
EE564: Problem Set – Prof. Keith M. Chugg

1 Background and Motivation

1.1. This problem addresses a method of converting two independent uniform random variable to
two independent Gaussian random variables. Consider the independent uniformly distributed
random variables X1(u) and X2(u)

fX1(u)(z) = fX2(u)(z) =

{
1 z ∈ (0, 1)

0 otherwise.

The purpose of this problem is to demonstrate that the following are independent Gaussian
random variables:

Y1(u) =
√
−2 ln(X1(u)) cos(2πX2(u))

Y2(u) =
√
−2 ln(X1(u)) sin(2πX2(u)).

(a) Determine the following: fX1(u)X2(u)(x1, x2), E {Y1(u)} and E {Y2(u)}, and E {Y1(u)Y2(u)}
(b) Consider the random variable R(u) =

√
−2 ln(X1(u)). Determine the pdf fR(u)(r) and

mean of this random variable.

(c) Determine the joint density of Y1(u) and Y2(u), generated as described above

(d) Answer the following questions:

• Are X1(u) and X2(u) uncorrelated?

• Are X1(u) and X2(u) orthogonal?

• Are Y1(u) and Y2(u) uncorrelated?

• Are Y1(u) and Y2(u) orthogonal?

• Are Y1(u) and Y2(u) independent?

• Are R(u) and X2(u) independent?

1.2. This problem addresses the simulation of Gaussian noise. Generate N realizations of a mean
zero, unit variance Gaussian random variable. From this set of realizations, compute two
figures of merit:

• A histogram of the realization values (i.e., a sample pdf): plot the fraction of
total realization between x and x + δx. Adjust the range and bin size to appropriately
illustrate the pdf shape. Compare against the the pdf of a unit variance Gaussian random
variable.

• An estimate of the Q-function: Compare against Q(x), the fraction of realizations
exceeding x.
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Do this for N = 100, N = 1000, N = 104, and N = 105.

1.3. For complex numbers v and w, show that

<{v}< {w} =
1

2
<{[vw + vw∗]}

1.4. Let n(u) be a zero-mean, circular complex Gaussian random vector with covariance matrix
Kn = E

{
n(u)n†(u)

}
. For a known signal vector s, define the random variable Z(u) = s†n(u).

Determine Pr {< {Z(u)} > T}. If, ‖s‖2 = E and Kn = N0I, what does this reduce to?

Hint: Use the results of problem 1.3.

1.5. Consider an event that occurs with probability p. For example, p could be the probability of
error for a certain communications link or it could be the probability of “heads” for a coin
flip. Suppose that p is unknown and is to be estimated by an experiment. Specifically, assume
that N independent trials are conducted (e.g., coin flips) and let KN (u) denote the number
of occurrences of the event. Then, take p̂(u) = KN (u)/N as an estimate of p.

(a) Assuming that a large number of events are observed, approximate the pdf of KN (u)
and p̂(u).

(b) Using this approximate pdf, find an expression for Pr {|p̂(u)− p| > εp}. Note that ε is
a measure of accuracy of the estimate and the desired probability is a measure of the
statistical confidence that the estimate lies within that accuracy.

(c) Can you use this result to suggest a rule of thumb for simulation? Specifically, if one
desires an estimate within 10% of p with 95% confidence, how many events (errors)
should be observed? Put another way, if you run a simulation until 100 error events are
observed, what can be said about the accuracy of the estimate p̂(u).

(d) Discuss the results of Prob. 1.2 in the context of the results of this problem.

1.6. Let e(u) be an n × 1 binary vector with components ej(u) that are i.i.d. Bernoulli random
variables, each taking the value 1 with probability ε and the value 0 with probability 1 − ε.
Let w(u) be the number of 1’s in e(u). Determine the probability mass function for w(u) –
what is the name of the this pmf? Determine an expression for Pr {w(u) > d}.

1.7. The Union Bound: Prove the following results for arbitrary events A, B, C and Ai for
i = 1, 2 . . . n.

(a) P (A
⋃
B) ≤ P (A) + P (B). When does equality hold?

(b) P (A
⋃
B
⋃
C) ≤ P (A) + P (B) + P (C).

(c) P (
⋃n
i=1Ai) ≤

∑n
i=1 P (Ai).

1.8. A simple method for detecting errors in a binary digital communications system is to use a
parity check bit. A packet consists of (n − 1) data bits and 1 parity bit. The parity bit is
selected so that an even number of “1’s” are contained in the transmitted packet of length n.
The signal is then distorted and the receiver makes errors independently at each bit location
with probability p. The number of 1’s in the detected signal is then counted; if this number
is even the packet is labeled good, otherwise it is labeled bad and the data is ignored.
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(a) What is the probability that a packet is declared bad?

(b) Derive upper and lower bounds for the probability in (a) which can be made arbitrarily
tight by including more terms.

(c) Use the family of bounds found in (b) to obtain a numerical answer for the probability
of declaring the packet bad when n = 1000 and p = 5× 10−3. Repeat for n = 1000 and
p = 1× 10−4.

1.9. Consider the expression

P (α, β) = αQ

(√
β2Eb
N0

)

Many coding systems have error probability approximated by a form similar to P . The
standard way to plot such function is to plot P vs. Eb/N0 with P on a log10 scale and Eb/N0

in dB – i.e., (Eb/N0)dB = 10 log10(Eb/N0). This is essentially a log-log plot. Produce three
plots in this format with the following curves on each plot:

(a) P (1, 1), P (1, 0.5), P (1, 2), P (1, 0.1), P (1, 10)

(b) P (1, 1), P (0.2, 0.5), P (0.2, 2), P (0.2, 0.1), P (0.2, 10)

(c) P (1, 1), P (10−3, 0.5), P (10−3, 2), P (10−3, 0.1), P (10−3, 10)

Describe qualitatively the effect of α and β on the curves.

1.10. Consider the rate 1/3 repetition code on the binary symmetric channel (BSC). Determine the
range of ε < 1/2 for which this code improves performance?

1.11. Consider the rate 1/3 repetition code on the binary symmetric channel (BSC) discussed in
lecture. Plot the probability of error (on a log scale) vs. Eb/N0 in (dB) (i.e., Specifically,
XdB = 10 ∗ log10X). Note that for such a code Ec/N0 = r(Eb/N0) where r is the code rate.

Also, assume that the BSC is an abstraction of the BPSK-AWGN channel so that,

ε = Q

(√
2Ec
N0

)

Compare this with the case of no coding, where the error rate is Q
(√

2Eb
N0

)
. Discuss this

result in the context of Problem 1.10 - i.e., when does this code really help performance?

1.12. Consider the BSC as a model for the hard-decision BPSK-AWGN channel. In this case, the
error probability for the coded bits is

ε = Q

(√
2Ec
N0

)

where Ec is the energy per coded bit and N0 characterizes the noise power.

(a) Plot the capacity of the BSC as a function of Ec/N0 in dB.
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(b) Such a system can support code rates r for r < C. Using the relation that Ec = rEb,
plot the capacity of the BSC vs. Eb/N0 (in dB) for a system operating at capacity –
i.e., the value of Eb/N0 is the minimum value that can achieve the capacity.

