
c©K.M. Chugg - April 12, 2017– EE 564 – Performance Limits 1

Summary of Performance Limits

EE564: Keith M. Chugg – version 0.4

There is a basic trade-off between throughput and fidelity in a communications channel – i.e.,
the faster one would like to send data, the less reliable it can be communicated. There are a number
of ways to quantify this trade-off. The most well known measure is Shannon’s channel capacity,
which defines the maximum information transfer rate that can be achieved with arbitrarily low
error probability. The proof of this capacity result is based on averaging over random codes and
taking the limit as the encoding block size approaches infinity.

In practice, one can only communicate with finite block sizes and must tolerate some non-
zero probability of error. Determining this precise trade-off between block size, error probability,
and achievable throughput is quite difficult, especially if one places realistic constraints on the
channel. For many years, the coding community used the so-called Channel Cut-off Rate [1, 2]
as a measure of this finite-block size trade-off. The cut-off rate is determined by upper-bounding
the performance of random coding with the union bound. The cut-off rate was a good tool for
gauging the achievable performance of classical codes and to a great extent, the coding community
considered it the practical limit for error correction coding. However, after the development of
modern turbo-like codes (TLCs), it became clear that the cut-off rate was an artificial measure and
that practical codes could perform much better than predicted by the cut-off rate.

Other finite block size performance bounds existed in the literature [3, 4], but were not widely
used as a comparison criterion for practical codes because they are difficult to evaluate and, as
mentioned above, classical codes were far from these limits. In particular, the sphere-packing
bound and the random coding bound are two useful finite block size bounds that approach the
channel capacity as the block size increases asymptotically.

In this document, we briefly describe measures of achievable performance for finite block size
coding schemes. We suggest numerical methods for evaluating and/or approximating these mea-
sures. Finally, we demonstrate a fairly simple measure for gauging the performance limits of finite
block size codes. There exist simple TLC constructions that approach these limits over a wide
range of operating scenarios (rate, block size, and target error rate) within approximately 1 dB
in Eb/N0. Furthermore, for a particular operating scenario, point designs typically can be found
which are within 0.5 dB in Eb/N0 of these perform limits. Thus, the suggested measure can be used
as a guideline for the achievable performance of a link using modern FEC and also as a benchmark
for modern codecs.

1 Channel Model and Rate Measures

For the remainder of this document, we will consider the modulation constrained additive white
Gaussian noise (AWGN) channel, where each channel use is modeled by

z(u) =

√
Es
N0

x(u) + w(u) (D × 1) (1)

where D is the number of dimensions for each channel use. The information-bearing signal x(u)
is distributed over a finite set S = {sm}M−1

m=0 with distribution pm = Pr {x(u) = sm}. The noise
w(u) is a zero-mean Gaussian vector, mutually independent over all channel uses. To simplify the
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later numerical analysis, the observation is assumed to be normalized so that the noise variance in
each dimension is 1/2, specifically

E
{
‖x(u)‖2

}
=

M−1∑
m=0

pm‖sm‖2 = 1 (2)

E
{
w(u)wt(u)

}
=

1

2
I (3)

This is equivalent to a model where the expected value of squared magnitude of the signal is Es
and the noise has variance N0/2 in each dimension, but this format is preferable for the method of
numerical integration used in the following. With this convention, the channel likelihood is

p(z|sm) =
1

πD/2
exp

−∥∥∥∥∥z−
√
Es
N0

sm

∥∥∥∥∥
2
 (4)

The throughput or rate of the signaling format in (1) can be characterized in several ways.
Assume that the channel in (1) is used q times in an attempt to send k information bits. The rate
of this system is then ηb/sym = k/q information bits per M -ary symbol. One way to achieve this
is to use an (n, k) binary code with rate r = k/n and then map the n coded bits onto q = n

log2(M)
symbols. It follows that

ηb/sym = k/q = r log2(M) (5)

Whether the mapping from k input bits to q M -ary symbols is achieved by a binary code with a
modulation mapper or directly through a coded modulation design, the following is maintained for
the same information bit rate and transmit power

Es = ηb/symEb (6)

