Convolutional Neural Networks

EE599 Deep Learning

Keith M. Chugg Spring 2020

USCUniversity of Southern California

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

(Types of Neural Networks)

Convolutional Nnets

	max-pooling
(sub-sampling)

May be viewed as performing feature extraction before the MLP layers (this feature extraction is learned)

CNNs are Widely Used, Especially in Vision Tasks

Classification

Detection

Segmentation

CNNs are Widely Used, Especially in Vision Tasks

Pose estimation

Style transfer style transfer

CNNs are Widely Used, Especially in Vision Tasks

https://thispersondoesnotexist.com

contributions from Brandon Franzke

CNNs: Use When Feature Information is Localized

Policy selection					
frame:	t-3	t-2	t-1	t	
"submarine"					
"diver"	þ.	5))	
"enemy"	÷				
"enemy+diver"	9	5			

Captioning

a train is traveling down the tracks at a rain station

deep reinforcement learning

contributions from Brandon Franzke

CNNs: Use When Feature Information is Localized

frequency

does not need to be a "natural" image — e.g., signal classification from speectrograms

time

CNNs: Changing What is Possible in Computer Vision

CNNs have changed the game with regard to computer vision tasks

The data that transformed AI research—and possibly the world

there are 1D and 3D convolutional layers, but conv2D is most widely used

Figure 2: Visualization of a stack of causal convolutional layers.

1D Conv layers

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." *arXiv* preprint arXiv:1609.03499 (2016).

CNNs: 1D, 2D, 3D

1D CNN ~ time series data

3D CNN ~ video data

(recurrent networks are options too and can be combined with conv)

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

From your homework, you know what a 2D convolution is:

$$y[i,j] = x[i,j] * h[i,j] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[m,n]h[i-m,j-n] = \sum_{m=-L}^{L} \sum_{n=-L}^{L} h[m,n]x[i-m,j-n] = \sum_{m=-L}^{L} \sum_{m=-L}^{L} h[m,n]x[i-m,j-n] = \sum_{m=-$$

and 2D correlation:

$$r[i,j] = x[i,j] \star h[i,j] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[m][n]h[i+m,j+n] = \sum_{m=-L}^{L} \sum_{n=-L}^{L} h[m,n]x[i+m,j+n] = \sum_{m=-L}^{L} \sum_{m=-L}^{L} h[m,n]x[i+m,j+n] = \sum_{m=-L}^{L} h[m,n$$

Note: last expressions assume that h[i,j] is zero for |i| > L, and |j| > L

$$y[i,j] = x[i,j] \star K[i,j] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} K[m,n]x[i+m,j+n]$$

$$y[i,j] = x[i,j] \star K[i,j] = \sum_{(i,j) \in \text{support}(K)} K[m,n]x[i+m,j+n]$$

- Since we will be learning the 2D filter h[i,j] we can adapt a correlation convention as "convolution"
- typical notation and terminology in the deep learning literature

K[i,j] ~ (2D) Filter kernel "y is x convolved with K"

typically, the support region of the kernel is small - e.g., 3x3 kernels are very common

	0	0	0	0	0	0	0
	0	60	113	56	139	85	0
	0	73	121	54	84	128	0
	0	131	99	70	129	127	0
0	0	80	57	115	69	134	0
	0	104	126	123	95	130	0
	0	0	0	0	0	0	0

Kernel

0	-1	0
-1	5	-1
0	-1	0

114		

Traditional 2D Image Filters

CNNs learn these filters from the dataset – learn a good feature extraction

2D filters are widely used in the field of image processing

- example: edge detection filter
- many computer vision tasks require many types filters to produce features

contributions from Brandon Franzke

2D Convolution Operations – Padding

Figure 2.1: (No padding, no strides) Convolving a 3×3 kernel over a 4×4 input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

(Half padding, no strides) Convolving a 3×3 kernel over a 5×5 Figure 2.3: input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

no padding ("valid" in tf.keras) output will be smaller than input here, $4x4 \rightarrow 2x2$

zero padding ("same" in tf.keras) output will be same size as input here, 4x4 -> 4x4

deep learning." *arXiv preprint arXiv:1603.07285* (2016).

2D Convolution Operations — Padding

output will be larger than input

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Figure 2.4: (Full padding, no strides) Convolving a 3×3 kernel over a 5×5 input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

other padding conventions possible — e.g., "full padding"

here, 4x4 -> 7x7

3	30	2_{1}	1_2	0
0	02	1_2	30	1
3	10	2_{1}	2_{2}	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	00	1	32	1
3	1_2	2_{2}	2_0	3
2	00	01	2_{2}	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
3	1_0	2_{1}	2_{2}	3
2	02	0_2	2_0	2
2	00	01	02	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

30	31	2_{2}	1	0
0_2	0_2	10	3	1
30	1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

)	1	0	
$\overline{2}$	3	1	12.0
20	2	3	10.0
$)_{2}$	2	2	9.0
<u>۱</u>	\bigcirc	1	

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

2.0|12.0|17

10.0|17.0|19.