1.13. Consider the linear block code defined by the parity check matrix




1 1 0 0 1 1 0 0
0 1 1 1 0 1 1 0
1 0 1 0 1 0 1 1




(a) Specify the parameters n, k, and r for this code.

(b) Draw the Tanner Graph corresponding to this parity check matrix.

2 Detection Theory

2.1. Discuss the properties of the Bayes decision rule for the following limiting cases:

(a) π0 → 1 with all other parameters fixed and finite.

(b) C10 →∞ with all other parameters fixed and finite.

2.2. Consider the binary hypothesis testing problem defined by

H0 : R(u) = +
√
E +N(u)

H1 : R(u) = −
√
E +N(u),

where the a-priori probabilities are π0 and π1 and the noise is Gaussian with mean zero and
variance σ2. In class we looked in detail at this problem for π0 = π1; repeat this here for the
more general case. Determine the MAP detection rule and the probability of error P (E).

Plot P (E) vs. E/σ2 with a log y-axis and the SNR (E/σ2) expressed in dB (i.e., 10 log10(E/σ2)).
Produce plots for π0 = 10−4, 0.2, 0.5, 0.9.

2.3. (Spring 2001, Midterm) A large box containing standard (fair) dice and another contain-
ing loaded (unfair) dice have been mixed together. Each loaded die is biased to roll a 1
or a 6. Specifically, let R(u) denote the outcome of a roll, then Pr {R(u) = 1|loaded} =
Pr {R(u) = 6|loaded} = 3/10 and Pr {R(u) = r|loaded} = 1/10 for r ∈ {2, 3, 4, 5}. Of
course, each fair die is equally likely to roll any integer between 1 and 6.

Consider randomly selecting a die from the box containing an equal number of fair and loaded
dice. Based on one roll, you would like to determine if the selected die if fair or loaded.

(a) Find the decision rule that minimizes the probability of error in deciding whether the
selected die is fair or loaded based on a given roll – i.e., given R(u) = r, specify either
“Fair” or “Loaded” for r = 1, 2, 3, 4, 5, 6.

(b) What is the probability of error of the receiver derived in part (a)?
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2.4. (Modified Van Trees Example) The print queue in the EE-Systems computer network observes
K(u) arrivals in an hour. K(u) is modeled as a Poisson random variable,

Pr {K(u) = k} =
αk

k!
e−α k = 0, 1, 2 . . .

If it is a weekday, α = αw; on weekends, α = αe. You have data from a randomly selected
day (i.e., K(u) = k); what is the MAP rule for deciding if it is a weekday or a weekend day?
Don’t forget to model the a-priori probabilities appropriately.

Specialize to the example of αw = 10 and αe = 1. For this case, find the probability of error.

2.5. (Weber 4.13) Find the MAP rule for deciding between H0 and H1 based on the observation
R(u) with π0 = 3/4 and

fR(u)(r|H1) =

{
1
5 0 ≤ r ≤ 5

0 otherwise

fR(u)(r|H0) =
1√
2π
e
−r2
2 .

2.6. Consider the binary hypothesis testing problem defined by

H0 : R(u) = 0 +N(u)

H1 : R(u) = 1 +N(u),

where the a-priori probabilities are equal and the noise pdf is exponential with mean 1/λ
under either hypothesis.

(a) Determine the decision rule which minimizes the probability of error and derive an
expression for this minimum probability of error.

(b) If the a-priori probabilities are not equal, can the decision rule be implemented by

R(u)
H1
>
<
H0

T?

If so, what is the range for the threshold T?

(c) Determine the minimax decision rule for this problem. Hint: a randomized rule is
required.

2.7. You have received a high-level mathematical software package with poor documentation.
There is a function called random() that generates random numbers – i.e., calling the function
returns a realization of a random variable and successive calls are statistically independent.

You know that this function generates mean zero, unit variance random variables, but you
are uncertain whether these are uniformly distributed or Gaussian (you don’t have any prior
bias). You make k calls of the function and from these observations, you would like to
make a decision as to whether the function generates Gaussian random variables or uniformly
distributed random variables.

Mathematically, let X1(u), X2(u), . . . Xk(u) model the outputs of k calls of random().
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(a) First consider k = 1 – i.e., only one call is made. Determine the conditional probability
density function of X1(u) under the two possibilities – i.e., fX1(u)(x1|Gaussian) and
fX1(u)(x1|Uniform). Based on observing the realization X1(u) = x1, specify a good rule
for when you would decide that random() generates Gaussian random variables.

(b) Find the conditional probability of error for each possibility for the good rule in part (a)
– i.e., P (E|Gaussian) and P (E|Uniform).

(c) Now specify a good rule for deciding the type of random number generator using k calls
to random(). Specifically, given X1(u) = x1, X2(u) = x2, . . . Xk(u) = xk, state a rule
for deciding that random() generates Gaussian random variables.

2.8. Top Secret (midterm exam, K. M. Chugg, U. of Arizona, Spring 1996). You are working
as a spy! Your job is to determine if anyone is actively communicating across a given AWGN
channel. Your sources have given you some reliable information: you know that communi-
cation is carried out by BPSK modulation and you also know T , N0, along with the carrier
frequency and phase. Your observation is the output of the correlator for a BPSK receiver.
Your mission is to decide between the following two hypotheses:

H0 : R(u) = N(u) (channel not in use)

H1 : R(u) =
√
EB(u) +N(u) (channel in use),

where the random variable B(u) represents the effect of the random binary modulation:

Pr {B(u) = +1} = Pr {B(u) = −1} =
1

2
.

The noise at the output of the correlator (i.e., N(u)) is Gaussian with zero mean and variance
N0/2.

The apriori probability of someone being on the channel is assumed to be 1/2 (i.e., π0 = π1 =
1/2).

(a) Determine the probability density function of R(u) under either hypothesis: fR(u)(r|H0)
and fR(u)(r|H1).

Sketch these two pdfs on the same axis.

(b) Determine the MAP decision rule (based on r, the realization of R(u)).

Using the properties of the cosh function and its inverse, the rule can be simplified to:

|r|
H1
>
<
H0

T.

Specify the value of T which results in the minimum error probability.

(c) Your superiors want to initiate “counter-measures” when your decision device tells them
the channel is being used. Not wanting to be hasty, they are concerned about the False
Alarm Probability for your rule. Determine this probability: PFA = P (E|H0). Also
determine the detecion probability PD = 1 − P (E|H1), and therefore P (E). (Note: For
the original exam, only PFA was requested).
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i. Plot P (E) for this decision problem and P (E) for the standard BPSK decision prob-

lem on the same plot (i.e., P (E) = Q
(√

2E
N0

)
).

ii. Compare this detection problem to the one presented in lecture – i.e., where H0

remains the same and H1 is defined by R(u) =
√
E +N(u). Compute the Receiver

Operating Characteristic (ROC) for the problem stated above and compare it to
the lecture example by plotting PD vs. PFA for various E/σ2.

(d) Apply the method of generalized likelihood to this problem and show that this approach
also yields a test of the form

|r|
H1
>
<
H0

TG.

Determine TG and compare P (E) for this generalized likelihood approach and the MAP
approach (i.e., average likelihood) approach used above.

