved techniques for training 
gans." Advances in neural information processing systems. 

2016.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 
"Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).

https://medium.com/intel-student-ambassadors/reducing-mode-collapse-in-gans-using-guided-latent-spaces-36f52a08a668
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
https://arxiv.org/pdf/1701.07875.pdf%20http://arxiv.org/abs/1701.07875
https://arxiv.org/pdf/1701.07875.pdf%20http://arxiv.org/abs/1701.07875
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Note On Generator Loss
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You will often see the idea that the generator should use:
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Outline for Slides

• Generative models


• GANs


• Sample code


• Conditional GANs


• Style transfer with Cycle-GANs
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Conditional GANs
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Standard GANs can generate arbitrary fake examples of real 
data — e.g., MNIST digits

Mirza, Mehdi, and Simon Osindero. "Conditional generative 
adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

but what if we want to generate an example from a  specific 
class — e.g., generate a fake MNIST “6”

Conditional GANs addresses this desire

https://arxiv.org/pdf/1411.1784.pdf,
https://arxiv.org/pdf/1411.1784.pdf,
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Conditional GANs

20

the class index is passed as input to both the generator and 
the discriminator — all else is the same

generator neural 
network

discriminator 
neural network

real data 
examples 
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Conditional GANs - Example
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nice example using keras…

blog post: using standard keras!

https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Conditional GANs - Example, Discriminator

blog post: using standard keras!

Discriminator network

class embedding network 
(maps class index to 28x28x1 image)

image input 
(28x28x1 image)

binary (real/fake) classifier 
(28x28x2 image input, 1 dim out: p_real)

https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Conditional GANs - Example, Generator

blog post: using standard keras!

class embedding network 
(maps class index to 7x7x1 feature map)

latent space encoder 
(100x1 random in, 


7x7x128 out)

joint class/latent encoder 
(7x7x129 input, 28x28x1 out)

fake image with class 
information 
embedded

https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Conditional GANs - Example, Generator

blog post: using standard keras!
generator

discriminator

https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Conditional GANs - Example, Entire GAN

blog post: using standard keras!
example fake fashion-MNIST generated by class

https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Aside: Embedding Layer

int between 1 and V 
(one-to-one)

text from a vocabulary 
of size V (e.g., 

V=10,000)
word embedding (vector) 

dim = D (e.g., 300)

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

1 Word Embeddings

vw =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

w “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

dog
cat

wolf
lion

wolf - dog + cat

canine feline
domesticated

wild

PCA used to reduce from D to 2 dimensions

We will discuss further 
during NLP lecture
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Aside: Embedding Layer

word 
embedding

word_index (int)

dictionary

word (text) embedding (vector)

1 Word Embeddings

vw =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

w “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

1 Word Embeddings

v92 =

2

666664

�1.32
+2.13
4.28
...

�3.12

3

777775

92 “house”

Can use in other contexts as well — e.g., the 
class index embedding

Embedding Layer: basically a one-hot-encoder 
followed by Dense layer

tf.keras.layers.Embedding(
    input_dim, output_dim, embeddings_initializer='uniform',
    embeddings_regularizer=None, activity_regularizer=None,
    embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs
)

input_dim: vocabulary size (word embedding) or number of classes in GAN example

output_dim: dimension of vector space for the encoding (number of dense nodes)

input_length: for embedding sequences (e.g., sentences)

embedding layer must be first layer in network in 
tf.keras
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Outline for Slides

• Generative models


• GANs


• Sample code


• Conditional GANs


• Style transfer with Cycle-GANs
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Style Transfer Using Cycle GANs

29

style transfer is taking the “style” of one image and mapping it to a target image

applying art styles, cartoon style, anime for images
change the voice of a speaker in audio
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Style Transfer Using Cycle GANs
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Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." 
Proceedings of the IEEE international conference on computer vision. 2017.

http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Paired Data: dataset comprises pairs (original, stylized)

unpaired data is clearly easier to obtain, so a solution for style transfer for 
unpaired data is preferred

- e.g., set of pictures and cartoon drawings of same people

Unpair Data: dataset comprises separate originals and type examples
e.g., photos of landscapes and Van Gogh paintings

Cycle GANs perform style transfer on unpaired datasets

{ }

⋯

,

{ }

⋯

Paired Unpaired

{ }

,

{ }

,

{ }

,

⋯

X Yxi yi

Figure 2: Paired training data (left) consists of training examples
{xi, yi}Ni=1

, where the yi that corresponds to each xi is given [20]. We
instead consider unpaired training data (right), consisting of a source set
{xi}Ni=1

∈ X and a target set {yj}Mj=1
∈ Y , with no information provided

as to which xi matches which yj .