9.0 6.0 14.0

3	3	2	1	0
0	0	1	3	1
30	11	2_{2}	2	3
2_2	02	00	2	2
2_0	01	02	0	1

kernel

3	3	2_0	1	0_2	
0	0	1_2	32	10	
3	1	2_0	2_1	32	
2	0	0	2	2	
2	0	0	0	1	

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1_0	31	1_2
3	1	2_{2}	2_{2}	30
2	0	00	2_1	2_{2}
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

detailed example for 3x3 kernel with no padding and 5x5 input

3	3	2	1	0
0	0	1	3	1
3	1	2_0	2_1	32
2	0	02	2_2	2_0
2	0	0	0	12

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

3D Convolution

$y[i, j, k] = x[i, j, k] \star h[i, j, k] =$ h[m, n, o]x[i + m, j + n, k + o] $(i,j,k) \in \text{support}(h)$

"slide" h around and form 3D dot product to get output voxel

Conv2D Filtering in Deep Learning

x[i, j, k]h[i, j, k]

convolution is done with no padding in the depth dimension, so at each "shift" a single output pixel is generated

 $W_{\rm out}$

typically, h=w ~= 3

Conv2D Filtering in Deep Learning

 $\{h_k[i,j]\}_{k=0}^{C_{\rm in}-1}$ x[i, j, k]

y[i,j]

equivalent view as previous slide

Conv2D Filtering in Deep Learning

x[i, j, k]

input feature map

height x width x channels

y[i, j, k]

output feature map

Conv2D Layer

Conv2D Layer in tf.keras

```
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), activation=None, use_bias=True,
    kernel_initializer='glorot_uniform', bias_initializer='zeros',
    kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, bias_constraint=None, **kwargs
```

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

```
tf.keras.layers.Conv2D(32, (3,3), padding='same', activation='relu')
```

```
32 filters, each (H, W, C) = (H, W, D) = (3, 3, C_{in})
```


Conv2D Layer in tf.keras

tf.keras.layers.Conv2D(32, (3,3), padding='same', activation='relu')

 $W_{\rm in}$

32 filters

assume padding="same" and:

$$C_{\text{out}} = 32$$
 output a
 $C_{\text{in}} = 16$ filter
 $H_{\text{in}} = 64$
 $W_{\text{in}} = 64$
 $h - w - 3$ Total trainable para

- input activations (IFM size): 16*64*64 = 65,536
 - (OFM size): 32*64*64 = 131,072
- r weights/coefficients: $32^{(3^{3}16)} = 4,608$

biases: 32

ameters in this Conv2D: 4,640

Conv2D Layer in tf.keras

tf.keras.layers.Conv2D(32, (3,3), padding='same', activation='relu')

- input activations (IFM size): 16*64*64 = 65,536
- output activations (OFM size): 32*64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with same number of input/output activations?

65,536 * 131,072 + 131,072 = 8,590,065,664

why does the Conv2D layer have some many fewer trainable parameters?

Parameter Reuse in CNNs

tf.keras.layers.Conv2D(32, (3,3), padding='same', activation='relu')

Total trainable parameters in this Conv2D: 4,640

Total trainable parameters for comparable dense layer: 8,590,065,664

why does the Conv2D layer have some many fewer trainable parameters?

parameters are reused!!

each filter is used many times over the input feature map

sparse connectivity

output (i,j) depend only on inputs in neighborhood of (i,j)

"Positive" View: CNNs have fewer parameters than MLPs for the same number of activations

"Negative" View: CNNs do more computations per trainable parameter

Two Key CNN Concepts

- **Localized features in the inputs**
 - (e.g., natural images)

- **Parameter Reuse**
- (e.g., filter is used many times over input feature map)

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

Typical CNN Structures/Patterns

doubling number of channels is common

more channels as you go deeper

need to manage this — i.e., reduce height and width

need some kind of "down-sampling"

Down-Sampling: Stride > 1

Figure 2.7: (Arbitrary padding and strides) Convolving a 3×3 kernel over a 6×6 input padded with a 1×1 border of zeros using 2×2 strides (i.e., i = 6, k = 3, s = 2 and p = 1). In this case, the bottom row and right column of the zero padded input are not covered by the kernel.