2.9. Consider the binary hypothesis testing problem defined by the (2× 1) observation

H0 : r(u) =

[
1
5

]
+ n(u)

H1 : r(u) =

[
1
−2

]
+ n(u),

where the a-priori probabilities are equal and the noise is zero mean Gaussian with covariance

Kn =

[
10 9
9 10

]
.

Sketch the signals and contour plots of the conditional densities (i.e., fr(u)(z|Hj); j = 0, 1)

in the R2–plane. Also indicate the decision boundary of the MAP decision rule.

Repeat for the white noise case with the same noise power (i.e., σ2 = 10).

Hint: You know the eigenvectors and eigenvalues from lecture. Plot the decision boundary
in the coordinate system of the eigenvectors.

2.10. 8-PSK: Consider the problem of data detection for an 8-PSK signal. Such a signal is repre-
sented by

Hm : r(u) =
√
Es

[
cos
(
π
4m
)

sin
(
π
4m
)
]

+ n(u) = sm + n(u) m = 0, 1, 2, . . . 7

where the noise is a Gaussian random vector, with zero mean and uncorrelated components,
each with variance σ2. You may assume that the a-priori probabilities are 1/8 for each
hypothesis.

(a) Determine the MAP rule for minimizing the symbol error probability. Sketch in the
two-dimensional plane, the signals and the associated decision regions.
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(b) (Challenging Problem)Consider the case when each of these 8-PSK symbols corre-
sponds uniquely to a set of three input bits. For example, assume that Hm corresponds
to a particular possibility for A(u), B(u), and C(u), each taking on 0 or 1 with proba-
bility 1/2 and independent of each other. Specifically, map these three binary symbols
to an 8-ary symbol by sm ⇐⇒ (a, b, c) where

s0 ⇐⇒ 000

s1 ⇐⇒ 001

s2 ⇐⇒ 010

s3 ⇐⇒ 011

s4 ⇐⇒ 100

s5 ⇐⇒ 101

s6 ⇐⇒ 110

s7 ⇐⇒ 111

Consider two approaches to finding a decision rule that minimizes the probability of bit
error Pb(E).

• Approach 1: Find fr(u)(z|A(u) = 0) and fr(u)(z|A(u) = 1). Use this to design the
MAP rule for deciding on A(u). Repeat for B(u) and C(u).

• Approach 2: Determine an appropriate cost matrix for the 8-ary test so that the
average number of bit errors is minimized. Determine the associated decision rule.

(c) Discuss your results. In particular, are the two decision rules from part (b) the same?
If not, which is better. Under what conditions are all three decision rules equivalent?
How about approximately equivalent?

2.11. Write a program to simulate the signals from problem 10 – i.e., to generate realizations of
the random vector r(u). Plot in the 2D plane, 100 realizations of r(u) given that hypothesis
H0 is true. Do this for Es/2σ

2 = 3 dB, 8 dB and 15 dB. If the decision rule from 10(a) was
used, how many of these 100 realizations would result in a symbol error?

2.12. Use the simulation program developed in problem 11 for 8-PSK to approximate the bit error
probability for 8-PSK signaling. Plot the simulation BER results for two cases: (i) natural bit
ordering and (ii) Gray mapping. This plot should be for BER (log-scale) vs. Es/2σ

2 in dB.
Be sure to use the results of problem 1.2 to ensure that you are plotting reliable estimates.

2.13. A binary communication system uses k = 100 dimensional signaling with each hypothesis
occurring with equal a-priori probability. The hypotheses are:

H0 : r(u) = s0 + w(u)

H1 : r(u) = s1 + w(u)

where w(u) is Gaussian, with zero mean and covariance Kw = σ2I. Let si(n) be the nth
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component of the ith signal, for n = 0, 1, . . . 99. Then the two signals are given by

s0(n) = cos

(
2π

4
n

)
n = 0, 1, . . . 99

s1(n) = cos

(
2π

5
n

)
n = 0, 1, . . . 99

The two hypotheses occur with equal probability a-priori.

(a) Determine the minimum error probability receiver given the realization r(u, n) = r(n)
for n = 0, 1, . . . 99. Sketch the preferred implementation of this receiver.

(b) Find the probability of error for the MAP receiver of part (a).

2.14. Consider the vector communication channel with

H0 : r(u) = s0(u) + n(u)

H1 : r(u) = s1(u) + n(u),

where under either hypothesis the noise and signals are independent and the noise is zero
mean Gaussian with covariance Kn. The signals s0(u), and s1(u) are zero mean Gaussian
with covariance matrices K0 and K1, respectively. Determine the minimum error probability
rule for equal prioir probabilities. Simplify for the special case of Kn = σ2

nI, K0 = σ2
0I, and

K1 = σ2
1I. Assume throughout that K0 6= K1 and justify your (white) rule intuitively.

2.15. (Midterm Exam, F98) Two recent USC graduates are assigned the problem of designing and
analyzing a decision rule for the two-dimensional binary hypothesis problem:

H0 : r(u) = +s + n(u)

H1 : r(u) = −s + n(u)

where the two equally-likely (π0 = π1) signals are defined by (S > 0)

s =
[
S 0

]t

and the noise pdf is given by

fn(u,1),n(u,2)(x, y) =





2 (x, y) ∈ I+ ⇐⇒ x ∈ [0, 1
2 ]andy ∈ [0, 1

2 ]

2 (x, y) ∈ I− ⇐⇒ x ∈ [−1
2 , 0)andy ∈ [−1

2 , 0)

0 otherwise

In other words, n(u) is uniformly distributed over the shaded region shown in Fig. 1

One USC graduate, Wilma, has taken EE564, while the other, Fred, has taken only EE562a.

(a) Fred designs his receiver based on the second moment description of the noise. Determine
these quantities – i.e., mn and Kn.
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where the two equally-likely (π0 = π1) signals are defined by (S > 0)

s =
[

S 0
]t

and the noise pdf is given by

fn(u,1),n(u,2)(x, y) =






2 (x, y) ∈ I+ ⇐⇒ x ∈ [0, 1
2 ] and y ∈ [0, 1

2 ]

2 (x, y) ∈ I− ⇐⇒ x ∈ [−1
2 , 0) and y ∈ [−1

2 , 0)

0 otherwise

In other words, n(u) is uniformly distributed over the shaded region shown below

One USC graduate, Wilma, has taken EE564, while the other, Fred, has taken only
EE562a.

(a) Fred designs his receiver based on the second moment description of the noise.
Determine these quantities – i.e., mn and Kn.

(b) Determine Fred’s “colored-noise minimum distance detector,” which is based on
the above moments. Specifically, state the decision to be taken when r is observed.
Sketch this decision rule in the (r(1), r(2))-plane.

(c) Wilma uses MAP detection theory. Derive this rule and demonstrate your under-
standing of it by sketching the decision regions for the special case of S = 1

8 .

(d) For S > Sp, the MAP decision rule is perfect – i.e., P (E) = 0. Determine the
minimum value of Sp having this property.

For Wilma’s MAP decision rule, determine probability of error for S < Sp.

Determine probability of error for Fred’s rule when S = Sp; use a sketch to indicate
the region in the plane corresponding to an error for this case.

36. Consider the communication of one of four equally-likely signals in AWGN, where the
signals are defined by

sm(t) = Amp(t)
√

2 cos(2πfct)

Figure 1: Probability distribution function for two-dimensional noise.