In this paper, we present a system that can learn to do the
same: capturing special characteristics of one image collection
and figuring out how these characteristics could be translated
into the other image collection, all in the absence of any paired
training examples.

This problem can be more broadly described as image-to-
image translation [20], converting an image from one repre-
sentation of a given scene, x, to another, y, e.g., grayscale
to color, image to semantic labels, edge-map to photograph.
Years of research in computer vision, image processing, and
graphics have produced powerful translation systems in the su-
pervised setting, where example image pairs {x, y} are avail-
able (Figure 2, left), e.g., [9, 17, 20, 21, 24, 29, 41, 52, 54, 57].
However, obtaining paired training data can be difficult and
expensive. For example, only a couple of datasets exist for
tasks like semantic segmentation (e.g., [4]), and they are rela-
tively small. Obtaining input-output pairs for graphics tasks
like artistic stylization can be even more difficult since the
desired output is highly complex, typically requiring artistic
authoring. For many tasks, like object transfiguration (e.g.,
zebra→horse, Figure 1 top-middle), the desired output is not
even well-defined.

We therefore seek an algorithm that can learn to translate
between domains without paired input-output examples (Fig-
ure 2, right). We assume there is some underlying relationship
between the domains – for example, that they are two different
renderings of the same underlying world – and seek to learn
that relationship. Although we lack supervision in the form
of paired examples, we can exploit supervision at the level of
sets: we are given one set of images in domain X and a dif-
ferent set in domain Y . We may train a mapping G : X → Y
such that the output ŷ = G(x), x ∈ X , is indistinguishable
from images y ∈ Y by an adversary trained to classify ŷ apart
from y. In theory, this objective can induce an output distribu-
tion over ŷ that matches the empirical distribution pY (y) (in
general, this requires that G be stochastic) [14]. The optimal

G thereby translates the domain X to a domain Ŷ distributed
identically to Y . However, such a translation does not guaran-
tee that the individual inputs and outputs x and y are paired
up in a meaningful way – there are infinitely many mappings
G that will induce the same distribution over ŷ. Moreover, in
practice, we have found it difficult to optimize the adversarial
objective in isolation: standard procedures often lead to the
well-known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [13].

These issues call for adding more structure to our objective.
Therefore, we exploit the property that translation should be
“cycle consistent”, in the sense that if we translate, e.g., a
sentence from English to French, and then translate it back
from French to English, we should arrive back at the original
sentence [3]. Mathematically, if we have a translator G :
X → Y and another translator F : Y → X , then G and F
should be inverses of each other, and both mappings should
be bijections. We apply this structural assumption by training
both the mapping G and F simultaneously, and adding a
cycle consistency loss [60] that encourages F (G(x)) ≈ x and
G(F (y)) ≈ y. Combining this loss with adversarial losses
on domains X and Y yields our full objective for unpaired
image-to-image translation.

We apply our method to a wide range of applications, in-
cluding style transfer, object transfiguration, attribute transfer
and photo enhancement. We also compare against previous
approaches that rely either on hand-defined factorizations of
style and content, or on shared embedding functions, and show
that our method outperforms these baselines. Our code is avail-
able at https://github.com/junyanz/CycleGAN.
Check out the full version of the paper at https://arxiv.
org/abs/1703.10593.

2. Related work

Generative Adversarial Networks (GANs) [14, 58] have
achieved impressive results in image generation [5, 35], image
editing [61], and representation learning [35, 39, 33]. Recent
methods adopt the same idea for conditional image generation
applications, such as text2image [36], image inpainting [34],
and future prediction [32], as well as to other domains like
videos [50] and 3D models [53]. The key to GANs’ success is
the idea of an adversarial loss that forces the generated images
to be, in principle, indistinguishable from real images. This
is particularly powerful for image generation tasks, as this is
exactly the objective that much of computer graphics aims to
optimize. We adopt an adversarial loss to learn the mapping
such that the translated image cannot be distinguished from
images in the target domain.

Image-to-Image Translation The idea of image-to-image
translation goes back at least to Hertzmann et al.’s Im-
age Analogies [17], who employ a nonparametric texture
model [8] on a single input-output training image pair. More

2224

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." 
Proceedings of the IEEE international conference on computer vision. 2017.

http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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checks: 
1. Fake zebra looks like real zebra
2. Fake horse looks like real horse
3. reconstructions are similar to original

Figure 6: The CycleGAN architecture.

