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Course Topic (from Syllabus)

• Overview of Comm/Coding

• Signal representation and Random Processes

• Optimal demodulation and decoding

• Uncoded modulations, demod, performance

• Classical FEC

• Modern FEC

• Non-AWGN channels (intersymbol interference)

• Practical consideration (PAPR, synchronization, spectral masks, etc.)
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Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation
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Decision Problem
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2 ITERATIVE DETECTION
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p(Am|z)p(z|Hn)

H
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Figure 1.1. The set-up for general decision problems considered.

probability mass function (pmf) d(Am|z) = pA(ζ)|z(ζ)(Am|z). Admissi-
ble decision rules are those for which the action A(ζ) is independent of
the hypothesis when conditioned on the observation. A deterministic
decision rule is one with all probability mass located at one action (i.e.,
d(Am|z) is one for some value of m and zero for others). A deterministic
rule yields, conceptually at least, a partitioning of the observation space
into the decision regions Zm – i.e., Z = ∪mZm and {Zi} are disjoint
– as illustrated in Fig-1.2. It is desirable to reduce the decision rule to
this form since it represents a simple receiver implementation.
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Figure 1.2. Decision rule implemented as a partition of the observation space.

In some cases the statistical description of the channel (e.g., p(z|Hn)
for n = 0, 1, . . . |H|− 1) will be most conveniently expressed with an ad-
ditional condition on a finite set of parameters Θ. One can associate a
statistical model for these unknown parameters provided by {p(Θ|Hm)}
or simply model the parameter as an unknown deterministic param-
eter. In the latter case, one may still impose some structure on the
parameters. For example, the energy of a signal may be modeled as a
deterministic constant, but it is known to be non-negative. It is im-
portant to distinguish the model used for the purposes of designing a
decision rule and other possible models. For example, one may select a
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Overview of Non-Iterative Detection 3

deterministic model for a random parameter if there is little confidence
in the available probabilistic models. As another example, an accepted
model for a fading channel may be a random process with nonrational
power spectral density, but for the purposes of designing the decision
rule one may select an approximation to this model with rational power
spectral density.

1.1.1 The Bayes Decision Rule
A Bayes decision rule minimizes the average Bayes risk R(d) over all

admissible decision functions, where

R(d) =
∫

Z
pz(ζ)(z)

[
∑

m

d(Am|z)C(Am|z)
]

dz (1.1)

where Z is the observation space and C(Am|z) is the cost (or risk) asso-
ciated with taking action Am, given z(ζ) = z, averaged over the source
statistics

C(Am|z) =
∑

i

C(Am,Hi)pH(ζ)|z(ζ)(Hi|z) (1.2)

The finite set of coefficients {C(Am,Hi)}m,i specifies the cost of taking
action Am with Hi occurring. These coefficients relate the Bayes risk to
some more tangible optimization criterion as described in the subsequent
development.

It follows from (1.1) that any rule that takes action Am with the
property that C(Am|z) ≤ C(Ai|z) for all i is a Bayes rule. The Bayes
rule is generally not unique because of “tie” conditions where two or
more actions have the same cost. In this case the total probability mass
may be spread among these best actions in any way. One can always
obtain a deterministic Bayes rule by breaking these tie conditions in a
deterministic manner (e.g., select the action with the smallest index).
Thus, we will use the notation

Bayes action = arg min
m

C(Am|z) (1.3)

Note that the A-Posteriori Probability (APP) of H(ζ) = Hm given a
realization of z(ζ) can be written as

pH(ζ)|z(ζ)(Hm|z) =
pz(ζ)|H(ζ)(z|Hm)pH(ζ)(Hm)

pz(ζ)(z)
(1.4a)

≡ pz(ζ)|H(ζ)(z|Hm)pH(ζ)(Hm) (1.4b)

where ≡ is used to denote an equivalence between quantities in terms of
information on the hypothesis H(ζ). Specifically, the term pz(ζ)(z) may
be dropped since it is not a function of the hypothesis.
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MAP Decision Rule
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MAP is special case 
of Bayesian Decision  

Rule

4 ITERATIVE DETECTION

The Maximum A-Posteriori Probability (MAP) decision rule is the
special case of the Bayes rule when Am corresponds to deciding that Hm

is true and C(Am,Hi) = 1 − δm−i. This may be seen by substituting
these cost coefficients into (1.2) and noting that

C(Am|z) =
∑

i"=m

pH(ζ)|z(ζ)(Hi|z) = 1− pH(ζ)|z(ζ)(Hm|z) (1.5)

so that minimization of the Bayes risk is equivalent to maximization of
pH(ζ)|z(ζ)(Hm|z). Furthermore, substituting the coefficients C(Am,Hi)
= 1−δm−i into (1.1)-(1.2), it is straightforward to show that the average
risk is the probability of error. Thus, the MAP decision rule minimizes
the probability of error for the |H|-ary decision problem. For the spe-
cial case of uniform a-priori probability on the hypotheses, the APP
p(Hm|z) is equivalent to the likelihood p(z|Hm). Thus, the term Max-
imum Likelihood (ML) is often used to describe the MAP detector for
this special case. While one could use an ML rule in a case when the
a-priori probabilities are not uniform (i.e., not MAP detection), when
we use the term ML detection, it is implicitly assumed that the a-priori
probabilities are uniform.

1.1.2 Composite Hypothesis Testing
When the conditional statistical description of the observation also

depends on a parameter Θ, the decision problem is often called a com-
posite hypothesis test. The term “composite” refers to the fact each
hypothesis Hm represents many possibilities of the form (Hm,Θ).

Specifically, suppose that p(z|Hm,Θ) is known for each hypothesis and
each allowable value of the nuisance parameter (set) Θ(ζ). A random
model has been assumed for the parameter and p(Θ|Hm) is also assumed
to be known for the purposes of inferring on H(ζ). Defining the decision
rule in this case is no more difficult, conceptually at least, since

pz(ζ)|H(ζ)(z|Hm) =
∫

pz(ζ)|H(ζ),Θ(ζ)(z|Hm,Θ)pΘ(ζ)|H(ζ)(Θ|Hm)dΘ

= EΘ(ζ)|H(ζ)

{
pz(ζ)|H(ζ),Θ(ζ)(z|Hm,Θ(ζ))|Hm

}
(1.6)

Thus, from the composite problem, one can obtain the likelihood in
(1.6) and proceed as described in Section 1.1.1. To emphasize that the
resulting Bayes rule incorporates the expectation in (1.6), it may be said
that the Bayes rule minimizes the risk averaged over Θ(ζ). Similarly, the
likelihood pz(ζ)|H(ζ)(z|Hm) is often referred to as the average likelihood.
In many cases of interest, Θ(ζ) is statistically independent of H(ζ).
Finally, the special case where the nuisance parameter is a sinusoidal

C =

2

6666666664

0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1

1 1 1
. . . 1

1 1 1 · · · 0

3

7777777775

R(d) = P (decision error)

P (E) = P (E|H0)⇡0 + P (E|H0)⇡1

=

Z

Z1

f(z|H0)⇡0dz+

Z

Z0

f(z|H1)⇡1dz

f(z|H1)⇡1
H1
>
<
H0

f(z|H0)⇡0

⇤(z) =
f(z|H1)

f(z|H0)

H1
>
<
H0

⇡0
⇡1

= T Likelihood Ratio 
Test

M=2

This can be used to reason 
MAP rule minimizes 
probability of error
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MAP rule from P_errror Expression
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MAP Rule for Vector-AWGN Channel
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Hm : z(u) = sm +w(u) (D ⇥ 1)
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Other Rules (MAP Special Cases)

9

MAP reduces to ML when a 
priori probabilities are 

uniform

Maximum Likelihood (ML): max
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Min. Euclidean (squared) distance: min
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>
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<
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Decision boundary is the perpendicular bisector of (s1 � s0)
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Contours of fz(u)(z|H0)

Error probability given 
hypothesis 0 is the probability 
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over decision boundary
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>
<
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Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation

12
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Performance of Binary MAP Decisions (equal priors)
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Contours of fz(u)(z|H0)

P (E) = P (E|H0)⇡0 + P (E|H1)⇡1

= P (E|H0)(1/2) + P (E|H1)(1/2)

P (E) = Q

0

@
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d2

2N0

1

A = Q

0

@
s
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2N0

1

A

Performance of Binary MAP Decisions (equal priors)

Note: not a function of dimension 

P (E|H0) = Q

0

@
s

d2

2N0

1

A

d2 = ks1 � s0k
2 (⇡1 = ⇡0)
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Contours of fz(u)(z|H0)
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⇢ =
st1s0p
E1E0

ks1 � s0k2 = 2E(1� ⇢) (equal energy)

⇢ =
st1s0
E

(equal energy)
best equal energy binary signals 

are antipodal signaling

Binary orthogonal signaling is 3 
dB worse than antipodal

P (E) = Q

 r
2E

N0

!
(antipodal)

P (E) = Q

 r
E

N0

!
(orthogonal, coherent)

Performance of Binary MAP Decisions (equal priors)
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Blue and red curves show 
results from previous slide

Performance of Binary MAP Decisions (equal priors)
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Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation

17
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MAP Decision Regions
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In order for ‘Hm’ to be the decision, it must better than 
every other hypothesis in a pairwise test

(global) 
decision 
region

Notes on Performance Bounds (v1.5)

c� K.M. Chugg October 5, 2015

1 Basic Bounds for Generic M-ary Decision Rules

Consider an arbitrary deterministic decision rule for deciding among M hypotheses Hm for m =
0, 1, . . . M � 1 based on some measurement z 2 Z. Such a rule introduces a partition of the
observation space

decide Hm () z 2 Zm (1)

where Zm
T

Zj = ; and
SM�1

m=0 Zm = X . As an example, MAP detection for the M -ary problem
results in

Zm = {z : fz(u)(z|Hm)P (Hm) > fz(u)(z|Hj)P (Hj) 8 j 6= m} (2)

The conditional probability of error is given by

P (E|Hm) = Pr {z(u) 62 Zm|Hm} = Pr {z(u) 2 Z
c
m|Hm} (3)

Many useful bounds can be constructed by expressing Z
c
m in specific ways. For example, it is clear

that

Z
c
m = Z � Zm =

M�1[

j=0,j 6=m

Xj (4)

An expression that is typically more useful is obtained by constructing Zm from pairwise decision
regions Z

PW
m (j), defined as the region where Hm would be selected over Hj in a pairwise (binary)

decision. For example, in the case of MAP M -ary decisions,

Z
PW
m (j) = {z : fz(u)(z|Hm)P (Hm) > fz(u)(z|Hj)P (Hj)} (5)

Comparing the definitions of the global decision region and the pairwise regions (i.e., (2) and (5))
it is apparent that

Zm =
M�1\

j=0,j 6=m

Z
PW
m (j) (6)

The compliment of this region is obtained by applying DeMorgan’s Law yielding

Z
c
m =

M�1[

j=0,j 6=m

⇥
Z

PW
m (j)

⇤c
=

M�1[

j=0,j 6=m

Z
PW
j (m) (7)

where the fact that
⇥
Z

PW
m (j)

⇤c
= Z

PW
j (m) has been used.