(b) Determine Fred’s “colored-noise minimum distance detector,” which is based on the
above moments. Specifically, state the decision to be taken when r is observed. Sketch
this decision rule in the (r(1), r(2))-plane.

(c) Wilma uses MAP detection theory. Derive this rule and demonstrate your understanding
of it by sketching the decision regions for the special case of S = 1

8 .

(d) For S > Sp, the MAP decision rule is perfect – i.e., P (E) = 0. Determine the minimum
value of Sp having this property.

For Wilma’s MAP decision rule, determine probability of error for S < Sp.

Determine probability of error for Fred’s rule when S = Sp; use a sketch to indicate the
region in the plane corresponding to an error for this case.

2.16. Two bits are to be communicated using four (4 × 1) vectors. These bits are represented by
the random variables A(u) and B(u) which are independent and each equally likely to to be
−1 or +1. The signal sent given A(u) = a and B(u) = b are

sa,b = a
√
E




+1
+1
b
b




The channel is an AWGN channel so that your decision is to be based on r(u) = sa,b + n(u),
where n(u) is a mean-zero Gaussian with Kn = σ2I.

(a) Find the decision rule that minimizes the probability of error for deciding only B(u)
based on a realization r of the observation.

(b) Find the decision rule that minimizes the probability of error for deciding only A(u)
based on a realization r of the observation.

(c) Consider the detector that minimizes the probability of 4-ary error, P (E) (i.e., the op-
timal symbol detector). Describe this decision rule in a simple form.

Taken together, the rules from (a) and (b) describe a 4-ary rule. Is this rule the same
as the one found just above? Explain.

(d) Find a lower bound on the probability of 4-ary error for the receiver in part (c)
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s0 s1 s2 s3

(0,0) (0,1) (1,1) (1,0)
(b0, b1) =

d d d

 

 �     

26 K.M. Chugg - January 17, 2003

ii. Is the receiver for part 1 optimal in the sense of minimum error probability
in the presence of this Gaussian noise process observed on [0, T ]? Explain.

iii. Discuss and interpret your result as a function of α.

49. (Genie Madness)

Consider the 4-PAM system with signals as defined in the illustration below:

Each signal is labeled with (b0, b1) which are each equal to 0 or 1 with probability 1/2
and are independent. Based on the post-matched-filter observation

z(u) = s(u) + w(u)

where w(u) is mean-zero Gaussian with variance N0/2 and s(u) is the PAM constella-
tion point, determine the following:

(a) The decision rule that minimizes the probability of symbol error and expressions
for the following:

i. The symbol error probability.

ii. The probability that the best symbol decision results in an error for b0.

iii. The probability that the best symbol decision results in an error for b1.

(b) The decision rule that minimizes the probability of error for b0. Simplify as much
as possible.

(c) The decision rule that minimizes the probability of error for b1. Simplify as much
as possible.

(d) To determine a lower bound on the bit error probabilities for bit-optimal receivers,
consider the case when a “genie” provide side information in the form of an
auxiliary observation v(u). The corresponding bit-optimal decision that exploits
this side-information cannot be worse than the bit-optimal rule which operates
without side information.

i. State the optimal receiver for bit b1 given the observation z and side infor-
mation v

Figure 2: The 4-PAM signal set with Gray bit labeling.

2.17. Consider the 4-PAM system with signals as defined in Fig. 2.

Each signal is labeled with (b0, b1) which are each equal to 0 or 1 with probability 1/2 and
are independent. Based on the post-matched-filter observation

z(u) = s(u) + w(u)

where w(u) is mean-zero Gaussian with variance N0/2 and s(u) is the PAM constellation
point, determine the following:

(a) The decision rule that minimizes the probability of symbol error and expressions for the
following:

i. The symbol error probability.

ii. The probability that the best symbol decision results in an error for b0.

iii. The probability that the best symbol decision results in an error for b1.

(b) The decision rule that minimizes the probability of error for b0. Simplify as much as
possible.

(c) The decision rule that minimizes the probability of error for b1. Simplify as much as
possible.

(d) To determine a lower bound on the bit error probabilities for bit-optimal receivers, con-
sider the case when a “genie” provide side information in the form of an auxiliary obser-
vation v(u). The corresponding bit-optimal decision that exploits this side-information
cannot be worse than the bit-optimal rule which operates without side information.

i. State the optimal receiver for bit b1 given the observation z and side information v

ii. Construct a lower bound for the optimal detector for b1 using the side information

P (v(u)|s0) = 1 ⇐⇒ v = (s0, s1)

P (v(u)|s1) = 1 ⇐⇒ v = (s0, s1)

P (v(u)|s2) = 1 ⇐⇒ v = (s2, s3)

P (v(u)|s3) = 1 ⇐⇒ v = (s2, s3)

2.18. A binary communication system uses k dimensional signaling with each hypothesis occurring
with equal a-priori probability. The hypotheses are:

H0 : r(u) = +s + w(u)

H1 : r(u) = −s + w(u)
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ADC
r(u) Z(u) V (u)

s

Figure 3: Receiver structure constraint.

v = 0 v = 1 v = 2

−1 0 +1

+α−α

z

Figure 4: Receiver structure constraint.

where w(u) is Gaussian, with zero mean and covariance Kw = σ2I, and s is a known vector
with ‖s‖ = 1.

It is your job to design a receiver for this system based on the output of a predetermined
front-end processor. Specifically, the current design has a correlator to s and a “bit and a
half” analog to digital converter (ADC). Mathematically, the random variable Z(u) = rt(u)s
is generated and converted to V (u) via the ADC as diagrammed in Fig. 3.

The ADC has three possible outputs - i.e., V (u) ∈ {0, 1, 2}. The mapping from Z(u) to V (u)
is as shown in Fig. 4 for possible realizations of V (u) = v and Z(u) = z.

Note that α is an adjustable design parameter and 0 ≤ α ≤ 1 – i.e., the value will be fixed
for implementation, but can be selected during design.

(a) Find the conditional probability mass function of V (u) under each hypothesis

(b) Find a MAP decision rule for deciding between H0 and H1 based on V (u) = v .

(c) Find the probability of error for the MAP receiver. Which is the best choice for α -
i.e.,αopt? Compare the MAP receiver using r(u) and V (u) – i.e., is the performance
MAP receiver using V (u) with αopt better, the same, or worse than that of the MAP
receiver using r(u)?

2.19. An M = 4 communication system uses the following set of two dimensional signals:

s0 =

√
E

2

[
+1
+1

]
s1 =

√
E

2

[
−1
+1

]

s2 =

√
E

2

[
−1
−1

]
s3 =

√
E

2

[
+1
−1

]
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Each of the four signals is sent with equal probability. The channel is modeled as colored
additive Gaussian noise such that

Hm : r(u) = sm + n(u), m = 0, 1, 2, 3

where mn = 0 and the nosie covariance is

Kn =

[
2 1
1 2

]

(a) The rule that minimizes the probability of 4-ary error given r(u) = r can be described
as

Decide Hm ⇐⇒ gm(r) > gj(r), j ∈ {0, 1, 2, 3}, j 6= m

Specify a valid set of functions gm(r) in the simplest form you can obtain.

