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1 Basic Bounds for Generic M-ary Decision Rules

Consider an arbitrary deterministic decision rule for deciding among M hypotheses Hm for m =
0, 1, . . .M − 1 based on some measurement z ∈ Z. Such a rule introduces a partition of the
observation space

decide Hm ⇐⇒ z ∈ Zm (1)

where Zm
⋂Zj = ∅ and

⋃M−1
m=0 Zm = X . As an example, MAP detection for the M -ary problem

results in
Zm = {z : fz(u)(z|Hm)P (Hm) > fz(u)(z|Hj)P (Hj) ∀ j 6= m} (2)

The conditional probability of error is given by

P (E|Hm) = Pr {z(u) 6∈ Zm|Hm} = Pr {z(u) ∈ Zcm|Hm} (3)

Many useful bounds can be constructed by expressing Zcm in specific ways. For example, it is clear
that

Zcm = Z − Zm =
M−1⋃

j=0,j 6=m
Xj (4)

An expression that is typically more useful is obtained by constructing Zm from pairwise decision
regions ZPWm (j), defined as the region where Hm would be selected over Hj in a pairwise (binary)
decision. For example, in the case of MAP M -ary decisions,

ZPWm (j) = {z : fz(u)(z|Hm)P (Hm) > fz(u)(z|Hj)P (Hj)} (5)

Comparing the definitions of the global decision region and the pairwise regions (i.e., (2) and (5))
it is apparent that

Zm =
M−1⋂

j=0,j 6=m
ZPWm (j) (6)

The compliment of this region is obtained by applying DeMorgan’s Law yielding

Zcm =

M−1⋃
j=0,j 6=m

[
ZPWm (j)

]c
=

M−1⋃
j=0,j 6=m

ZPWj (m) (7)

where the fact that
[
ZPWm (j)

]c
= ZPWj (m) has been used.

Bounds can be constructed using simple Union Bounds and related techniques. Specifically, let
{Ai} be a set of events, then it follows that

max
i
P (Ai) ≤ P (

⋃
i

Ai) ≤
∑
i

P (Ai) (8)
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Figure 1: An example of a sufficient set for a given signal. Note that a global error cannot occur
without a sufficient pairwise error event occurring.

where the lower bound is constructed by obtaining the largest lower-bound from a family (i.e.,
P (Ai) is a lower bound for each value of i). Upper and lower bounds for the conditional error
probability can then be constructed using either the union in (4) or (7). However, evaluation
of Pr {z(u) ∈ Zcm|Hm} is typically difficult (i.e., if it can be obtained, then often times an exact
expression for the error probability can be obtained), so a bound constructed from pairwise errors
is more generally applicable. In this case, applying (8) using the the expression in (7) yields

max
j
PPW (j|Hm) ≤ P (E|Hm) ≤

M−1∑
j=0,j 6=m

PPW (j|Hm) (9)

where
PPW (j|Hm) = Pr

{
z ∈ ZPWj (m)|Hm

}
(10)

In practice the expression for Zcm in (7) is overly conservative owing to the fact that a subset of
terms in the union may actually fully define the compliment of the decision region. Suppose that
a set Nm ⊂ {0, 1, . . .M − 1} defines the region Zcm in the sense that

Zcm =
M−1⋃

j=0,j 6=m
ZPWj (m) =

M−1⋃
j∈Nm

ZPWj (m) (11)

We refer to any such set as a sufficient set and the corresponding pairwise error events as sufficient
Pairwise Error Events. A key property of such sets is that if a global error occurs, then some
sufficient pairwise error event must have occurred. One may view the sufficient set as a set of
“nearest neighbors” that determine the decision region; this concept is illustrated in Figure 1 for
the case of minimum distance decisions. As a result, the upper bound in (9) can be tightened by
replacing the sum over j 6= m with the sum over j ∈ Nm.