Bounds can be constructed using simple Union Bounds and related techniques. Specifically, let
{Ai} be a set of events, then it follows that

max
i

P (Ai)  P (
[

i

Ai) 

X

i

P (Ai) (8)
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8-PSK Example Min. Distance Rule
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4-PAM Example Min. Distance Rule
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16-QAM Example Min. Distance Rule
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= Z

PW
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P (E|Hm) = Pr {z(u) 2 Z
c
m|Hm}

= Pr
n
z(u) 2

SM�1
j=0,j 6=mZ

PW
j (m)

o
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global decision

transmitted point x

received point z

su�cient set for
transmitted point

Figure 1: An example of a su�cient set for a given signal. Note that a global error cannot occur
without a su�cient pairwise error event occurring.

where the lower bound is constructed by obtaining the largest lower-bound from a family (i.e.,
P (Ai) is a lower bound for each value of i). Upper and lower bounds for the conditional error
probability can then be constructed using either the union in (4) or (7). However, evaluation
of Pr {z(u) 2 Z

c
m|Hm} is typically di�cult (i.e., if it can be obtained, then often times an exact

expression for the error probability can be obtained), so a bound constructed from pairwise errors
is more generally applicable. In this case, applying (8) using the the expression in (7) yields

max
j

PPW (j|Hm)  P (E|Hm) 

M�1X

j=0,j 6=m

PPW (j|Hm) (9)

where
PPW (j|Hm) = Pr

n
z 2 Z

PW
j (m)|Hm

o
(10)

In practice the expression for Z
c
m in (7) is overly conservative owing to the fact that a subset of

terms in the union may actually fully define the compliment of the decision region. Suppose that
a set Nm ⇢ {0, 1, . . . M � 1} defines the region Z

c
m in the sense that

Z
c
m =

M�1[

j=0,j 6=m

Z
PW
j (m) =

M�1[

j2Nm

Z
PW
j (m) (11)

We refer to any such set as a su�cient set and the corresponding pairwise error events as su�cient
Pairwise Error Events. A key property of such sets is that if a global error occurs, then some
su�cient pairwise error event must have occurred. One may view the su�cient set as a set of
“nearest neighbors” that determine the decision region; this concept is illustrated in Figure 1 for
the case of minimum distance decisions. As a result, the upper bound in (9) can be tightened by
replacing the sum over j 6= m with the sum over j 2 Nm.

Bounds on the unconditional error probability can then be obtained by averaging these condi-
tional bounds using the fact that P (E) =

PM�1
m=0 P (E|Hm)P (Hm)

M�1X

m=0

P (Hm)


max

j
PPW (j|Hm)

�
 P (E) 

M�1X

m=0

P (Hm)
M�1X

j2Nm

PPW (j|Hm) (12)

union 
bound
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expression for the error probability can be obtained), so a bound constructed from pairwise errors
is more generally applicable. In this case, applying (8) using the the expression in (7) yields
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In practice the expression for Z
c
m in (7) is overly conservative owing to the fact that a subset of
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We refer to any such set as a su�cient set and the corresponding pairwise error events as su�cient
Pairwise Error Events. A key property of such sets is that if a global error occurs, then some
su�cient pairwise error event must have occurred. One may view the su�cient set as a set of
“nearest neighbors” that determine the decision region; this concept is illustrated in Figure 1 for
the case of minimum distance decisions. As a result, the upper bound in (9) can be tightened by
replacing the sum over j 6= m with the sum over j 2 Nm.

Bounds on the unconditional error probability can then be obtained by averaging these condi-
tional bounds using the fact that P (E) =
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1.1 Special Cases for AWGN Channels

A common special case for the application of the bounds developed above is that of a-priori equally-
likely signaling over an AWGN where z(u) = sm + w(u) under Hm with w(u) being AWGN. In
this case, the MAP detection rule is the Minimum Distance rule and the pairwise error is
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where
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A simple set of bounds can be obtained in terms of the global minimum distance
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which implies that at high SNR, the error probability must decay proportionally to Q
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i.e., the error probability of a binary test with only the nearest neighbor.
The last simple set of bounds is pessimistic (loose) in the sense that the upper bound was

constructed using all other hypotheses as the su�cient set (i.e., hence the (M � 1) term) and
the lower bound was constructed by taking only a single term from the sum. With some book-
keeping, these bounds can be improved. Specifically, consider the distance spectrum of the signal
set – i.e., the values of d(m, j) that can occur for the specific set of signals. Order these distances
d1 = dmin < d2 < d3 . . . . Let Ni({Nm}) be the number of times that di occurs in a listing of all
su�cient pairwise error events. Let Ki be the number of hypotheses for which dmin(m) = di. The
basic bound in (14) then simplifies to
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Note that one could use any single term from the above lower bound as a lower bound that may
be much easier to compute and only slightly looser. For example, this yields a tighter lower bound
in dmin of the form

P (E) �
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Note that one could use any single term from the above lower bound as a lower bound that may
be much easier to compute and only slightly looser. For example, this yields a tighter lower bound
in dmin of the form
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Less tight, but very simple version:
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Note that one could use any single term from the above lower bound as a lower bound that may
be much easier to compute and only slightly looser. For example, this yields a tighter lower bound
in dmin of the form
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Book-keeping to combine terms with same distances
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where K1 is the number of times dmin occurs in the sum of the lower bound in (14). Note that,
depending on the SNR, this may not be the best single-term lower bound. For example, the
analogous bound based on d2 may be larger at low SNR if K2 > K1. This motivates the lower
bound
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At moderate to high SNR, the upper bound is dominated by the dmin term so that
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1.2 Conversion of M-ary Bounds to Bit Error Probability Bounds

The M hypotheses often correspond to M = 2k di↵erent binary (k-bit) words that label each signal
point (one-to-one). As such, the issue of the probability of bit error arises. Let b0, b1, . . . bk�1 be a
bit label. Any M -ary rule induces a rule for deciding between bi = 0 and bi = 1, so it is reasonable
to consider the probability that the ith bit is decided in error. Specifically, let Bi be the event that
the M -ary rule yields a bit error at location i. Recalling that E is the event that a “symbol” error
occurs (i.e., an error in the M -ary rule), then we have

P (Bi) =
P (Bi|E)P (E)

P (E|Bi)
= P (Bi|E)P (E) (22)

since P (E|Bi) = 1 (i.e., an error in one bit location yields a symbol error). It is non-trivial to
evaluate P (Bi|E), but we can consider the average bit error probability (i.e., averaged over bit
locations)

Pb =
1

k

k�1X

i=0

P (Bi) =
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k

k�1X

i=0

P (Bi|E)P (E) (23)

When a symbol error is made, at least one of the bits must be in error – this yields a lower bound.
The upper bound s results from noting that P (Bi|E)  1. This yields

1

k
P (E)  Pb  P (E) (24)

This result can then be combined with any set of bounds for P (E) yielding

1

k
BL(E)  Pb  BU (E) (25)

where BL(E) and BU (E) are upper and lower bounds on P (E), respectively. Note that this approach
is su�ciently tight only when k is small (i.e., small number of bits mapped to a symbol.
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Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Performance of common M-ary modulations

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation
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Performance (exact): M-PAM
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Performance (exact): M-QAM
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Performance (exact): M-QAM
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Performance (exact): M-QAM
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Eb =
Es

log2(M)
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©K.M. Chugg - March 5, 2023– TITLE 2

Es/N0 loss relative to BPSK (dB)

M PSK QAM

M sin2(⇡/M) 3
2(M�1)

4 3.0 3.0

8 8.3

16 14.2 10.0

32 20.2

64 26.2 16.2

128 32.2

256 38.2 22.3

1024 50.3 28.3

4096 62.3 34.3

⇡0 = ⇡1 = 0.5

fz(u)(z|H0) =
1

2
e�|z|

fz(u)(z|H1) =
1

2
N (z;�2; 1) +

1

2
N (z; +2; 1)

P (E) =

Z

Z0

⇡1fz(u)(z|H1)| {z }
I1(z)

dz +

Z

Z1

⇡0fz(u)(z|H0)| {z }
I0(z)

dz

I0(z), I1(z) � 0, 8 z

Z0 [ Z1 = R, Z0 \ Z1 = ;

Z0 = {z 2 R : I0(z) > I1(z)}
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Eb/N0 (dB)
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2

4 8 16 32 64
4 16 64 256 1024

4096

PSK
QAM

Eb/N0 loss relative to BPSK (dB)

M PSK QAM

M sin2(⇡/M) log2(M) 3 log2(M)
2(M�1)

4 0 0

8 3.6

16 8.2 4.0

32 13.2

64 18.4 8.5

128 23.8

256 29.2 13.3

1024 40.3 18.3

4096 51.5 23.6
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QPSK vs. BPSK Comparison
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• This is actually exact when using Gray-mapped 4QAM/QPSK
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(Gray mapping) 
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M-ary Orthogonal (coherent demod)
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ML Rule

hsm, sni = < {hs̄m, s̄ni} = Es�[m� n]

�i(t) =
si(t)p
Es

stm =
p
Es

⇣
0 0 . . . 0 1 0 . . . 0

⌘
max
m

zm

kz� smk2 = kzk2 + ksmk2 � 2ztsm

⌘ Es � 2ztsm

⌘ �2
p
Eszm

fz(u)(z|H0) = NM

✓
z; s0;

N0

2
I

◆

= N1(z0;
p

Es;N0/2)
M�1Y

i=1

N1(zi; 0;N0/2)

Given H0, {z0(u), z1(u), . . . zM�1(u)} are mutually independent



© Keith M. Chugg, 2017

M-ary Orthogonal (coherent demod)

39

P (C|H0, z0(u) = z0) = Pr {z1(u) < z0, z2(u) < z0, . . . zM�1(u) < z0|H0, z0(u) = z0}

=
M�1Y

i=1

Pr {zi(u) < z0|H0, z0(u) = z0}

=
M�1Y

i=1
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i=1
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◆�
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z0
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M-ary Orthogonal (coherent demod)

40

P (C|H0) =

Z 1

�1
P (C|H0, z0(u) = z0)fz0(u)(z0|H0)dz0
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M-ary Orthogonal (coherent demod)
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P (E) = P (E|H0) = 1�
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M-ary Orthogonal (coherent demod)
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performance improves as M increases — opposite of QASK
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M-ary Orthogonal (coherent demod)
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performance improves as M increases — opposite of QASK
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M-ary Orthogonal (coherent demod)
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How far can we take this?