Since the number of dimensions D in (1) is tied to the bandwidth used on the channel, it is also
useful to consider a rate normalized to the number of dimensions per channel symbol. Normalizing
to two dimensions is particularly useful, so we introduce the rate ηb/2d measured in information
bits per two dimensions

ηb/2d =
2

D
ηb/sym =

2k

Dq
(7)

Finally, under ideal conditions one can convey two dimensions per second per Hz of bandwidth.
Thus we consider the maximum throughput in bits per second per Hz of bandwidth (bps/Hz) as

ηbps/Hz = ηb/2d (ideal) (8)

In practice, the value of ηbps/Hz will be less than ηb/2d. For example, if root raised cosine (rrc)
pulse shaping is used, ηbps/Hz = ηb/2d/(1 + β), where β is the excess bandwidth of the rrc pulse.
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2 Capacity and Symmetric Information Rate

The mutual information rate of the channel in (1) is [3, 5]

I(z(u);x(u)) =

M−1∑
m=0

pm

∫
RD

p(z|sm) log2

(
p(z|sm)

p(z)

)
dz (9a)

=

M−1∑
m=0

pm

∫
RD

p(z|sm) log2

(
p(z|sm)∑M−1

n=0 p(z|sn)pn

)
dz (9b)

=

M−1∑
m=0

pmJm (9c)

The units for I(z(u);x(u)) are bits of information per (D-dimensional) channel use.
The constrained capacity is the maximum of I(z(u);x(u)) over all distributions on x(u). For

some signal sets this maximum can be shown to occur at the uniform distribution pm = 1/M
(e.g., 2m-PSK constellations). However, for other signal formats (e.g., 64-QAM) the maximizing
distribution is not uniform. Given an efficient method for evaluating the integral in (9), it is possible
to find the distribution on S that maximizes the mutual information. This is tedious, however, and
it is common to work with the symmetric information rate (SIR) which is the mutual information
under the uniform distribution pm = 1/M . Note that the SIR is a lower bound on the capacity.
The difference between the capacity and the SIR, known as the shaping gain, is expected to increase
as M increases and for many modulations used in practice is negligible. In fact, the SIR is often
erroneously referred to as the constrained capacity in the literature.

2.1 Form for Numerical Evaluation

Let us manipulate the expression in (9) to a form suitable for numerical evaluation as described in
Section 4. Substituting for the conditional density in the expression for Im, we obtain

Jm =
1

πD/2 ln(2)

∫
RD

e−‖z‖
2
gm(z)dz (10)

gm(z) = − ln

(
M−1∑
n=0

e−βm,n(z)

)
(11)

= min
n

∗βm,n(z) (12)

βm,n(z) = − ln(pm) +

√
Es
N0

(sm − sn)t

[
2z +

√
Es
N0

(sm − sn)

]
(13)

In the above we have used the definition

min∗(x1, x2 . . . xn)
∆
= − ln(e−x1 + e−x2 + · · · e−xn) (14)

and the resulting facts

min∗(x, y) = min(x, y)− ln
(

1 + e−|x−y|
)

(15)

min∗(x, y, z) = min∗(min∗(x, y), z) (16)
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3 (Symmetric) Random Coding Bound

The random coding bound (RCB) is an upper bound on the average probability of codeword
error under maximum likelihood (ML) decoding, P̄cw. The probability law for selecting codewords
is assumed to be separable so that each coordinate is selected independently. In other words,
for the transmitted codeword, the value of x(u) for each channel use of the form (1) is selected
independently with signal sm sent with probability pm. With this assumption, the RCB is

P̄cw ≤ exp
(
−qEr(ηb/sym)

)
(17)

where Er(ηb/sym) is the random coding exponent and is given by

Er(ηb/sym) = max
0≤ρ≤1

max
p

[
E0(ρ,p, ηb/sym)− ρ ln(2)ηb/sym

]
(18)

and the Gallager function is

E0(ρ,p, ηb/sym) =

∫
RD

[
M−1∑
m=0

pm {p(z|sm)}
1

1+ρ

]1+ρ

dz (19)

where p is the (M×1) vector with mth component pm and the maximum is over all valid probability
mass functions.