(b) Determine and sketch the decision regions imposed by the minimum error probability
rule in the (r1, r2) plane. Clearly identify the parameters that completely identify the
decision regions in the manner most convenient to you.

(c) Find good upper and lower bounds for the error probability for the above rule.

2.20. A binary communication link is modeled as

H0 : r(u) = +A(u)s + w(u)

H1 : r(u) = −A(u)s + w(u)

where w(u) is a (k × 1) Gaussian random vector, with zero mean and covariance Kw = σ2I,
and s is a known vector with ‖s‖ = 1. Each hypothesis occurs with probability 0.5.

The amplitude of the signal is a positive random variable, independent of the hypothesis,
with probability density function

fA(u)(a) = e−aU(a)

where U(a) is the unit step function.

The goal of this problem is to obtain the rule that minimizes the probability of error.

(a) Given a conditional value of A(u) = a > 0, what is the minimum error probability rule
based on r(u) = r? Also determine the associated error probability.

(b) Determine the decision rule that minimizes the probability of error averaged over the
statistical description of A(u). Give a brief justification of the above rule based on
decision theory.

2.21. Consider a California election with two candidates: candidate A and candidate B. Steve works
for a national-level political action committee (PAC) that uses funding in an attempt to affect
elections. Steve’s PAC favors candidate A. Steve must decide whether to get involved in this
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California election in support of candidate A or whether he should use these resources to
support other candidates in elections in other states.

Steve has a MSEE degree and decides to apply decision theory to determine his best action.
Steve only wants to get involved in this election if it is a very close election – i.e., his PAC can
help candidate A win. (If candidate A is a heavy favorite to win, he doesn’t need to invest
resources. If candidate B is a heavy favorite to win, he shouldn’t invest resources because he
cannot sway enough voters to secure the win for candidate A.) So, Steve models the problem
as a 3-hypothesis test with a-prior equally likely hypotheses:

HA : candidate A is a strong favorite to win

HT : it is a virtual tie (very close) between the two candidates

HB : candidate B is a strong favorite to win

The observation that Steve will use to make his decision is the result of phone-polling of
subset of likely voters – i.e., he has a measurement z of the percentage of polled voters who
plan to vote for candidate A. Steve models this observation Z(u) as Gaussian with variance
σ2. The mean of Z(u) is 75 given HA, 50 given HT , and 25 given HC .

(a) State the decision rule based on Z(u) = z that minimizes the probability of 3-ary error
in the simplest form to implement and determine the probability of error for this rule.

(b) After obtaining the above rule, Steve wonders if he used the appropriate optimality
criterion. Specifically, it is worse for Steve to not invest in a close election (i.e., lose
an election he could have won) than it is to invest in an election with a heavy favorite
(i.e., invest without affecting the outcome).

Steve incurs no penalty if he decides the correct hypothesis. He also incurs no cost if
he decides one candidate is a heavy favorite when the other candidate is actually the
heavy favorite since he would not invest in either case. If Steve decides the election is
close when A or B is a heavy favorite, he pays the cost of investing without a chance of
affecting the election – say C > 0. If the election is close, but Steve decides that there
is a heavy favorite, he pays a higher cost – say 10C.

Determine the decision rule that minimizes Steve’s cost in the simplest form.

3 Modualtion and Performance on the AWGN Channel

3.1. For this problem, let 〈a,b〉 denote any valid inner product on Rn, and ‖b‖ =
√
〈b,b〉 denote

the associated norm (i.e. these are not necessarily the standard Euclidean inner product and
norm). Consider the standard real binary hypothesis testing problem

Hi : x(u) = si + n(u) i = 1, 2,

where mn = 0 and Kn is invertible.

Start with the generalized minimum distance criterion for the binary hypothesis testing prob-
lem:

‖x(u)− s1‖
H2
>
<
H1

‖x(u)− s2‖.
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(a) Show that an equivalent decision is

〈s1 − s2,x(u)〉
H1
>
<
H2

‖s1‖2 − ‖s2‖2
2

.

(b) Show that the following defines a valid inner product on Rn

〈a,b〉n
∆
= btK−1

n a.

(c) What is the decision rule corresponding to this choice of inner product? Do you recognize
this rule?

(d) Sketch the locus of points which are unit distance from the origin with the distance
function implied by the inner product in (1b). Consider the simple case of

Kn =

[
2 1
1 2

]
.

In other words sketch the curve
dn(b,0) = 1,

where
dn(b,0) = ‖b− 0‖n = (〈b,b〉n)1/2 .

3.2. (Legendre Polynomials) Consider the functions xn(t) = tn for n = 0, 1, 2, . . . as points in
L2[−1, 1]. Find an orthonormal basis for the subspace of L2[−1, 1] which is spanned by
{x0(t), x1(t), x2(t)}.

3.3. (Proakis 5-18): Suppose that a BPSK modulation is used for transmitting information over
an AWGN channel with N0/2 = 10−10 W/Hz. The transmitted signal energy is Eb = A2T/2,
where T is the bit interval and A is the signal amplitude. Determine the signal amplitude
required to achieve an error probability of 10−6 when the data rate is (a) 10 kbits/sec (kbps),
(b) 100 kbps, (c) 1 Mbit/sec.

3.4. Consider the binary hypothesis testing problem defined by the observation

H0 : r(u, t) =

√
2E

T
cos(2πfct) + n(u, t) t ∈ [0, T ]

H1 : r(u, t) =

√
2E

T
sin(2πfct) + n(u, t) t ∈ [0, T ],

where the a-priori probabilities are equal and the noise is Gaussian with Kn(τ) = N0
2 δD(τ).

Determine and sketch the optimal receiver. Determine the error probability and compare the
performance to the BPSK example presented in class.

3.5. Consider the BPSK example developed in class:

H0 : r(u, t) =

√
2E

T
cos(2πfct+ θc) + n(u, t) t ∈ [0, T ]

H1 : r(u, t) = −
√

2E

T
cos(2πfct+ θc) + n(u, t) t ∈ [0, T ],

where the noise is the standard AWGN.
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(a) Repeat the performance analysis from lecture without the narrowband assumption – i.e.,
do not discard the double frequency terms.

(b) Your answer should be of the form

P (E) = Q
(√

2γeff

)
,

where γeff is the effective γ = E/N0 including the double frequency terms. Consider
the special case of a 300 kilo-bits per second (kbps) system with a carrier frequency of
fc = 1 GHz = 109 Hz. Plot the γeff/γ vs. θc for θc ∈ [0, 2π]. What conclusions can you
draw?

3.6. (R. A. Scholtz – USC Midterm, Spring 1994) Consider the binary hypothesis testing problem
defined by (π0 = π1)

H0 : r(u, t) = n(u, t) t ∈ [0, T ]

H1 : r(u, t) = s(t) + n(u, t) t ∈ [0, T ].

The KL-expansion for the noise is known. The orthonormal set of eigenfunctions for Kn(t1, t2)
are {em(t)}∞m=1. The signal and noise expansions are

s(t) =
∞∑

m=1

1

m2
em(t)

n(u, t) =
∞∑

m=1

N(u,m)em(t),

where the random variables N(u,m) are mean zero Gaussian, with

E {N(u,m)N(u, i)} = 2−mδK(m− i).
(a) What is the signal energy – E =

∫ T
0 s2(t) dt? Write down the series expansion for the

noise cavariance.

