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1 Introduction

In many communication systems, we often have band pass transmitting signals of the following
form:

s(t) =
√

2Re{s̃(t)ej2πfct} =
√

2Re{s̃(t)}cos(2πfct)−
√

2Im{s̃(t)}sin(2πfct) (1)

Here, fc corresponds to the carrier frequency, and s̃(t), complex in general, is called the equiva-
lent complex base band signal of s(t). PAM, MPSK, and QAM signals all fit the above expression.
Now, we may define the deterministic narrowband signal as follow:

Definition.

Let s(t) be a deterministic waveform of the form in (1), and S(f) be its Fourier Transform. If S(f)
is negligibly small except in the frequency range |f − fc| < B � fc, than s(t) is a deterministic
narrowband signal.

Of course, the above definition has a heavy “Engineer flavor”, since it didn’t really specify the
term “negligible” quantitatively. However, in most practical cases, this definition is acceptable. We
wish to establish some relationships between s(t) and s̃(t), since it is often more convenient to work
with base band signals.

Property 1. Let the Fourier Transform of s(t) and s̃(t) be S(f) and S̃(f) respectively, than the
following holds:

S(f) =
1√
2
[S̃(f − fc) + S̃∗(−f − fc)] (2)

Proof. Exercise.

The above property establishes the frequency domain relationship between s(t) and s̃(t).

Property 2. If s(t) is a deterministic narrowband signal, than the following holds:

E =
∫ ∞

−∞
s2(t)dt =

∫ ∞

−∞
|s̃(t)|2dt (3)
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Proof. Exercise.

The above property indicates that the signal Energy is the same for s(t) and s̃(t) if s(t) is a
narrowband signal. Note that in some references, the factor of

√
2 in (1) is omitted, thus leads to

slightly different results in property 2 and 3. However, the reader should be able to switch between
two definitions without difficulty.

2 Linear Band Pass System

Given a linear filter system with real impulse response h(t). Since h(t) is real, we have:

H∗(−f) = H(f) (4)

If we define:

H̃(f − fc) =
{

H(f) f > 0
0 f < 0

(5)

Then
H(f) = H̃(f − fc) + H̃∗(−f − fc) (6)

Or equivalently,
h(t) = 2Re{h̃(t)ej2πfct} (7)

Where h̃(t) is the Inverse Fourier Transform of H̃(f), and it is the equivalent complex base
band impulse response of the linear system. Note that if h(t) is narrowband, than the system is
called a narrowband linear system. Now, consider the narrowband signal s(t) as the input to the
narrowband linear system with impulse response h(t). Then at the output, we have:

r(t) =
∫ ∞

−∞
s(τ)h(t− τ)dτ (8)

Or in the frequency domain,
R(f) = S(f)H(f) (9)

Using (2) and (6), together with the narrowband assumptions of s(t) and h(t), we have (verify!):

R(f) =
1√
2
[R̃(f − fc) + R̃∗(−f − fc)] (10)

Where
R̃(f) = S̃(f)H̃(f) (11)

Or equivalently,
r(t) =

√
2Re{r̃(t)ej2πfct} (12)

Where
r̃(t) =

∫ ∞

−∞
s̃(τ)h̃(t− τ)dτ (13)

Using the previous development, we already have enough tools to deal with a band pass system
using its base band equivalent model. Note that we can always switch between the band pass signal
and its base band equivalence by using (1) or (12).
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3 Narrow Band Stochastic Process

Now, having defined the deterministic narrowband signal, we have a similar definition for a nar-
rowband stochastic process. We consider the random process of the following form:

n(u, t) =
√

2Re{ñ(u, t)ej2πfct} =
√

2Re{ñ(u, t)}cos(2πfct)−
√

2Im{ñ(u, t)}sin2πfct (14)

This form arises in a communication system when the noise process passes through the band
pass filter at the Front-End of the receiver. Thus,fc usually corresponds to the carrier frequency of
the system, which is also the central frequency of the band pass filter. ñ(u, t), complex in general, is
called the equivalent complex base band process of n(u, t).We define a narrowband stochastic process
as follow:

Definition.

Let n(u, t) be a stochastic process of the form in (14), where nc(t) ≡ Re{ñ(u, t)} and ns ≡
Im{ñ(u, t)} are zero mean, jointly WSS processes. Let Sn(f) be the PSD of n(u, t). If Sn(f)
is negligibly small except in the frequency range |f − fc| < B � fc, than n(u, t) is a narrowband
stochastic process.