The importance of the RCB derives from the fact that for ηb/sym less than the capacity, the
random coding exponent is positive, implying that the average probability of error using random
coding decays exponentially with block length given that the attempted transmission rate is below
the capacity. This also implies the channel coding theorem since as we let q → ∞, the error
probability will tend to zero for rates below the capacity.

Once again, maximization over all input distribution functions is tedious. For the same reasons
discussed with regard to the capacity and SIR discussed in Section 1, it is reasonable to consider the
symmetric random coding bound (SRCB), which is the bound obtained with (17) when instead of
maximizing over p in (18), we use pm = 1/M . Note that this still provides a valid upper-bound on
P̄cw, although it will be slightly looser if the uniform distribution does not maximize the quantity
in (18).

3.1 Form for Numerical Evaluation

The most difficult part of evaluating the RCB is the integral in (19), so we focus on computing the
Gallager function. Also, since the Gallager function is positive, we may work in the log-domain for
additional efficiency and numerical stability. Using the density in (4), the expression in (19) we
have

− ln
(
E0(ρ,p, ηb/sym)

)
=
D

2
ln(π)− ln J (20)

J =

∫
RD

e−‖z‖
2

[
M−1∑
m=0

e−αm(z)

]1+ρ

dz (21)

αm(z) = ln(pm)−

√
Es
N0

st
m

(
2z−

√
Es
N0

sm

)
1 + ρ

(22)
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Again, using log-domain equivalent operations, we have

M−1∑
m=0

e−αm(z) = e−A(z) (23)

A(z) = min
m

∗αm(z) (24)

Using this relation, we obtain the following form for the integral J in (21)

J =

∫
RD

e−‖z‖
2

exp [−(1 + ρ)A(z)] dz (25)

3.2 Basic Facts Used in Deriving the RCB

While the bound appears complex and we do not present a proof of the bound here, it follows
from two basic bounds [3]. These are a pairwise error probability bound for ML decoding and a
generalization of the union bound. For the pairwise error probability, consider a two way decision at
the ML receiver between sm and si. Given that that sm was transmitted, the conditional pairwise
error probability is the probability that z(u) fall outside the decision region ZPW (m), as defined
by the ML rule

PPW (i|m) = Pr {z(u) 6∈ ZPW (m)|x(u) = sm} (26a)

=

∫
ZcPW (m)

p(z|sm)dz (26b)

≤
∫
ZcPW (m)

[p(z|sm)]1−s[p(z|si)]sdz 0 < s < 1 (26c)

≤
∫
RD

[p(z|sm)]1−s[p(z|si)]sdz 0 < s < 1 (26d)

where the inequality in (26c) follows from the fact that for any z ∈ ZcPW (m), p(z|si) ≥ p(z|sm)
since this is the region where si is more likely than sm. The inequality in (26d) follows since the
integrand is nonnegative and ZcPW (m) ⊆ RD.

The second bound used to develop the RCB is the generalized union bound given by

P

(⋃
i

Ai

)
≤

[∑
i

P (Ai)

]ρ
0 ≤ ρ ≤ 1 (27)

which is the standard union bound for ρ = 1. This bound follows from the fact that

P

(⋃
i

Ai

)
≤ min

{
1,
∑
i

P (Ai)

}
≤

[∑
i

P (Ai)

]ρ
0 ≤ ρ ≤ 1 (28)

where the first inequality is a trivial extension of the union bound and the second inequality follows
from that fact that xρ ≥ x when x ∈ [0, 1] and ρ ∈ (0, 1].
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4 Numerical Evaluation of Performance Limits

A good numerical algorithm for evaluating the integrals in (10) and (25) is the Gauss-Hermite
method, which for a one-dimensional integral is∫ ∞

−∞
e−z

2
f(z)dz ≈

I−1∑
i=1

wif(zi) (29)

where the points zi and the coefficients wi are determined by the properties of the Hermite poly-
nomials. The greater the the degree of the approximation I, the more accurate the result. This
method was applied to compute the SIR in [6]. Tables of the values of the coefficients {wi} and the
points {zi} for various values of I are available. The online resource in [7] is particularly convenient.

