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Outline for Slides

• Motivation, applications


• Basic 2D convolution operations


• tf.keras 2Dconv layer


• Pooling and stride


• Fashion MNIST example


• Visualization methods


• Some common CNN structures


• Reduced complexity CNN archiectures


• Outline of Back-propagation for CNNs
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(Types of Neural Networks)
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Convolutional Nnets

May be viewed as performing feature extraction before the MLP layers
(this feature extraction is learned)

max-poolingconvolutional 
layer

MLP layers

(sub-sampling)

from the intro 
slide deck
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CNNs are Widely Used, Especially in Vision Tasks

4

�ŽŶǀŶĞƚƐ�ĂƌĞ��ǀĞƌǇǁŚĞƌĞ͊

�ŽŶǀŶĞƚƐ�ĂƌĞ�ŽŶĞ�ŽĨ�ƚŚĞ�ŵŽƐƚ�ŝŶĨůƵĞŶƚŝĂů�ƚĞĐŚŶŽůŽŐŝĐĂů�ĂĚǀĂŶĐĞŵĞŶƚƐ�ŝŶ�ƚŚĞ�ƉĂƐƚ�ϳ�ǇĞĂƌƐ͘

�ůĂƐƐŝĨŝĐĂƚŝŽŶ�ůĂƐƐŝĨŝĐĂƚŝŽŶ ZĞĐĂůůZĞĐĂůů �ĞƚĞĐƚŝŽŶ�ĞƚĞĐƚŝŽŶ

^ĞŐŵĞŶƚĂƚŝŽŶ^ĞŐŵĞŶƚĂƚŝŽŶ WŽůŝĐǇ�ƐĞůĞĐƚŝŽŶWŽůŝĐǇ�ƐĞůĞĐƚŝŽŶ

�ŽŶǀŶĞƚƐ�ĂƌĞ��ǀĞƌǇǁŚĞƌĞ͊

�ŽŶǀŶĞƚƐ�ĂƌĞ�ŽŶĞ�ŽĨ�ƚŚĞ�ŵŽƐƚ�ŝŶĨůƵĞŶƚŝĂů�ƚĞĐŚŶŽůŽŐŝĐĂů�ĂĚǀĂŶĐĞŵĞŶƚƐ�ŝŶ�ƚŚĞ�ƉĂƐƚ�ϳ�ǇĞĂƌƐ͘

�ůĂƐƐŝĨŝĐĂƚŝŽŶ�ůĂƐƐŝĨŝĐĂƚŝŽŶ ZĞĐĂůůZĞĐĂůů �ĞƚĞĐƚŝŽŶ�ĞƚĞĐƚŝŽŶ

^ĞŐŵĞŶƚĂƚŝŽŶ^ĞŐŵĞŶƚĂƚŝŽŶ WŽůŝĐǇ�ƐĞůĞĐƚŝŽŶWŽůŝĐǇ�ƐĞůĞĐƚŝŽŶ

�ŽŶǀŶĞƚƐ�ĂƌĞ��ǀĞƌǇǁŚĞƌĞ͊

�ŽŶǀŶĞƚƐ�ĂƌĞ�ŽŶĞ�ŽĨ�ƚŚĞ�ŵŽƐƚ�ŝŶĨůƵĞŶƚŝĂů�ƚĞĐŚŶŽůŽŐŝĐĂů�ĂĚǀĂŶĐĞŵĞŶƚƐ�ŝŶ�ƚŚĞ�ƉĂƐƚ�ϳ�ǇĞĂƌƐ͘

�ůĂƐƐŝĨŝĐĂƚŝŽŶ�ůĂƐƐŝĨŝĐĂƚŝŽŶ ZĞĐĂůůZĞĐĂůů �ĞƚĞĐƚŝŽŶ�ĞƚĞĐƚŝŽŶ

^ĞŐŵĞŶƚĂƚŝŽŶ^ĞŐŵĞŶƚĂƚŝŽŶ WŽůŝĐǇ�ƐĞůĞĐƚŝŽŶWŽůŝĐǇ�ƐĞůĞĐƚŝŽŶ

contributions from Brandon Franzke



© Keith M. Chugg, 2020

CNNs are Widely Used, Especially in Vision Tasks
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CNNs: Use When Feature Information is Localized
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GANs

contributions from Brandon Franzke
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time 

frequency 

does not need to be a “natural” image — e.g., signal 
classification from speectrograms
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CNNs: Changing What is Possible in Computer Vision
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CNNs have changed the game with regard to 
computer vision tasks

The data that transformed AI research—and possibly the world

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
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CNNs: 1D, 2D, 3D
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1D CNN ~ time series data 

1D Conv layers

there are 1D and 3D convolutional layers, but conv2D is most widely used

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

Oord, Aaron van den, et al. "Wavenet: A 
generative model for raw audio." arXiv 
preprint arXiv:1609.03499 (2016).

