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Course Topic (from Syllabus)

® Overview of Comm/Coding



Overview Topics

® Why Digital Comm? Why not analog?
® The digital comm system block diagram
® Source model and entropy
® Separation and channel capacity (mutual information)
® Modulations, Channels, Soft vs. Hard Decision Information
® Performance measures
® Opverview of Coding

® More Channels
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Digital vs. Analog Communications

® Digital comm = send one of a finite number of signals at the transmitter (most
modern systems are digital)

® Analog comm = send messages on the continuum (e.g., analog FM radio)
® Why Digital?
® Exploits digital processing resources (Moore’s Law) via ASICs, FPGA, DSP, etc.
® More robustness and better fidelity — via use of memory in encoding/decoding
® Control the amount of degradation from source to sink
® Security (encryption)
® FEasier to share resources: multiplexing, routing, multiple access, multimedia

® Advantages in multi-hop systems — alleviates distortion accumulating over hops
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Digital Comm. Block Diagram
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Separation Theorem
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Get bits through this at an info rate R<C,
C = channel capacity

There is no benefit to combining these tasks if the encoding
length for each encoder can be arbitrarily large
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Source Model: Binary Memoryless
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Source

Lossless Compression

$n ~ iid, Bernoulli(p)

-

® (Losseless) Source coding theorem:

Ideal

Compression

b; ~ iid, Bernoulli(1/2)

-

® “Source can be compressed to its Entropy and no further”

® For asymptotically large encoding block size

® H values of b for each value of s

For EE564, the effective information source is b and it is iid, Bernoulli(0.5)

(we will consider sources with p != 0.5 for iterative decoding)
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Coding Block Diagram
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This simplified model abstracts the modulation-
demodulation and details of the waveform channel

Simplified model is used to study coding
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Channel Capacity
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Channel Capacity: Binary Symmetric Channel
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Interpreting BSC Capacity

Capacity of BSC (bits/channel-use
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Typical In-Phase/Quadrature Digital Modulation
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Common |/Q Digital Modulations

Binary Phase Shift Keying  Quadrature Phase Shift Keying 8-ary PSK (8-PSK)
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Trade-offs with M?

® Dimension = Time * Bandwidth

® The l/Q constellations use 2
dimensions

® As you increase M

® More bits/channel use
(log2(M))

® Points get closer for fixed
energy

These are the two types of performance plots that
we use to evaluate coding and modulation schemes
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Throughput vs. SNR Trade (IT)
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Channel capacity shows up on this type of plot as
regions of achievable performance
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Throughput vs. SNR Trade (IT)

BW efficiency (bps/Hz)
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Throughput vs. SNR Trade

BW Efficency (bits/sec)/Hz

2.5

1.5

0.5

Theoretical Limits for QPSK/AWGN (BPSK/AWGN)

Eb/No(dB)

How some common coding schemes with BPSK
modulation compare to capacity

I [ I ! I I I | I I I | I I I | [ I I ! I I I I [ I I |
: AWGN Capamty _
- A Q_P__S__IQAWGN Caa01t .
i . no coding
I - (7.4) Hamming soft-in -
i 14 . e | o o |
— 11/ S S L — (-.7--4) Hammmg hafd—in
- / g Conv 64- state (soft) |
T 77 k= 65 536; 16 3847 4096"'2048 """""""""" ]
- : 5 1024 512; 256 128 | B
i | . Flmte Block Slze (BLER = le- 4) i

| | | | | | | | | | | | | | | | | | | | | | | | | | |

-2 0 2 4 6 3 10 12

|18



Throughput vs. SNR Trade
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Bit-lterleaved Coded Modulation (BICM)
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Most common approach to coding & modulation used in practice

(you will simulate a BICM system with a modern code this semester)
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Summary of Channel Coding

® Forward Error Control/Correction Coding (FEC)

® As described previously — add redundancy and send
across channel

® Error Detection Coding (aka CRC = Cyclic Redundancy
Check)

® Detect if an error has occurred on the channel, but no
correction

® Automatic Repeat Request (ARQ)

® “Hey, | did not get that, send it again!”
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Typical Use of Coding in Modern System
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Codes as Constraints on Variables

Constraint on n binary symbols

Co C1 Co C3 Cpn—1

Only 27k of the 2*n (n x |) binary vectors are in the code

® Repetition Code (equality constraint)
® all n bits are the same

® Single Parity Check Code (SPC code)

® only patterns with even number of s
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Example: Repetition Code

Codewords forn=4: 0000 |11 Co

Number of codewords =2 ,so k = | 3 ;@ C1

rate = |/n (info bits per channel use)

Encoder:

take one information bit in and output n copies of this bit
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Example: Single Parity Check Code

Codewords forn =4: 0000 OIOl €2
0O0ll 100l T
1100 OI10 C3 H+ 1 C1
1010 |11 Il
Co

Number of codewords = 8 ,s0 k=3 = n-|
rate = (n-1)/n (info bits per channel use)

Encoder:

take n-| information bit in and these plus one parity bit
which is the mod 2 sum of the input bits
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Example: (7,4) Hamming Code

1 1 0 1 0 O

H=|1 0 1 O 1 O

01 1 100 1
Hc =0

1 1 1 L 1 1 1
Co C1 Cp C3 c¢c4 Csj C6

Linear Block Code (“Multiple Parity Check Code”)

All three SPCs must be satisfied simultaneously
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Example: (7,4) Hamming Code
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All local constraints must be satisfied simultaneously
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Example: (7,4) Hamming Code
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Example: Low Density Parity Check (LDPC) Code

Just a very large (multiple) parity check code with mostly Os

1[0 1 0 0
0 |0 0 1 0
1|1 0 0 0

number of |'s = number of
SPCs second code bit is

involved in

number of |s =

number of bits in
first SPC

A systematic way to build codes with very large block size
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Example: Low Density Parity Check (LDPC) Code

The trick is in the decoding algorithm:

Repeatedly do “soft-in/soft-out (SISO)” decoding of each local code
and exchange these soft decisions (messages, beliefs, metrics)

ITERATE until things look good!

A
Co Co
\%
S — - T . ’ w
- - iyl gl SISO rul
- - - > 7 > rule
co ol (message update rule)
l < depends on code constraint
Equality Constraint SISO SPC SISO ) ’

—— Incoming soft-decision information
— Outgoing soft-decision information
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Example: Low Density Parity Check (LDPC) Code

This simple construction with this decoding approach
can approach channel capacity with large block sizes
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Summary of Modern FEC

® Construct large codes (big n) by connecting
simple, local (or constituent) codes via
pseudo-random permutations

® l[teratively decoding
® Run SISO decoding for each local code

® Exchange soft-information between local
code SISOs
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Overview Topics

® More Channels
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More on Channel Models

AWGN

AWGN - Intersymbol Interference (ISI) Channel

x(u,t)
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Channel Models

® We will focus primarily on the AWGN channel
® Several approaches to ISI-AWGN

® Convert to many parallel, narrow, frequency channels with
each having flat gain: Orthogonal Frequency Division
Multiplexing (OFDM)

® Converts to many parallel AWGN channels

® Use a constrained receiver structure such as a linear filter to
try to invert IS| effects: (Linear) Channel Equalization

® Do optimal data detection with ISI channel modeled: MAP
Sequence/Symbol Detection — Viterbi for hard-out
and Forward-Backward Algorithm for soft-out

® We will learn these algorithms as part of the coding material
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