convolution, but the stride is >1

reduces H, W

Down-Sampling: Average Pooling

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3
0	0
3	1
2	0
2	0

3	3	2	1	0					3	3	2
0	0	1	3	1	1.7	1.7	1.7		0	0	1
3	1	2	2	3	1.0	1.2	1.8		3	1	2
2	0	0	2	2	1.1	0.8	1.3		2	0	0
2	0	0	0	1					2	0	0

3	2	1	0	
0	1	3	1	1
1	2	2	3	1
0	0	2	2	1
0	0	0	1	

7	1.7	1.7
0	1.2	1.8
1	0.8	1.3

3	3
0	0
3	1
2	0
2	0

Figure 1.5: Computing the output values of a 3×3 average pooling operation on a 5×5 input using 1×1 strides.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

1.0 | 1.2 | 1.8

like convolution w/o padding and 1/9 for all 3x3**fixed** kernel coefficients & stride = pool_size

reduces H, W

Down-Sampling: Max Pooling

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3	3
0	0
3	1
2	0
2	0

3	3
0	0
3	1
2	0
2	0

Figure 1.6: Computing the output values of a 3×3 max pooling operation on a 5×5 input using 1×1 strides.

0	0	1	3	
3	1	2	2	
2	0	0	2	
2	0	0	0	

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3.0

3.0 3.0 3.0

3.0 2.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3.0 3.0 3.0

3.0 2.0

3	3	2	1	0	
0	0	1	3	1	9
3	1	2	2	3	3
2	0	0	2	2	3
2	0	0	0	1	

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

max pooling layer

2	1	0
1	3	1
2	2	3
0	2	2
0	0	1

like convolution, but take max element in kernel support & stride = pool_size

reduces H, W

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Max Pooling Example — pool_size = (2,2)

```
import tensorflow as tf
     from tensorflow.keras.layers import Input, MaxPooling2D
     from tensorflow.keras import Model
 3
 4
     import numpy as np
 5
     nnet_in = Input(shape=(10,10,1), name='input_layer')
 6
     nnet_out = MaxPooling2D(pool_size=(2, 2), name='max_pool')(nnet_in)
 8
     model = Model(inputs=nnet_in, outputs=nnet_out)
 9
     model.compile(optimizer='adam', loss='binary_crossentropy')
10
11
     test_input = np.arange(100).reshape((1,10,10,1))
     test_output = model.predict(test_input ).reshape((5,5))
12
13
14
     print(test_input reshape(10,10))
     print(test_output)
15
```

>>	>>	pri	nt(1	tes [.]	t_ir	nput	t.re	esha	ape	(10	,1
[0	1	2	3	4	5	6	7	8	9]
	10	11	12	13	14	15	16	17	18	19]
	20	21	22	23	24	25	26	27	28	29]
	30	31	32	33	34	35	36	37	38	39]
	.40	41	42	43	44	45	46	47	48	49]
	50	51	52	53	54	55	56	57	58	59]
	.60	61	62	63	64	65	66	67	68	69]
	70	71	72	73	74	75	76	77	78	79]
	80	81	82	83	84	85	86	87	88	89]
	90	91	92	93	94	95	96	97	98	99]]
<pre>>>> print(test_output)</pre>											
[[11]	. 13	3. 2	15.	17.	. 19	9.]				
[31. 33. 35. 37. 39.]											
	[51	. 53	3. 5	55.	57.	. 59	9.]				
	[71	. 73	3. 7	75.	77.	. 79	9.]				
	[91	. 93	3. 9	95.	97.	. 99	9.]]				

Down-Sampling in tf.keras

tf.keras.layers.Conv2D(

https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D

```
tf.keras.layers.AveragePooling2D(
```

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

```
tf.keras.layers.MaxPool2D(
```

dilation is "spreading" the 2D kernel values over larger filed of view

default strides for max/ave pooling is pool_size

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

```
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs
```

pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs

pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs

Figure 5.1: (Dilated convolution) Convolving a 3×3 kernel over a 7×7 input with a dilation factor of 2 (i.e., i = 7, k = 3, d = 2, s = 1 and p = 0).

not very common, but built in to tf.keras.layers.2Dconv()

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

Let's Jump In... tf.keras

Layer (type)Output ShapeParam #
conv2d (Conv2D) (None, 28, 28, 32) 320
activation (Activation) (None, 28, 28, 32) 0
batch_normalization (BatchNo (None, 28, 28, 32) 128
conv2d_1 (Conv2D) (None, 28, 28, 32) 9248
activation_1 (Activation) (None, 28, 28, 32) 0
batch_normalization_1 (Batch (None, 28, 28, 32) 128
max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0
dropout (Dropout) (None, 14, 14, 32) 0
conv2d_2 (Conv2D) (None, 14, 14, 64) 18496
activation_2 (Activation) (None, 14, 14, 64) 0
batch_normalization_2 (Batch (None, 14, 14, 64) 256
conv2d_3 (Conv2D) (None, 14, 14, 64) 36928
activation_3 (Activation) (None, 14, 14, 64) 0
batch_normalization_3 (Batch (None, 14, 14, 64) 256
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64) 0
dropout_1 (Dropout) (None, 7, 7, 64) 0
flatten (Flatten) (None, 3136) 0
dense (Dense) (None, 512) 1606144
activation_4 (Activation) (None, 512) 0
batch_normalization_4 (Batch (None, 512) 2048
dropout_2 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130
activation_5 (Activation) (None, 10) 0
Total params: 1,679,082 Trainable params: 1,677,674 Non-trainable params: 1,408