3D CNN ~ video data 

(recurrent networks are options too 
and can be combined with conv)

https://arxiv.org/pdf/1609.03499.pdf
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2D Convolution Operations
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From your homework, you know what a 2D convolution is:

Note: last expressions assume that h[i,j] is zero for |i| > L, and |j| > L

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

and correlation is

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m][n]x[i+m, j + n]

and 2D correlation:
y[i, j] = x[i, j] ⇤ h[i, j] =

1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ?K[i, j, k] =
X

(i,j,k)2support(K)

K[m,n, o]x[i+m, j + n, k + o]
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Since we will be learning the 2D filter h[i,j] we can adapt a 
correlation convention as “convolution”

K[i,j] ~ (2D) Filter kernel

“y is x convolved with K"

typical notation and terminology in the deep learning literature

typically, the support region of the kernel is small — e.g., 3x3 kernels are very common

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1
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Traditional 2D Image Filters
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2D filters are widely used in the field of image processing

example: edge detection filter

many computer vision tasks require many types filters to produce features

CNNs learn these filters from the dataset — learn a good feature extraction
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Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Figure 2.1: (No padding, no strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, no strides) Convolving a 4 ⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

13

no padding (“valid” in tf.keras)

output will be smaller than input
here, 4x4 -> 2x2

Figure 2.1: (No padding, no strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, no strides) Convolving a 4 ⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

13

zero padding (“same” in tf.keras)

output will be same size as input

here, 4x4 -> 4x4

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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2D Convolution Operations — Padding
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Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

other padding conventions possible — e.g., “full padding”

output will be larger than input

here, 4x4 -> 7x7

Figure 2.1: (No padding, no strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, no strides) Convolving a 4 ⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, no strides) Convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

13

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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detailed example for 
3x3 kernel with no 

padding and 5x5 input

Torch (Collobert et al., 2011), Tensorflow (Abadi et al., 2015) and Caffe (Jia
et al., 2014).

This chapter briefly reviews the main building blocks of CNNs, namely dis-
crete convolutions and pooling. For an in-depth treatment of the subject, see
Chapter 9 of the Deep Learning textbook (Goodfellow et al., 2016).

1.1 Discrete convolutions
The bread and butter of neural networks is affine transformations: a vector
is received as input and is multiplied with a matrix to produce an output (to
which a bias vector is usually added before passing the result through a non-
linearity). This is applicable to any type of input, be it an image, a sound
clip or an unordered collection of features: whatever their dimensionality, their
representation can always be flattened into a vector before the transformation.

Images, sound clips and many other similar kinds of data have an intrinsic
structure. More formally, they share these important properties:

• They are stored as multi-dimensional arrays.

• They feature one or more axes for which ordering matters (e.g., width and
height axes for an image, time axis for a sound clip).

• One axis, called the channel axis, is used to access different views of the
data (e.g., the red, green and blue channels of a color image, or the left
and right channels of a stereo audio track).

These properties are not exploited when an affine transformation is applied;
in fact, all the axes are treated in the same way and the topological information
is not taken into account. Still, taking advantage of the implicit structure of
the data may prove very handy in solving some tasks, like computer vision and
speech recognition, and in these cases it would be best to preserve it. This is
where discrete convolutions come into play.

A discrete convolution is a linear transformation that preserves this notion
of ordering. It is sparse (only a few input units contribute to a given output
unit) and reuses parameters (the same weights are applied to multiple locations
in the input).

Figure 1.1 provides an example of a discrete convolution. The light blue
grid is called the input feature map. To keep the drawing simple, a single input
feature map is represented, but it is not uncommon to have multiple feature
maps stacked one onto another.1 A kernel (shaded area) of value
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Figure 1.1: Computing the output values of a discrete convolution.
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Figure 1.2: Computing the output values of a discrete convolution for N = 2,
i1 = i2 = 5, k1 = k2 = 3, s1 = s2 = 2, and p1 = p2 = 1.
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“slide” h around and form 3D dot 
product to get output voxel
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typically, h=w ~= 3
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convolution is done with no padding in the depth dimension, so at each 
“shift” a single output pixel is generated
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typically, h=w ~= 3
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{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}
output 

feature map

+

biases  
(each 1x1)

filters

this replaces:

y = Wx + b

in MLPS — i.e., produces linear 
activations

…

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =
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Cin Hin Win Cout Hout Wout h w Nfilters = Cout Nbiases = Nfilters

{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}

Cout = 32

Cin = 16

Hin = 64

Win = 64

h = w = 3
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Conv2D Layer in tf.keras
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32 filters, each (H, W, C) = (H, W, D) = (3, 3, C_{in})

tf.keras.layers.Conv2D( 32, (3,3), padding=‘same’, activation=‘relu’)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
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Conv2D Layer in tf.keras

25

tf.keras.layers.Conv2D( 32, (3,3), padding=‘same’, activation=‘relu’)

32 filters

assume padding=“same” and:
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1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =
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X
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h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout h w Nfilters = Cout

{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}

Cout = 32

Cin = 16

Hin = 64

Win = 64

h = w = 3

input activations (IFM size): 
output activations (OFM size): 

16*64*64 = 65,536
32*64*64 = 131,072

filter weights/coefficients: 
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r[i, j] = x[i, j] ? h[i, j] =
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Cin Hin Win Cout Hout Wout h w

{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}

+

biases  
(each 1x1)

filters

…
32 output 
channels

32 biases

32*(3*3*16) = 4,608

biases: 32

Total trainable parameters in this Conv2D: 4,640
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Conv2D Layer in tf.keras
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tf.keras.layers.Conv2D( 32, (3,3), padding=‘same’, activation=‘relu’)

input activations (IFM size): 
output activations (OFM size): 

16*64*64 = 65,536
32*64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with same number of input/output activations?

