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Introduction & Motivation 

EE564: Digital Communication and Coding Systems

Keith M. Chugg
Spring 2017 (updated 2020)
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Course Topic (from Syllabus)

• Overview of Comm/Coding

• Signal representation and Random Processes

• Optimal demodulation and decoding

• Uncoded modulations, demod, performance

• Classical FEC

• Modern FEC

• Non-AWGN channels (intersymbol interference)

• Practical consideration (PAPR, synchronization, spectral masks, etc.)
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Overview Topics

• Why Digital Comm?  Why not analog?  

• The digital comm system block diagram

• Source model and entropy 

• Separation and channel capacity (mutual information)

• Modulations, Channels, Soft vs. Hard Decision Information

• Performance measures

• Overview of Coding

• More Channels
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Digital vs. Analog Communications

• Digital comm = send one of a finite number of signals at the transmitter (most 
modern systems are digital)

• Analog comm = send messages on the continuum (e.g., analog FM radio)

• Why Digital?

• Exploits digital processing resources (Moore’s Law) via ASICs, FPGA, DSP, etc.

• More robustness and better fidelity — via use of memory in encoding/decoding

• Control the amount of degradation from source to sink

• Security (encryption)

• Easier to share resources: multiplexing, routing, multiple access, multimedia

• Advantages in multi-hop systems — alleviates distortion accumulating over hops
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Digital Comm. Block Diagram
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Separation Theorem

Get bits through this at an info rate R<C,
C = channel capacity

Sample, quantize, compress this 
to an acceptable distortion with 

minimal info rate R

There is no benefit to combining these tasks if the encoding 
length for each encoder can be arbitrarily large
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Source Model: Binary Memoryless

Source
sn ⇠ iid, Bernoulli(p)

H(sn(u)) = p log2

✓
1

p

◆
+ (1� p) log2

✓
1

1� p

◆
(bits/source symbol).

Entropy of the source
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Lossless Compression

Source
sn ⇠ iid, Bernoulli(p) Ideal

Compression

bi ⇠ iid, Bernoulli(1/2)

• (Losseless) Source coding theorem:  

• “Source can be compressed to its Entropy and no further”

• For asymptotically large encoding block size

• H values of b for each value of s

For EE564, the effective information source is b and it is iid, Bernoulli(0.5)

(we will consider sources with p != 0.5 for iterative decoding)
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Coding Block Diagram
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Channel Capacity

Channel Capacity for Memoryless Channel

Mutual Information

max
px(u)(·)

I(x(u); y(u))

P (y|x) =
Y

n

P (yn|xn)
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Channel Capacity: Binary Symmetric Channel

C(✏) = 1�H(✏) = 1 + ✏ log2
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Interpreting BSC Capacity
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Typical In-Phase/Quadrature Digital Modulation
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Common I/Q Digital Modulations

Binary Phase Shift Keying
(BPSK)

Quadrature Phase Shift Keying
(QPSK) 8-ary PSK (8-PSK)

16 Quadrature Amplitude Modulation
(16QAM)
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Trade-offs with M?

• Dimension = Time * Bandwidth

• The I/Q constellations use 2 
dimensions

• As you increase M

• More bits/channel use 
(log2(M))

• Points get closer for fixed 
energy

SNR (dB)

(bits/channel use)

SNR (dB)

Perror (log scale)

M = 2 M = 4 M = 8 M = 16
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These are the two types of performance plots that 
we use to evaluate coding and modulation schemes
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Throughput vs. SNR Trade (IT)

Not Achievable

SNR (dB)

Information Rate
(bits/channel use)

Capacity

Achievable (e.g., via coding)
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Channel capacity shows up on this type of plot as 
regions of achievable performance
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Throughput vs. SNR Trade (IT)
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Example channel capacity curves for AWGN 
channels with and without modulation constraints
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Throughput vs. SNR Trade
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How some common coding schemes with BPSK 
modulation compare to capacity
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Throughput vs. SNR Trade
September 2004

Keith Chugg, et al, TrellisWare TechnologiesSlide 28

doc.: IEEE 802.11-04/0953r4
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Bit-Iterleaved Coded Modulation (BICM)
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FEC
Encode

Interleave
Modulation
Mapper

FEC
Decode

De-interleave
Modulation
De-mapper

AWGN

bi cj dj xk

zk
d̂j or M[dj ]ĉj or M[cj ]

b̂i

Most common approach to coding & modulation used in practice

(you will simulate a BICM system with a modern code this semester)
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Summary of Channel Coding

• Forward Error Control/Correction Coding (FEC)