(use L’Hopital’s Rule)

lim
M!1

PM (E) = 1� lim
M!1

PM (C)

= 1� exp


lim

M!1
ln (PM (C))

�

lim
M!1

ln (PM (C)) =
(
�1 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)

lim
M!1

PM (E) =
(
1 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)

lim
M!1

Pb(M) =

(
1/2 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)
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M-ary Orthogonal (coherent demod)
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How far can we take this?

ln(2) is a threshold on Eb/No for which 
perfect communication occurs

spectral efficiency (bps/Hz) 
goes to zero as M increases

lim
M!1

PM (E) = 1� lim
M!1

PM (C)

= 1� exp


lim

M!1
ln (PM (C))

�

lim
M!1

ln (PM (C)) =
(
�1 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)

lim
M!1

PM (E) =
(
1 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)

lim
M!1

Pb(M) =

(
1/2 Eb

N0
< ln(2)

0 Eb
N0

� ln(2)

⌘bits/dim =
log2(M)

M

lim
M!1

⌘bits/dim = 0

We will see that this result shows that orthogonal modulation achieves 
Shannon Capacity for the AWGN as spectral efficiency goes to 0

Also, at finite spectral efficiency, the capacity results will show that 
similar threshold results hold, but for larger values of Eb/No

Eb/No = -1.6 dB is the smallest value of Eb/No for reliable 
communications on the AWGN channel
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M-ary Orthogonal (coherent demod)
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• Other “orthogonal-like” signal sets exhibit similar large M 
performance trends

• Bi-orthogonal, simplex

• Result also occurs with phase non-coherent detection
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AWGN Capacity (preview)
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Eb/No = -1.6 dB is the smallest value of Eb/No for reliable 
communications on the AWGN channel
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Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Performance of common M-ary modulations

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation

50
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Continuous Time AWGN Likelihood Functional

51

AWGN 
Continuous time likelihood 

functional 
(replaces conditional pdf/pmf)

vector observation — finite number of random 
variables

Hm : r(u, t) = sm(t) + n(u, t) t 2 T
waveform observation — 

uncountably infinite random variables

L(r|Hm) ⌘ exp

✓
�1

N0

⇥
ksmk

2
� 2hr, smi

⇤◆

= exp

✓
�1

N0

Z

T
s2m(t)dt� 2

Z

T
r(t)sm(t)dt

�◆

= e�Em/N0 exp

✓
2

N0

Z

T
r(t)sm(t)dt

◆

Hm : z = sm +w D ⇥ 1

fz(u)(z|Hm) ⌘ exp

✓
�kz� smk

2

N0

◆

⌘ e�Em/N0 exp

✓
2stmz

N0

◆
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As W goes to infinity, this 
converges to the integral

Continuous Time AWGN Likelihood Functional

Hm : r(W )(u) = s(W )
m + n(W )(u) (2WT )⇥ 1

n(W )(u) ⇠ N2WT (·;0;N0W I)

fr(W )(u)(r
(W )
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m

✓
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1

2W

H(f) = rect(f/2W ))
r(t) = sm(t) + n(u, t)

r(W )(t) = s(W )
m (t) + n(W )(u, t)

Sn(f) = N0/2

Rn(⌧) =
N0

2
�(⌧)

Sn(W )(f) =
N0

2
rect(f/(2W ))

Rn(W )(⌧) = N0W sinc(2W ⌧)

Tsample =
1

2W

r(W )
i = r(W )(t)

���
t=iTsample



© Keith M. Chugg, 2017 53

More rigorous development from a generalized Fourier Series 
expansion of the observed signal - Karhunen-Loeve Expansion

Continuous Time AWGN Likelihood Functional

Hm : r(u, t) = sm(t) + n(u, t) t 2 T

Hm : R(u, i) = Sm(i) +N(u, i) i = 1, 2, 3, . . .

R(u, i) =

Z

T
r(u, t)�i(t)dt

Sm(i) =

Z

T
sm(t)�i(t)dt

N(u, i) =

Z

T
n(u, t)�i(t)dt
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More rigorous development from a generalized Fourier Series 
expansion of the observed signal - Karhunen-Loeve Expansion

Continuous Time AWGN Likelihood Functional
Hm : R(u, i) = Sm(i) +N(u, i) i = 1, 2, 3, . . .

R(u, i) =

Z

T
r(u, t)�i(t)dt

Sm(i) =

Z

T
Sm(t)�i(t)dt

N(u, i) =

Z

T
n(u, t)�i(t)dt

E {N(u, i)} =

Z

T
E {n(u, t)}�i(t)dt = 0

E {N(u, i)N(u, k)} =

Z

T

Z

T
�i(t1)E {n(u, t1)n(u, t2)}�k(t2)dt1dt2

=

Z

T

Z

T
�i(t1)Kn(t1, t2)�k(t2)dt1dt2
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Karhunen-Loeve Expansion comes from solving 

Continuous Time AWGN Likelihood Functional

This implies that the noise coefficients are uncorrelated

E {N(u, i)N(u, k)} = �k�[i� k]

For the generalized FS we have
X

i

X(i)Y (i) =

Z

T
x(t)y(t)dt

In the limiting case of AWGN

Z

T
Kn(t1, t2)�k(t2)dt2 =

Z

T

N0

2
�(t1 � t2)�k(t2)dt2 =

N0

2
�k(t1)

Z

T
Kn(t1, t2)�k(t2)dt2 = �k�k(t1)

Any CONS works
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Summary of Karhunen-Loeve Expansion for AWGN Limiting Sase

Continuous Time AWGN Likelihood Functional

Jointly Gaussian (iid) coefficients

Any CONS

Hm : R(u, i) = Sm(i) +N(u, i) i = 1, 2, 3, . . .

R(u, i) =

Z

T
r(u, t)�i(t)dt

Sm(i) =

Z

T
Sm(t)�i(t)dt

N(u, i) =

Z

T
n(u, t)�i(t)dt

E {N(u, i)} = 0

E {N(u, i)N(u, k)} =
N0

2
�[i� k]
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Related Facts About Correlating AWGN

Na(u) =

Z

T
a(t)n(u, t)dt

Nb(u) =

Z

T
b(t)n(u, t)dt

E {Na(u)} = E {Nb(u)} = 0

E
�
N2

a (u)
 
=

N0

2

Z

T
a2(t)dt

E
�
N2

b (u)
 
=

N0

2

Z

T
b2(t)dt

E {Na(u)Nb(u)} =
N0

2

Z

T
a(t)b(t)dt
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KL expansion for AWGN leads to Likelihood Functional

Continuous Time AWGN Likelihood Functional

f({R(i)}Ni=1|Hm) ⌘ exp
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NX
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S2
m(i) +
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R(i)Sm(i)

!
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f({R(i)}Ni=1|Hm) ⌘ exp
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s2m(t)dt+
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◆

CONS = {�1(t),�2(t), . . .�D(t)}
[

{�D+1(t),�D+2(t),�D+3(t), . . .}

Orthonormal basis 
for signal space

orthonormal 
completion of first 

D functions
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KL expansion for AWGN leads to Likelihood Functional

Continuous Time AWGN Likelihood Functional

f({R(i)}D+k
i=1 |Hm) = ND+k

0

BBBBBBBBBBBBBBBBBBBBBBB@

2

666666666666666666666664

R(1)

R(2)

...

R(D)

R(D + 1)

...

R(D + k)

3

777777777777777777777775

;

2

666666666666666666666664

Sm(1)

Sm(2)

...

Sm(D)

0

...

0

3

777777777777777777777775

;

2

664

N0
2 ID O

O
N0
2 Ik

3

775

1

CCCCCCCCCCCCCCCCCCCCCCCA

= ND

0

BBBBBBBBBB@

2

66666666664

R(1)

R(2)

...

R(D)

3

77777777775

;

2

66666666664

Sm(1)

Sm(2)

...

Sm(D)

3

77777777775

;
N0

2
ID

1

CCCCCCCCCCA

Nk

0

BBBBBBBBBB@

2

66666666664

R(D + 1)

R(D + 2)

...

R(D + k)

3

77777777775

;0;
N0

2
Ik

1

CCCCCCCCCCA

f({R(i)}D+k
i=1 |Hm) ⌘ ND

0

BBBBBBBBBB@

2

66666666664

R(1)

R(2)

...

R(D)

3

77777777775

;

2

66666666664

Sm(1)

Sm(2)

...

Sm(D)

3

77777777775

;
N0

2
ID

1

CCCCCCCCCCA

⌘ exp

✓
�kz� smk

2

N0

◆

z =


R(1) R(2) · · · R(D)

�t

sm =


Sm(1) Sm(2) · · · Sm(D)

�t



© Keith M. Chugg, 2017 60

KL expansion for AWGN leads to Likelihood Functional

Continuous Time AWGN Likelihood Functional
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66666666664

Sm(1)

Sm(2)

...

Sm(D)

3

77777777775

;
N0

2
ID

1

CCCCCCCCCCA

Nk

0

BBBBBBBBBB@

2

66666666664

R(D + 1)

R(D + 2)

...

R(D + k)

3

77777777775

;0;
N0

2
ID

1

CCCCCCCCCCA

f({R(i)}D+k
i=1 |Hm) ⌘ ND

0

BBBBBBBBBB@

2

66666666664

R(1)

R(2)

...

R(D)

3

77777777775

;

2

66666666664

Sm(1)

Sm(2)

...