9

Figure 6: The CycleGAN architecture.

9

zebra 
generator

discriminator
(zebras)

discriminator
(horses)

Figure 6: The CycleGAN architecture.

9

cycle check
horse ~ horse( zebra( horse ) )

real horse

zebra(horse) 

real zebra

horse 
generator

horse(zebra)

real horse

horse 
generator

zebra 
generator

cycle check
zebra ~ zebra( horse( zebra ) )
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X Y

G

F

DYDX

G

F
Ŷ

X Y
{

X Y
{

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 3: (a) Our model contains two mapping functions G : X → Y and F : Y → X , and associated adversarial discriminators DY and DX . DY

encourages G to translate X into outputs indistinguishable from domain Y , and vice versa for DX , F , and X . To further regularize the mappings, we
introduce two “cycle consistency losses” that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y

recent approaches use a dataset of input-output examples to
learn a parametric translation function using CNNs, e.g. [29].
Our approach builds on the “pix2pix” framework of Isola et
al. [20], which uses a conditional generative adversarial net-
work [14] to learn a mapping from input to output images.
Similar ideas have been applied to various tasks such as gen-
erating photographs from sketches [40] or from attribute and
semantic layouts [22]. However, unlike these prior works, we
learn the mapping without paired training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is to
relate two data domains, X and Y . Rosales et al. [37] propose
a Bayesian framework that includes a prior based on a patch-
based Markov random field computed from a source image,
and a likelihood term obtained from multiple style images.
More recently, CoupledGANs [28] and cross-modal scene
networks [1] use a weight-sharing strategy to learn a common
representation across domains. Concurrent to our method,
Liu et al. [27] extends this framework with a combination
of variational autoencoders [23] and generative adversarial
networks. Another line of concurrent work [42, 45, 2] encour-
ages the input and output to share certain “content” features
even though they may differ in “style“. They also use adver-
sarial networks, with additional terms to enforce the output
to be close to the input in a predefined metric space, such
as class label space [2], image pixel space [42], and image
feature space [45].

Unlike the above approaches, our formulation does not rely
on any task-specific, predefined similarity function between
the input and output, nor do we assume that the input and out-
put have to lie in the same low-dimensional embedding space.
This makes our method a general-purpose solution for many
vision and graphics tasks. We directly compare against several
prior approaches in Section 5.1. Concurrent with our work, in
these same proceedings, Yi et al. [55] independently introduce
a similar objective for unpaired image-to-image translation,
inspired by dual learning in machine translation [15].

Cycle Consistency The idea of using transitivity as a way

to regularize structured data has a long history. In visual track-
ing, enforcing simple forward-backward consistency has been
a standard trick for decades [44]. In the language domain,
verifying and improving translations via “back translation and
reconsiliation” is a technique used by human translators [3]
(including, humorously, by Mark Twain [47]), as well as
by machines [15]. More recently, higher-order cycle consis-
tency has been used in structure from motion [56], 3D shape
matching [19], co-segmentation [51], dense semantic align-
ment [59, 60], and depth estimation [12]. Of these, Zhou et
al. [60] and Godard et al. [12] are most similar to our work, as
they use a cycle consistency loss as a way of using transitivity
to supervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each other.

Neural Style Transfer [11, 21, 48, 10] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with the
style of another image (typically a painting) by matching the
Gram matrix statistics of pre-trained deep features. Our main
focus, on the other hand, is learning the mapping between two
domains, rather than between two specific images, by trying
to capture correspondences between higher-level appearance
structures. Therefore, our method can be applied to other
tasks, such as painting→ photo, object transfiguration, etc.
where single sample transfer methods do not perform well.
We compare these two methods in Section 5.2.

3. Formulation

Our goal is to learn mapping functions between two do-
mains X and Y given training samples {xi}Ni=1 ∈ X and
{yj}Mj=1 ∈ Y . As illustrated in Figure 3 (a), our model in-
cludes two mappings G : X → Y and F : Y → X . In
addition, we introduce two adversarial discriminators DX and
DY , where DX aims to distinguish between images {x} and
translated images {F (y)}; in the same way, DY aims to dis-
criminate between {y} and {G(x)}. Our objective contains
kinds of two terms: adversarial losses [14] for matching the
distribution of generated images to the data distribution in
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the target domain; and a cycle consistency loss to prevent the
learned mappings G and F from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [14] to both mapping functions.
For the mapping function G : X → Y and its discriminator
DY , we express the objective as:

LGAN(G,DY , X, Y ) =Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x))],
(1)

where G tries to generate images G(x) that look similar to im-
ages from domain Y , while DY aims to distinguish between
translated samples G(x) and real samples y. We introduce a
similar adversarial loss for the mapping function F : Y → X
and its discriminator DX as well: i.e. LGAN(F,DX , Y,X).