(b) Consider the suboptimal detector which only uses a single component of the expansion.
Based on only the mth component, the best rule takes the form

“decide H1 is true” ⇐⇒
∫ T

0
r(u, t)em(t) dt > Tm.

Determine the best threshold Tm and the error performance of this suboptimal receiver.

(c) What is the probabbility of error of the optimal detector for this problem?

Hint: What happens to the error probability of the suboptimal detector as m→∞?

3.7. Consider the standard binary detection problem in AWGN:

H0 : r(u, t) = s0(t) + n(u, t) t ∈ [0, T ]

H1 : r(u, t) = s1(t) + n(u, t) t ∈ [0, T ],

with π0 = π1. The signals are shown in Fig. 5 (note that s1(t) is parametized by x).

Sketch the optimal detector and find the probability of error. For what value of x is the
performance the same as BPSK? For what value of x is the performance the same as that for
the system of problem 4? Can you explain this?
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s0(t)

s1(t) T

T

x0

 � √
E

T

� �

−
√

E

T

 �

√
E

T

 �  �  � �   �

10 K.M. Chugg - January 17, 2003

23. Consider the standard binary detection problem in AWGN:

H0 : r(u, t) = s0(t) + n(u, t) t ∈ [0, T ]

H1 : r(u, t) = s1(t) + n(u, t) t ∈ [0, T ],

with π0 = π1. The signals are shown below (note that s1(t) is parametized by x):

Sketch the optimal detector and find the probability of error. For what value of x is
the performance the same as BPSK? For what value of x is the performance the same
as that for the system of problem 18? Can you explain this?

24. Consider the complex-valued observation

r(u, t) = s(t) + n(u, t) t ∈ [0, T ]

where s(t) is a known signal with
∫ T
0 |s(t)|2dt = E and n(u, t) is the complex baseband

equivalent of white noise (i.e., En(u, t1)n∗(u, t2) = N0δD(t1− t2)). Consider the output
of a correlator designed for a signal y(t)

R(u) = Sy + Ny(u) =
∫ T

0
r(u, t)y∗(t)dt

(a) Find the unit energy signal y(t) (on t ∈ [0, T ]) that maximizes the signal-to-noise
ratio (SNR) at the output. Specifically,

SNR =
|Sy|2

E {|Ny(u)|2}

Hint: Cauchy-Schwartz Inequality

Figure 5: Two signals with s1(t) parametized by x.

3.8. Consider the complex-valued observation

r(u, t) = s(t) + n(u, t) t ∈ [0, T ]

where s(t) is a known signal with
∫ T

0 |s(t)|2dt = E and n(u, t) is the complex baseband
equivalent of white noise (i.e., En(u, t1)n∗(u, t2) = N0δD(t1 − t2)). Consider the output of a
correlator designed for a signal y(t)

R(u) = Sy +Ny(u) =

∫ T

0
r(u, t)y∗(t)dt

(a) Find the unit energy signal y(t) (on t ∈ [0, T ]) that maximizes the signal-to-noise ratio
(SNR) at the output. Specifically,

SNR =
|Sy|2

E {|Ny(u)|2}

Hint: Cauchy-Schwartz Inequality

(b) Show that R(u) can also be obtained by sampling the output of a filter with impulse
response y∗(−t) once at a particular time. Determine this time. Draw this impulse
response for SNR-maximizing choice of y(t) for the two signals in problem 7.

3.9. (Chugg, Final Exam, Spring 1996, Arizona) Consider the following three equally likely hy-
potheses

H0 : r(u, t) = n(u, t)

H1 : r(u, t) = A sin(2πfct) + n(u, t)

H2 : r(u, t) = −A sin(2πfct) + n(u, t),

where in each case the observation is made for t ∈ [0, T ]. The noise is AWGN with spectral
level N0/2 and A > 0.
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θ0(t)

φ

TT/2
t

Figure 6: The phase function for Problem 3.11.

(a) Describe the receiver that minimizes the probability of error. Sketch this receiver and
describe all parameters.

(b) Determine the probability of error for the optimal receiver in (a).

3.10. (Van Trees 2.2.13) We have considered the LR Λ(r) for binary hypothesis testing. This
problem deals with the statistics of this quantity – i.e., define Z(u) = Λ(R(u)). Show that
the following hold

(a) E {[Z(u)]n|H1} = E
{

[Z(u)]n+1|H0

}

(b) E {Z(u)|H0} = 1

(c) E {Z(u)|H1} − E {Z(u)|H0} = var [Z(u)|H0]

3.11. Consider the following binary communication system

H0 r(u, t) =

√
2E

T
cos(2πfct+ θ0(t)) + n(u, t) t ∈ [0, T ]

H1 r(u, t) =

√
2E

T
cos(2πfct+ θ1(t)) + n(u, t) t ∈ [0, T ]

where the a-priori probability of each hypothesis is 1/2, n(u, t) is standard AWGN with power
spectral level N0/2, and θ1(t) = −θ0(t). The phase modulating signal θ0(t) is shown in Fig. 3.6
where φ is a parameter between 0 and 2π.

(a) State the decision rule that minimizes the probability of error (based on a realization
r(t)) in the simplest form to implement; sketch this receiver.

(b) Determine the probability of error for the above decision rule.

(c) State whether it is possible or impossible to implement antipodal binary signaling using
these signals and the corresponding value of φ. Repeat for orthogonal binary signaling.

(d) What value of φ minimizes the error probability? Give an approximation of this optimal
value of φ and your reasoning. Also, give the approximate gain in performance relative
to orthogonal signaling, measured in dB of E/N0.
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3.12. A system uses BFSK with fast frequency-hopping – i.e., the carrier frequency is changed
during the bit transmission time. Let this bit time be 2T and let received signal be the
following for m = 0, 1

r(u, t) =





√
2E
T cos

(
2π
[
fA + (−1)m

2T

]
+ θA(u)

)
+ n(u, t) 0 ≤ t < T√

2E
T cos

(
2π
[
fB + (−1)m

2T

]
+ θB(u)

)
+ n(u, t) T ≤ t < 2T

where |fA− fB| > 1/T , θA(u) and θB(u) are independent random variables, each modeled as
uniform on an interval of length 2π, and n(u, t) is standard AWGN with spectral level N0/2.

Determine and sketch the optimal receiver based on the received signal {r(t) : 0 ≤ t ≤ 2T}.

3.13. An equivalent complex-baseband, (k × 1) vector model for an M -ary digital communication
system is

r(u) = sme
jφc(u) + n(u)

where n(u) is mean-zero, complex circular Gaussian with variance E
{
|ni(u)|2

}
= N0 and

Em = ‖sm‖2.

The above model assumes that the receiver has performed a complex correlation with phase
reference Θ̂c(u) and φc(u) models the residual phase error. For the specific phase tracking loop
used, the residual phase error is well modeled by the following probability density function

fφc(u)(φ) =
1

2πI0(γL)
eγL cos(φ) φ ∈ [−π,+π)

with the pdf being zero for |φ| > π. The parameter γL is the tracking loop SNR and the
probability mass concentrates near φ = 0 as γL increases.