65,536 * 131,072 + 131,072 = 8,590,065,664

why does the Conv2D layer have some many fewer trainable parameters?
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Parameter Reuse in CNNs

27

tf.keras.layers.Conv2D( 32, (3,3), padding=‘same’, activation=‘relu’)

Total trainable parameters in this Conv2D: 4,640
8,590,065,664

why does the Conv2D layer have some many fewer trainable parameters?

Total trainable parameters for comparable dense layer:

parameters are reused!!
each filter is used many times over the input feature map

“Positive” View: CNNs have fewer parameters than MLPs for the same number of activations

“Negative” View: CNNs do more computations per trainable parameter

sparse connectivity
output (i,j) depend only on inputs in neighborhood of (i,j)
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Two Key CNN Concepts

28

Localized features in the inputs

(e.g., natural images)

Parameter Reuse
(e.g., filter is used many times over input feature map)



© Keith M. Chugg, 2020

Outline for Slides

• Motivation, applications


• Basic 2D convolution operations


• tf.keras 2Dconv layer


• Pooling and stride


• Fashion MNIST example


• Visualization methods


• Some common CNN structures


• Reduced complexity CNN archiectures


• Outline of Back-propagation for CNNs

29
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Typical CNN Structures/Patterns

30

more channels as you go deeper

need to manage this — i.e., reduce height and width

doubling number 
of channels is 

common

need some kind of “down-sampling” 
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Down-Sampling: Stride > 1

31

convolution, but the stride is >1
reduces H, W

Figure 2.5: (No zero padding, arbitrary strides) Convolving a 3⇥ 3 kernel over
a 5⇥ 5 input using 2⇥ 2 strides (i.e., i = 5, k = 3, s = 2 and p = 0).

Figure 2.6: (Arbitrary padding and strides) Convolving a 3 ⇥ 3 kernel over a
5⇥ 5 input padded with a 1⇥ 1 border of zeros using 2⇥ 2 strides (i.e., i = 5,
k = 3, s = 2 and p = 1).

Figure 2.7: (Arbitrary padding and strides) Convolving a 3 ⇥ 3 kernel over a
6⇥ 6 input padded with a 1⇥ 1 border of zeros using 2⇥ 2 strides (i.e., i = 6,
k = 3, s = 2 and p = 1). In this case, the bottom row and right column of the
zero padded input are not covered by the kernel.

(a) The kernel has to slide two steps

to the right to touch the right side of

the input (and equivalently downwards).

Adding one to account for the initial ker-

nel position, the output size is 3⇥ 3.

(b) The kernel has to slide one step of

size two to the right to touch the right

side of the input (and equivalently down-

wards). Adding one to account for the

initial kernel position, the output size is

2⇥ 2.

Figure 2.8: Counting kernel positions.

16

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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Down-Sampling: Average Pooling

32

average pooling layer
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Figure 1.5: Computing the output values of a 3⇥ 3 average pooling operation
on a 5⇥ 5 input using 1⇥ 1 strides.

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

Figure 1.6: Computing the output values of a 3⇥ 3 max pooling operation on
a 5⇥ 5 input using 1⇥ 1 strides.

11

like convolution w/o padding

and


1/9 for all 3x3 

fixed kernel coefficients


& 

stride = pool_size

reduces H, W

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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Down-Sampling: Max Pooling

33

max pooling layer

like convolution , but take max 
element in kernel support


&

stride = pool_size

reduces H, W
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Figure 1.5: Computing the output values of a 3⇥ 3 average pooling operation
on a 5⇥ 5 input using 1⇥ 1 strides.
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Figure 1.6: Computing the output values of a 3⇥ 3 max pooling operation on
a 5⇥ 5 input using 1⇥ 1 strides.
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Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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Max Pooling Example — pool_size = (2,2)

34
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Down-Sampling in tf.keras

35

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

tf.keras.layers.MaxPool2D(
    pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs
)

tf.keras.layers.AveragePooling2D(
    pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs
)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), activation=None, use_bias=True,
    kernel_initializer='glorot_uniform', bias_initializer='zeros',
    kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, bias_constraint=None, **kwargs
)

default strides for 
max/ave pooling is 

pool_size

dilation is 
“spreading” the 2D 
kernel values over 
larger filed of view

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
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Dilation in 2DConv

36

not very common, but built in to tf.keras.layers.2Dconv()

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Figure 5.1: (Dilated convolution) Convolving a 3⇥ 3 kernel over a 7⇥ 7 input
with a dilation factor of 2 (i.e., i = 7, k = 3, d = 2, s = 1 and p = 0).

Figure 5.1 provides an example for i = 7, k = 3 and d = 2.