Bounds on the unconditional error probability can then be obtained by averaging these condi-
tional bounds using the fact that P (E) =

∑M−1
m=0 P (E|Hm)P (Hm)

M−1∑
m=0

P (Hm)

[
max
j
PPW (j|Hm)

]
≤ P (E) ≤

M−1∑
m=0

P (Hm)

M−1∑
j∈Nm

PPW (j|Hm) (12)
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1.1 Special Cases for AWGN Channels

A common special case for the application of the bounds developed above is that of a-priori equally-
likely signaling over an AWGN where z(u) = sm + w(u) under Hm with w(u) being AWGN. In
this case, the MAP detection rule is the Minimum Distance rule and the pairwise error is

PPW (j|Hm) = Q

√d2(j,m)

2N0

 d2(j,m) = ‖sj − sm‖2 (13)

In this case, the bound simplifies to

1

M

M−1∑
m=0

Q

√d2min(m)

2N0

 ≤ P (E) ≤ 1

M

M−1∑
m=0

M−1∑
j∈Nm

Q

√d2(j,m)

2N0

 (14)

where
d2min(m) = min

j 6=m
d2(j,m) (15)

A simple set of bounds can be obtained in terms of the global minimum distance

d2min = min
m

d2min(m) (16)

Specifically, it is straightforward to show that

1

M
Q

√d2min

2N0

 ≤ P (E) ≤ (M − 1)Q

√d2min

2N0

 (17)

which implies that at high SNR, the error probability must decay proportionally to Q

(√
d2min
2N0

)
–

i.e., the error probability of a binary test with only the nearest neighbor.
The last simple set of bounds is pessimistic (loose) in the sense that the upper bound was

constructed using all other hypotheses as the sufficient set (i.e., hence the (M − 1) term) and
the lower bound was constructed by taking only a single term from the sum. With some book-
keeping, these bounds can be improved. Specifically, consider the distance spectrum of the signal
set – i.e., the values of d(m, j) that can occur for the specific set of signals. Order these distances
d1 = dmin < d2 < d3 . . . . Let Ni({Nm}) be the number of times that di occurs in a listing of all
sufficient pairwise error events. Let Ki be the number of hypotheses for which dmin(m) = di. The
basic bound in (14) then simplifies to

∑
i

Ki

M
Q

√ d2i
2N0

 ≤ P (E) ≤
∑
i

Ni({Nm})
M

Q

√ d2i
2N0

 (18)

Note that one could use any single term from the above lower bound as a lower bound that may
be much easier to compute and only slightly looser. For example, this yields a tighter lower bound
in dmin of the form

P (E) ≥ K1

M
Q

√d2min

2N0

 (19)
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where K1 is the number of times dmin occurs in the sum of the lower bound in (14). Note that,
depending on the SNR, this may not be the best single-term lower bound. For example, the
analogous bound based on d2 may be larger at low SNR if K2 > K1. This motivates the lower
bound

max
i

Ki

M
Q

√ d2i
2N0

 ≤ P (E) (20)

At moderate to high SNR, the upper bound is dominated by the dmin term so that

P (E) ∼= N1({Nm})
M

Q

√d2min

2N0

 (21)

1.2 Conversion of M-ary Bounds to Bit Error Probability Bounds

The M hypotheses often correspond to M = 2q different binary (q-bit) words that label each signal
point (one-to-one). As such, the issue of the probability of bit error arises. Let b0, b1, . . . bq−1 be a
bit label. Any M -ary rule induces a rule for deciding between bi = 0 and bi = 1, so it is reasonable
to consider the probability that the ith bit is decided in error. Specifically, let Bi be the event that
the M -ary rule yields a bit error at location i. Recalling that E is the event that a “symbol” error
occurs (i.e., an error in the M -ary rule), then we have

P (Bi) =
P (Bi|E)P (E)

P (E|Bi)
= P (Bi|E)P (E) (22)

since P (E|Bi) = 1 (i.e., an error in one bit location yields a symbol error). It is non-trivial to
evaluate P (Bi|E), but we can consider the average bit error probability (i.e., averaged over bit
locations)

Pb =
1

q

q−1∑
i=0

P (Bi) =
1

q

q−1∑
i=0

P (Bi|E)P (E) (23)

When a symbol error is made, at least one of the bits must be in error – this yields a lower bound.
The upper bound s results from noting that P (Bi|E) ≤ 1. This yields

1

q
P (E) ≤ Pb ≤ P (E) (24)