• As described previously — add redundancy and send 
across channel

• Error Detection Coding (aka CRC = Cyclic Redundancy 
Check) 

• Detect if an error has occurred on the channel, but no 
correction

• Automatic Repeat Request (ARQ)

• “Hey, I did not get that, send it again!”
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Typical Use of Coding in Modern System
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Hybrid ARQ (H-ARQ) System

CRC Encode
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Codes as Constraints on Variables 
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Only 2^k of the 2^n (n x 1) binary vectors are in the code

c1 c2 c3c0 cn�1

Constraint on n binary symbols

• Repetition Code (equality constraint)

• all n bits are the same

• Single Parity Check Code (SPC code)

• only patterns with even number of 1s 
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Example: Repetition Code

24

Codewords for n = 4: 0000 1111

Number of codewords =2 , so k = 1

Encoder: 

take one information bit in and output n copies of this bit

rate = 1/n (info bits per channel use)

= c1

c2

c3

c0
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Example: Single Parity Check Code
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Codewords for n = 4: 0000

Number of codewords = 8 , so k = 3 = n-1

Encoder: 

take n-1 information bit in and these plus one parity bit 
which is the mod 2 sum of the input bits

rate = (n-1)/n (info bits per channel use)

0011
1100
1010

0101
1001
0110
1111

+ c1

c2

c3

c0
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Example: (7,4) Hamming Code
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Linear Block Code (“Multiple Parity Check Code”)

H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

c1 c2 c3c0 c4 c5 c6

Hc = 0

All three SPCs must be satisfied simultaneously
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Example: (7,4) Hamming Code
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H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3
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All local constraints must be satisfied simultaneously
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Parity Check Graph 
or Tanner Graph
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Example: (7,4) Hamming Code
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H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

All local constraints must be satisfied simultaneously

Parity Check Trellis 
Graphical Model

= = = = = = =

c1 c2 c3c0 c4 c5 c6

t0 t1 t2 t3 t4 t5 t6

e.g., hidden, non-binary state variable
s3
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Example: Low Density Parity Check (LDPC) Code
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number of 1s = 
number of bits in 

first SPC

Just a very large (multiple) parity check code with mostly 0s

H =

2

6664

1 0 . . . 1 0 0
0 0 . . . 0 1 0
...

...
. . .

...
...

1 1 . . . 0 0 0

3

7775

number of 1s = number of 
SPCs second code bit is 

involved in

A systematic way to build codes with very large block size
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Example: Low Density Parity Check (LDPC) Code
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The trick is in the decoding algorithm:

Repeatedly do “soft-in/soft-out (SISO)” decoding of each local code 
and exchange these soft decisions (messages, beliefs, metrics) 

ITERATE until things look good!

= c1

c2

c3

c0

+ c1

c2

c3

c0

Equality Constraint SISO SPC SISO

Outgoing soft-decision information
Incoming soft-decision information

SISO rule 
(message update rule) 

depends on code constraint
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Example: Low Density Parity Check (LDPC) Code
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This simple construction with this decoding approach 
can approach channel capacity with large block sizes
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Summary of Modern FEC

• Construct large codes (big n) by connecting 
simple, local (or constituent) codes via 
pseudo-random permutations

• Iteratively decoding

• Run SISO decoding for each local code

• Exchange soft-information between local 
code SISOs
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Overview Topics

• Why Digital Comm?  Why not analog?  

• The digital comm system block diagram

• Source model and entropy 

• Separation and channel capacity (mutual information)

• Modulations, Channels, Soft vs. Hard Decision Information

• Performance measures

• Overview of Coding

• More Channels
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More on Channel Models

34

AWGN - Intersymbol Interference (ISI) Channel

x(u, t)

n(u, t)

r(u, t)

AWGN

n(u, t)

r(u, t)x(u, t) y(u, t)
h(t)

LTI

0 f

N0/2flat noise power level

channel gain is 
frequency 

selective  across 
signal band

0 f

N0/2flat noise power level
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Channel Models
• We will focus primarily on the AWGN channel

• Several approaches to ISI-AWGN

• Convert to many parallel, narrow, frequency channels with 
each having flat gain: Orthogonal Frequency Division 
Multiplexing (OFDM)

• Converts to many parallel AWGN channels

• Use a constrained receiver structure such as a linear filter to 
try to invert ISI effects: (Linear) Channel Equalization

• Do optimal data detection with ISI channel modeled: MAP 
Sequence/Symbol Detection — Viterbi for hard-out 
and Forward-Backward Algorithm for soft-out

• We will learn these algorithms as part of the coding material
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