
Summary of Soft-In/Soft-out (SISO) Decoding

Keith M. Chugg

November 19, 2015

1 Definitions

In the metric domain, soft information is stored in the negative-log of the probability or likelihood.
Therefore, high confidence for a conditional value corresponds to a low metric. Let us consider
a code with k input information bits {bi} and n output, coded bits, {cj}. Index the 2k code
configurations by m = 0, 1, . . . 2k − 1. Then, we have

MI[bi]
∆
= − ln pbi(u)(bi) bi = 0, 1 (1)

MI[cj]
∆
= − ln fzj(u)|cj(u)(zj |cj) cj = 0, 1 (2)

Notice that MI[bi = 1] > MI[bi = 0] means that the conditional value 0 is more likely. The input
metrics on bi measure the a-priori belief about the bit values and the input metrics on cj correspond
to channel likelihoods.

For the BPSK-AWGN channel

zj(u) =
√

Ec(−1)cj(u) + wj(u) (3)

where wj(u) is an iid sequence of Gaussian random variables with mean zero and variance N0/2.
For this model, we have

MI[cj] =
(zj −

√
Ec(−1)cj)2

N0
(4)

We are concerned only with the difference between metrics. Specifically, we can add any finite
constant to the metrics for a particular variable without affecting the underlying soft-decision
information. This is equivalent to multiplication by a positive constant in the probability domain.
It is useful to select as a constant, the metric for the conditional value zero. Subtraction of this
constant is common and we will refer to the resulting metrics as normalized. In normalized form,
the metric of a zero conditional value is zero, so we need only specify one number for soft-decision
information on a binary variable. Specifically, define the normalized metric as

MI[bi]
∆
= MI[bi]−MI[bi = 0] = − ln

(
pbi(u)(bi)

pbi(u)(0)

)
(5)

MI[cj]
∆
= MI[cj]−MI[cj = 0] = − ln

(
fzj(u)|cj(u)(zj |cj)
fzj(u)|cj(u)(zj |0)

)
(6)

1

c©K.M. Chugg - November 19, 2015– TITLE 2

Note that MI[bi = 0] = 0 and only MI[bi = 1] need be stored. Also, for this reason, the notation
MI[bi] can also be used to represent this single number (i.e., MI[bi = 1]).

In normalized form, the magnitude of the metric describes the level of confidence and the sign
determines the implied hard-decision. Specifically, if MI[bi = 1] is positive, then the value bi = 0 is
more likely. The larger |MI[bi = 1]| the higher the level of confidence in this decision.

Notice that for the BPSK-AWGN channel,

MI[cj = 1] =
(zj −

√
Ec(−1))2

N0
− (zj −

√
Ec(+1))2

N0
=

4
√
Ec

N0
zj (7)

2 The SISO Decoder

The SISO decoder is based on the assumption of an independent input sequence and a memoryless
channel. The SISO processing has two stages:

1. Combining of input marginal metrics to compute metrics for each code configuration

2. Marginalization of configuration metrics to obtain output metrics on the variables associated
with the code.

The combining is done by summation of the incoming metrics for the conditional value of each
input/output variable associated with the given configuration. Specifically,

M[Config = m] =
k−1∑
p=0

MI[b(m)
p] +

n−1∑
q=0

MI[c(m)
q] (8)

Note that the above holds whether or not the metrics are normalized.
The marginalization is done for each conditional value of each variable by minimizing over all

configurations consistent with that conditional value. Specifically,

MSM[bi = 1] = min
Config=m:bi=1

M[Config = m] (9)

MSM[bi = 0] = min
Config=m:bi=0

M[Config = m] (10)

MSM[cj = 1] = min
Config=m:cj=1

M[Config = m] (11)

MSM[cj = 0] = min
Config=m:cj=0

M[Config = m] (12)

where MSM can be read as the minimum summed (configuration) metric. Note that we may also
place this is normalized form – i.e., MSM[bi] = MSM[bi = 1]−MSM[bi = 0]

Finally, the convention is to place this output metric in so-called “extrinsic” form by removing
the input metric from this MSM value:

MO[bi] = MSM[bi]−MI[bi] (13)

MO[cj] = MSM[cj]−MI[cj] (14)

c©K.M. Chugg - November 19, 2015– TITLE 3

Notice that the term MI[bi] has been added into the configuration metric in (8) and then
subtracted out in (13). For this reason, you will also see these operations summarized as

MO[bi] = min
Config=m:bi


k−1∑

p=0,p 6=i

MI[b(m)
p] +

n−1∑
q=0

MI[c(m)
q]

 (15a)

MO[cj] = min
Config=m:cj


k−1∑
p=0

MI[b(m)
p] +

n−1∑
q=0,q 6=j

MI[c(m)
q]

 (15b)

3 Generalizations

Notice that if we did not move to the metric domain, we would have obtained similar results, but
with combining done via multiplication and marginalization done via maximization. For example,
the probability domain equivalent of (15a) is

PO[bi] = max
Config=m:bi


k−1∏

p=0,p 6=i

PI[b(m)
p]×

n−1∏
q=0

PI[c(m)
q]

 (16a)

PO[cj] = max
Config=m:cj


k−1∏
p=0

PI[b(m)
p]×

n−1∏
q=0,q 6=j

PI[c(m)
q]

 (16b)

where PI[·] = exp(−MI[·]) and PO[·] = exp(−MO[·]).
It is customary to refer to the SISO processing by the combining an marginalization operators

used. For example, we described in detail, the min-sum processing in Section 2. The above equation
is the max-product version. The min-sum is the equivalent of the max-product processing, just
carried out in the metric domain.