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and
F that produce outputs identically distributed as target do-
mains Y and X respectively (strictly speaking, this requires
G and F to be stochastic functions) [13]. However, with large
enough capacity, a network can map the same set of input
images to any random permutation of images in the target
domain, where any of the learned mappings can induce an out-
put distribution that matches the target distribution. To further
reduce the space of possible mapping functions, we argue that
the learned mapping functions should be cycle-consistent: as
shown in Figure 3 (b), for each image x from domain X , the
image translation cycle should be able to bring x back to the
original image, i.e. x → G(x) → F (G(x)) ≈ x. We call this
forward cycle consistency. Similarly, as illustrated in Figure 3
(c), for each image y from domain Y , G and F should also sat-
isfy backward cycle consistency: y → F (y) → G(F (y)) ≈ y.
We can incentivize this behavior using a cycle consistency
loss:

Lcyc(G,F ) =Ex∼pdata(x)[‖F (G(x))− x‖1]

+Ey∼pdata(y)[‖G(F (y))− y‖1]. (2)

In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F (G(x))
and x, and between G(F (y)) and y, but did not observe im-
proved performance. The behavior induced by the cycle con-
sistency loss can be observed in the arXiv version.

3.3. Full Objective

Our full objective is:

L(G,F,DX , DY ) =LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λLcyc(G,F ), (3)

where λ controls the relative importance of the two objectives.
We aim to solve:

G∗, F ∗ = argmin
G,F

max
Dx,DY

L(G,F,DX , DY ). (4)

Notice that our model can be viewed as training two “au-
toencoders” [18]: we learn one autoencoder F ◦G : X → X
jointly with another G ◦ F : Y → Y . However, these autoen-
coders each have special internal structure: they map an image
to itself via an intermediate representation that is a transla-
tion of the image into another domain. Such a setup can also
be seen as a special case of “adversarial autoencoders” [30],
which use an adversarial loss to train the bottleneck layer
of an autoencoder to match an arbitrary target distribution.
In our case, the target distribution for the X → X autoen-
coder is that of domain Y . In Section 5.1.3, we compare our
method against ablations of the full objective, and empiri-
cally show that both objectives play critical roles in arriving
at high-quality results.

4. Implementation

Network Architecture We adapt the architecture for our
generative networks from Johnson et al. [21] who have
shown impressive results for neural style transfer and super-
resolution. This network contains two stride-2 convolutions,
several residual blocks [16], and two 1

2 -strided convolutions.
Similar to Johnson et al. [21], we use instance normaliza-
tion [49]. For the discriminator networks we use 70×70 Patch-
GANs [20, 26, 25], which aim to classify whether 70 × 70
overlapping image patches are real or fake. Such a patch-level
discriminator architecture has fewer parameters than a full-
image discriminator, and can be applied to arbitrarily-sized
images in a fully convolutional fashion [20].

Training details We apply two techniques from recent
works to stabilize our model training procedure. First, for
LGAN (Equation 1), we replace the negative log likelihood
objective by a least square loss [31]. This loss performs more
stably during training and generates higher quality results.
Equation 1 then becomes:

LLSGAN(G,DY , X, Y ) =Ey∼pdata(y)[(DY (y)− 1)2]

+Ex∼pdata(x)[DY (G(x))2], (5)

Second, to reduce model oscillation [13], we follow Shri-
vastava et al’s strategy [42] and update the discriminators DX

and DY using a history of generated images rather than the
ones produced by the latest generative networks. We keep an
image buffer that stores the 50 previously generated images.

Please refer to our arXiv paper for more details about the
datasets, architectures and training procedures.

2226

the target domain; and a cycle consistency loss to prevent the
learned mappings G and F from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [14] to both mapping functions.
For the mapping function G : X → Y and its discriminator
DY , we express the objective as:

LGAN(G,DY , X, Y ) =Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x))],
(1)

where G tries to generate images G(x) that look similar to im-
ages from domain Y , while DY aims to distinguish between
translated samples G(x) and real samples y. We introduce a
similar adversarial loss for the mapping function F : Y → X
and its discriminator DX as well: i.e. LGAN(F,DX , Y,X).