This result can then be combined with any set of bounds for P (E) yielding

1

q
BL(E) ≤ Pb ≤ BU (E) (25)

where BL(E) and BU (E) are upper and lower bounds on P (E), respectively. Note that this approach
is sufficiently tight only when q is small (i.e., small number of bits mapped to a symbol.
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2 Lower Bounds via Side Information

One tool that can be used to obtain a simple lower bound for any problem is the use of side
information. This is often described as a “genie” that aids a receiver. The reasoning is that the
optimal genie-aided receiver must perform at least as well as the non-aided receiver. Thus, by
choosing the genie’s rules carefully, one can obtain a good lower bound that is easy to evaluate.

To formalize this notion, define a random vector v(u) that is the side information. Let us focus
on the case where a lower bound is desired for P (E) for an M -ary decision when the MAP M -ary
decision rule is used. In that case, the decision rule of a genie-aided receiver is

max
m

fz(u),v(u)(z,v|Hm)P (Hm) ⇐⇒ max
m

fz(u)|(z|Hm)Pv(u)(v|Hm)P (Hm) (26)

where it has been assumed that z(u) is independent of v(u) given the hypothesis. Consider the
special case where the genie provides the receiver with the index of the correct hypothesis and some
other hypothesis with a predetermined probability. For example, if Hm is the true hypothesis, the
genie will provide the receiver with v = {m, j} with probability Pv(u)(v = {m, j}|Hm). The genie
never gives incorrect information – e.g., the genie will never reveal v = {3, 4} if H2 is correct.
Notice that the error probability given the genie’s side information is very similar to a pairwise
error probability for the MAP detector.

We define a special type of side information scheme as Pairwise Uniform Revelation of Side
Information (PURSI). In a PURSI scheme the side information is a pair of indices with

Pv(u)(v = {m, j}|Hm) = Pv(u)(v = {m, j}|Hj) (27)

Thus, in a PURSI scheme, given that Hm is true, the side information will be v = {m, j} and the
decision in (26) will reduces to

fz(u)|(z|Hm)P (Hm)
Hm
>
<
Hj

fz(u)|(z|Hj)P (Hj) (28)

This follows since Pv(u)(v = {m, j}|Hi) is zero if i is not j or m and it is equal for i = m and i = j.
Thus, the conditional probability of error for a PURSI scheme is

P (E|v = {m, j},Hm) = PPW (j|Hm) (29)

A primary example of how this may be used is to reveal pairs that correspond to signals at a given
distance, thus obtaining a bound similar to that in (20).

The primary use of side information is for obtaining lower bounds on optimal bit detectors.
Bounds on bit error probability based on bounds for P (E) may not be useful when M is large.
One may also be interested in the bit error probability P (Bi) associated with the MAP detector
for bi. Note that upper bounds of the form in (25) are valid upper bounds for P (Bi) for the MAP
bit detector since the latter obtains the minimum bit error probability. However, a lower bound of
the form in (25) is not a valid lower bound for the bit error probability of the MAP bit detector.
In general, performance analysis for optimal bit detectors is more difficult that for the M -ary
detectors.
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Figure 2: The 4-PAM signal set with bit labels.

Thus, in a PURSI scheme, given that Hm is true, the side information will be v = {m, j}
and the decision in (27) will reduces to

fz(u)|(z|Hm)P (Hm)
Hm
>
<
Hj

fz(u)|(z|Hj)P (Hj) (29)

This follows since Pv(u)(v = {m, j}|Hi) is zero if i is not j or m and it is equal for i = m
and i = j. Thus, the conditional probability of error for a PURSI scheme is

P (E|v = {m, j}, Hm) = PPW (j|Hm) (30)

A primary example of how this may be used is to reveal pairs that correspond to signals at
a given distance, thus obtaining a bound similar to that in (21).

The primary use of side information is for obtaining lower bounds on optimal bit detec-
tors. Bounds on bit error probability based on bounds for P (E) may not be useful when M
is large. One may also be interested in the bit error probability P (Bi) associated with the
MAP detector for bi. Note that upper bounds of the form in (26) are valid upper bounds for
P (Bi) for the MAP bit detector since the latter obtains the minimum bit error probability.
However, a lower bound of the form in (26) is not a valid lower bound for the bit error prob-
ability of the MAP bit detector. In general, performance analysis for optimal bit detectors
is more difficult that for the M -ary detectors.

