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1 Summary

This handout is intended to aid in understanding signals (functions) as points in an abstract space.
These concepts are directly analogous to representing vectors in Rk. First, the algebraic properties
of these spaces are reviewed by recalling the properties of linear spaces. Second, the topological
properties (shapes) of theses spaces are considered through distances, norms and inner products.
Finally, the issues of infinite dimensional spaces is considered.

A detailed understanding of these concepts is beyond the scope of the class, but this document
should aid in developing a good intuitive understanding. In this class, we will consider digtial
communication signals as points in an abstract space, L2[0, T ] – the space of finite energy signals
defined on the time interval [0, T ]. The most important conclusion from this handout is that
L2[0, T ] is directly analogous to Rk and nearly every concept you are familiar with from linear
algebra carries over.

Figure 1 shows how the concepts covered in this handout are related. A linear space is composed
of vectors and scalars and the key notion is that linear combinations of vectors are consistently
defined. A metric space is one in which a logically consistent distance measure exists. We are
accustomed to working in spaces, like Rk, that have both these algebraic and topological properties.
Specifically, inner product spaces are linear spaces with an inner product (generalized dot product).
An inner product space has both algebraic and topological properties since an inner product, which
allows us to measure properties like angles, implies a norm, which measures length, which allows
us to measure distance.

Hilbert spaces are infinite dimensional inner product spaces that have nice limiting properties
(e.g., complete inner product spaces). While the concept of an orthonormal basis is limited to finite
dimensional inner product spaces, this can be extended to Hilbert spaces in the form of complete
orthonormal sets and the generalized Fourier series.

2 Linear Space

2.1 Definitions

A real vector space (or linear space) is a set of “vectors” (or points) together with rules for vector
addition and multiplication by scalars (real or complex number for our purposes). The addition
and multiplication must produce vectors that are within the space, and they must satisfy eight
axioms. We will denote the space and scalar field by

Linear Space: X

1
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topological properties only
(can measure distances)

algebraic properties only
(can take linear combinations)

linear spacemetric space

normed linear 
(Banach) space

inner product space
(can measure angles)

complete inner product space 
(Hilbert space) 

IPS with nice limit properties

Figure 1: A Venn diagram showing the relationship between different spaces briefly summarized in
this document.

Scalar Field: F (F = C or F = R)
Operations: vector addition “+”, scalar multiplication “·”.
Let x, y and z ∈ X , denote arbitrary elements of the space, and a, b ∈ F , denote arbitrary

scalars. The following axioms must be satisfied:

(LS1) x+ y = y + x (Commutative of +)

(LS2) x+ (y + z) = (x+ y) + z (Associative of +)

(LS3) ∃ 0 ∈ X : x+ 0 = x (Additive Identity)

(LS4) ∃ y ∈ X : x+ y = 0 (we denote y by −x) (Additive Inverse)

(LS5) a · (b · x) = (ab) · x (Associative of ·)

(LS6) 1 · x = x (Multiplicative Identity)

(LS7) a · (x+ y) = a · x+ a · y (· Distributes Over +)

(LS8) (a+ b) · x = a · x+ b · x (Scalar Addition Distributes Over ·)

Note that, when no confusion can occur, we write a · x as simply ax.
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2.2 Linear Independence

x1, x2, ..., xk ∈ L are linearly independent if and only if

k∑
i=1

cixi = 0 ⇐⇒ ci = 0 ∀i = 1, ..., k

For example, L = R2: [1 0]T , [0 1]T are linearly independent and [1 1]T , [2 2]T are not.

2.3 Subspace

A subspace of L is a linear space contained by L (e.g. subset of L with the properties in 2.1.
The subspace spanned by x1, x2, ..., xk ∈ L is the set of all linear combinations such that

k∑
i=1

cixi ci ∈ C

R2 is a subspace spanned by e1 = [1 0 0]T , e2 = [0 1 0]T .

2.4 Dimension and Basis

If L is spanned by a finite number of elements, it is called finite dimensional.
If L=span{x1, x2, ..., xk} and x1, x2, ..., xk are linearly independent, then the dimension of

L is k and {x1, x2, ..., xk} is a basis for L, i.e.

y ∈ L =⇒ y =

k∑
i=1

Yixi

For example, in L = R3, we can express y = Y1e1 +Y2e2 +Y3e3 using any basis. Here are some
examples:

(1): e1 = [1 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T (the standard basis)

(2): e1 = [1 1 1]T , e2 = [1 − 1 0]T , e3 = [1 0 1]T (a non-orthonormal basis)

2.5 Infinite Dimensional Spaces

(Example 1) l2: {all sequences {xi}∞i=∞: xi ∈ R,
∑

i xi
2 <∞}.