29

https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285.pdf
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Let’s Jump In… tf.keras

38

fmnist_cnn.py

_________________________________________________________________

Layer (type)                 Output Shape              Param #

=================================================================

conv2d (Conv2D)              (None, 28, 28, 32)        320

_________________________________________________________________

activation (Activation)      (None, 28, 28, 32)        0

_________________________________________________________________

batch_normalization (BatchNo (None, 28, 28, 32)        128

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248

_________________________________________________________________

activation_1 (Activation)    (None, 28, 28, 32)        0

_________________________________________________________________

batch_normalization_1 (Batch (None, 28, 28, 32)        128

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0

_________________________________________________________________

dropout (Dropout)            (None, 14, 14, 32)        0

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 14, 14, 64)        18496

_________________________________________________________________

activation_2 (Activation)    (None, 14, 14, 64)        0

_________________________________________________________________

batch_normalization_2 (Batch (None, 14, 14, 64)        256

_________________________________________________________________

conv2d_3 (Conv2D)            (None, 14, 14, 64)        36928

_________________________________________________________________

activation_3 (Activation)    (None, 14, 14, 64)        0

_________________________________________________________________

batch_normalization_3 (Batch (None, 14, 14, 64)        256

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64)          0

_________________________________________________________________

dropout_1 (Dropout)          (None, 7, 7, 64)          0

_________________________________________________________________

flatten (Flatten)            (None, 3136)              0

_________________________________________________________________

dense (Dense)                (None, 512)               1606144

_________________________________________________________________

activation_4 (Activation)    (None, 512)               0

_________________________________________________________________

batch_normalization_4 (Batch (None, 512)               2048

_________________________________________________________________

dropout_2 (Dropout)          (None, 512)               0

_________________________________________________________________

dense_1 (Dense)              (None, 10)                5130

_________________________________________________________________

activation_5 (Activation)    (None, 10)                0

=================================================================

Total params: 1,679,082

Trainable params: 1,677,674

Non-trainable params: 1,408

This achieves ~ 93.5% accuracy on 
Fashion MNSIT

(compare to ~88% with MLP)
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Let’s Jump In… tf.keras
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CNN MLP
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This is a Typical Block-Based CNN Pattern

40

conv2D (n-filters, 3x3)

batch norm

batch norm

max pool (2,2)

block
(size n)

dropout (0.25)

conv2D (n-filters, 3x3)

CNN building block

CNN Classifier

block
(size 32)

block
(size 64)

flatten
dense (512)
dropout (0.5)
dense (10)

}
classifier
network}

feature extraction
network
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Dogs vs. Cats 😃

42
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Dogs vs. Cats 😃

43

https://www.kaggle.com/c/dogs-vs-cats

Dataset available here (can also put it online if you want to play around with it…)

let’s explore a simple CNN and see if we can get some insight into what the filters are 
looking for and how they respond to a given input image

https://www.kaggle.com/c/dogs-vs-cats
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Dogs-v-Cats: CNN Model

44

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

conv2d (Conv2D)              (None, 148, 148, 32)      896       

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 74, 74, 32)        0         

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 72, 72, 64)        18496     

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         

_________________________________________________________________

conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    

_________________________________________________________________

max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         

_________________________________________________________________

flatten (Flatten)            (None, 6272)              0         

_________________________________________________________________

dropout (Dropout)            (None, 6272)              0         

_________________________________________________________________

dense (Dense)                (None, 512)               3211776   

_________________________________________________________________

dense_1 (Dense)              (None, 1)                 513       

=================================================================

Total params: 3,453,121

Trainable params: 3,453,121

Non-trainable params: 0

_________________________________________________________________

train_cats_v_dogs_small.py
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Dogs-v-Cats: Visualizing CNN Feature Maps
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1st 
conv2D

2nd 
conv2D

input image dogs_v_cats_filter_output_viz.py
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Dogs-v-Cats: Visualizing CNN Feature Maps
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3rd conv2D dogs_v_cats_filter_output_viz.py
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Dogs-v-Cats: Visualizing CNN Feature Maps
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4th conv2D dogs_v_cats_filter_output_viz.py
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Dogs-v-Cats: Max Filter Reponse

48

train an input image so that it maximizes the output energy in a particular filter

channel 16 channel 71 channel 121

dogs_v_cats_filter_max.py
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CNN Visualization: Grad-CAM
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Gradient Weighted Class Activation Mapping

see where a layer is “looking” for a given class

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization 9

6 Diagnosing image classification CNNs with
Grad-CAM

In this section we further demonstrate the use of Grad-CAM
in analyzing failure modes of image classification CNNs,
understanding the effect of adversarial noise, and identifying
and removing biases in datasets, in the context of VGG-16
pretrained on imagenet.

6.1 Analyzing failure modes for VGG-16

(a) (b) (c) (d)

Fig. 6: In these cases the model (VGG-16) failed to predict the correct
class in its top 1 (a and d) and top 5 (b and c) predictions. Humans
would find it hard to explain some of these predictions without looking
at the visualization for the predicted class. But with Grad-CAM, these
mistakes seem justifiable.