Sm(D)

3

77777777775

;
N0

2
ID

1

CCCCCCCCCCA

⌘ exp

✓
�kz� smk

2

N0

◆

z =


R(1) R(2) · · · R(D)

�t

sm =


Sm(1) Sm(2) · · · Sm(D)

�t

Vector-AWGN Model is Equivalent to Processing 
Continuous AWGN observation optimally!
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Continuous Time AWGN Likelihood Functional

Vector-AWGN Model is Equivalent to Processing 
Continuous AWGN observation optimally!

ztsm =

Z

T
r(t)sm(t)dt =

DX

i=1

R(i)Sm(i)

Em =

Z

T
s2m(t)dt =

DX

i=1

S2
m(i)

L(r|Hm) ⌘ exp

✓
�1

N0

⇥
ksmk

2
� 2hr, smi

⇤◆

= exp

✓
�1

N0

Z

T
s2m(t)dt� 2

Z

T
r(t)sm(t)dt

�◆

= e�Em/N0 exp

✓
2

N0

Z

T
r(t)sm(t)dt

◆

= e�Em/N0 exp

✓
2

N0
ztsm

◆

ztsm =

Z

T
r(t)sm(t)dt =

DX

i=1

R(i)Sm(i)

Em =

Z

T
s2m(t)dt =

DX

i=1

S2
m(i)
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One-shot MAP Receiver in AWGN

Vector-AWGN model is a model for the output of the bank 
of correlates to the orthonormal basis for the signal space

Z

⌧

�1(t)
Z

⌧

Z

⌧

�2(t)

�D(t)

...
...

z = x+w

min
m


� ln(⇡m) +

1

N0
kz� smk2

�

() min
m

kz� smk2
✓
when ⇡m =

1

M

◆
r(t)

decision

(D ⇥ 1)

Pr {x(u) = sm} = ⇡m

fw(u)(w) = ND

✓
w;0;

N0

2
I

◆

(correlation to orthonormal basis)
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Sufficient Stats and Related Topics

• Note that the processing from r(t) to z is is not reversible

• Cannot recover r(t) from z

• In general, how do we know that we are not throwing out useful 
information?  

• Notion of a set of sufficient statistics

• Engineering lingo (Wozencraft & Jacobs)

• Theorem of Reversibility

• Theorem of Irrelevance

63
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Theorem of Reversibility

• Any reversible (invertible) signal processing operation can be 
performed on the observation without losing information relevant 
to the decision problem

64

1. A nonzero centroid does not help performance and wastes 
energy

2. A unitary transformation of the signals (e.g., rotation, 
reflection) does not affect performance in AWGN

U

w(u)

sm vm

c

U†

U†U = I
�c

reversible processing

sm + n(u)

n(u) = Uw(u)

fn(u)(z) = fw(u)(z) = ND

✓
z;0;

N0

2
I

◆
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Theorem of Reversibility

65

Colored Noise MAP receiver realized using a whitening filter

sm

reversible processing

fn(u)(z) = ND (z;0;Kn)

n(u)
Kn = HH

†

H
�1

vm +w(u)

w(u) = H
�1

n(u)

fw(u)(z) = ND (z;0; I)
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Theorem of Irrelevance

66

Suppose we have two observations

f(z1, z2|Hm) = f(z1|z2,Hm)f(z2|Hm)

If the following holds

Then we say that z1 is irrelevant given z2 for the purposes of 
making a decision on the hypotheses

f(z1|z2,Hm) = f(z1|z2) m = 0, 1, . . .M � 1

We have used this when dropping multiplicative terms and in 
discarding the AWGN outside the signal space
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Set of Sufficient Statistics

67

A set of sufficient statistics for a hypothesis testing problem is a 
function of the observation that makes the observation irrelevant

Examples:

f(z,g(z)|Hm) = f(z|g(z),Hm)f(g(z)|Hm)

= f(z|g(z))f(g(z)|Hm) m = 0, 1, . . .M � 1

⌘ f(g(z)|Hm)

{ztsm}M�1
m=0 is a set of su�cient stats for the vector AWGN channel

⇢Z

T
r(t)sm(t)dt

�M�1

m=0

is a set of su�cient stats for the AWGN channel

⇢Z

T
r(t)�i(t)dt

�D

i=0

is a set of su�cient stats for the AWGN channel
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Set of Sufficient Statistics

68

If you start with the likelihood (functional) and you simplify to the 
only hypothesis-dependent terms that are a function of the 

observation, then these are a set of sufficient stats

Whenever you have a set of sufficient statistics, they can be 
treated as an equivalent observation and the hypothesis testing 
problem can be reformulated using the equivalent observation

Example:  We reformulated the waveform AWGN channel 
problem in terms of the equivalent vector model which we 

now see is a set of sufficient stats

Why not use the other set of sufficient stats from previous slide?
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One-shot MAP Receiver in AWGN
(correlation to signals)

Z

⌧

Z

⌧

Z

⌧

...
...

r(t)
s0(t)

s1(t)

sM�1(t)

r = y + n

(M ⇥ 1)

1

2
(N0 ln(⇡0)� E0)

1

2
(N0 ln(⇡1)� E1)

1

2
(N0 ln(⇡M�1)� EM�1)

max
m

decision

Requires M >= D correlators
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One-shot MAP Receiver in AWGN

Post-correlator model for processing of previous slide

This matrix of inner products is called the Gramian of the signal set

Hm : r(u) = vm + n(u)

vm =


hsm, s0i hsm, s1i hsm, s2i · · · hsm, sM�1i

�t

mn = 0

Kn =
N0

2

2

666666666666664

hs0, s0i hs0, s1i hs0, s2i . . . hs0, sM�1i

hs1, s0i hs1, s1i hs1, s2i . . . hs1, sM�1i

hs1, s0i hs1, s1i hs1, s2i . . . hs1, sM�1i

...
. . .

...

hsM�1, s0i hsM�1, s1i hsM�1, s2i . . . hsM�1, sM�1i

3

777777777777775
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One-shot MAP Receiver in AWGN

• This processing is not preferred because

• More correlates than needs (high complexity)

• Noise vector covariance matrix will have rank D which means it 
is singular unless D=M

• For orthogonal signaling, the two approaches are the same!

This post-correlator model illustrates that the performance in 
AWGN is completely determined by the Gramian of the signal set 

— i.e., the inner products between signals

(correlation to signals)
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Complex BB CT Likelihood Functional

Recall:
Hm : r(u, t) = sm(t) + n(u, t) t 2 T (narrowband)

(complex BB)Hm : r̄(u, t) = s̄m(t) + n̄(u, t) t 2 T

Hm : r(u, t) = sm(t) + n(u, t) t 2 T

I and Q components of complex BB equivalent AWGN are each 
AWGN processes that are independent

hr, smi =
Z

T
r(t)sm(t)dt = < {hr̄, s̄mi} = <

�R
T r(t)s⇤m(t)dt
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Complex BB CT Likelihood Functional

(narrowband)

(complex BB)

L(r|Hm) ⌘ exp

✓
�1

N0

⇥
ksmk

2
� 2hr, smi

⇤◆

= exp

✓
�1

N0

Z

T
s2m(t)dt� 2

Z

T
r(t)sm(t)dt

�◆

= e�Em/N0 exp

✓
2

N0

Z

T
r(t)sm(t)dt

◆

= exp

✓
�1

N0

Z

T
|s̄m(t)|2dt� 2<

�R
T r(t)s⇤m(t)dt

 �◆

= L(r̄|Hm)



© Keith M. Chugg, 2017

Detection of a Digital Sequence

74

• For the PSD, we considered a sequence of digital symbols sent 
through the channel

• So far we have considered only the “one shot” detection problem

• Let’s use the continuous time likelihood functional to solve this 
sequence detection problem

x(u, t) =
X

k

s̄Xk(u)(t� kT )

Xk(u) 2 {0, 1, . . .M � 1} (independent)

s̄m(t)(lasts  T seconds)

x(u, t) =
X

k

Xk(u)p(t� kT )

Xk(u) ⇠ independent, distributed over QASK constellation

memoryless (nonlinear) modulation linear (QASK) modulation

e.g., FSK
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Detection of a Digital Sequence

75

x(u, t) =
X

k

s̄Xk(u)(t� kT )

Xk(u) 2 {0, 1, . . .M � 1} (independent)

s̄m(t)(lasts  T seconds)

memoryless (nonlinear) modulation

For independent modulation symbols, the likelihood functional 
factors and the optimal processing is to repeat the one-shot MAP 

detector each symbol time

L(r̄|{Xk(u) = ak}k) = exp

✓
�1

N0

Z

T
|x̄(u, t;a)|2dt� 2<

�R
T r̄(t)x̄⇤(u, t;a)dt

 �◆

= exp

 
�1

N0

"
X

k

Z (k+1)T

kT
|s̄ak(t)|

2dt� 2<
nP

k

R (k+1)T
kT r̄(t)s̄⇤ak(t)dt

o#!

=
Y

k

exp

 
�1

N0

"Z (k+1)T

kT
|s̄ak(t)|

2dt� 2<
nR (k+1)T

kT r̄(t)s̄⇤ak(t)dt
o#!

=
Y

k

L(r̄k|Xk(u) = ak)
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MAP Receiver in AWGN

Can think of this as just resetting the one-shot detector and 
repeating each symbol time

(correlation to orthonormal basis)

...
...

r(t)

decision

(D ⇥ 1)

�1(t� kT )

�2(t� kT )

�D(t� kT )

Z (k+1)T

kT

Z (k+1)T

kT

Z (k+1)T

kT

(k + 1)T

(k + 1)T

(k + 1)T
zk = xk +wk

min
m


� ln(⇡m(k)) +

1

N0
kzk � smk2

�

() min
m

kzk � smk2
✓
when ⇡m(k) =

1

M

◆

on kth symbol
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Example: MFSK Orthogonal

77

...
...

r(t)

decision

Z (k+1)T

kT

Z (k+1)T

kT

Z (k+1)T

kT

(k + 1)T

(k + 1)T

(k + 1)T

on kth symbol

r
2

T
cos(2⇡f0t)

r
2

T
cos(2⇡f1t)

r
2

T
cos(2⇡fM�1t)

max
m
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Correlation vs Matched Filter

Z (k+1)T

kT

(k + 1)T

�⇤(t� kT )

correlator matched filter

�⇤(�t)

kT

x(t) ⇤ v(t) =
Z

x(⌧)v(t� ⌧)d⌧

x(t) ⇤ v⇤(�t) =

Z
x(⌧)v⇤(⌧ � t)d⌧

x(t) ⇤ v⇤(�t)|t=kT =

Z
x(⌧)v⇤(⌧ � kT )d⌧
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Correlation vs Matched Filter

Z (k+1)T

kT

(k + 1)T

�⇤(t� kT )

correlator matched filter

example input 
with rect pulse t

t

t

T

T

T

example 
correlator 

output

example 
matched-filter 

output

no noise is 
shown

�⇤(�t)

kT
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Correlation vs Matched Filter
bank of correlates for signal that last 3T

matched filter

each correlation takes 3T 
to complete, can be 

reused after that 
�⇤(t� kT )