(Example 2) L2[0, T ] See 3.6

2.6 Distance

A distance function (also referred to as a metric) measures the distance between points of a (not
necessarily Linear) space. The distance between two points is denoted d(x,y); it must satisfy the
following properties

(D1) d(x,y) ≥ 0 (Positivity)
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(D2) d(x,y) = d(y,x) (Symmetry)

(D3) d(x,y) ≤ d(x, z) + d(z,y) (Triangle Inequality)

(D4) d(x,y) = 0 implies x = y (Strict Positivity).

2.7 Norm

A norm allows the measurement of “length” in the linear space. A norm maps an element of the
linear space into a non-negative scalar (it’s length), denoted by ‖x‖. A norm must satisfy the
following four properties

(N1) ‖x‖ ≥ 0 (Positivity)

(N2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Subadditivity)

(N3) ‖αx‖ = |α|‖x‖ (Positive Homogeneity)

(N4) ‖x‖ = 0 implies x = 0 (Positive Definite).

2.8 Any Norm Implies a Distance

In a normed linear space (X, ‖ · ‖), the metric is defined in terms of the given norm by d(x, y) =
‖x− y‖. These follow easily from the properties of the norm.

(D1) d(x,y) = ‖x− y‖ ≥ 0 by (N1).

(D2) d(x,y) = ‖x− y‖ = | − 1|‖y − x‖ = d(y,x) by (N3) with α = −1.

(D3) This follows from (N2)

d(x,y) = ‖x− y‖ (1)

= ‖(x− z) + (z − y)‖ (2)

≤ ‖x− z‖+ ‖z − y‖ (3)

= d(x, z) + d(z,y). (4)

(D4) d(x,y) = ‖x− y‖ = 0 implies that x− y = 0 by (N4), so x = y.

3 Hilbert Space

Hilbert space is a complete inner product space.

3.1 Cauchy Sequence

A sequence is said to be Cauchy if and only if

lim
n,m→∞

‖xn − xm‖2 = 0 (5)



EE 564 Linear Space Handout 5

3.2 Complete Metric Space

A metric space (X , d) is complete if each Cauchy sequence in (X , d) is a convergent sequence in
(X , d). ⇔ ∃ x ∈ X s.t. limn→∞ ‖x− xn‖2 = 0

3.3 Inner Product

An inner product maps two elements of a linear space into a scalar, denoted by 〈x,y〉. An inner
product allows us to measure “angles” between elements of the space. An inner product must
satisfy the following properties (x, y and z are arbitrary elements of the linear space and α is a
complex scalar (i.e. F = C))

(IP1) 〈x,y〉 = (〈y,x〉)∗ (Hermitian Symmetry)

(IP2) 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉 (Additivity)

(IP3) 〈αx,y〉 = α〈x,y〉 (Homogeneity in first argument)

(IP4) if x 6= 0, 〈x,x〉 > 0 (Positivity).

3.4 Cauchy-Schwartz Inequality

The Cauchy-Schwartz inequality is that for any z and x in an inner product space

|〈z,x〉|2 ≤ 〈x,x〉〈z, z〉.

with equality if and only if x = cz for some scalar c.
Proof: By (IP4), we have that for any scalar α

〈z − αx, z − αx〉 ≥ 0, (6)

and in fact equality holds if and only if z − αx = 0 (by (IP3) and (IP4)). If you minimize the
above expression with respect to α, you will find that

αopt =
〈z,x〉
〈x,x〉

(7)

is the value of α which minimizes the above expression. This minimization can be carried out in
several ways; see the remark at the end of this problem - this becomes very important when we get
to estimation theory. Substituting this value of α yields

〈z − αoptx, z − αoptx〉 = 〈z − αoptx, z〉 − 〈z − αoptx, αoptx〉︸ ︷︷ ︸
=0

., (8)

The second term is zero since

〈z − αoptx, αoptx〉 = α∗opt (〈z,x〉 − αopt〈x,x〉) (9)