In order to see what mistakes a network is making, we first
get a list of examples that the network (VGG-16) fails to
classify correctly. For these misclassified examples, we use
Guided Grad-CAM to visualize both the correct and the
predicted class. As seen in Fig. 6, some failures are due to
ambiguities inherent in ImageNet classification. We can also
see that seemingly unreasonable predictions have reasonable
explanations, an observation also made in HOGgles [56]. A
major advantage of Guided Grad-CAM visualizations over
other methods is that due to its high-resolution and ability to
be class-discriminative, it readily enables these analyses.

6.2 Effect of adversarial noise on VGG-16

Goodfellow et al. [22] demonstrated the vulnerability of cur-
rent deep networks to adversarial examples, which are slight
imperceptible perturbations of input images that fool the net-
work into misclassifying them with high confidence. We gen-
erate adversarial images for an ImageNet-pretrained VGG-16
model such that it assigns high probability (> 0.9999) to a

category that is not present in the image and low probabilities
to categories that are present. We then compute Grad-CAM
visualizations for the categories that are present. As shown in
Fig. 7, despite the network being certain about the absence
of these categories (‘tiger cat’ and ‘boxer’), Grad-CAM vi-
sualizations can correctly localize them. This shows that
Grad-CAM is fairly robust to adversarial noise.

Boxer: 0.4 Cat: 0.2
(a) Original image

Airliner: 0.9999
(b) Adversarial image

Boxer: 1.1e-20
(c) Grad-CAM “Dog”

Tiger Cat: 6.5e-17

(d) Grad-CAM “Cat”
Airliner: 0.9999

(e) Grad-CAM “Airliner”

Space shuttle: 1e-5

(f) Grad-CAM “Space Shuttle”

Fig. 7: (a-b) Original image and the generated adversarial image for
category “airliner”. (c-d) Grad-CAM visualizations for the original cate-
gories “tiger cat” and “boxer (dog)” along with their confidence. Despite
the network being completely fooled into predicting the dominant cat-
egory label of “airliner” with high confidence (>0.9999), Grad-CAM
can localize the original categories accurately. (e-f) Grad-CAM for the
top-2 predicted classes “airliner” and “space shuttle” seems to highlight
the background.

6.3 Identifying bias in dataset

In this section, we demonstrate another use of Grad-CAM:
identifying and reducing bias in training datasets. Models
trained on biased datasets may not generalize to real-world
scenarios, or worse, may perpetuate biases and stereotypes
(w.r.t. gender, race, age, etc.). We finetune an ImageNet-
pretrained VGG-16 model for a “doctor” vs. “nurse” binary
classification task. We built our training and validation splits
using the top 250 relevant images (for each class) from a
popular image search engine. And the test set was controlled
to be balanced in its distribution of genders across the two
classes. Although the trained model achieves good validation
accuracy, it does not generalize well (82% test accuracy).
Grad-CAM visualizations of the model predictions (see the
red box6 regions in the middle column of Fig. 8) revealed
that the model had learned to look at the person’s face /
hairstyle to distinguish nurses from doctors, thus learning

6 The green and red boxes are drawn manually to highlight correct
and incorrect focus of the model.

pyimagesearch tutorial

will post code from this

(you can also download)

https://arxiv.org/pdf/1610.02391.pdf
https://www.pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/
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CNNs: Use When Feature Information is Localized

51

The data that transformed AI research—and possibly the world

• 2012: AlexNet 

• ~ 60M parameters, 16.4% top-5 error 


• 2014: VGG 

• ~140M parameters, 10% top-5 error


• 2015: Inception (aka GoogLeNet) 

• ~ 4M parameters, ~ 7% top-5 error


• 2015 ResNet 

• ~ 60M parameters, ~7% top-5 error

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
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Receptive Field as We Go Deeper

52

deeper in the network, each pixel in the feature 
map can “see” more of the input image

picture from: Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network." Remote sensing 9.5 (2017): 480.

this is why the number height and width of the 
feature map can be reduced as we go deeper

deeper into the network



© Keith M. Chugg, 2020

Receptive Field as We Go Deeper

53

simple script to find input pixels that can affect output pixels for a specific 
CNN architecture (receptive_field.py)

picture from: Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network." Remote sensing 9.5 (2017): 480.

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

input_8 (InputLayer)         [(None, 16, 16, 1)]       0         

_________________________________________________________________

conv2d_32 (Conv2D)           (None, 16, 16, 1)         10        

_________________________________________________________________

conv2d_33 (Conv2D)           (None, 16, 16, 1)         10        

_________________________________________________________________

max_pooling2d_18 (MaxPooling (None, 8, 8, 1)           0         

_________________________________________________________________

conv2d_34 (Conv2D)           (None, 8, 8, 1)           10        

_________________________________________________________________

conv2d_35 (Conv2D)           (None, 8, 8, 1)           10        

_________________________________________________________________

max_pooling2d_19 (MaxPooling (None, 4, 4, 1)           0         

=================================================================
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Receptive Field as We Go Deeper
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simple script to find input pixels that can affect output pixels for a specific 
CNN architecture

inverse image

receptive field

receptive_field.pythis could also be computed by hand by book-keeping 
the inverse image of each conv2D and pool layer
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https://www.tensorflow.org/api_docs/python/tf/keras/applications