fmnist_cnn.py

This achieves ~ 93.5% accuracy on **Fashion MNSIT**

(compare to ~88% with MLP)

conv2d_input: InputLayer input: [(?, 28, 28, 1)] output: [(?, 28, 28, 1)]
input: (?, 28, 28, 1) conv2d: Conv2D output: (?, 28, 28, 32)
activation: Activation input: (?, 28, 28, 32) output: (?, 28, 28, 32)
batch_normalization: BatchNormalization input: (?, 28, 28, 32) output: (?, 28, 28, 32)
input: (?, 28, 28, 32) conv2d_1: Conv2D output: (?, 28, 28, 32)
batch_normalization_1: BatchNormalization (?, 28, 28, 32) output: (?, 28, 28, 32)
input: (?, 28, 28, 32) output: (?, 28, 28, 32)
input: (?, 28, 28, 32) output: (?, 14, 14, 32)
dropout: Dropout input: (?, 14, 14, 32) output: (?, 14, 14, 32)
input: (?, 14, 14, 32) output: (?, 14, 14, 64)
input: (?, 14, 14, 64) activation_2: Activation output: (?, 14, 14, 64)
batch_normalization_2: BatchNormalization (?, 14, 14, 64) output: (?, 14, 14, 64)
input: (?, 14, 14, 64) conv2d_3: Conv2D output: (?, 14, 14, 64)
batch_normalization_3: BatchNormalization (?, 14, 14, 64) (?, 14, 14, 64)
input: (?, 14, 14, 64) activation_3: Activation output: (?, 14, 14, 64)
input: (?, 14, 14, 64) max_pooling2d_1: MaxPooling2D output: (?, 7, 7, 64)
dropout_1: Dropout input: (?, 7, 7, 64) output: (?, 7, 7, 64)
flatten: Flatten input: (?, 7, 7, 64) output: (?, 3136)
dense: Dense input: (?, 3136) output: (?, 512)
batch_normalization_4: BatchNormalization input: (?, 512) output: (?, 512)
activation_4: Activation output: (?, 512) output: (?, 512)
dropout_2: Dropout input: (?, 512) output: (?, 512)
dense_1: Dense input: (?, 512) output: (?, 10)
activation_5: Activationinput: (?, 10) output: (?, 10)

Let's Jump In... tf.keras

- 0.8

- 0.6

- 0.4

- 0.2

CNN

Confusion Matrix (normalized by number of examples of true label)

MLP

- 0.8

- 0.6

- 0.4

- 0.2

This is a Typical Block-Based CNN Pattern

CNN building block

conv2D (n-filters, 3x3)

batch norm

conv2D (n-filters, 3x3)

batch norm

max pool (2,2)

dropout (0.25)

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

41

Dogs vs. Cats 😃

Dataset available here (can also put it online if you want to play around with it...)

https://www.kaggle.com/c/dogs-vs-cats

let's explore a simple CNN and see if we can get some insight into what the filters are looking for and how they respond to a given input image

Dogs-v-Cats: CNN Model

Layer (type)	Output Shape	Param #	‡	
conv2d (Conv2D)	(None, 148, 14	======================================	======================================	
 max_pooling2d (Max	Pooling2D) (None, 7	4, 74, 32)	0	
conv2d_1 (Conv2D)	(None, 72, 72,	, 64) 184	496	
	axPooling2 (None, 3	86, 36, 64)	0	
conv2d_2 (Conv2D)	(None, 34, 34,	, 128) 73	856	
	axPooling2 (None, 1	7, 17, 128)	0	
conv2d_3 (Conv2D)	(None, 15, 15,	, 128) 14	7584	
	axPooling2 (None, 7	7, 7, 128)	0	
flatten (Flatten)	(None, 6272)	0		
dropout (Dropout)	(None, 6272)	0		
dense (Dense)	(None, 512)	3211770	6	
dense_1 (Dense)	(None, 1)	513		
Total params: 3,453, ⁻ Trainable params: 3,4 Non-trainable params	======================================			 :=====