3 A Detailed Example

Consider the simple M = 4 Pulse Amplitude Modulation (PAM) signal with s0 = −3A,
s1 = −A, s2 = +A, and s3 = +3A, where A > 0. In addition, assume that two bits, b0 and
b1 are mapped onto these signals using a Gray mapping. Assume that all bits, and therefore
symbols, are equally likely. This is illustrated in Figure 2. In this section we apply all of
the previous development to this problem. First, let us consider the MAP symbol and bit
detectors based on the observation z(u) = sm + w(u) under Hm, with w(u) a mean-zero
Gaussian random variable with variance σ2.

Figure 2: The 4-PAM signal set with bit labels.

3 A Detailed Example

Consider the simple M = 4 Pulse Amplitude Modulation (PAM) signal with s0 = −3A, s1 = −A,
s2 = +A, and s3 = +3A, where A > 0. In addition, assume that two bits, b0 and b1 are mapped
onto these signals using a Gray mapping. Assume that all bits, and therefore symbols, are equally
likely. This is illustrated in Figure 2. In this section we apply all of the previous development to
this problem. First, let us consider the MAP symbol and bit detectors based on the observation
z(u) = sm + w(u) under Hm, with w(u) a mean-zero Gaussian random variable with variance σ2.

3.1 Optimal Symbol Detector and Exact Performance

The MAP symbol detector is a simple minimum distance rule in this case. The decision regions
for the MAP symbol detector are illustrated in Figure 3. We can find exact expressions for the
probability of symbol error and the bit error probabilities in this simple case. In particular, it is
straightforward to verify that

P (E|H0) = Q(A/σ) (30a)

P (E|H1) = 2Q(A/σ) (30b)

P (E|H2) = 2Q(A/σ) (30c)

P (E|H3) = Q(A/σ) (30d)

Averaging over the equal prior probabilities yields

P (E) =
3

2
Q(A/σ) (31)

We can find the probability of bit error for each bit location for this optimal symbol detector
as well. Specifically, for b0 we have the decision rule implied by the MAP symbol detection rule as
illustrated in Figure 4 with T = 2A.

P (B0|H0) = Q(A/σ)−Q(5A/σ) (32a)

P (B0|H1) = Q(A/σ) + Q(3A/σ) (32b)

P (B0|H2) = Q(A/σ) + Q(3A/σ) (32c)

P (B0|H3) = Q(A/σ)−Q(5A/σ) (32d)

Again, averaging over the four equally-likely hypotheses, we have

P (B0) = Q(A/σ) +
1

2
Q(3A/σ)− 1

2
Q(5A/σ) (33)



Notes on Performance Bounds v1.4 - c© K.M. Chugg – October 5, 2015 7

01 11 1000

s0 s1 s2

-3A -A +A +3A

(b1 b0)

s3

Notes on Performance Bounds v1.3 - c© K.M. Chugg – August 16, 2000 7

Figure 3: The decision regions for MAP symbol detection.

3.1 Optimal Symbol Detector and Exact Performance

The MAP symbol detector is a simple minimum distance rule in this case. The decision
regions for the MAP symbol detector are illustrated in Figure 3. We can find exact expres-
sions for the probability of symbol error and the bit error probabilities in this simple case.
In particular, it is straightforward to verify that

P (E|H0) = Q(A/σ) (31)

P (E|H1) = 2Q(A/σ) (32)

P (E|H2) = 2Q(A/σ) (33)

P (E|H3) = Q(A/σ) (34)

Averaging over the equal prior probabilities yields

P (E) =
3

2
Q(A/σ) (35)

We can find the probability of bit error for each bit location for this optimal symbol
detector as well. Specifically, for b0 we have the decision rule implied by the MAP symbol
detection rule as illustrated in Figure 4 with T = 2A.