= α∗opt

(
〈z,x〉 − 〈z,x〉

〈x,x〉
〈x,x〉

)
(10)

= 0. (11)
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To get this, we used (IP1) thru (IP3) and the fact that 〈y, αx〉 = α∗〈y,x〉, which follows by
using (IP1) and (IP3) together. Therefore we have

〈z − αoptx, z − αoptx〉 = 〈z − αoptx, z〉 (12)

= 〈z, z〉 − αopt〈x, z〉 (13)

= 〈z, z〉 − 〈z,x〉
〈x,x〉

〈x, z〉 (14)

= 〈z, z〉 − |〈z,x〉|
2

〈x,x〉
. (15)

Since this must be non-negative ⇒

〈z, z〉 − |〈z,x〉|
2

〈x,x〉
≥ 0 (16)

or
|〈z,x〉|2 ≤ 〈x,x〉〈z, z〉. (17)

Notice that if 〈x,x〉 = 0, the above method does not work, but in this case the inequality is trivial.
Also notice that equality holds if only if x = 0 or z = αoptx.

3.5 Any Inner Product Defines a Norm

(N1) From (IP1) we know that 〈x,x〉 is real, and (IP4) assures us that it is non-negative. Therefore

‖x‖ =
√
〈x,x〉 ≥ 0. (18)

(N2) Following the hint we start with the square of the norm of the sum

‖x+ y‖2 = 〈x+ y,x+ y〉 (19)

= 〈x,x〉+ 〈y,y〉+ 2<{〈x,y〉} (20)

= ‖x‖2 + ‖y‖2 + 2<{〈x,y〉} (21)

≤ ‖x‖2 + ‖y‖2 + 2 |〈x,y〉| (22)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ (23)

= (‖x‖+ ‖y‖)2 . (24)

Since both sides are non-negative, taking square roots yields the sub-additivity property.

The only significant steps in the above sequence were suggested by the hint (i.e. first
<{〈x,y〉} ≤ |〈x,y〉|, then the Cauchy-Schwartz inequality).

(N3) As noted in part (a), a scalar factors out of the second argument with a conjugate ⇒

‖αx‖2 = 〈αx, αx〉 = α∗〈αx,x〉 = |α|2〈x,x〉. (25)

Taking square roots of both sides (both sides are non-negative) yields the result.

(N4) If x 6= 0, then by (IP4), ‖x‖2 = 〈x,x〉 > 0. Applying (IP3) with α = 0 implies that
〈0,0〉 = 0. So ‖x‖ = 0 ⇐⇒ x = 0.
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Figure 2: ŷ is the projection of y on x

3.6 Hilbert Space Example: L2[0, T ]

The space of all functions which are square-integrable (finite energy) on the interval [0, T ] is denoted
by L2[0, T ]. We can consider this space to be either over the complex field, or specialize to real

scalars. A point in this space x represents a function x = {x(t) : 0 ≤ t ≤ T,
∫ T
0 |x(t)|2dt < ∞}.

Scalar operations are carried out in the obvious manner: z = αx + βy is shorthand for z(t) =
αx(t) + βy(t) for all t ∈ [0, T ]. It is straightforward to show that the following is a valid inner
product:

〈x,y〉 =

∫ T

0
x(t)y∗(t)dt (26)

The implied norm is thus the RMS value

‖x‖2 =

∫ T

0
|x(t)|2dt (27)

and the distance is

d(x,y) =

√∫ T

0
|x(t)− y(t)|2dt (28)

Note that, by definition x = y in this space if d(x,y) = 0, or if the energy in the difference between
the two functions is zero – i.e., this is different than pointwise equality.

3.7 Closest Point Theorem (Special case of Hilbert Space Projection Theorem)

The solution of minα∈C ‖y − αx‖2 in a Hilbert space is

αopt =
〈y,x〉
〈x,x〉

The closest point to ŷ in span{x} is ŷ =
〈y,x〉
〈x,x〉x as in Fig 2. 〈y − ŷ, αx〉 = 0 ∀x