Dogs-v-Cats: Visualizing CNN Feature Maps

input image

2nd conv2D

dogs_v_cats_filter_output_viz.py

45

Dogs-v-Cats: Visualizing CNN Feature Maps

3rd conv2D dogs_v_cats_filter_output_viz.py

conv2d_2

Dogs-v-Cats: Visualizing CNN Feature Maps

4th conv2D

dogs_v_cats_filter_output_viz.py

conv2d_3

Dogs-v-Cats: Max Filter Reponse

train an input image so that it maximizes the output energy in a particular filter

dogs_v_cats_filter_max.py

channel 16

channel 71

channel 121

CNN Visualization: Grad-CAM

Boxer: 0.4 Cat: 0.2 (a) Original image

Airliner: 0.9999 (b) Adversarial image

Boxer: 1.1e-20 (C) Grad-CAM "Dog"

Tiger Cat: 6.5e-17 (d) Grad-CAM "Cat"

Airliner: 0.9999 (e) Grad-CAM "Airliner"

Space shuttle: 1e-5 (f) Grad-CAM "Space Shuttle"

see where a layer is "looking" for a given class

Gradient Weighted Class Activation Mapping

pyimagesearch tutorial will post code from this (you can also download)

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." *Proceedings of the IEEE international conference on computer vision*. 2017.

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

CNNs: Use When Feature Information is Localized

• 2012: AlexNet

• ~ 60M parameters, 16.4% top-5 error

• 2014: VGG

- ~140M parameters, 10% top-5 error
- 2015: Inception (aka GoogLeNet)
 - ~ 4M parameters, ~ 7% top-5 error

• 2015 ResNet

• ~ 60M parameters, ~7% top-5 error

Receptive Field as We Go Deeper

picture from: Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network." Remote sensing 9.5 (2017): 480.

deeper in the network, each pixel in the feature map can "see" more of the input image

this is why the number height and width of the feature map can be reduced as we go deeper

deeper into the network

Receptive Field as We Go Deeper

Layer (type)	Output Shape F
input_8 (InputLayer)	[(None, 16, 16, 1)]
conv2d_32 (Conv2D)	(None, 16, 16, 1)
conv2d_33 (Conv2D)	(None, 16, 16, 1)
max_pooling2d_18 (N	/laxPooling (None, 8, 8, 1
conv2d_34 (Conv2D)	(None, 8, 8, 1)
conv2d_35 (Conv2D)	(None, 8, 8, 1)
max_pooling2d_19 (N	/laxPooling (None, 4, 4, 1

picture from: Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network." Remote sensing 9.5 (2017): 480.

simple script to find input pixels that can affect output pixels for a specific CNN architecture (receptive_field.py)

type)	Output Shape	Param #	
3 (InputLayer)	[(None, 16, 16, 1)]	0	
d_32 (Conv2D)	(None, 16, 16, 1)	10	
d_33 (Conv2D)	(None, 16, 16, 1)	10	
ooling2d_18 (N	1axPooling (None, 8, 8,	1) 0	
d_34 (Conv2D)	(None, 8, 8, 1)	10	
d_35 (Conv2D)	(None, 8, 8, 1)	10	
ooling2d_19 (N ======	1axPooling (None, 4, 4, =================	1) 0	

Receptive Field as We Go Deeper

this could also be computed by hand by book-keeping the inverse image of each conv2D and pool layer

receptive field of single point at input (16 x 16)

simple script to find input pixels that can affect output pixels for a specific **CNN** architecture

receptive_field.py

Some Popular CNN Architectures/Patterns

Recall, this are imagenet trained networks included in tf.keras

Mode **Xception VGG16 VGG19** ResNet50 ResNet101 ResNet152 ResNet50V2 ResNet101 ResNet152 InceptionV3 InceptionRe MobileNet **MobileNetV** DenseNet12 DenseNet16 DenseNet20 NASNetMol NASNetLarg dataset.

https://www.tensorflow.org/api_docs/python/tf/keras/applications

el	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
	88 MB	0.790	0.945	22,910,480	126
	528 MB	0.713	0.901	138,357,544	23
	549 MB	0.713	0.900	143,667,240	26
	98 MB	0.749	0.921	25,636,712	-
	171 MB	0.764	0.928	44,707,176	-
	232 MB	0.766	0.931	60,419,944	-
2	98 MB	0.760	0.930	25,613,800	-
/2	171 MB	0.772	0.938	44,675,560	-
/2	232 MB	0.780	0.942	60,380,648	-
	92 MB	0.779	0.937	23,851,784	159
sNetV2	215 MB	0.803	0.953	55,873,736	572
	16 MB	0.704	0.895	4,253,864	88
2	14 MB	0.713	0.901	3,538,984	88
21	33 MB	0.750	0.923	8,062,504	121
59	57 MB	0.762	0.932	14,307,880	169
01	80 MB	0.773	0.936	20,242,984	201
bile	23 MB	0.744	0.919	5,326,716	-
ge	343 MB	0.825	0.960	88,949,818	-