�⇤(t� (k + 1)T )

�⇤(t� (k + 2)T )

Z (k+3)T

kT

(k + 3)T

Z (k+4)T

(k+1)T

Z (k+5)T

(k+2)T

(k + 4)T

(k + 5)T

zk

zk+1

zk+2

r(t)

single matched-filter 
required even if signal phi 

lasts multiple symbol 
times

�⇤(�t)

kT
zkr(t)
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MAP Receiver in AWGN
(matched-filters to orthonormal basis)

(k + 1)T

...
...

r(t)

decision

(D ⇥ 1)zk = xk +wk

min
m


� ln(⇡m(k)) +

1

N0
kzk � smk2

�

() min
m

kzk � smk2
✓
when ⇡m(k) =

1

M

◆

on kth symbol

(k + 1)T

(k + 1)T

�⇤
1(�t)

�⇤
2(�t)

�⇤
D(�t)

correlator form is common with rect-pulses and called an “integrate and dump”
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Detection of a Digital Sequence - QASK

82

linear modulation
x(u, t) =

X

k

Xk(u)p(t� kT )

Xk(u) ⇠ independent, distributed over QASK constellation

(consider arbitrary pulse shape)

complex baseband matched 
filter outputs

z̄k =

Z
r̄(t)p⇤(t� kT )dt

{z̄k}k is a set of su�cient statistics

L(r̄|{X̄k(u) = āk}k) = exp

✓
�1

N0

Z

T
|x̄(u, t; ā)|2dt� 2<

�R
T r̄(t)x̄⇤(u, t; ā)dt

 �◆

= exp

✓
�1

N0

Z

T
|x̄(u, t; ā)|2dt

�◆
exp

✓
�1

N0

⇥
2<

�R
T r̄(t)

P
k ā

⇤
kp

⇤(t� kT )dt
 ⇤◆

= exp

✓
�1

N0

Z

T
|x̄(u, t; ā)|2dt

�◆
exp

✓
�1

N0

⇥
2<

�P
k ā

⇤
k

R
T r̄(t)p⇤(t� kT )dt

 ⇤◆
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complex baseband

narrowband signal 
processing for real pulse

Detection of a Digital Sequence - QASK

r(t)
�

2 cos(2�fct)

�
⇥

2 sin(2�fct)

kT

kT

p(�t)

p(�t)

zIk

zQk

kT

p⇤(�t)

r̄(t)r(t) z̄k

p
2e�j2⇡fct
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Detection of a Digital Sequence - QASK

kT

p⇤(�t)

r̄(t) z̄ks̄p(t; ā) + n̄p(u, t)

s̄p(t; ā) =

"
X

i

āip(t� iT )

#
⇤ p⇤(�t)

=

"
X

i

āi�(t� iT )

#
⇤ p(t) ⇤ p⇤(�t)

=

"
X

i

āi�(t� iT )

#
⇤Rp(t)

=
X

i

āiRp(t� iT )

n̄p(u, t) = n̄(u, t) ⇤ p⇤(�t)

Rn̄p(⌧) = N0Rp(t)

n̄p(u, t) = n̄(u, t) ⇤ p⇤(�t)

Rn̄p(⌧) = N0Rp(⌧)
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Detection of a Digital Sequence - QASK

kT

p⇤(�t)

r̄(t) z̄ks̄p(t; ā) + n̄p(u, t)

z̄k(u) = [s̄p(t; ā) + n̄p(u, t)]|t=kT

=
X

i

āiRp((k � i)T ) + n̄k(u)

E {n̄k+m(u)n̄⇤
k(u)} = N0Rp(mT )
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Detection of a Digital Sequence - QASK

kT

p⇤(�t)

r̄(t) z̄ks̄p(t; ā) + n̄p(u, t)

Rp(mT ) = p(t) ⇤ p⇤(�t)|t=mT = C�[m]

Nyquist Condition on pulse shape When p(t) satisfies the Nyquist condition

• There is no inter symbol interference
• The noise at the output of the MF is CC-

AWGN 

z̄k(u) = āk + w̄k(u)

E {w̄k+m(u)w̄⇤
k(u)} = N0�[m]

The Nyquist condition is 
satisfied for any pulse that is 

zero outside of [0,T]

Can a pulse that lasts longer 
than T satisfy this?
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Nyquist Condition for No ISI

Rp(mT ) = p(t) ⇤ p⇤(�t)|t=mT = C�[m]time domain

frequency 
domain

FT {Rp(t)} = |P (f)|2

1

T

X

k

|P (f � k/T )|2 = C

Nyquist Condition on pulse shape (freq domain)

folded-spectrum 
should be flat
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Nyquist Pulse Shape: sinc()

Nyquist Condition on pulse shape (freq domain)

|P (f)|2 = T rect(fT )

Rp(t) = sinc(t/T )

P (f) =
p
T rect(fT )

p(t) =
1p
T
sinc(t/T )

f1

2T

�1

2T

1

T

�1

T

2

T
0
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Nyquist Pulse Shape: sinc()

sample waveform for 4PAM with sinc() pulse shape (matched filter output)

t/T
-10 -8 -6 -4 -2 0 2 4 6 8 10

M
F 

O
ut

pu
t 4

PA
M

 (d
at

a 
= 

3 
-1

 1
 -3

)

-3

-2

-1

0

1

2

3

• pulse correlation falls off 
like 1/t
• sensitive to sample 

timing error
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Nyquist Pulse Shape: Raised Cosine Spectrum

1

2T

�1

2T
0

1 + �

2T

1� �

2T

f�1

T

1

T

|P (f)|2 =

8
>><

>>:

T |f | < 1��
2T

T
2

h
1� sin

⇣
⇡T
�

�
f � 1

2T

�⌘i 1��
2T  |f |  1+�

2T

0 |f | > 1+�
2T

Rp(t) = sinc(t/T )
cos(�⇡t/T )

1� 4�2(t/T )2

P (f) = |P (f)|

p(t) = 4�
cos((1 + �)⇡t/T ) + sin((1� �)⇡(t/T )) [4�(t/T )]�1

⇡
p
T [1� (4�t/T )2]

|P (f)|2 =

8
>><

>>:

T |f | < 1��
2T

T
2

h
1� sin

⇣
⇡T
�

�
f � 1

2T

�⌘i 1��
2T  |f |  1+�

2T

0 |f | > 1+�
2T

� 2 [0, 1) fractional excess bandwidth

Rp(t) = sinc(t/T )
cos(�⇡t/T )

1� 4�2(t/T )2

P (f) = |P (f)|

p(t) = 4�
cos((1 + �)⇡t/T ) + sin((1� �)⇡(t/T )) [4�(t/T )]�1

⇡
p
T [1� (4�t/T )2]
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Nyquist Pulse Shape: Raised Cosine Pulse Rp

note that pulse correlation passes through zero at integer multiples of T

t/T
-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Rp: -  = 0.1
Rp: -  = 0.25
Rp: -  = 0.5
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Nyquist Pulse Shape: Raised Cosine Spectrum

These are built into Matlab!

|P (f)|2 =

8
>><

>>:

T |f | < 1��
2T

T
2

h
1� sin

⇣
⇡T
�

�
f � 1

2T

�⌘i 1��
2T  |f |  1+�

2T

0 |f | > 1+�
2T

� 2 [0, 1) fractional excess bandwidth

Rp(t) = sinc(t/T )
cos(�⇡t/T )

1� 4�2(t/T )2

P (f) = |P (f)|

p(t) = 4�
cos((1 + �)⇡t/T ) + sin((1� �)⇡(t/T )) [4�(t/T )]�1

⇡
p
T [1� (4�t/T )2]

“raised cosine pulse”

“root raised cosine pulse”

rcosdesign(0.35,40,N_sps,'norm');

rcosdesign(0.35,40,N_sps,'sqrt');

Raised cosine

Roots-Raised cosine

beta = 0.35, truncated to 40 symbols length,  number of samples per symbol
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Nyquist Pulse Shape: Root Raised Cosine Pulse

note that pulse does not pass through zero at integer multiples of T

t/T
-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
p(t): -  = 0.1
p(t): -  = 0.25
p(t): -  = 0.5
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Nyquist Pulse Shape: Raised Cosine Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4
fT

-60

-50

-40

-30

-20

-10

0
PS

D
 d

B
rectangular pulse
RRC  = 0.35
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Nyquist Pulse Shape: Raised Cosine Spectrum

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

16PSK, beta = 0.25

Q
(t

)

I(t)

Signal trajectory in the I/Q 
plane with RRC pulse 

shaping

PSK with RRC has envelope 
variation
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QASK Modulation with Nyquist Pulse Shaping

Nyquist
Pulse

Shaping

Impulse
Weighting

xI
j

xQ
j

�

j

xI
j�(t� jTs)

�

j

xI
jp(t� jTs)

�

j

xQ
j p(t� jTs)

�

j

xQ
j �(t� jTs)

�
2 cos(2�fct)

�
⇥

2 sin(2�fct)

Nyquist
Pulse

Shaping

Impulse
Weighting

�
2 cos(2�fct)

�
⇥

2 sin(2�fct)

pulse
matched

filter

pulse
matched

filter
zQ
j

zI
j

jTs

jTs

Rp(t) = p(t) ⇥ p(�t)

Rp(jTs) = �K(j)

n(t)



© Keith M. Chugg, 2017

Detection/Demod Topics
• Maximum A Posteriori decision rule for vector-AWGN channel

• Exact performance for binary modulations

• Minimum distance decision rule for M-ary modulation over AWGN

• Performance bounds

• Performance of common M-ary modulations

• Continuous time model

• Likelihood functional, sufficient statistics

• Average and generalized likelihood

• Phase non-coherent demodulation

• Soft-out demodulation

97
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• The observation model is a function of a parameter or a set of 
parameters

• Nuisance parameters

• If we have a statistical model for the nuisance parameters

• Average them out — this is called average likelihood

• Same as original likelihood, just a two step process

• If no statistical model is assumed

• Can maximize over the parameters along with the hypothesis

• Called generalized likelihood (joint likelihood)

• Ad hoc in general

Composite Hypothesis Testing
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• Basic concepts and definitions