For integrals over RD with D > 1 the approximation is∫
RD

e−‖z‖
2
f(z)dz ≈

∑
i1,i2,...iD

wi1wi2 · · ·wiDf(zi1 , zi1 , . . . ziD) (30)

Since the approximation sum has ID terms, this becomes impractical for large D. Most cases of
practical interest are for D = 1 or D = 2, in which case this method is very fast.

If the function f(z) in (29) is positive for all values of z, then we can use log-domain equivalent
operations. Specifically, define f(z) = exp(−m(z)), then

− ln

[∫ ∞
−∞

e−z
2
f(z)dz

]
≈ − ln

[
I−1∑
i=0

wi exp(−m(zi))

]
= min

i

∗ (− ln(wi) +m(zi)) (31)

which also uses the fact that the coefficients wi are positive. Thus, in the case where f(z) is positive,
the Gauss-Hermite approximation can be carried out with greater efficiency and stability in the
log domain. The multi-dimensional case in (30) can be evaluated similarly in the case when the
function f(z) is positive.

4.1 Evaluating the SIR

The Gauss-Hermite approximation can be used to compute the integral Jm in (10). For example,
for D = 1, we have

Jm ≈
1

ln(2)
√
π

I−1∑
i=0

wi min
n

∗βm,n(zi) (32)

where the min-star operation is over n = 0, . . .M − 1. The mutual information can then be
computed using (9c).

Pseudo-code for evaluating the D = 2 SIR is given in Algorithm 1.

4.2 Evaluating the SRCB

In evaluating the RCB, one needs to repeatedly evaluate the integral J in (25). Since the implied
function in the Gauss-Hermite approximation is f(z) = exp[−(1 + ρ)A(z)], which is positive for all
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Algorithm 1: Symmetric Information Rate with D = 2

input :
√
Es/N0, the Gauss-Hermite coefficents and points w[i], z[i], indexed from

i = 0 . . . (I − 1) and the signals sm[d], for d = 0, 1, normalized to unit norm

output: The SIR in bits per channel use

SIR ← 0
for m← 0 to (M − 1)

Jm ← 0
for i0 ← 0 to (I − 1)

for i1 ← 0 to (I − 1)
X ←∞
for n← 0 to (M − 1)

t0 ←
√
Es/N0(sm[0]− sn[0]) // temp variable

t1 ←
√
Es/N0(sm[1]− sn[1]) // temp variable

βm,n ← ln(M) + t0(t0 + 2z[i0]) + t1(t1 + 2z[i1])
// above line uses pm = 1/M
X ← min∗(X,βm,n)

end
Jm ← Jm + w[i0]w[i1]X

end

end
SIR ← SIR + Jm/M

end
SIR ← SIR /(π ln(2))
return SIR
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z, we can use the log-domain expression of the form in (31) so that, for D = 1, we have

− ln J ≈
I−1∑
i=0

wie
−(1+ρ)A(z) (33)

= min
i

∗ [− ln(wi) + (1 + ρ)A(z)] (34)

This result can then be substituted into (20) to evaluate the Gallager function. This can then be
used in (18) and maximized over all ρ using standard numerical methods.

Pseudo-code for evaluating the quantity in (18) for a fixed value of ρ is given in Table 2.

Algorithm 2: Symmetric Random Coding Exponent with D = 2, and fixed ρ

input :
√
Es/N0, ηb/sym, the neg-log of Gauss-Hermite coefficents v[i] = − ln(w[i]) and

points z[i], indexed from i = 0 . . . (I − 1), the signals sm[d], for d = 0, 1, normalized
to unit norm, and a value of ρ ∈ (0, 1)

output: The random coding exponent: Er(ηb/sym; ρ)