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation

Some Popular CNN Architectures/Patterns

```
import os
     from tensorflow.keras.utils import plot_model
     from tensorflow.keras.applications import VGG16
     from tensorflow.keras.applications import InceptionV3
     from tensorflow.keras.applications import InceptionResNetV2
 5
     from tensorflow.keras.applications import DenseNet201
 6
     from tensorflow.keras.applications import NASNetMobile
 7
      from tensorflow.keras.applications import NASNetLarge
 8
     from tensorflow.keras.applications import ResNet50
 9
      from tensorflow.keras.applications import MobileNetV2
10
11
     models_list = [
12
         VGG16(weights=None),
13
         ResNet50(weights=None),
14
15
         InceptionV3(weights=None),
         NASNetLarge(weights=None),
16
         NASNetMobile(weights=None),
17
         MobileNetV2(weights=None)
18
19
20
21
     model_names = [
          'VGG16',
22
          'ResNet50',
23
24
          'InceptionV3',
25
          'NASNetLarge',
26
          'NASNetMobile',
27
          'MobileNetV2'
28
29
30
     out_path = 'network_viz_results'
31
      for i, model in enumerate(models_list):
32
         model_name = model_names[i]
33
34
         print(f'Model[{i}]: {model_names[i]}')
         print(f'Number of layers: {len(model.layers)}')
35
36
         model.summary()
         print('\n\n\n')
37
         plot_model(model, to_file=os.path.join(out_path, model_name + '.pdf'), show_shapes=True)
38
20
```

import these and check them out...

... and go check out the source code

https://github.com/keras-team/keras-applications

Some Typical CNN Architecture Patterns - VGG16

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Some Typical CNN Architecture Patterns - ResNets

Figure 2. Residual learning: a building block.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

residual connections:

aid in gradient flow (reduce vanishing gradient)

allow learning of "alternative" networks

- e.g., can learn to by pass the two "weight layers" in this figure

Some Typical CNN Architecture Patterns - ResNets 34-layer residual IV, 128 128, /2 , 64, /2 IV, 256 IV, 256 512, /2 v, 128 IV, 128 v, 256 v, 256 /, 128 v, 128 v, 128 v, 512 v, 128 v, 256 IV, 256 IV, 256 v, 256 v, 256 v, 256 v, 512 v, 512 v, 512 ıv, 64 v, 64 v, 512 ıv, 64 ıv, 64 00 /2 1000 3x3 conv 3x3 conv 3x3 cor ood 3х3 со 3x3 cor 3х3 со 3x3 col 3x3 col 3x3 cor 3x3 cc 3x3 col 3x3 col 3x3 col 3x3 col 3x3 col 7x7 con 3x3 cc 3x3 col 3х3 со 3x3 col 3x3 cc 3x3 conv 3х3 со 3x3 co avg 3x3 c(3x3 co 3x3 co 3x3 co 3x3 cc 3x3 co 3x3 con 3x3 cc 3x3 cc с С 34-layer plain ★ 3x3 conv, 256, /2 ◆ 512, /2 128, /2 , 64, /2 ★ 3x3 conv, 128 ★ 3x3 conv, 128 3x3 conv, 256 ★ 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 256 ★ 3x3 conv, 512 ◆ iv, 128 , 128 v, 128 IV, 128 ıv, 128 ıv, 256 v, 256 ıv, 512 3x3 conv, 64 nv, 64 nv, 64 64, וע nv, 64 v, 64 000 /2 fc 1000 3x3 conv, 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv, 3x3 con 3x3 con 3x3 cor 3x3 col 3x3 co 3x3 cor pood 3x3 conv 3x3 col 7x7 con 3x3 col avg ★ 3x3 conv, 128 ★ 3x3 conv, 128 3x3 conv, 512 3x3 conv, 256 ıv, 512 ıv, 256 ıv, 256 v, 256 ıv, 512 v, 512 IV, 512 iv, 512 512 ıv, 512 VGG-19 64, אר 64, 10 4096 , /2 /2 , /2 /2 /2 **1**000 image 3x3 conv 3x3 conv 3x3 con lood pood lood ood 3x3 co 3x3 col 3x3 col 3x3 col 3x3 co 3x3 co 3x3 co 3X3 CC ر د ပ္ပ ц С 3x3 output size: 14 output size: 7 output size: 1