(a) Determine the (equivalent) average likelihood given the above model in the simplest
form.

(b) Suppose that Em = E for allm and the signals have equal a-priori probability. Determine
the decision rule, in simplest form, that minimizes the probability of symbol error.

(c) Discuss the limiting forms of the rule from part (b) as γL tends towards zero and as γL
tends towards infinity.

3.14. A satellite link uses BPSK with a standard rectangular pulse shape. It is desired to improve
the spectral side-lobe roll-off by replacing the T -second rectangular pulse with the following
T -second pulse:

p(t) =

√
2

T
sin(πt/T ) t ∈ [0, T ]

in the transmitter. The satellite receiver cannot be reprogrammed, however, so it will still
correlate to the rectangular pulse – e.g., integrate and dump. This will result in a degradation
in performance of X dB of Eb/N0. Determine X.
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3.15. Consider a modulation format based on frequency domain multiplexing (FDM) of QASK
signals. Specifically, the transmitted signal is

x(t) =
N−1∑

k=0

xk(t)

where xk(t) is a QASK-modulated signal at carrier frequency

fk = fc + k∆

Specifically,

xk(t) = <
{√

Ekx̄k(t)
√

2ej2πfct
}

x̄k(t) =

(∑

i

X̄i(k)p(t− iT )

)
ej2π∆kt

where X̄i(k) =
(
XI
i (k) + jXQ

i (k)
)

is and independent, identically distributed, data sym-

bol sequence, uniformly distributed over a QASK constellation with E
{
|X̄i(u, k)|2

}
= 1,

and E
{
X̄i(u, k)

}
= 0. The data sequences on different carriers are also independent –

i.e., {X̄i(u, k)}i and {X̄i(u, l)}i are independent for k 6= l.

The symbol time on each carrier is T . The pulse p(t) is the same for each carrier and is a
real-valued, unit energy rectangular pulse

p(t) =

{
1√
T

t ∈ [0, T )

t 6∈ [0, T )

(a) What is the minimum carrier frequency separation ∆ that makes the signals xk(t) and
xl(t) orthogonal for k, l ∈ {0, 1, 2, . . . N − 1} and k 6= l. In other words, what is the
minimum carrier separation that ensures that the FDM is orthogonal frequency division
multiplexing (OFDM)? Consider one symbol time for all carriers – i.e., x(t) for t ∈ [0, T ].
What is the centroid c(t) of this signal set for ∆ = ∆⊥?

(b) For ∆ = ∆⊥ from part (a) and Ek = Es for all k, what is the power spectral density
of x(t)? Alternatively you may provide the PSD of the complex baseband equivalent of
x(t) – circle which you are providing. Sketch this for N = 8.

(c) Sketch the optimal (minimum symbol error probability, phase-coherent) receiver when
x(t) is observed in standard additive white Gaussian noise (AWGN) with spectral level
N0/2. Your diagram may include complex baseband components or you may draw it in
terms of passband processing only.

3.16. Consider MAP detection for M equally likely hypotheses H0, . . .HM−1. There are two ob-
servations available, ra(u) and rb(u). Show that, if ra(u) and rb(u) are independent, that the
decision rule based on both observations can be implemented by setting πm = frb(u)(r|Hm)
in a MAP detector designed to use only ra(u). If the two observations are not independent,
how would you modify this?
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Hint: Suppose you have a box that takes as it’s input ra and πm for m = 0, 1, . . .M − 1 and
outputs the decision based on the MAP rule for the observation ra. Now, you want to use
this box to make a decision based on the observation (ra, rb) and you know that πm = 1/M
– what would you input into the box for “ra and πm”?

3.17. Consider a Gray-labeled MPSK system over an AWGN channel. Compare the approximate
expressions for the probability of bit error against Monte Carlo simulation results. Specifically,
plot the BER vs. Eb/N0 and against Es/N0 for M = 8 and M = 16.

3.18. (Modified version of “Hexagony” by R.A. Scholtz) At the output of an I-Q correlator for a
particular QASK format, the two-dimensional (real) signal model is

Hmn : R(u) = Smn + N(u) m, n ∈ {0,±1, . . .± 5},

where the constellation is defined by

Smn = A

(
m

[
1
0

]
+
n

2

[
1√
3

])
.

The noise vector is Gaussian with zero mean and an identity covariance matrix (KN = I).
The parameter A is fixed, positive, and available at the receiver. Each of these 121 hypotheses
are equally likely.

(a) Sketch the portion of the constellation surrounding S00 – i.e., this point and its nearest-
neighbors. On this sketch, also draw the decision region for deciding H00 and indicate
the parameter A and label the signals.

(b) State a good upper and lower bound to the probability of error given that H00 is true
(in terms of the Q-function and A):

≤ P (E|H00) ≤

(c) By inscribing circumscribing circles about the decision region, develop explicit upper
and lower bounds on P (E|H00) (these bounds will differ from those in (b). HINT:
Pr {‖N(u)‖ > r} = exp(−r2/2)

≤ P (E|H00) ≤

(d) Numerically evaluate your bounds for the following values of A: 1,4, 8, 16.

• What would you use for an upper and lower bound? For this choice, plot the upper
and lower bounds vs. 20 log10(A).

• Is P (E|Hmn) the same for all possible choices of m and n? Explain.

3.19. (Modified Weber Problem) Consider two binary communication signaling schemes. Technique
A uses the signals (for t ∈ [0, T ])

s0(t) = 0

s1(t) =

√
4E

T
cos(2πfct),



EE 564 Problem Set – c©K.M. Chugg - November 23, 2020 22

and technique B uses

s0(t) =

√
2E

T
cos(2πfct)

s1(t) = −
√

2E

T
cos(2πfct).

These two techniques are to be compared for communication over an AWGN channel with
π0 = π1.

(a) What is the performance of the optimal receiver for Technique A? — for technique B?

(b) What is the average amount of energy transmitted using either technique?

(c) Which technique is preferred? Why? Can you draw a general conclusion from this
example?

3.20. Consider a PSK system with fading amplitude

Hm : r(u, t) = A(u) cos

[
2πfct+

2πm

M
+ φ(u)

]
+ n(u, t) t ∈ [0, T ], m = 0, . . .M − 1

where A(u) and φ(u) represent the effects, in polar coordinates, of zero-mean, equal variance
Gaussian I and Q amplitudes. Specifically,

A(u) =
√
B2
I (u) +B2

Q(u)

with E {BI(u)} = E {BQ(u)} = 0 and E
{
B2
I (u)

}
= E

{
B2
Q(u)

}
= σ2

B. Furthermore, BI(u)

and BQ(u) are independent and also mutually independent of the AWGN n(u, t). It follows
that A(u) is Rayleigh distributed. Assume that the phase of this random complex amplitude
φ(u) can be perfectly estimated at the receiver, so that the mixer phase can be set to this
value.

(a) Find the optimal receiver conditioned on A(u) = a.

(b) Find the approximate performance for this receiver conditioned on A(u) = a, P (E|a).

(c) Average P (E|a) over the statistics of A(u) to obtained P (E) Plot this vs. E/N0, where
E is the average signal energy.

(d) Does the optimal receiver need to estimate A(u)? Would this be the same for a QAM
format? Explain.