E0 ←∞
for i0 ← 0 to (I − 1)

for i1 ← 0 to (I − 1)
A←∞
for m← 0 to (M − 1)

t0 ←
√
Es/N0sm[0] // temp variable

t1 ←
√
Es/N0sm[1] // temp variable

αm ← ln(M)− [t0(2z[i0]− t0) + t1(2z[i1]− t1)] /(1 + ρ)
// above line uses pm = 1/M
A← min∗(A, βm,n)

end
E0 ← min∗(E0, (1 + ρ)A+ v[i0] + v[i1]) // computing − ln J

end

end
E0 ← E0 + ln(π)
Er ← E0 − ρ ln(2)ηb/sym

return Er

5 An Approximate Symmetric Sphere Packing Bound

Finite block size performance bounds were considered in [8]. In particular, the sphere packing bound
(SPB) is considered for the modulation unconstrained AWGN channel. The SPB is a lower bound
on the codeword error probability of any code. In [8] they consider a version of the SPB that is
normalized to the minimum value of Eb/N0 required by the capacity of the average power limited,
bandwidth-limited AWGN channel (

Eb
No

)
min

=
2ηbps/Hz − 1

ηbps/Hz
(35)
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For a given operational scenario – i.e., a given choice for ηbps/Hz, input block size k, and required
codeword error probability PCW – the SPB also will provide a minimum value of Eb/N0. In other
words, the lower bound on PCW can be made equal to the desired codeword error probability if the
value of Eb/N0 is greater than this specific value. This minimum value of Eb/N0 will be greater
than that given by the capacity expression in (35). In [8], a normalized version of the SPB is
suggested by considering the difference between the required Eb/N0 value provided by the SPB and
the minimum value of Eb/N0 according to (35). With the assumption that one can achieve two
dimensions per second per Hz (i.e., ηbps/Hz = ηb/2d), this difference in dB is

∆dB =

√
20ηb/2d (2ηb/2d + 1) [10 log10(1/PCW)]

k ln(10) (2ηb/2d − 1)
(36)

Thus, this sphere packing bound approximation (SPBA) is(
Eb
N0

)
min,SPB, (dB)

≈ 10 log10

[
2ηb/2d − 1

ηb/2d

]
+ ∆dB (37)

The SPBA in (37) is compared to accurate evaluation of the SPB in [8] for relatively low rates
– i.e., for ηb/2d < 1 corresponding to less than one half a bit per dimension. For these cases it
was found to be an accurate approximation for block lengths of k & 512. As the block size get
smaller, the approximation is observed to be conservative – i.e., over-estimating the required value
of Eb/N0. Although it is not pointed out, the approximation is also also a reasonably accurate
predictor of the values presented in Fig. 5 of [8] which considers larger information rates. For
example, at k = 1024 and a codeword error probability of 10−4, the approximation in (37) predicts
that the Eb/N0 should be at least 8.6 + 1.4 = 10 dB for ηb/2d = 2 ∗ 2.65 = 5.3. By comparison, the
accurate evaluation of the SPB in Fig. 5 of [8] yields a required Eb/N0 of 9.8 dB. So, again, the
approximation is slightly conservative.

5.1 Application to Modulation Constrained AWGN Channels

We consider applying the finite block size penalty in (36) to modulation constrained AWGN chan-
nels. This is done by replacing the reference minimum value of Eb/N0 predicted by the modulation
unconstrained capacity in (35) by the corresponding value predicted by the modulation constrained
AWGN channel capacity, or the SIR approximation thereof. More precisely, there is a minimum
value of Es/N0 for which the SIR is greater than a desired ηb/sym. If we take this minimum value
of Es/N0 and consider a system operating at this point, then we have via (6)(

Eb
No

)
min,SIR

=
1

SIR

(
Es
No

)
min,SIR

(38)

We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding ∆dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-off for finite block sizes as the SIR-SPBA (symmetric
information rate, SPB approximation). Specifically, we have(

Eb
N0

)
min,SIR-SPBA, (dB)

≈
(
Eb
N0

)
min,SIR, (dB)

+ ∆dB (39)

where ∆dB is as in (36).
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6 Comparisons and Conclusions

The main conclusion of this document is that the SIR-SPBA can be used as a relatively simple
gauge for finite block size performance. It is considerably more simple to evaluate than the RCB
and for most operational scenarios of practical interest, it is very to close to the RCB.

The following is to be added to this document

• Discussion of the floor in the RCB

• Plots showing the similar Eb/N0 requirements for the SIR-SPBA and the SRCB

• Discussion of the critical rate and implications for when the RCB and SPB will differ most

• Additional references and reading.
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