P (B0|H0) = Q(A/σ)−Q(5A/σ) (36)

P (B0|H1) = Q(A/σ) + Q(3A/σ) (37)

P (B0|H2) = Q(A/σ) + Q(3A/σ) (38)

P (B0|H3) = Q(A/σ)−Q(5A/σ) (39)

Again, averaging over the four equally-likely hypotheses, we have

P (B0) = Q(A/σ) +
1

2
Q(3A/σ)− 1

2
Q(5A/σ) (40)

Figure 3: The decision regions for MAP symbol detection.
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Figure 4: The decision regions for b0 implied by the MAP symbol detection rule when
T = 2A.

Figure 5: The decision regions for b1 implied by the MAP symbol detection rule.

The error probability for the bit b1 is easier to compute. Specifically, the decision region
is that shown in Figure 5, which implies

P (B1|H0) = P (B1|H3) = Q(3A/σ) (41)

P (B1|H1) = P (B1|H2) = Q(A/σ) (42)

It follows that the average error probability on b1 is

P (B1) =
1

2
Q(A/σ) +

1

2
Q(3A/σ) (43)

The average bit error probability, as defined in (24), for the MAP symbol detector is

Pb =
3

4
Q(A/σ) +

1

2
Q(3A/σ)− 1

4
Q(5A/σ) (44)

Figure 4: The decision regions for b0 implied by the MAP symbol detection rule when T = 2A.
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Figure 4: The decision regions for b0 implied by the MAP symbol detection rule when
T = 2A.

Figure 5: The decision regions for b1 implied by the MAP symbol detection rule.

The error probability for the bit b1 is easier to compute. Specifically, the decision region
is that shown in Figure 5, which implies

P (B1|H0) = P (B1|H3) = Q(3A/σ) (41)

P (B1|H1) = P (B1|H2) = Q(A/σ) (42)

It follows that the average error probability on b1 is

P (B1) =
1

2
Q(A/σ) +

1

2
Q(3A/σ) (43)

The average bit error probability, as defined in (24), for the MAP symbol detector is

Pb =
3

4
Q(A/σ) +

1

2
Q(3A/σ)− 1

4
Q(5A/σ) (44)

Figure 5: The decision regions for b1 implied by the MAP symbol detection rule.

The error probability for the bit b1 is easier to compute. Specifically, the decision region is that
shown in Figure 5, which implies

P (B1|H0) = P (B1|H3) = Q(3A/σ) (34a)

P (B1|H1) = P (B1|H2) = Q(A/σ) (34b)

It follows that the average error probability on b1 is

P (B1) =
1

2
Q(A/σ) +

1

2
Q(3A/σ) (35)

The average bit error probability, as defined in (23), for the MAP symbol detector is

Pb =
3

4
Q(A/σ) +

1

2
Q(3A/σ)− 1

4
Q(5A/σ) (36)

3.2 Optimal Bit Detector

First, consider the MAP detector for bit b1. Applying the notion of average likelihood and averaging
out the effects of b0, we obtain the following rule

Λ(z) =
exp

[ −1
2σ2 (z − 3A)2

]
+ exp

[ −1
2σ2 (z −A)2

]
exp

[ −1
2σ2 (z + 3A)2

]
+ exp

[ −1
2σ2 (z +A)2

] Hb1=1
>
<
Hb1=0

1 (37)

While this expression looks quite complicated, it has the property that Λ(−z) = [Λ(z)]−1. It follows
that the observation z = 0 must correspond to a decision boundary (i.e., Λ(0) = 1). Moreover, this
property implies that the rule must be the same on a give side of z = 0. It is simple to verify that
this yields the following rule

z
Hb1=1
>
<
Hb1=0

0 (38)

Note that this is the same rule implied for b1 by the MAP symbol decision regions illustrated in
Figure 3.
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For the bit label b0, the MAP decisions rule is different than that implied by the MAP symbol
detection rule. Similar to the above we have

Λ(z) =
exp

[ −1
2σ2 (z +A)2

]
+ exp

[ −1
2σ2 (z −A)2

]
exp

[ −1
2σ2 (z + 3A)2

]
+ exp

[ −1
2σ2 (z − 3A)2

] Hb0=1
>
<
Hb0=0

1 (39)