• Phase noncoherent detection

• Differential encoding of PSK and differentially coherent detection

• Soft-output demappers

• Get soft decisions out of the M-ary decision device

• transition to coding

Composite Hypothesis Testing - Topics
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Composite Hypothesis Testing

fz(u)(z|Hm) =

Z
fz(u)|⇥(u)(z|✓,Hm)f⇥(u)(✓|Hm)d✓

=

Z
fz(u)|⇥(u)(z|✓,Hm)f⇥(u)(✓)d✓ (⇥(u) independent of hypothesis)

fz(u)(z|Hm) =

Z
fz(u)|⇥(u)(z|✓,Hm)f⇥(u)(✓|Hm)d✓

=

Z
fz(u)|⇥(u)(z|✓,Hm)f⇥(u)(✓)d✓ (⇥(u) independent of hypothesis)

gz(u)(z|Hm) = max
✓

fz(u)(z|Hm; ✓)

= fz(u)(z|Hm; ✓̂m)

✓̂m = argmax
✓

fz(u)(z|Hm; ✓)

Average Likelihood

Generalized Likelihood
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Phase Noncoherent Detection

Use average likelihood with nuisance parameter being the incoming carrier phase

fz(u)(z|Hm) =

Z 1

�1
fz(u)|⇥c(u)(z|�,Hm)f⇥c(u)(�)d�

f⇥c(u)(�) = f⇥c(u)(�|Hm)

=
1

2⇡
� 2 [0, 2⇡)

Let’s evaluate this for the CT-Likelihood functional in AWGN

L(r|Hm) = e�Em/N0 exp

✓
2

N0

Z T

0
< {r̄(t)s⇤m(t)}dt

◆
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Phase Noncoherent Detection

Recall, the complex BB version of the likelihood

L(r|Hm) = e�Em/N0 exp

✓
2

N0

Z T

0
< {r̄(t)s⇤m(t)}dt

◆

L(r|Hm) = e�Em/N0 exp

✓
2

N0

Z T

0
< {r̄(t)s⇤m(t)}dt

◆

sm(t;⇥c(u)) = <
�
s̄m(t)

p
2ej(2⇡fct+⇥c(u))

 

= <
�
s̄m(t)ej⇥c(u)

p
2ej2⇡fct

 

= <
�
s̄m(t;⇥c(u))

p
2ej2⇡fct

 

s̄m(t;⇥c(u)) = s̄m(t)ej⇥c(u)

Modeling the unknown incoming phase offset



© Keith M. Chugg, 2017 103

Phase Noncoherent Detection

L(r|Hm) = e�Em/N0 exp

✓
2

N0

Z T

0
< {r̄(t)s⇤m(t)}dt

◆

sm(t;⇥c(u)) = <
�
s̄m(t)

p
2ej(2⇡fct+⇥c(u))

 

= <
�
s̄m(t)ej⇥c(u)

p
2ej2⇡fct

 

= <
�
s̄m(t;⇥c(u))

p
2ej2⇡fct

 

s̄m(t;⇥c(u)) = s̄m(t)ej⇥c(u)

L(r|Hm) = e�Em/N0

Z 2⇡

0
exp

✓
2

N0

Z T

0
<
�
r̄(t)s⇤m(t)ej�

 
dt

◆
d�

= e�Em/N0

Z 2⇡

0
exp

✓
2

N0
|r̄m| cos(�� \r̄m)

◆
d�

= e�Em/N0

Z

2⇡
e

2
N0

|r̄m| cos( )d 

I0(x) =

Z

2⇡
ex cos�d�

L(r|Hm) = e�Em/N0I0

✓
2

N0
|r̄m|

◆

Average Likelihood Functional, phase noncoherent AWGN

L(r|Hm) = e�Em/N0

Z 2⇡

0
exp

✓
2

N0

Z T

0
<
�
r̄(t)s⇤m(t)e�j�

 
dt

◆
d�

2⇡

= e�Em/N0
1

2⇡

Z 2⇡

0
exp

✓
2

N0
|r̄m| cos(�� \r̄m)

◆
d�

= e�Em/N0
1

2⇡

Z

2⇡
e

2
N0

|r̄m| cos( )d 

I0(x) =
1

2⇡

Z

2⇡
ex cos�d�

L(r|Hm) = e�Em/N0

Z 2⇡

0
exp

✓
2

N0

Z T

0
<
�
r̄(t)s⇤m(t)e�j�

 
dt

◆
d�

2⇡

= e�Em/N0
1

2⇡

Z 2⇡

0
exp

✓
2

N0
|r̄m| cos(�� \r̄m)

◆
d�

= e�Em/N0
1

2⇡

Z

2⇡
e

2
N0

|r̄m| cos( )d 

I0(x) =
1

2⇡

Z

2⇡
ex cos�d�

define r_m
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Phase Noncoherent Detection
If signals are equal energy

L(r|Hm) = e�Em/N0I0

✓
2

N0
|r̄m|

◆
⌘ I0

✓
2

N0
|r̄m|

◆

x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

I 0
(x
)

0

5

10

15

20

25

30

L(r|Hm) = e�Em/N0I0

✓
2

N0
|r̄m|

◆
⌘ I0

✓
2

N0
|r̄m|

◆

max
m

L(r|Hm) () max
m

|r̄m|

Envelope Detector (equal energy noncoherent)
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Envelope Detector Processing

r̄(t)r(t)

p
2e�j2⇡fct s̄⇤m(t)

Z T

0
T

| · |

Envelope Detector (complex baseband)

r̄m

r(t)

sm(t;⇡/2) = �Am(t) sin(2⇡fct+ ✓m(t))

Z T

0
T

Z T

0
T

< {r̄m}

= {r̄m}

(·)2

(·)2

p
·

Envelope Detector (narrowband processing)

sm(t; 0) = Am(t) cos(2⇡fct+ ✓m(t))
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Example: Non-coherent BFSK

r(t)

Z T

0
T

Z T

0
T

(·)2

(·)2

r
2

T
cos

✓
2⇡


fc �

1

2T

�◆

�
r

2

T
sin

✓
2⇡


fc �

1

2T

�◆

Z T

0
T

Z T

0
T

(·)2

(·)2

�
r

2

T
sin

✓
2⇡


fc +

1

2T

�◆

r
2

T
cos

✓
2⇡


fc +

1

2T

�◆

max
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Noncoherent Binary (equal E) Performance

Orthogonal Binary Noncoherent

P (E|H0) = Pr {|r̄0(u)| < |r̄0(u)||H0}

= Pr {Rayleigh rv > Rice rv}

= P (E|H1)

P (E) =
1

2
exp

✓
�E

2N0

◆

P (E|H0) = Pr {|r̄0(u)| < |r̄0(u)||H0}

= Pr {Rayleigh rv > Rice rv}

= P (E|H1)

P (E) =
1

2
exp

✓
�E

2N0

◆

P (E) = Q1(a, b)�
1

2
exp

✓
�(a2 + b2)

2

◆
I0(ab)

a =

r
E

2N0

⇣
1�

p
1� |⇢c|2

⌘

b =

r
E

2N0

⇣
1�

p
1� |⇢c|2

⌘

Q1(a, b) =

Z 1

b
x exp

✓
�(a2 + b2)

2

◆
I0(abx)dx

⇢c =
1

E

Z T

0
s̄0(t)s̄

⇤
1(t)dt

Marcum Q-function

P (E|H0) = Pr {|r̄0(u)| < |r̄0(u)||H0}

= Pr {Rayleigh rv > Rice rv}

= P (E|H1)

P (E) =
1

2
exp

✓
�E

2N0

◆

P (E) = Q(a, b)�
1

2
exp

✓
�(a2 + b2)

2

◆
I0(ab)

a =

r
E

2N0

⇣
1�

p
1� |⇢c|2

⌘

b =

r
E

2N0

⇣
1 +

p
1� |⇢c|2

⌘

Q(a, b) =

Z 1

b
x exp

✓
�(a2 + b2)

2

◆
I0(abx)dx

⇢c =
1

E

Z T

0
s̄0(t)s̄

⇤
1(t)dt

P (E|H0) = Pr {|r̄0(u)| < |r̄1(u)||H0}

= Pr {Rayleigh rv > Rice rv}

= P (E|H1)

P (E) =
1

2
exp

✓
�E

2N0

◆

P (E) = Q(a, b)�
1

2
exp

✓
�(a2 + b2)

2

◆
I0(ab)

a =

r
E

2N0

⇣
1�

p
1� |⇢c|2

⌘

b =

r
E

2N0

⇣
1 +

p
1� |⇢c|2

⌘

Q(a, b) =

Z 1

b
x exp

✓
�(a2 + b2)

2

◆
I0(abx)dx

⇢c =
1

E

Z T

0
s̄0(t)s̄

⇤
1(t)dt
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Noncoherent Binary (equal E) Performance

Best non-coherent performance is for orthogonal

Eb/N0 (dB)
4 6 8 10 12 14 16 18 20

P b

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 Noncoherent Binary Equal Energy Performance

Coherent Orthogonal
|;c| = 0
|;c| = 0.2
|;c| = 0.4
|;c| = 0.6
|;c| = 0.8



© Keith M. Chugg, 2017 109

Phase Noncoherent Detector (signal basis)

complex BB correlation to basis signals are sufficient statistics

{�̄i(t)}D̄i=1 = Orthonomal basis for complex BB model

Z

T
r̄(t)s̄⇤m(t)dt =

Z

T
r̄(t)

D̄X

i=1

S̄⇤
m(i)�̄⇤

i (t)dt

=

D̄X

i=1

S̄⇤
m(i)

Z

T
r̄(t)�̄⇤

i (t)dt

⇢Z

T
r̄(t)�̄⇤

i (t)dt

�
= su�cient statistics
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Phase Noncoherent Detector (signal basis)

(k + 1)T

...
...

r(t) (k + 1)T

(k + 1)T

�̄⇤
1(�t)

�̄⇤
2(�t)

�̄⇤
D̄(�t)

{�̄i(t)}
D̄
i=1 = Orthonomal basis for complex BB model

Z

T
r̄(t)s̄⇤m(t)dt =

Z

T
r̄(t)

D̄X

i=1

S̄⇤
m(i)�⇤

i (t)dt

=

D̄X

i=1

S̄⇤
m(i)

Z

T
r̄(t)�⇤

i (t)dt

⇢Z

T
r̄(t)�⇤

i (t)dt

�
= su�cient statistics

Hm : z̄(u) = s̄mej✓c(u) + w̄(u) (D̄ ⇥ 1)

w̄(u) ⇠ N
cc
D̄ (·;0;N0I)

fz(u)(z = s̄mej✓c(u) + w̄(u) (D̄ ⇥ 1)

w̄(u) ⇠ N
cc
D̄ (·;0;N0I)