Recall, this are imagenet 
trained networks included 

in tf.keras

https://www.tensorflow.org/api_docs/python/tf/keras/applications
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import these and check 
them out… 

… and go check out the 
source code

https://github.com/keras-team/keras-applications

https://github.com/keras-team/keras-applications
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Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
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residual connections:

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

aid in gradient flow (reduce vanishing gradient)

allow learning of “alternative” networks

- e.g., can learn to by pass the two “weight layers” 
in this figure

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1603.07285.pdf
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He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
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Note: 

there are v2 versions of these

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6
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aka GoogLeNet

(a) Inception module, naı̈ve version
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(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet

By the“GoogLeNet” name we refer to the particular in-
carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.
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Using Fixed CNN Layers for a Different CV Task

62

features needed for many CV tasks are similar to Imagenet 
classification features

feature extraction 

(CNN layers trained — 
e.g., on imagenet)

classifier network 
(dense, trained — e.g., 

on imagnet)

feature extraction 

trained and frozen

classifier network 
(untrained)

feature extraction 

trained and frozen

classifier network 
(retrained on your 

dataset)

prep for 
retrain

retrain 
classier 
layers

you can reuse all or part of the feature extraction network

You will use this approach in HW4 and 
compare against a full custom model

from tensorflow.keras.applications import ResNet50
ResNet50(weights=‘imagenet’)
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One Last Layer Type: Global Pooling

63

this is used after the last conv2D/pool layer 
before the “flatten” in many recent models

pool over the pixels in a channel

reduces the complexity of the dense 
classification network without sacrificing 

performance

tf.keras.layers.GlobalMaxPool2D()

tf.keras.layers.GlobalMaxAverage2D()

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)
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Outline for Slides

• Motivation, applications


• Basic 2D convolution operations


• tf.keras 2Dconv layer


• Pooling and stride


• Fashion MNIST example


• Visualization methods


• Some common CNN structures


• Reduced complexity CNN archiectures


• Outline of Back-propagation for CNNs

64
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Reduce Parameter/Computation Approaches

65

For larger CNNs, the number of parameters is so large, that the storage complexity 
becomes a significant issue

this is an issue for running these models in inference mode on mobile devices

computational complexity (during inference and training) is also an issue

there has been a lot of work on reducing the storage and computational complexity of 
CNNs — most have focused on inference of trained models
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Reduce Parameter/Computation Approaches

66

Two major categories of methods:

constrained filter structures: alter the standard conv2D operations to lower the 
computational/storage complexity

post-training processing to minimize complexity
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Constrained Filtering: Depth-wise Convolution

67

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout h w

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout h w

=

only do convolution separately for channels — no information is mixed across channels
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Constrained Filtering: Group Convolution

68

trade-off between standard conv2D filtering and depth-wise filtering

****
=

use more of these grouped-filters to get more output channels

Vanhoucke, Vincent. "Learning visual representations at scale." ICLR invited talk 1 (2014): 2.

https://bcb9f395-a-8ac90a7d-s-sites.googlegroups.com/a/vanhoucke.com/vincent/publications/vanhoucke-iclr14.pdf?attachauth=ANoY7cpfvddYDOxmfm2BNyyNw8mim1Dekc5QFcHVA-GXstQMVH0m8f99MTLF46J5WvMNfwjmtBdRRkOmYM7XFCqwVfw8HAnIc7dW0Snhdicvrlm1f6ENFcbQQ7bRt6xFRGKpcssL1VwAbcnSoN6v4Ck-zAcvJGzJm3Os4DqxScMZ-asu6JSYuF_h-Fqqjq2AIAdgQ-HLZzJ_YDiRlRJt4q2xMPlZ-CzqdRvaPuZEfGiklwrFILVBrNc=&attredirects=0
https://arxiv.org/pdf/1603.07285.pdf
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Constrained Filtering: Groupwise Convolution
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trade-off between standard conv2D filtering and depth-wise filtering

****
=

use more of these grouped-filters to get more output channels

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Constrained Filtering: Pointwise Convolution
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just standard Conv2D with filter size 1x1

aka: 1x1 convolution

****
=

*
=

1 x 1 x C_in
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Example: MobileNet
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combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout h w Nfilters = Cout Nbiases = Nfilters

1⇥ 1

{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}

Cout = 32

Cin = 16

Hin = 64

Win = 64

h = w = 3

y[i, j] = x[i, j] ⇤ h[i, j] =
1X

m=�1

1X

n=�1
x[m,n]h[i�m, j � n] =

LX

m=�L

LX

n=�L

h[m,n]x[i�m, j � n]

r[i, j] = x[i, j] ? h[i, j] =
1X

m=�1

1X

n=�1
x[m][n]h[i+m, j + n] =

LX

m=�L

LX

n=�L

h[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
1X

m=�1

1X

n=�1
K[m,n]x[i+m, j + n]

y[i, j] = x[i, j] ?K[i, j] =
X

(i,j)2support(K)

K[m,n]x[i+m, j + n]

y[i, j, k] = x[i, j, k] ? h[i, j, k] =
X

(i,j,k)2support(h)

h[m,n, o]x[i+m, j + n, k + o]

y[i, j]