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and
F that produce outputs identically distributed as target do-
mains Y and X respectively (strictly speaking, this requires
G and F to be stochastic functions) [13]. However, with large
enough capacity, a network can map the same set of input
images to any random permutation of images in the target
domain, where any of the learned mappings can induce an out-
put distribution that matches the target distribution. To further
reduce the space of possible mapping functions, we argue that
the learned mapping functions should be cycle-consistent: as
shown in Figure 3 (b), for each image x from domain X , the
image translation cycle should be able to bring x back to the
original image, i.e. x → G(x) → F (G(x)) ≈ x. We call this
forward cycle consistency. Similarly, as illustrated in Figure 3
(c), for each image y from domain Y , G and F should also sat-
isfy backward cycle consistency: y → F (y) → G(F (y)) ≈ y.
We can incentivize this behavior using a cycle consistency
loss:

Lcyc(G,F ) =Ex∼pdata(x)[‖F (G(x))− x‖1]

+Ey∼pdata(y)[‖G(F (y))− y‖1]. (2)

In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F (G(x))
and x, and between G(F (y)) and y, but did not observe im-
proved performance. The behavior induced by the cycle con-
sistency loss can be observed in the arXiv version.

3.3. Full Objective

Our full objective is:

L(G,F,DX , DY ) =LGAN(G,DY , X, Y )
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+ λLcyc(G,F ), (3)

where λ controls the relative importance of the two objectives.
We aim to solve:

G∗, F ∗ = argmin
G,F

max
Dx,DY
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Notice that our model can be viewed as training two “au-
toencoders” [18]: we learn one autoencoder F ◦G : X → X
jointly with another G ◦ F : Y → Y . However, these autoen-
coders each have special internal structure: they map an image
to itself via an intermediate representation that is a transla-
tion of the image into another domain. Such a setup can also
be seen as a special case of “adversarial autoencoders” [30],
which use an adversarial loss to train the bottleneck layer
of an autoencoder to match an arbitrary target distribution.
In our case, the target distribution for the X → X autoen-
coder is that of domain Y . In Section 5.1.3, we compare our
method against ablations of the full objective, and empiri-
cally show that both objectives play critical roles in arriving
at high-quality results.

4. Implementation

Network Architecture We adapt the architecture for our
generative networks from Johnson et al. [21] who have
shown impressive results for neural style transfer and super-
resolution. This network contains two stride-2 convolutions,
several residual blocks [16], and two 1

2 -strided convolutions.
Similar to Johnson et al. [21], we use instance normaliza-
tion [49]. For the discriminator networks we use 70×70 Patch-
GANs [20, 26, 25], which aim to classify whether 70 × 70
overlapping image patches are real or fake. Such a patch-level
discriminator architecture has fewer parameters than a full-
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images in a fully convolutional fashion [20].

Training details We apply two techniques from recent
works to stabilize our model training procedure. First, for
LGAN (Equation 1), we replace the negative log likelihood
objective by a least square loss [31]. This loss performs more
stably during training and generates higher quality results.
Equation 1 then becomes:

LLSGAN(G,DY , X, Y ) =Ey∼pdata(y)[(DY (y)− 1)2]

+Ex∼pdata(x)[DY (G(x))2], (5)

Second, to reduce model oscillation [13], we follow Shri-
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ones produced by the latest generative networks. We keep an
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the target domain; and a cycle consistency loss to prevent the
learned mappings G and F from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [14] to both mapping functions.
For the mapping function G : X → Y and its discriminator
DY , we express the objective as:

LGAN(G,DY , X, Y ) =Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x))],
(1)

where G tries to generate images G(x) that look similar to im-
ages from domain Y , while DY aims to distinguish between
translated samples G(x) and real samples y. We introduce a
similar adversarial loss for the mapping function F : Y → X
and its discriminator DX as well: i.e. LGAN(F,DX , Y,X).