This can be simplified to

cosh
(
3A
σ2 |z|

)
cosh

(
A
σ2 |z|

) Hb1=0
>
<
Hb1=1

exp

[
4A2

σ2

]
(40)

It is straightforward to verify that g(x) = cosh(3x)/ cosh(x) is a strictly monotonic function on
x > 0. As a result, we can define the inverse function g−1(y) which maps y > 0 to x such that
y = g(x). Using this fact, we obtain a simple form for that test

|z|
Hb0=0
>
<
Hb0=1

T = σ

(
A

σ

)−1
g−1

(
exp

[
4A2

σ2

])
(41)

Notice that this test is similar to the test implied by the MAP symbol detector and shown in
Figure 4. However, the value of T for the MAP symbol detection rule is T = 2A. For this optimal
rule for b0, T is a function of the parameters A and σ2. However, at moderate to high SNR, we
expect the rules to be approximately the same. In fact, note that g(x) ∼ e2x so that T ∼ 2A.
This motivates writing the optimal bit detection rule in terms of a threshold centered around 2A.
Specifically, define ε by the relation T = 2A+ ε, where T is defined in (41).

The exact probability of error for the MAP bit detector can also be computed. In the case of b1,
since the rule is the same as that implied by the MAP symbol detector, the performance is also the
same (i.e., as given in (35)). For the MAP detector of b0, the performance can also be determined
in terms of ε. This is very similar to the P (B0) analysis for the symbol detector =⇒

P (B0|H0) = P (B0|H3) = Q([A− ε]/σ)−Q([5A+ ε]/σ) (42)

P (B0|H1) = P (B0|H2) = Q([A+ ε]/σ) + Q([3A+ ε]/σ) (43)

Averaging over the a-priori statistics yields

P (B0) =
1

2
[Q([A− ε]/σ) + Q([A+ ε]/σ)] +

1

2
Q([3A+ ε]/σ)− 1

2
Q([5A+ ε]/σ) (44)

Notice that this expression for P (B0) for the minimum bit error probability receiver reduces to that
in (33) as ε → 0. Also, note that ε/σ is only a function of A/σ (as opposed to A and σ separately).
A plot of ε/σ is given in Figure 6. Notice that ε/σ tends toward a value of 1 for A/σ2 → 0 and
tends toward zero for large A/σ.

3.3 Bounds for the MAP Symbol Detector

The bounds in (14) result in the following upper and lower bounds:

Q(A/σ) ≤ P (E) ≤ 3

2
Q(A/σ) (45)
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Figure 6: The deviation of the optimal threshold for detection of b0 from that associated
with the MAP symbol detector. Note that ε/σ is approximately zero over the entire range
of useful SNR.

is also the same (i.e., as given in (43)). For the MAP detector of b0, the performance can
also be determined in terms of ε. This is very similar to the P (B0) analysis for the symbol
detector ⇒

P (B0|H0) = P (B0|H3) = Q([A− ε]/σ)−Q([5A + ε]/σ) (50)

P (B0|H1) = P (B0|H2) = Q([A + ε]/σ) + Q([3A + ε]/σ) (51)

Averaging over the a-priori statistics yields

P (B0) =
1

2
[Q([A− ε]/σ) + Q([A + ε]/σ)] +

1

2
Q([3A + ε]/σ)− 1

2
Q([5A + ε]/σ) (52)

Notice that this expression for P (B0) for the minimum bit error probability receiver reduces
to that in (40) as ε → 0. Also, note that ε/σ is only a function of A/σ (as opposed to A
and σ separately). A plot of ε/σ is given in Figure 6. Notice that ε/σ tends toward a value
of 1 for A/σ2 → 0 and tends toward zero for large A/σ.

Figure 6: The deviation of the optimal threshold for detection of b0 from that associated with the
MAP symbol detector. Note that ε/σ is approximately zero over the entire range of useful SNR.

The lower bound follows from the fact that each signal has a neighbor at the distance dmin = 2A.
It turns out that, for this special case, evaluation of the upperbound in (14) based on pairwise error
events is the same as the exact expression. This is because the complement of each global decision
region is defined by two disjoint pairwise decision regions.