3.8 Gram-Schmidt Procedure

Gram-Schmidt procedure converts any basis {x1, x2, ..., xk} into an orthonormal basis {e1, e2, ...,
ek} such that 〈ei, ej〉 = δK(i− j)
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y1 = x1 =⇒ e1 =
y1
‖y1‖

y2 = x2 − 〈x2, e1〉e1 =⇒ e2 =
y2
‖y2‖

y3 = x3 − 〈x3, e1〉e1 − 〈x3, e2〉e2 =⇒ e3 =
y3
‖y3‖

yk = xk −
k−1∑
i=1

〈xk, ei〉ei =⇒ ek =
yk
‖yk‖

3.8.1 Example

Let x1 =

 1
1
1

, x2 =

 1
−1

0

, x3 =

 1
0
1

.

y1 = x1 =⇒ e1 = 1√
3

 1
1
1


y2 =

 1
−1

0

− et1x2 =⇒ e2 = 1√
2

 1
−1

0


y3 =

 1
0
1

− 2√
3
e1 − 1√

2
e2 =⇒ e3 = 1

6

 −1
−1

2


3.9 Representation Using Orthonormal Basis

Given a basis {ej}kj=1, any element of the linear space, x, can be represented in terms of this basis

x =

k∑
j=1

Xiej (29)

The coefficients {Xj} are determined by taking the inner product of both sides with ei

〈x, ei〉 =
〈∑k

j=1Xjej , ei

〉
=

k∑
j=1

Xj〈ej , ei〉 i = 1, 2, . . . k (30)

This can be written in matrix form as GX = b where the (i, j) element of G is 〈ej , ei〉 and the ith

element of the (k × 1) vector b is 〈x, ei〉.
When an orthonormal basis is used, this simplifies dramatically since G is the identity and we

obtain

x =

k∑
i=1

xiei xi = 〈x, ei〉
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Figure 3: 8-PSK Vector Representation

3.9.1 Example: PSK Signaling

sm(t) =

√
2E

T
cos(2πfct+

m

M
2π); t ∈ [0, T ], i = 0, 1, ...M − 1,M ≥ 2

The signal set sm are not linearly independent elements of L2[0, t]. In fact,

L2[0, t] ⊃ S = span{si}M−1i=0 , then dim(S) =

{
2 if M 6= 2
1 if M = 2

Using an orthonormal basis:

e1(t) =

√
2

T
cos(2πfct)

e2(t) =

√
2

T
sin(2πfct)

We have

sm(t) = Sm(1)e1(t) + Sm(2)e2(t)

Sm(1) =

∫ T

0
sm(t)e1(t)dt

Sm(2) =

∫ T

0
sm(t)e2(t)dt

sm =

[
sm(1)
sm(2)

]
=
√
E

[
cos(mM 2π)
sin(mM 2π)

]

3.10 Complete Orthonormal Set (CONS)

In an infinite dimensional Hilbert space, we use a “complete orthonormal set” (CONS) in place of
a basis.
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Definition: A CONS for a Hilbert space X is a set xi such that:

(1) 〈xi,xj〉 = δK(i− j)

(2) x ∈ X and 〈x,xi〉 = 0 ∀i =⇒ x = 0

3.11 Generalized Fourier Series

Let φi be a CONS for a Hilbert Space H. then

(1) for each x ∈ H: x =
∑

iXiφi where

(Fourier Series) Xi = 〈x,φi〉

(2) Parseval’s Equality:

〈x,y〉 =
∑

iXiY
∗
i

Special case: ‖x‖2 =
∑

i |xi|2

3.11.1 Example: Hilbert Space L2[0, T ]

In L2[0, T ],

x(t) =
∑
i

Xiφi(t)

Xi =

∫ T

0
x(t)φ∗i (t)dt∫ T

0
|x(t)|2dt =

∑
i

|xi|2

If we choose complex exponential as CONS, we have

φk(t) =
1√
T

exp

(
j2πk

T
t

)
; k = 0,±1,±2...

Xk = FS{x(t)} =
1√
T

∫ T

0
x(t) exp

(
−j2πk
T

t

)
dt

x(t) =
1√
T

∞∑
k=−∞

Xk exp

(
j2πk

T
t

)
If we choose sine and cosine function as CONS, we have the trigonometric Fourier Series

φ2k(t) =

√
2

T
cos

(
2π

T
kt

)
φ2k+1(t) =

√
2

T
sin

(
2π

T
kt

)
k = 0, 1, 2...

As a conclusion, in general, we can choose the coordinate system for L2[0, T ] and represent our
signals in this coordinate system!
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