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Some Typical CNN Architecture Patterns - ResNets

method	top-1 err.	top-5 err.	
VGG [41] (ILSVRC'14)	_	8.43 [†]	
GoogLeNet [44] (ILSVRC'14)	_	7.89	
VGG [41] (v5)	24.4	7.1	Note:
PReLU-net [13]	21.59	5.71	
BN-inception [16]	21.99	5.81	there are v2 versions of these
ResNet-34 B	21.84	5.71	
ResNet-34 C	21.53	5.60	
ResNet-50	20.74	5.25	
ResNet-101	19.87	4.60	
ResNet-152	19.38	4.49	
ble 4. Error rates (%) of single-mo	del results or	n the Imagel	Net

Table 4. Error rates (%) of **single-model** results on th validation set (except \dagger reported on the test set).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Some Typical CNN Architecture Patterns - Inception

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

aka GoogLeNet

(b) Inception module with dimensionality reduction

Using Fixed CNN Layers for a Different CV Task

features needed for many CV tasks are similar to Imagenet classification features

you can reuse all or part of the feature extraction network

One Last Layer Type: Global Pooling

pool over the pixels in a channel

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)

this is used after the last conv2D/pool layer before the "flatten" in many recent models

reduces the complexity of the dense classification network without sacrificing performance

tf.keras.layers.GlobalMaxPool2D()

tf.keras.layers.GlobalMaxAverage2D()

63

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

Reduce Parameter/Computation Approaches

- For larger CNNs, the number of parameters is so large, that the storage complexity becomes a significant issue
 - this is an issue for running these models in inference mode on mobile devices
 - computational complexity (during inference and training) is also an issue
- there has been a lot of work on reducing the storage and computational complexity of CNNs — most have focused on inference of trained models

Reduce Parameter/Computation Approaches

Two major categories of methods:

constrained filter structures: alter the standard conv2D operations to lower the computational/storage complexity

post-training processing to minimize complexity

Constrained Filtering: Depth-wise Convolution

only do convolution separately for channels — no information is mixed across channels

Constrained Filtering: Group Convolution

Vanhoucke, Vincent. "Learning visual representations at scale." ICLR invited talk 1 (2014): 2.

trade-off between standard conv2D filtering and depth-wise filtering

use more of these grouped-filters to get more output channels

Constrained Filtering: Groupwise Convolution

use more of these grouped-filters to get more output channels

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

trade-off between standard conv2D filtering and depth-wise filtering

Constrained Filtering: Pointwise Convolution

just standard Conv2D with filter size 1x1

aka: 1x1 convolution

Example: MobileNet

combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

 $C_{\text{out}} = 32$ $C_{\text{in}} = 16$ $H_{\text{in}} = 64$ $W_{\text{in}} = 64$ h = w = 3

4,640 parameters with standard approach

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

 $N_{\rm filters} = C_{\rm out}$

16, 3x3 depth-wise kernels:14432, 1x1 point-wise filters:51232, biases:32

688 total parameters for same output feature map size

Example: ShuffleNet

group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. APA

Example: Pre-Defined Sparsity

pre-define some of the filter coefficients to be zero and hold fixed through training and inference

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

EE599, Spring 2019 final project

filters K₁, K₂ and K_{Co}, respectively

targets specialized hardware acceleration – project concept is to map this to GPU

MobileNetV2 with comparable or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

Tiny ImageNet datasets.

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

Fig. 11: Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and

Fig. 12: Comparison of the number of model parameters of the network models described in Fig 11 for (a) CIFAR-10 and (b)

EE599, Spring 2019 final project

Post-Training Approaches

Yang, Tien-Ju, Yu-Hsin Chen, and Vivienne Sze. "Designing energy-efficient convolutional neural networks using energy-aware pruning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Quantization: map similar valued weights to the same value to save storage

Zhou, Aojun, et al. "Incremental network quantization: Towards lossless cnns with low-precision weights." arXiv preprint arXiv:1702.03044 (2017).

"Binaryization": find a set of binary weights that best approximate the trained network behaivor

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016.

post-training processing to minimize complexity

Pruning: set near-zero weights to zero, fix these and do some retraining

Post-Training Approaches

TensorFlow Lite is a package that uses some of these concepts to post-process a training model to produce a lower-complexity model for inference

https://www.tensorflow.org/lite/

does not use the latest and greatest research ideas, but useful concept and tool

Deploy machine learning models on mobile and IoT devices

TensorFlow Lite is an open source deep learning framework for on-device inference

See the guide

See examples

See models

Guides explain the concepts and components of

Easily deploy pre-trained

TensorFlow Lite.

models

How it works

Pick a model Pick a new model or retrain an existing one.

Read the developer guide \rightarrow

Conver

Convert a TensorFlow model into a compressed flat buffer with the TensorFlow Lite Converter.