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and
F that produce outputs identically distributed as target do-
mains Y and X respectively (strictly speaking, this requires
G and F to be stochastic functions) [13]. However, with large
enough capacity, a network can map the same set of input
images to any random permutation of images in the target
domain, where any of the learned mappings can induce an out-
put distribution that matches the target distribution. To further
reduce the space of possible mapping functions, we argue that
the learned mapping functions should be cycle-consistent: as
shown in Figure 3 (b), for each image x from domain X , the
image translation cycle should be able to bring x back to the
original image, i.e. x → G(x) → F (G(x)) ≈ x. We call this
forward cycle consistency. Similarly, as illustrated in Figure 3
(c), for each image y from domain Y , G and F should also sat-
isfy backward cycle consistency: y → F (y) → G(F (y)) ≈ y.
We can incentivize this behavior using a cycle consistency
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Lcyc(G,F ) =Ex∼pdata(x)[‖F (G(x))− x‖1]
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In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F (G(x))
and x, and between G(F (y)) and y, but did not observe im-
proved performance. The behavior induced by the cycle con-
sistency loss can be observed in the arXiv version.

3.3. Full Objective

Our full objective is:

L(G,F,DX , DY ) =LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λLcyc(G,F ), (3)

where λ controls the relative importance of the two objectives.
We aim to solve:

G∗, F ∗ = argmin
G,F

max
Dx,DY

L(G,F,DX , DY ). (4)

Notice that our model can be viewed as training two “au-
toencoders” [18]: we learn one autoencoder F ◦G : X → X
jointly with another G ◦ F : Y → Y . However, these autoen-
coders each have special internal structure: they map an image
to itself via an intermediate representation that is a transla-
tion of the image into another domain. Such a setup can also
be seen as a special case of “adversarial autoencoders” [30],
which use an adversarial loss to train the bottleneck layer
of an autoencoder to match an arbitrary target distribution.
In our case, the target distribution for the X → X autoen-
coder is that of domain Y . In Section 5.1.3, we compare our
method against ablations of the full objective, and empiri-
cally show that both objectives play critical roles in arriving
at high-quality results.

4. Implementation

Network Architecture We adapt the architecture for our
generative networks from Johnson et al. [21] who have
shown impressive results for neural style transfer and super-
resolution. This network contains two stride-2 convolutions,
several residual blocks [16], and two 1

2 -strided convolutions.
Similar to Johnson et al. [21], we use instance normaliza-
tion [49]. For the discriminator networks we use 70×70 Patch-
GANs [20, 26, 25], which aim to classify whether 70 × 70
overlapping image patches are real or fake. Such a patch-level
discriminator architecture has fewer parameters than a full-
image discriminator, and can be applied to arbitrarily-sized
images in a fully convolutional fashion [20].

Training details We apply two techniques from recent
works to stabilize our model training procedure. First, for
LGAN (Equation 1), we replace the negative log likelihood
objective by a least square loss [31]. This loss performs more
stably during training and generates higher quality results.
Equation 1 then becomes:

LLSGAN(G,DY , X, Y ) =Ey∼pdata(y)[(DY (y)− 1)2]

+Ex∼pdata(x)[DY (G(x))2], (5)

Second, to reduce model oscillation [13], we follow Shri-
vastava et al’s strategy [42] and update the discriminators DX

and DY using a history of generated images rather than the
ones produced by the latest generative networks. We keep an
image buffer that stores the 50 previously generated images.

Please refer to our arXiv paper for more details about the
datasets, architectures and training procedures.
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https://github.com/junyanz/CycleGAN

example where CycleGAN fails

https://github.com/junyanz/CycleGAN
https://colab.research.google.com/drive/1ZshwEPDDCHKZHkpmbVPvGoDEt1O1kICw#scrollTo=POY42XRf5Jbd
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Team 1: Mouli Aphale, Shilpa Thomas, Swetha Ann Thomas: Audio Style Transfer


Team 3: Chengxuan Cai, Zixuan Zhang, License PlateImage Enhancement with GANs


Team 4: Mutian Zhu, Dake Chen, Producing a classical piano music with GANs


Team 11: Vineeth Ellore, Ashwin T Ravi, Karkala Shashank Hegde: Emotion transfer on images and spectrogram of speech


Team 13: Ashwin Shetty, Pruthvi Gollahalli Niranjana: Creating Cartoon (artistic) Styled Images using GANs


Team 15: Haojing Hu, Zheng Wen:  Object transfiguration with attention-aided GANs


Team 21: Yang Tao, Lingkai Kong: Image Style Transfer


Team 27: Jiahui Zhang, Zhuoran Liu: Single Image Super Resolution Generation via GANs


Team 35: Fan Yang, Shuna Ye, Yelei Zhang: 3D Printing Designer from 2D Images