Cin Hin Win Cout Hout Wout h w Nfilters = Cout

{hk[i, j]}Cin�1
k=0

{xk[i, j] ? hk[i, j]}

Cout = 32

Cin = 16

Hin = 64

Win = 64

h = w = 3

4,640 parameters 
with standard 

approach

* =*

16, 3x3 depth-wise kernels: 
32, 1x1 point-wise filters: 

32, biases: 

144
512
32

688 total parameters for 
same output feature map size

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

https://arxiv.org/pdf/1704.04861.pdf%EF%BC%89
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1704.04861.pdf%EF%BC%89
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
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Example: ShuffleNet
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group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. APA  

* =*

* =

multiple grouped convolutions

…

shuffle across 
channels

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
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Example: Pre-Defined Sparsity
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pre-define some of the filter coefficients to be zero and hold fixed through training and 
inference

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

4

them from the main memory to processing elements (PEs).
Furthermore, the proposed optimized sparse storage for-
mats can be integrated into some of the existing accelerators
such as Eyeriss v2 with minor modifications to the controller
logic or PEs. Section 4 details the storage and energy savings
achieved through deployment of the proposed formats.

3 PRE-DEFINED SPARSITY
This section first describes pSConv, a form of pre-defined
sparse kernel based convolution that we initially proposed
in [1]. It then describe how we introduce periodicity to this
framework to reduce the overhead of managing sparse ma-
trix representations. Finally, the section presents a method to
boost accuracy by periodically introducing a fully connected
kernel into the 3D filters.

We define the kernel support as the set of entries in a
k⇥ k 2D kernel that are not constrained to be zero. The size
of this set is defined as kernel support size (KSS). The kernel
variant size (KVS) is defined as the number of kernels with
unique kernel support in a 3D filter.

3.1 Pre-defined Sparse Kernels

Fig. 2: An example of pre-defined sparse kernels with 8 differ-
ent kernel variants each having KSS of 2. The colored locations
in each 2D kernel are allowed to have non-zero weight values.

We say a 3D filter of size k ⇥ k ⇥ Ci has pre-defined
sparsity if some of the k2 ⇥ Ci parameters are fixed to
be zero before training and held fixed throughout training
and inference. A regular pre-defined sparse 3D filter has
the same KSS for each kernel that comprises the 3D filter.†
This regularity can help reduce the workload imbalance
across different PEs performing multiply-accumulates and
thus can help improve throughput of CNN accelerators [14].
Fig. 2 shows an example of kernel variants. Here, k = 3,
meaning KSS = 9 denotes the standard kernel without any
pre-defined sparsity and KSS = 2 signifies that seven of
the nine kernel entries are fixed at zero. The choice of kernel
variants can be viewed as a model search problem, however,
in this paper we adopted a lower complexity approach of
choosing them in a constrained pseudo-random manner
which ensures every possible locations in k2 2D kernel space
(9 in this case) has at-least one entry in a 3D filter which is
not pre-defined to be zero. As an example, Fig. 3 illustrates
how an OFM of size Ho ⇥ Wo ⇥ Co is generated through
convolution of Ci⇥Co pre-defined sparse kernels of size k2

with an IFM of size Hi ⇥Wi ⇥ Ci.

†We only consider the convolutional weights when defining spar-
sity. Bias and other variables associated with batchnorm are not consid-
ered because they add negligible complexity.

Fig. 3: An example of proposed pre-defined sparse kernel based
convolution with KSS of 4.

The challenge with efficiently implementing this scheme
is how to avoid processing the weight entries that are fixed
at zero. Because the kernel variants are chosen randomly from
a potential set of

�
k
2

KSS

�
options and KVS could be as large

as Ci for each 3D filter, the non-zero weight index memories
can represent considerable overhead. We propose to address
this problem by introducing periodicity within a 3D filter, as
described below.

3.2 Periodic Sparse Kernel Patterns
In order to reduce the overhead of storing the sparsity
patterns, we propose to repeat the sparsity patterns, using
only a small number of kernel variants across all filters. This
is particularly beneficial in the compressed sparse weight
formats because the same index values can be used for
multiple filters.

Fig. 4 shows an example of periodically repeating kernel
patterns, with a periodicity P = KV S = 4. Notice to
retain periodicity across different 3D filters and while still
providing some diversity, we rotate the sequence of kernel
variants, starting each filter (of P consecutive filters) with a
different kernel variant. For instance, if the first 3D filter
starts with KV1 followed by KV2, KV3, and KV4, and
then repeats the order, we start the second 3D filter with
KV2 to create a repeating sequence of [KV2, KV3, KV4,
KV1]. Thus, we maintain the sequence of repeating kernels
modulo rotation.

Our specific choice of sparse KVs in our experiments
are obtained by sequentially picking non-zero 2D entries
randomly constrained such that no non-zero 2D entry is
chosen twice until all entries of the kernel are chosen at
least once. Furthermore, we ensure that every pixel in the
input frame has an opportunity to affect the outcome of
our sparse-periodic network which constrains the minimum
value of periodicity P . For example, for a 3⇥ 3 kernel, with
KSS of 1, the minimum value of P necessary to ensure
every entry of the kernel is chosen is 9. More specifically,
the nine sparse 3 ⇥ 3 2D kernels in this example each must
have a different single non-zero entry such that together
they cover all entries.