Read the developer guide \rightarrow

Deploy

Take the compressed .tflite file and load it into a mobile or embedded device.

Read the developer guide \rightarrow

Optimize

Quantize by converting 32-bit floats to more efficient 8-bit integers or run on GPU.

Read the developer guide \rightarrow

76

Outline for Slides

- Motivation, applications
- Basic 2D convolution operations
 - tf.keras 2Dconv layer
- Pooling and stride
- Fashion MNIST example
- Visualization methods
- Some common CNN structures
- Reduced complexity CNN archiectures
- Outline of Back-propagation for CNNs

recall the definition of a standard Conv2D operation:

$$y[i, j, k] = \sum_{c} \sum_{(m,n)} h_{c,k}[m, n] x[i+m, j+n, c]$$

$$\frac{\partial C}{\partial x[i,j,k]} = \sum_{(i',j',k')} \frac{\partial y[i',j',k']}{\partial x[i,j,k]} \frac{\partial C}{\partial y[i',j',k']}$$
 which values of h are involved h
$$\delta_x[i,j,k] = \sum_{(i',j',k')} \underbrace{\frac{\partial y[i',j',k']}{\partial x[i,j,k]}}_{\partial x[i,j,k]} \delta_y[i',j',k']$$

$$\frac{\partial C}{\partial x[i,j,k]} = \sum_{(i',j',k')} \frac{\partial y[i',j',k']}{\partial x[i,j,k]} \frac{\partial C}{\partial y[i',j',k']}$$
 which values of h are involved h
shorthand:
$$\delta_v[i,j,k] \stackrel{\Delta}{=} \frac{\partial C}{\partial v[i,j,k]}$$

$$\delta_x[i,j,k] = \sum_{(i',j',k')} \frac{\partial y[i',j',k']}{\partial x[i,j,k]} \delta_y[i',j',k']$$

 $h_{c,k}[m,n] = 2D$ kernel for input channel c, output channel k

chain rule:

Let's start with the 2D convolution only...

$$y[i',j'] = \sum_{(m,n)} h[m,n]x[i'+m,j'+n]$$

$$= \sum_{(s,t)} h[s-i',t-j']x[s,t]$$

$$\delta_x[i,j] = \sum_{(i',j')} \frac{\partial y[i',j']}{\partial x[i,j]} \delta_y[i',j']$$

chain-rule term:

 $\delta_x[i,j]$

$$\frac{\partial y[i',j']}{\partial x[i,j]} = h[i-i',j-j']$$

=i'+m=j'+n

$$egin{aligned} egin{aligned} egi$$

$$y[i,j] = \sum_{(m,n)} h[m,n]x[i+m,j+n]$$
$$\delta_x[i,j] = \sum_{(m,n)} h[-m,-n]\delta_y[i+m,j+n]$$

x[i, j]

 $\delta_x[i,j]$

recall: W-transpose in MLP-BP

$$oldsymbol{\delta}^{(l)} = \dot{\mathbf{a}}^{(l)} \odot \left[\left(\mathbf{W}^{(l+1)}
ight)^{ ext{t}} oldsymbol{\delta}^{(l+1)}
ight]$$

forward: convolve with h[i,j]

back-prop: convolve with h[-i,-j]

forward: convolve with h[i,j]

back-prop: convolve with h[-i,-j]

this extends to the standard Conv2D convolution

$$y[i', j', k'] = \sum_{k} \sum_{(m,n)} h_{k,k'}[m, n]x[i' + m, j' + n, k]$$

$$\delta_x[i, j, k] = \sum_{(i', j', k')} \frac{\partial y[i', j', k']}{\partial x[i, j, k]} \delta_y[i', j', k']$$

$$\xrightarrow{\partial y[i', j', k']} \frac{\partial y[i', j', k']}{\partial x[i, j, k]} = h_{k,k'}[i - i', j - j']$$

$$\delta_x[i, j, k] = \sum_{(i', j', k')} h_{k,k'}[i - i', j - j'] \delta_y[i', j', k']$$
$$= \sum_{(m,n,k')} h_{k,k'}[-m, -n] \delta_y[i + m, j + n, k']$$

$$m = i' - i$$
$$n = j' - j$$

Back-propagation in CNNs: Pooling

average pooling:

forward: Q "pixels" averaged **back-prop:** 1/Q times the gradient flows back through theses Q "pixels"

max pooling:

forward: max over Q "pixels" (i*, j*) ~ argmax

back-prop: gradient flows directly through (i*, j*) only

CNN/CV Related topics to Follow (time allowing)

- Image segmentation (e.g., U-Net)
- Object Detection (e.g., YOLO)
 - GANs (e.g., "deep fakes")

we'll do RNNs and then come back to these + deep reinforcement learning