The method of side information can be illustrated by considering several examples. Let’s con-
sider three different side information schemes – i.e., genie-A, genie-B and genie-C. The first genie,
genie-A, uses the side information scheme defined by the conditional statistics

H0 : v = {s0, s1} with probability 1 (46)

H1 : v = {s0, s1} with probability 1 (47)

H2 : v = {s2, s3} with probability 1 (48)

H3 : v = {s2, s3} with probability 1 (49)

This defines a PURSI scheme since P (v(u) = {s0, s1}|H0) = P (v(u) = {s0, s1}|H1) = 1 and
P (v(u) = {s2, s3}|H2) = P (v(u) = {s2, s3}|H3) = 1. When the genie reveals v = {s0, s1}, the
optimal symbol detector executes the test

fz(u)|(z|H0)P (v(u) = {s0, s1}|H0)P (H0)
H0
>
<
H1

fz(u)|(z|H1)P (v(u) = {s0, s1}|H1)P (H1) (50)

which, because of the PURSI property and the equal a-priori probabilities, is a minimum distance
decision. Note that the receiver performs this pairwise decision because P (v(u) = {s0, s1}|Hm) = 0
for m = 2, 3. It follows that the optimal receiver aided by genie-A has P (E|H0) = P (E|H1) =
Q(A/σ). The same argument yields for P (E|H2) = P (E|H3) = Q(A/σ). So, this side information
scheme yields the bound in (45).
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Consider genie-B which uses the scheme

H0 : v = {s0} with probability 1 (51)

H1 : v = {s0, s1} with probability 1 (52)

H2 : v = {s2, s3} with probability 1 (53)

H3 : v = {s3} with probability 1 (54)

It is straightforward to verify that this is also a PURSI scheme. Since the receiver knows the correct
hypothesis when genie-B reveals either v = {s0} or v = {s3}, errors are only made under the other
two values for the side information. This leads to the lower bound P (E) ≥ 1

2Q(A/σ), which is
smaller by the factor of 1/2 than the bound obtained with genie-A. This illustrates the fact that,
the more information the genie provides, the less tight the lower bound will be.

Consider a non-PURSI genie-C defined by

H0 : v = {s0, s1} with probability 1 (55)

H1 : v = {s0, s1} or {s1, s2} with probability 1/2 each (56)

H2 : v = {s1, s2} or {s2, s3} with probability 1/2 each (57)

H3 : v = {s2, s3} with probability 1 (58)

The fact that this genie is non-PURSI does not preclude our ability to construct a valid lower
bound; it’s just more difficult. Specifically, conditioned on H0, we will be given side information
v = {s0, s1} which is only possible if H0 or H1 is true. However, P (v(u) = {s0, s1}|H0) = 1, while
P (v(u) = {s0, s1}|H1) = 1/2. It follows that the test conducted is

fz(u)|(z|H0)(1)
H0
>
<
H1

fz(u)|(z|H1)(1/2) (59)

Note that this rule is equivalent to a binary test with π0 = 2π1. As a result, conditioned on H0 we
have

P (E|H0) = Q

(
A

σ
+

[
A

σ

]−1
ln(2)

)
(60)

To find P (E|H1), consider the cases of v = {s0, s1} and v = {s1, s2} separately. First consider
v = {s0, s1}, which is similar to the above development

P (E|H1,v = {s0, s1}) = Q

(
A

σ
−
[
A

σ

]−1
ln(2)

)
(61)

Since P (v(u) = {s1, s2}|H1) = P (v(u) = {s1, s2}|H2) = 1/2, the associated test is a minimum
distance test between s1 and s2 so that

P (E|H1,v = {s1, s2}) = Q(A/σ) (62)

It follows that

P (E|H1) =
1

2
Q

(
A

σ
−
[
A

σ

]−1
ln(2)

)
+

1

2
Q(A/σ) (63)
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Using the same type of development you can show that P (E|H3) = P (E|H0) and P (E|H1) =
P (E|H2). The lower bound obtained is therefore that of this genie-C aided receiver

P (E) ≥ 1

2
Q

(
A

σ
+

[
A

σ

]−1
ln(2)