3.3 Boosting Accuracy with FC Kernels
Although the periodicity in sparse patterns is beneficial for
overhead management of the sparsity, the choice of KSS and
the simplistic way of choosing kernel variants may sometimes
cost significant classification performance. Methods to find
suitable sparse patterns and KVS values through pattern

EE599, Spring 2019 final project

targets specialized hardware acceleration — project concept is to map this to GPU

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.pdf
https://arxiv.org/pdf/2001.10710
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Example: Pre-Defined Sparsity
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Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

EE599, Spring 2019 final project

12

Fig. 11: Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and
MobileNetV2 with comparable or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

Fig. 12: Comparison of the number of model parameters of the
network models described in Fig 11 for (a) CIFAR-10 and (b)
Tiny ImageNet datasets.

classification accuracy by up to ⇠2.3%, averaged over two
periodicity of 8, and 16 in ResNet18 and VGG16 architecture
on CIFAR-10 and Tiny ImageNet. We also demonstrated the
merits of the proposed architectures with squeezed variants
of ResNet18 (width multiplier < 1.0) and have shown it to
outperform MobileNetV2 by an average accuracy of ⇠2.8%
with similar FLOPs.

Our future work includes exploring additional forms
of compressed sparse representations and their hardware
support. Lastly, we note that much of our findings are
empirical in nature. Finding a more theoretical basis that can
motivate and guide the use of periodic pre-defined sparsity
in deep learning is also an important area of future work.
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Fig. 11: Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and
MobileNetV2 with comparable or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

Fig. 12: Comparison of the number of model parameters of the
network models described in Fig 11 for (a) CIFAR-10 and (b)
Tiny ImageNet datasets.

classification accuracy by up to ⇠2.3%, averaged over two
periodicity of 8, and 16 in ResNet18 and VGG16 architecture
on CIFAR-10 and Tiny ImageNet. We also demonstrated the
merits of the proposed architectures with squeezed variants
of ResNet18 (width multiplier < 1.0) and have shown it to
outperform MobileNetV2 by an average accuracy of ⇠2.8%
with similar FLOPs.

Our future work includes exploring additional forms
of compressed sparse representations and their hardware
support. Lastly, we note that much of our findings are
empirical in nature. Finding a more theoretical basis that can
motivate and guide the use of periodic pre-defined sparsity
in deep learning is also an important area of future work.
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Pruning: set near-zero weights to zero, fix these and do some retraining

post-training processing to minimize complexity

Quantization: map similar valued weights to the same value to save 
storage

“Binaryization”: find a set of binary weights that best approximate the 
trained network behaivor
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TensorFlow Lite is a package that uses some of these concepts to post-process a training 
model to produce a lower-complexity model for inference

https://www.tensorflow.org/lite/

does not use the latest and 
greatest research ideas, but useful 

concept and tool

https://www.tensorflow.org/lite/
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recall the definition of a standard Conv2D operation:
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Let’s start with the 2D convolution only…

chain-rule term:
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forward: convolve with h[i,j]

back-prop: convolve with h[-i,-j]

1 2 3
4 5 6
7 8 9
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�(L) = rs(L)Ctot = rs(L)C

= Ċ
⇣
a(L)

⌘
� ḣ

⇣
s(L)

⌘

= Ċ
⇣
a(L)

⌘
� ȧ(L)

a(l) = h
⇣
W(l)a(l�1) + b(l)

⌘

ȧ(l) = ḣ
⇣
W(l)a(l�1) + b(l)

⌘

���(L) = Ċ
⇣
y,a(L)
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� ȧ(L)

���(l) = ȧ(l) �
⇣

W(l+1)
⌘t

���(l+1)

�

W(l)  W(l) � ⌘���(l)
h
a(l�1)

it

b(l)  b(l) � ⌘���(l)

2.3 Simple Summary

al = act(Wlal�1 + bl) (activations)

ȧl = ˙act(Wlal�1 + bl) (derivative activations)

���L = ˙cost(y,aL)� ȧL (delta initialization)

���l = ȧl �
⇥
Wt

l+1���l+1

⇤
(delta recursion)

Wl  Wl � ⌘���la
t
l�1 (weight SGD update)

bl  bl � ⌘���l (bias SGD update)

recall: W-transpose in MLP-BP
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Back-propagation in CNNs

81

this extends to the standard Conv2D convolution
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Back-propagation in CNNs: Pooling

82

average pooling:

forward: Q “pixels” averaged 
back-prop: 1/Q times the gradient flows back through theses Q “pixels”

max pooling:

forward: max over Q “pixels” (i*, j*) ~ argmax
back-prop: gradient flows directly through (i*, j*) only

results from 
standard differentiation

non-differentiable….
just a convention that works!
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CNN/CV Related topics to Follow (time allowing)

83

Image segmentation (e.g., U-Net)

Object Detection (e.g., YOLO)

GANs (e.g., “deep fakes”)

we’ll do RNNs and then come back to these 
+ deep reinforcement learning