Now, we shall establish some properties of the process described above. First we obtain the
autocorrelation function of n(u, t). We will omit the variable in the following work, but the reader
should keep in mind that these are stochastic processes. Using (14), we have:

E[n(t)n(t + τ)] =2{E[nc(t)nc(t + τ)]cos(2πfct)cos(2πfc(t + τ))
− E[nc(t)nc(t + τ)]cos(2πfct)sin(2πfc(t + τ))
− E[ns(t)nc(t + τ)]sin(2πfct)cos(2πfc(t + τ))
+ E[ns(t)nc(t + τ)]sin(2πfct)sin(2πfc(t + τ))} (15)

We can see that n(t) is WSS if and only if

E[nc(t)nc(t + τ)] = E[ns(t)ns(t + τ)] (16)

and
E[nc(t)ns(t + τ)] = −E[ns(t)nc(t + τ)] (17)

The detail is left to the reader as an exercise. Now we assume n(t) is a WSS process, thus (16)
and (17) are satisfied, and the autocorrelation function of n(t) becomes:

Rn(τ) = 2[Rnc(τ)cos(2πfcτ) + Rncns(τ)sin(2πfcτ)] (18)

where
Rnc(τ) = E[nc(t)nc(t + τ)] = Rns(τ) (19)

and
Rncns(τ) = E[nc(t + τ)ns(t)] = −Rnsnc(τ) (20)

3



We now find the autocorrelation function of the equivalent complex base band process ñ(t).
Since ñ(t) = Re{ñ(t)}+ jIm{ñ(t)} = nc(t) + jns(t), using (16) and (17), we have:

R̃n(τ) = E[ñ(t + τ)ñ∗(t)] = 2[Rnc(τ)− jRncns(τ)] (21)

Thus, we can express (18) using (21):

Rn(τ) = Re{R̃n(τ)ej2πfct} (22)

Or equivalently,

Sn(f) =
1
2
[S̃n(f − fc) + S̃∗n(−f − fc)] (23)

where S̃n(f) is the Fourier Transform of R̃n(τ).
The equations (22) and (23) establish the relationships between WSS process ñ(t) and its

equivalent complex base band process . Note that by (20) and the fact that Rncns(τ) = Rnsnc(−τ),
we have Rncns(0) = Rnsnc(0) = 0. Thus, we have the following relationship.

E[|n(t)|2] = Rn(0) = Re{R̃n(0)} = R̃n(0) = E[|ñ(t)|2] = 2Rnc(0) (24)

The above equation tells us that both n(t) and ñ(t) has the same average power, and the average
power of ñ(t) is equally distributed between the process nc(t) and ns(t).

In many practical cases, S̃n(f) is even (This is due to the design of the band pass filter at the
receiver, which is usually symmetric about its central frequency fc). By the property of Fourier
Transform, we know that R̃n(τ) is real. But by (21), this means R̃n(τ) = 2Rnc(τ), and Rncns(τ) =
0 ∀τ . We conclude that nc(t) and ns(t) are uncorrelated. If they are also jointly gaussian, then
they are independent processes. In summary, given a real band pass WSS process n(t) and its PSD
Sn(f) , we can write the process in the form of (14), where ñ(t) = nc(t) + jns(t) has PSD S̃n(f)
satisfying (23), nc(t) and ns(t), satisfies (19) and (20). We must point out here that in general,
the equality in (14) is valid up to second moment description of the process, while for higher order
moments, (14) may no longer be true. However, if the process is gaussian, as is usually the case
in our communication systems, then (14) is strictly valid. This is because a gaussian process is
completely described by its second moment properties.

4 Conclusions

In this note, we introduce the concept of narrowband signals (stochastic processes) and their equiv-
alent complex base band representations. The tools in the previous sections enable us to transform
a band pass signal (stochastic process) into its complex base band representation. This not only
simplifies our problem, but also indicates that the carrier frequency is really not a factor when we
analyze the performance of the system. In order to become more familiar with these tools, the
reader should try to do the performance analysis of some modulations (e.g. MPSK, QAM, PAM)
over AWGN channel, using both the pass band model and the complex base band equivalent model.
You will see that they both reach the same conclusion.
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