Recall from lecture that both the min-sum and max-product we inspired by bit-level decision
rules based on the MAP sequence (codeword) decision rule. We also mentioned that one could
consider minimizing the bit error probability by finding the MAP bit decision rule. This requires
computation of the bit APPs, or equivalently

fbi(u),z(u)(bi, z) =
∑
b:bi

f(z|b)p(b) (17)

=
∑
b:bi


n−1∏
q=0

f(zj |cj(b))×
k−1∏
p=0

p(bp(b))

 (18)

Notice now that the 2k configurations are being enumerated by b. With this observation, we see
that the optimal bit decision rule corresponds to product combining of probabilities and summation

c©K.M. Chugg - November 19, 2015– TITLE 4

for marginalizing. This motivates the definition of the sum-product SISO rules

PO[bi] =
∑

Config=m:bi


k−1∏

p=0,p 6=i

PI[b(m)
p]×

n−1∏
q=0

PI[c(m)
q]

 (19)

PO[cj] =
∑

Config=m:cj


k−1∏
p=0

PI[b(m)
p]×

n−1∏
q=0,q 6=j

PI[c(m)
q]

 (20)

which differs from (16a) only by replacing the maximization operation by summation.
This sum-product processing can also be done in the metric domain. This takes the following

form:

MO[bi] = min
m:bi

∗


k−1∑

p=0,p 6=i

MI[b(m)
p] +

n−1∑
q=0

MI[c(m)
q]

 (21a)

MO[cj] = min
m:cj

∗


k−1∑
p=0

MI[b(m)
p] +

n−1∑
q=0,q 6=j

MI[c(m)
q]

 (21b)

where the min∗ operation is defined by

min∗(x1, x2 . . . xn)
∆
= − ln(e−x1 + e−x2 + · · · e−xn) (22)

and it follows that

1. min∗(x, y) = min(x, y)− ln
(
1 + e−|x−y|

)
2. min∗(x, y, z) = min∗(min∗(x, y), z)

In summary, there are two basic SISO processing methods, one based on optimal codeword
decision and one based on optimal bit decisions. Both can be carried out in either the natural
probability domain or in the metric (negative-log-probability) domain. The SISO based on sequence
optimality uses max-product processing in the probability domain and min-sum processing in the
metric domain. The SISO based on bit optimality uses sum-product processing in the probability
domain and min∗-sum processing in the metric domain.

3.1 The Marginalization-Combining Semi-Ring

Eventually, we will be interested in algorithms for computing the SISO processing efficiently – i.e.,
by not computing the 2k configuration metrics explicitly. By noting some common properties of
the marginalization and combining operators, it is possible to show that many of these algorithms
can easily be converted from one format to another. For example, if one has derived an efficient
algorithm for computing the sum-product SISO operation, then it may be possible to convert it
to the appropriate min-sum SISO by simply changing the soft information to metric form and
replacing all sum operations by min operations, then replacing all products by sums. In that
sense, there is only “one” algorithm that can take various forms according to the selection of the
probability/metric domain and the bit/sequence optimality criterion.

c©K.M. Chugg - November 19, 2015– TITLE 5

In order for this transformation to hold, the algorithm must be obtained using only the semi-ring
properties of the the marginalization/combining operators. These properties are described below –
taken from Chugg, et.al., ”Iterative Detection”.

The condition underlying this duality principle is that the marginalization and combining oper-
ators considered (©c , ©m), together with the ranges for the associated soft information (F), form
a commutative semi-ring. Specifically, (F , ©c , ©m , Ic, Im) forms a commutative semi-ring if

(SR1) ©m and ©c are associative and commutative on F

(SR2) Identity elements: ∃ Ic, Im ∈ F such that f©c Ic = f and f©m Im = f for all f ∈ F

(SR3) Distributive Law: f©c (g©m h) = (f©c g)©m (f©c h)

Note that, in general, there is no inverse for the marginalization or combining operator. However,
for most cases of practical interest, the combining operation is invertible. Thus, throughout this
book, we assume another property, namely

• Combining Inverse: ∀ f ∈ F and f 6= Im, there exists f̄ ∈ F such that f©c f̄ = Ic. We denote
g©c f̄ by g©c−1f .

We use the inverse combining operator only to simplify the presentation of some operations. Fur-
thermore, this operator is only applied in the form (f©c g©c h)©c−1f – i.e., where it can be inter-
preted as operator that specifies a term be excluded from a stated combination.

The correspondence between the specific cases discussed and this general setting is summarized
in Table 1.

Soft-Info(·) F ©m ©c Im Ic f̄ ©c−1 Threshold operation

APP [0,∞) + × 0 1 1/f ÷ arg max

neg-log-APP (−∞,∞] min∗ + ∞ 0 −f − arg min

Generalized-APP [0,∞) max × 0 1 1/f ÷ arg max

MSM (−∞,∞] min + ∞ 0 −f − arg min

Table 1: Parameters of the semi-ring for each of the marginalization combining schemes discussed.
The threshold operation is the method used to convert the given soft measure into a hard decision.

	Definitions
	The SISO Decoder
	Generalizations
	The Marginalization-Combining Semi-Ring