{�̄i(t)}
D̄
i=1 = Orthonomal basis for complex BB model

Z

T
r̄(t)s̄⇤m(t)dt =

Z

T
r̄(t)

D̄X

i=1

S̄⇤
m(i)�⇤

i (t)dt

=

D̄X

i=1

S̄⇤
m(i)

Z

T
r̄(t)�⇤

i (t)dt

⇢Z

T
r̄(t)�⇤

i (t)dt

�
= su�cient statistics

Hm : z̄(u) = s̄mej✓c(u) + w̄(u) (D̄ ⇥ 1)

w̄(u) ⇠ N
cc
D̄ (·;0;N0I)

fz(u)(z|Hm) = e�Em/N0
1

2⇡

Z

2⇡
exp

✓
2

N0
s̄†mz̄e�j�

◆
d�

= e�Em/N0I0

✓
2

N0
|s̄†mz̄|

◆
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D

x̄i = ej✓i

ȳi�1 = ej�i�1

ȳi = ej�i

�i � �i�1 = ✓i

Differential Encoding of PSK

differential phase encoder

D

bi ci

ci�1
ci = ci�1 � bi

Accumulator (simple convolutional code)

BPSK
yi = (�1)ci

special case for M = 2
(differentially encoded BPSK)

Can detect several ways
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• Coherent detection with differential decoding

• First do coherent MSK detection, then put hard symbol 
decisions through inverse of differential encoder

• “Differentially Coherent” detection (DPSK)

• Do phase noncoherent detection over two symbol times

• Optimal MAP detection

• Optimal processing decides by processing entire sequence

• Viterbi or Forward-Backward Algorithm

Differential PSK
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Differentially Coherent Detection of DE-PSK
noncoherent based on two symbols

z̄k(u) =
p
Ese

j�kej✓c(u) + w̄k(u)

z̄k�1(u) =
p
Ese

j�k�1ej✓c(u) + w̄k�1(u)

Hm :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p
Es

2

664
ej�k

ej�k�1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775 ✓k = �k � �k�1 =
2⇡

M
m

Hm : z̄(u) = ȳmej✓c(u) + w̄(u)

Differentially-Coherent PSK Demod

max
m

���ȳ†
mz̄

���
2
() max

m

��������
e�j�k�1


e�✓k 1

�
2

664
z̄k

z̄k�1

3

775

��������

2

() max
m

���z̄ke�j✓k + z̄k�1

���
2

() max
✓k2{ 2⇡

M m}
<
�
z̄kz̄⇤k�1e

�✓k
 

() min
✓k2{ 2⇡

M m}

��\(z̄kz̄⇤k�1)� ✓k
��
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Differentially Coherent Detection of DE-PSK

z̄k(u) =
p
Ese

j�kej✓c(u) + w̄k(u)

z̄k�1(u) =
p
Ese

j�k�1ej✓c(u) + w̄k�1(u)

Hm :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p
Es

2

664
ej�k

ej�k�1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775 ✓k = �k � �k�1 =
2⇡

M
m

kT

p⇤(�t)

r̄(t)r(t) z̄k

p
2e�j2⇡fct

D (·)⇤

MPSK Slicer

z̄⇤k�1
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Performance of DC-BPSK

Binary, orthogonal, noncoherent: 

P (E) =
1

2
exp

✓
�(2E)

2N0

◆
=

1

2
exp

✓
�Eb

N0

◆

H0 :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p

Es

2

664
+1

+1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775

H1 :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p

Es

2

664
+1

�1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775

Hm :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p

Es

2

664
ej�k

ej�k�1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775 ✓k = �k � �k�1 =
2⇡

M
m

Hm : z̄(u) = ȳmej✓c(u) + w̄(u)

max
m

���ȳ†
mz̄

���
2
() max

✓k2{ 2⇡
M m}

<
�
z̄kz̄⇤k�1e

✓k
 

() min
✓k2{ 2⇡

M m}

��\(z̄kz̄⇤k�1)� ✓k
��

DBPSK Performance

DC-MPSK Performance can be bounded with PW-
error given by non-orthogonal, binary noncoherent

H0 :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p
Es

2

664
+1

+1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775

H1 :

2

664
z̄k(u)

z̄k�1(u)

3

775 =
p
Es

2

664
�1

+1

3

775 ej✓c(u) +

2

664
w̄k(u)

w̄k�1(u)

3

775
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Comparison of Binary Signaling/Detection Methods

DBPSK is a simple way to approach coherent 
BPSK without a phase reference

Eb/N0 (dB)
4 6 8 10 12 14 16 18 20

P b

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 Binary Equal Energy Performance

Coherent Antipodal
Coherent Orthogonal
Noncoherent Orthogonal
Differentially Coherent
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• Using M-ary modulation with q bits labeling each symbol

• Have focused on MAP symbol detection

• Selecting the MAP symbol implied a decision on the q bit labels

• We will now consider the MAP rule for deciding each bit

• other bits are viewed as nuisance parameters and form the 
average likelihood

Soft-out Demapper (SOMAP, Soft-dempper)
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Motivation: Bit-Interleaved Coded Modulation (BICM)

FEC
Encode

Interleave
Modulation
Mapper

FEC
Decode

De-interleave
Modulation
De-mapper

AWGN

bi cj dj xk

zk
d̂j or M[dj ]ĉj or M[cj ]

b̂i
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BICM with Iterative Decoding/Demod

In general, soft-demapper should take in a priori soft 
decision information on dj as well as channel likelihoods

FEC
Encode

Interleave
Modulation
Mapper

FEC
Decode

De-interleave
Modulation
De-mapper

AWGN

bi cj dj xk

zkb̂i

Interleave
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Soft-out Demapper (SOMAP, Soft-demapper)

fz(u)|dj(u)(z|dj) =
X

d̄j

fz(u)|d(u)(z|d̄j , dj)pd̄j(u)(d̄j)

=
X

d̄j

2

4fz(u)|x(u)(z|x(d))
Y

i 6=j

pdi(u)(di)

3

5

⌘
X

d̄j

2

4exp
✓
�kz� x(d)k2

N0

◆Y

i 6=j

pdi(u)(di)

3

5

⌘
X

d̄j

exp

✓
�kz� x(d)k2

N0

◆

d̄j = {di}i 6=j

if AWGN channel

if d’s are a priori 
uniform

nuisance parameters in 
this context
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Soft-out Demapper (SOMAP, Soft-demapper)

for each bit location, we average over the the subset of signals with a 
0 in location j, then over all points with 1 in location j

�
Es

I

Q

000

001

010
011

100

101

110

111

�
Es

I

Q

000
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Soft-out Demapper (SOMAP, Soft-demapper)

This is the MAP bit decision rule for bit dj

fz(u)|dj(u)(z|dj) =
X

d̄j

fz(u)|d(u)(z|d̄j , dj)pd̄j(u)(d̄j)
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✓
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✓
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d̄j = {di}i 6=j

fz(u)|dj(u)(z|1)

fz(u)|dj(u)(z|0)
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P
d̄j

h
exp

⇣
�kz�x(d)k2
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⌘Q
i 6=j pdi(u)(di)
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P
d̄j

h
exp

⇣
�kz�x(d)k2

N0

⌘Q
i 6=j pdi(u)(di)

i

fz(u)|dj(u)(z|1)pdj(u)(1)
H1
>
<
H0

fz(u)|dj(u)(z|0)pdj(u)(0)

average likelihood ratio for bit dj — soft-decision sent to decoder

fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

=

P
d̄j ,dj=1

h
exp

⇣
�kz�x(d)k2

N0

⌘Q
i 6=j pdi(u)(di)

i

P
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h
exp

⇣
�kz�x(d)k2

N0

⌘Q
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i
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Decision Format vs. Optimality Criterion 

The q MAP bit decision rules imply an M-ary decision rule

This is the M-ary Bayes rule with C(i,j) = number of bit label differences

fz(u)|dj(u)(z|dj) =
X

d̄j

fz(u)|d(u)(z|d̄j , dj)pd̄j(u)(d̄j)

=
X

d̄j
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4fz(u)|x(u)(z|x(d))
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✓
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✓
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⇣
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i
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d̄j

h
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⇣
�kz�x(d)k2
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⌘Q
i 6=j pdi(u)(di)

i

fz(u)|dj(u)(z|1)pdj(u)(1)
H1
>
<
H0

fz(u)|dj(u)(z|0)pdj(u)(0)

(
fz(u)|dj(u)(z|1)pdj(u)(1)

H1
>
<
H0

fz(u)|dj(u)(z|0)pdj(u)(0)

)

j=0,1,...q�1

minimizes the average number of bit errors, or Pb

fz(u)|dj(u)(z|dj) =
X

d̄j

fz(u)|d(u)(z|d̄j , dj)pd̄j(u)(d̄j)

=
X

d̄j

2

4fz(u)|x(u)(z|x(d))
Y

i 6=j

pdi(u)(di)
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X
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✓
�kz� x(d)k2
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◆

d̄j = {di}i 6=j

fz(u)|dj(u)(z|1)

fz(u)|dj(u)(z|0)
=

P
d̄j

h
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⇣
�kz�x(d)k2
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i 6=j pdi(u)(di)
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d̄j

h
exp

⇣
�kz�x(d)k2

N0
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i

fz(u)|dj(u)(z|1)pdj(u)(1)
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>
<
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fz(u)|dj(u)(z|0)pdj(u)(0)

(
fz(u)|dj(u)(z|1)pdj(u)(1)

H1
>
<
H0

fz(u)|dj(u)(z|0)pdj(u)(0)

)

j=0,1,...q�1

max
m2{0,1,...M�1}

"
fz(u)|x(u)(z|sm)

q�1Y

i=0

pdi(u)(di(m))

#

The one M-ary MAP symbol decision rule implies q bit 
decision rules — what are these?  
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Decision Format vs. Optimality Criterion 

MAP M-ary  symbol 
decision rule 

expressed as q bit-
level decisions

gz(u)|dj(u)(z|dj) = max
d̄j

fz(u)|d(u)(z|d̄j , dj)pd̄j(u)(d̄j)

= max
d̄j
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✓
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>
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)

j=0,1,...q�1
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Decision Format vs. Optimality Criterion 

Democrats Republicans

general 
election

republican 
winner

democrat 
winner

winner

soft-decision 
information

generalized likelihood ratio for bit dj — soft-decision sent to decoder
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⇣
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m
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⌘
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m
[� ln(pm)] = min

m
[� ln(pm)]