)
+

1

4
Q

(
A

σ
−
[
A

σ

]−1
ln(2)

)
+

1

4
Q(A/σ) (64)

This bound can also be written as

3

4

[
2

3
Q

(
A

σ
+

[
A

σ

]−1
ln(2)

)
+

1

3
Q

(
A

σ
−
[
A

σ

]−1
ln(2)

)]
+

1

4
Q(A/σ) ≤ Q(A/σ) (65)

In other words, the bound obtained using genie-C is not as good as the bound obtained using
genie-A. This illustrates another property of the method of side information: a tighter upperbound
will generally be obtained when the genie’s side information is revealed in a PURSI manner.

3.4 Bounds for the MAP Bit Detector

Note that the expressions for P (B0), P (B1), and Pb for the MAP symbol detector in Section 3.1 are
upper bounds for the performance of the optimal bit detector (why?). We can use side information
techniques to obtain lower bounds for the optimal bit detector too (which also serve as lower bounds
on bit error probabilities for all detectors, including the MAP symbol detector). One technique is
to use a PURSI scheme where, for each hypothesis the correct signal and a signal that differs in
the location of interest is revealed.

For example, consider the bit b0. A lower bound on P (B0) can be found using the side infor-
mation scheme of genie-A in Section 3.3. Note that this PURSI scheme has the property that each
pair revealed differs in b0. This is a good property for finding a large lower bound on P (B0). Note
that, for the genie-A-aided detector, MAP symbol detection and MAP detection of b0 are the same.
It follows that a lower bound for any receiver on P (B0) is

P (B0) ≥ Q(A/σ) (66)

For bit b1, we know the exact value of P (B1), but if one were to apply the PURSI method
to obtain a lower bound, the method of genie-B from Section 3.3 provides the bound P (B0) ≥
1
2Q(A/σ). Another PURSI scheme is defined by

H0 : v = {s0, s3} with probability 1 (67)

H1 : v = {s1, s2} with probability 1 (68)

H2 : v = {s1, s2} with probability 1 (69)

H3 : v = {s0, s3} with probability 1 (70)

It can be shown that this yields the lower bound for P (B1) for any receiver of

P (B1) ≥
1

2
Q(A/σ) +

1

2
Q(3A/σ) (71)

Once again, this illustrates that tighter bounds are obtained by revealing less information. In this
case, the lower bound coincides with the exact expression.
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Figure 7: The bit error probability: P (B1) for the optimal bit/symbol detector (i.e., see
(43)), and P (B1) for the optimal bit detector (i.e., see (49)), symbol detector (i.e., see (40)),
and the lower bound in (74).

Since P (B1) = Q(A/σ) is known to be the exact performance of the optimal detector for
b1, we can combine this with the lower bound for P (B0) in (74) to obtain the lower bound
for any receiver

Pb ≥ Q(A/σ) (80)

This toy example was intended to provide insight into the bounding techniques described.
Nearly all of the bounds are useless since we already have exact expressions for the desired
error probabilities. One possible exception is the bound in (74), which is a useful expres-
sion when compared against the exact expression in (52) which requires evaluation of the
parameter ε (i.e., the g−1(·) function). In Figure 7, P (B1) is plotted along with P (B0) for
the optimal detector, the symbol detector, and the associated lower bound.

Figure 7: The bit error probability: P (B1) for the optimal bit/symbol detector (i.e., see (35)), and
P (B1) for the optimal bit detector (i.e., see (41)), symbol detector (i.e., see (33)), and the lower
bound in (66).

Combining the lower bounds for P (B1) and P (B0) in (71) and (66), respectively, we obtain the
lower bound for the bit error probability of any receiver

Pb ≥
3

4
Q(A/σ) +

1

4
Q(3A/σ) (72)

This toy example was intended to provide insight into the bounding techniques described.
Nearly all of the bounds are useless since we already have exact expressions for the desired error
probabilities. One possible exception is the bound in (66), which is a useful expression when
compared against the exact expression in (44) which requires evaluation of the parameter ε (i.e.,
the g−1(·) function). In Figure 7, P (B1) is plotted along with P (B0) for the optimal detector, the
symbol detector, and the associated lower bound.


