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An (n, k) linear, binary block code with a given parity check matrix

H =
[
h0 h1 · · · hn−1

]
(1)

where hj is the ((n− k)× 1) vector making up the jth column for j = 0, 1, . . . (n− 1). Define the
partial syndrome of a vector y as

sj(y
j−1
0 ) =

j−1∑
m=0

ymhm (2)

Then, sn(yn−1
0 ) is the (full) syndrome associated with the binary vector y.

The partial syndrome takes on 2n−1 distinct values since H is rank n− k. Furthermore, given
sj(y

j−1
0 ) and yj , the value of sj+1(y

j
0) is determined. This update is initialized with s0(·) = 0.

Thus, this is a finite machine (FSM) model to describe the constraint imposed by the code1 with
state at time j defined as sj ≡ sj(y

j−1
0 ) (e.g., one can establish a labeling convention on the partial

syndrome vector values to integers in {0, 1, . . . Ns} where N − s ≤ (n− k − 1)).
One immediate consequence of this FSM model is that since Hc = 0 for all codewords c, all

codewords correspond to paths through a trellis representing this FSM that terminate into the final
state of zero (i.e., zero syndrome). Consider the example of a (8, 6) code with parity check matrix

H =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
(3)

The parity check trellis for this code is shown in Fig. 1 where only paths corresponding to valid
codeword are shown (i.e., all paths terminate into the zero state). Transitions from sj to sj+1

corresponding to cj = 0 are dashed and those corresponding to cj = 1 are solid.
With a parity check trellis representation for a code one can decode the code via the Viterbi

algorithm or forward-backward algorithm (i.e., HIHO, SIHO, or SISO decoding). To accomplish
soft-in decoding, the transition metrics are taken to be MI[cj ] for transitions corresponding to
cj . The only difference between this and decoding of a convolutional code is the time-varying
nature of the trellis. Note that if non-uniform soft-in information is available on the input bits
{bi}, then these can be easily accounted for if the H matrix is in systematic form. Otherwise,
updating soft information on the information bits using SISO based on the parity check trellis is
not straightforward. To perform ML codeword decoding on the BSC channel, take the transition
metrics to be the Hamming difference between the received binary symbol yj and the corresponding
value of cj .

1Here, yj can be viewed as the input with no outputs.
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Figure 1: The parity check trellis for the (8, 6) code. States are labeled by their partial syndrome
values.
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Figure 2: Decoding the example code using the Viterbi algorithm on the parity check trellis.

As an example, consider SIHO decoding of this example code with uniform, independent in-
formation bits. Fig. 2 shows the result of running the Viterbi algorithm to decode the code with
the normalized channel metrics MI[cj ] shown below the trellis. Note that the codeword decision is
ĉt = (11011101). SISO decoding can be accomplished using the forward-backward algorithm in a
similar manner.

The coset leaders can also be found using a slight variation of the parity check trellis. Specifically,
consider all syndromes instead only paths terminating into the zero syndrome. This is shown in
Fig. 3 for the example given in (3). The coset leaders can be found using the forward state recursion
with transition metrics being the Hamming weight of associated with the trellis transition. Note
that this will yield survivors for each of the 2n−k states at the end of the trellis. These survivors are
the minimum weight sequences e such that He is the syndrome given by the final state – i.e., these
final survivors are the coset leaders.

This process is illustrated in Fig. 4 where the VA is run on the trellis of Fig. 3 with Hamming
weight metrics. Ties in the ACS process have been shown by leaving both transitions. Note that
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Figure 3: The unterminated parity check trellis for the (8, 6) code. This can be used to find the
coset leaders.
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Figure 4: The results of running the Viterbi algorithm on the unterminated parity check trellis to
determine the coset leaders.

there are many ties implying that the coset leaders are not unique. One choice of coset leaders is

s =

(
0
0

)
=⇒ lt(s) = (0 0 0 0 0 0 0 0) (4)

s =

(
1
0

)
=⇒ lt(s) = (1 0 0 0 0 0 0 0) (5)

s =

(
0
1

)
=⇒ lt(s) = (0 1 0 0 0 0 0 0) (6)

s =

(
1
1

)
=⇒ lt(s) = (1 1 0 0 0 0 0 0) (7)

Notice that this implies that code has a minimum distance smaller than 3.
Using a similar idea, one can find the minimum distance of the code from its parity check

trellis. Using the same metrics based Hamming weight and the terminated trellis in Fig. 1, the
forward-backward algorithm can be run with a modified completion step. The modification is to
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exclude the zero-state to zero-state transition in the completion step. This will eliminate the all
zero path. One can find the MSM of paths consistent with the other transitions at this trellis stage.
Specifically, compute

Mj = min
tj=(sj ,cj ,sj+1) 6=(0,·,0)

{Fj−1[sj ] + wH(cj) + Bj+1[sj+1]} (8)

for each value of j and the minimum of these values over all j is the minimum nonzero codeword
weight. Check this method to verify that the minimum distance of this code is 2.