� ln
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SOMAP processing in AWGN

max-product SOMAP
(AWGN)

sum-product SOMAP
(AWGN)

both of these can be implemented in the metric domain (-ln(.))
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⇣
max
m

pm
⌘
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m
[� ln(pm)] = min
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[� ln(pm)]
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Metric Domain Processing for Max-Product

min-sum SOMAP
(metric domain implementation of max-product)

� ln
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Metric Domain Processing for Sum-Product

simple implantation as a pairwise operation:

� ln

 
X

m

pm

!
= min

m

⇤ [� ln(pm)]

min⇤(m1,m2) = � ln
�
e�m1 + e�m2
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min⇤(m1,m2) = � ln
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�
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⇣
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⌘

min⇤(m1,m2,m3) = min⇤(min⇤(m1,m2),m3)

metric 
domain 

averaging
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Metric Domain Processing for Max-Product

min*-sum SOMAP
(metric domain implementation of sum-product)

� ln
⇣
max
m

pm
⌘
= �max

m
[� ln(pm)] = min

m
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MI[di] = � ln
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pdi(u)(di)

�

(replace min with min*)
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SOMAP Processing — Alternative View

1. Compute the configure metrics by combining incoming metrics

M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MSM[di = 1] = min
m:di=1

M[Config = m]

MSM[di = 0] = min
m:di=0

M[Config = m]

MO[di = 1] = MSM[di = 1]�MI[di = 1]

MO[di = 0] = MSM[di = 0]�MI[di = 0]

MSM[di] = MSM[di = 1]�MSM[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MSM[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

2. Marginalize the configuration metric to get the marginal soft decision information
M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MSM[di = 1] = min
m:di=1

M[Config = m]

MSM[di = 0] = min
m:di=0

M[Config = m]

MO[di = 1] = MSM[di = 1]�MI[di = 1]

MO[di = 0] = MSM[di = 0]�MI[di = 0]

MSM[di] = MSM[di = 1]�MSM[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MSM[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

3. Convert to “extrinsic format” — i.e., likelihoods

M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MSM[di = 1] = min
m:di=1

M[Config = m]

MSM[di = 0] = min
m:di=0

M[Config = m]

MO[di = 1] = MSM[di = 1]�MI[di = 1]

MO[di = 0] = MSM[di = 0]�MI[di = 0]

MSM[di] = MSM[di = 1]�MSM[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MSM[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

threshold these for 
best local decisions 
— i.e., MAP symbol/

bit-sequence
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m
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1

A� min
d̄j ,dj=0

0

@MI[x(d)] +
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MI[x(d)] = � ln
⇥
fz(u)|x(u)(z|x(d))

⇤

=
kz� x(d)k2

N0
(AWGN)

MI[di] = � ln
�
pdi(u)(di)

�

pass these to the 
decoder as soft 

decisions

“Intrinsic” (soft) 
information

“Extrinsic” (soft) 
information
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SOMAP Processing — Alternative View

� ln
⇣
max
m

pm
⌘
= �max

m
[� ln(pm)] = min

m
[� ln(pm)]

� ln

 
gz(u)|dj(u)(z|1)
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d̄j ,dj=1

0

@MI[x(d)] +
X

i 6=j

MI[di]

1

A� min
d̄j ,dj=0

0

@MI[x(d)] +
X

i 6=j

MI[di]

1

A

MI[x(d)] = � ln
⇥
fz(u)|x(u)(z|x(d))

⇤

=
kz� x(d)k2

N0
(AWGN)

MI[di] = � ln
�
pdi(u)(di)

�

Modulation
De-mapper...

MI[x]

MI[d0]

MI[d1]

MI[dq�1]

MO[dq�1]

MO[d1]

MO[d0]
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SOMAP Processing — Alternative View
� ln

⇣
max
m

pm
⌘
= �max

m
[� ln(pm)] = min

m
[� ln(pm)]

� ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
= min

d̄j ,dj=1

0

@MI[x(d)] +
X

i 6=j

MI[di]

1

A� min
d̄j ,dj=0

0

@MI[x(d)] +
X

i 6=j

MI[di]

1

A

MI[x(d)] = � ln
⇥
fz(u)|x(u)(z|x(d))

⇤

=
kz� x(d)k2

N0
(AWGN)

MI[di] = � ln
�
pdi(u)(di)

�
1. Compute the configure metrics by combining incoming metrics

M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MSM[di = 1] = min
m:di=1

M[Config = m]

MSM[di = 0] = min
m:di=0

M[Config = m]

MO[di = 1] = MSM[di = 1]�MI[di = 1]

MO[di = 0] = MSM[di = 0]�MI[di = 0]

MSM[di] = MSM[di = 1]�MSM[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MSM[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

2. Marginalize the configuration metric to get the marginal soft decision information

3. Convert to “extrinsic format” — i.e., likelihoods

threshold these for 
best local decisions 

— i.e., MAP bit

M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MS
⇤
M[di = 1] = min

m:di=1

⇤
M[Config = m]

MS
⇤
M[di = 0] = min

m:di=0

⇤
M[Config = m]

MO[di = 1] = MS
⇤
M[di = 1]�MI[di = 1]

MO[di = 0] = MS
⇤
M[di = 0]�MI[di = 0]

MS
⇤
M[di] = MS

⇤
M[di = 1]�MS

⇤
M[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MS
⇤
M[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

M[Config = m] = MI[sm] +

q�1X

i=0

MI[d(m)
i ]

MS
⇤
M[di = 1] = min

m:di=1

⇤
M[Config = m]

MS
⇤
M[di = 0] = min

m:di=0

⇤
M[Config = m]

MO[di = 1] = MS
⇤
M[di = 1]�MI[di = 1]

MO[di = 0] = MS
⇤
M[di = 0]�MI[di = 0]

MS
⇤
M[di] = MS

⇤
M[di = 1]�MS

⇤
M[di = 0]

MO[di] = MO[di = 1]�MO[di = 0]

= MS
⇤
M[di]�MI[di]

MI[di] = MI[di = 1]�MI[di = 0]

pass these to the 
decoder as soft 

decisions

“Intrinsic” (soft) 
information

“Extrinsic” (soft) 
information
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SOMAP Processing — Alternative View

Modulation
De-mapper...

MI[d0]

MI[d1]

MI[dq�1]

MO[dq�1]

MO[d1]

MO[d0]

MI[x]

Can work with the Negative Log-Likelihood Ratios (NLLRs) instead

MI[di] = MI[di]�MI[di = 0]

MI[di = 1] = MI[di = 1]�MI[di = 0]

= � ln


p(di = 1)

p(di = 0)

�

MI[di = 1] = 0

MO[di] = MO[di]�MO[di = 0]

MO[di = 1] = MO[di = 1]�MO[di = 0]

= � ln

 
fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

!
(min

⇤
-sum)

= � ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
(min-sum)

MI[di] = MI[di]�MI[di = 0]

MI[di = 1] = MI[di = 1]�MI[di = 0]

= � ln


p(di = 1)

p(di = 0)

�

MI[di = 1] = 0

MO[di] = MO[di]�MO[di = 0]

MO[di = 1] = MO[di = 1]�MO[di = 0]

= � ln

 
fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

!
(min

⇤
-sum)

= � ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
(min-sum)

Can subtract any constant from metrics



© Keith M. Chugg, 2017 134

SOMAP Processing — Normalized Metrics
Can always represent metrics/probabilities on M-ary variables by 

M-1 numbers through normalization

“zeros are free”

“zeros are free”

(see spreadsheet example)

MI[di] = MI[di]�MI[di = 0]

MI[di = 1] = MI[di = 1]�MI[di = 0]

= � ln


p(di = 1)

p(di = 0)

�

MI[di = 0] = 0

MO[di] = MO[di]�MO[di = 0]

MO[di = 1] = MO[di = 1]�MO[di = 0]

= � ln

 
fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

!
(min

⇤
-sum)

= � ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
(min-sum)

MI[di = 0] = 0
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SOMAP Processing — Alternative View

I often abuse this notation and use the 
first to represent the second — i.e., 
since once of the two normalized 

metrics is zero by definition

MI[di] = MI[di]�MI[di = 0]

MI[di = 1] = MI[di = 1]�MI[di = 0]

= � ln


p(di = 1)

p(di = 0)

�

MI[di = 1] = 0

MO[di] = MO[di]�MO[di = 0]

MO[di = 1] = MO[di = 1]�MO[di = 0]

= � ln

 
fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

!
(min

⇤
-sum)

= � ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
(min-sum)

MI[di = 1] = 0

MI[di] = MI[di]�MI[di = 0]

MI[di = 1] = MI[di = 1]�MI[di = 0]

= � ln


p(di = 1)

p(di = 0)

�

MI[di = 1] = 0

MO[di] = MO[di]�MO[di = 0]

MO[di = 1] = MO[di = 1]�MO[di = 0]

= � ln

 
fz(u)|dj(u)(z|1)
fz(u)|dj(u)(z|0)

!
(min

⇤
-sum)

= � ln

 
gz(u)|dj(u)(z|1)
gz(u)|dj(u)(z|0)

!
(min-sum)

MI[di = 1] = 0



© Keith M. Chugg, 2017 136

SOMAP Processing — Alternative View

for equal a priori probability on the bits — e.g., first activation and/
or non-iterative BICM

Modulation
De-mapper...

MO[dq�1]

MO[d1]

MO[d0]

MI[x]

0

0

0
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SOMAP Processing — Alternative View

for equal a priori probability on the bits — e.g., first activation and/
or non-iterative BICM

Modulation
De-mapper...

MO[dq�1]

MO[d1]

MO[d0]

MI[x]

0

0

0

MO[dj ] = min
m:dj=1

kz� smk2

N0
� min

m:dj=0

kz� smk2

N0

MO[dj ] = min
m:dj=1

⇤ kz� smk2

N0
� min

m:dj=0

⇤ kz� smk2

N0

min-sum:

min*-sum:
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• General Soft-in/Soft-out (SISO) processing

• Digital variables (e.g., inputs/outputs) associated with a local system/
constraint/code

• Finite number of configurations

• Combine incoming marginal soft information (e.g., sum MI’s) to compute a 
configuration metric for each configuration

• Marginalize over configuration metrics consistent with each value of each 
digital variable to produce updated marginal soft information (MO’s)

• This forms the basis of all modern coding — i.e., it is the basis of iterative 
decoding

• Modern coding: decode local codes in SISO manner, exchange soft 
information, and iterate

SOMAP Processing is Special Case of SISO