3.21. Consider an MPSK system in AWGN. Suppose the the receiver’s estimate of the carrier
phase is θ̂c. Determine the approximate performance of the receiver as a function of E/No

and φ = θc − θ̂c. Discuss the effects of this phase estimation error on performance.

3.22. Consider the communication of one of four equally-likely signals in AWGN, where the signals
are defined by

sm(t) = Amp(t)
√

2 cos(2πfct)
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with A0 = +∆, A1 = −∆, A2 = +3∆, and A3 = −3∆, for some positive signal shift
∆. The waveform p(t) has unit energy (

∫ T
0 p2(t)dt = 1) and has frequency content low

enough to make the narrowband assumption valid – i.e., you may neglect all 2fc terms.

The objective is to decide between these four hypotheses based on the observation
r(u, t) = sm(t) + n(u, t) t ∈ [0, T ], where n(u, t) is standard AWGN (i.e., 2-sided
spectral level N0/2).

(a) Determine the dimension of the signal space k and define the equivalent vector
model, based on an set of functions {ei(t)}k

i=1:

Hm : R(u) = Sm + N(u) (k × 1)

where fN(u)(z) = Nk(z;0; N0
2 I).

(b) Find the decision rule that minimizes the symbol error probability. This rule may
be stated as a partition of the observation space – i.e., Decide Hm ⇐⇒ R ∈ Xm.
State the optimal rule by defining the four decision regions.

Sketch the optimal receiver.

(c) Find the probability of error for this optimal receiver.

Hint: First find P (E|H0) and P (E|H3).

37. (Spring 1998 Final Exam) I need to send one of seven messages across an AWGN
channel every 0.001 second with a carrier frequency of 2 GHz. I decide to use the
following “K” constellation because it’s my initial:

More precisely, I send the signal with complex baseband representation

s(u, t) =
∑

i

Ai(u)p(t− iT )

where T = 0.001 second, p(t) is a unit energy pulse satisfying the Nyquist condition
for no intersymbol interference, and Ai(u) is a sequence of i.i.d. random variables, each
taking on values in {am}6

m=0 with equal probability. This signal is observed AWGN,
with two-sided spectral level N0/2.

Figure 7: The ‘K’ constellation.

with A0 = +∆, A1 = −∆, A2 = +3∆, and A3 = −3∆, for some positive signal shift ∆.
The waveform p(t) has unit energy (

∫ T
0 p2(t)dt = 1) and has frequency content low enough

to make the narrowband assumption valid – i.e., you may neglect all 2fc terms.

The objective is to decide between these four hypotheses based on the observation r(u, t) =
sm(t) + n(u, t) t ∈ [0, T ], where n(u, t) is standard AWGN (i.e., 2-sided spectral level N0/2).

(a) Determine the dimension of the signal space k and define the equivalent vector model,
based on an set of functions {ei(t)}ki=1:

Hm : R(u) = Sm + N(u) (k × 1)

where fN(u)(z) = Nk(z;0; N0
2 I).

(b) Find the decision rule that minimizes the symbol error probability. This rule may be
stated as a partition of the observation space – i.e., Decide Hm ⇐⇒ R ∈ Xm. State
the optimal rule by defining the four decision regions.

Sketch the optimal receiver.

(c) Find the probability of error for this optimal receiver.

Hint: First find P (E|H0) and P (E|H3).

3.23. (Spring 1998 Final Exam) I need to send one of seven messages across an AWGN channel
every 0.001 second with a carrier frequency of 2 GHz. I decide to use the “K” constellation
shown in Fig. 7 because it’s my initial.

More precisely, I send the signal with complex baseband representation

s(u, t) =
∑

i

Ai(u)p(t− iT )

where T = 0.001 second, p(t) is a unit energy pulse satisfying the Nyquist condition for no
intersymbol interference, and Ai(u) is a sequence of i.i.d. random variables, each taking on
values in {am}6m=0 with equal probability. This signal is observed AWGN, with two-sided
spectral level N0/2.
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This fifth signal will be added to the existing QPSK constellation which has energy
Eq. It is determined that adding the fifth point should not increase the average energy
– i.e., the average energy in the new constellation must be no greater than Eq

(a) Determine where the fifth signal should be added in order to maximize the min-
imum distance of the 5-point constellation. Indicate you answer by marking the
location of the new point A4 on the QPSK constellation below:

(b) Assuming that each of the five signals in the new costellation are transmitted
with probability 1/5 and the channel is AWGN, skecth the decision regions for
the MAP symbol detector below (add your A5 answer too) – labal the boundaries.

Under the above assumptions, determine the average energy transmitted E and
give good upper and lower bounds for the performance of the 5-ary system:

(c) A co-worker points out to you that the emegency message is not expected to be
used frequently; she estimates that it occurs with probability π5 = p < 1/5. The
original 4 QPSK signals are well-modeled as equally likely, each occuring with
probability πm = (1− p)/4 for m = 0, 1, 2, 3.

i. Based on the assumption of these a-priori probabilities, reconsider your an-
swers above: Skecth the decision regions for the MAP symbol detector below
(add your A5 answer too) – label the boundaries:

ii. Note that, for suffiently small p, A4 is never selected. Give the minimum
value of p, pmin for which the decision region for A4 is not empty

iii. Assuming that p ∈ (pmin, 1/5), determine the average energy transmitted
E and give good upper and lower bounds for the performance of the 5-ary
system.

45. (Final Exam, Spring 1998) You are working on a BPSK data link which is not meeting
the required BER specifications. The current system uses standard rectangular pulse
shaping so that the received signal is

r(u, t) =

√
2Eb

Tb
B(u) cos(2πfct) + n(u, t) t ∈ [0, Tb)

Figure 8: A QPSK constellation.

(a) The output of the bandpass matched filter sampled at any symbol time is represented
by

Hm : R(u) = am +N(u), m = 0, 1 . . . 6

Clearly indicate the decision regions, along with

in the complex plane for the decision rule operating on R(u) which minimizes the message
error probability.

(b) Using the method described in lecture, determine a lower bound and upperbound for
the symbol error probability

(c) The exact performance of this modulation format can be obtained by using a constel-
lation {bm}6m=0 which has a lower average signal energy. Determine the constellation
{bm} and the ratio of the average energies for the two constellations Eb/Ea:

3.24. Emergency Signal (Fall 1998 Final Exam) A particular communication system uses
QPSK and each of the four messgages are equally likely. It is desired to add another point
to the QPSK constellation to send a fifth special (emergency) message.

This fifth signal will be added to the existing QPSK constellation which has energy Eq. It
is determined that adding the fifth point should not increase the average energy – i.e., the
average energy in the new constellation must be no greater than Eq

(a) Determine where the fifth signal should be added in order to maximize the minimum
distance of the 5-point constellation. Indicate you answer by marking the location of
the new point A4 on the QPSK constellation shown in Fig. 8

(b) Assuming that each of the five signals in the new costellation are transmitted with
probability 1/5 and the channel is AWGN, skecth the decision regions for the MAP
symbol detector below (add your A5 answer too) – labal the boundaries.

Under the above assumptions, determine the average energy transmitted E and give
good upper and lower bounds for the performance of the 5-ary system:
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(c) A co-worker points out to you that the emegency message is not expected to be used
frequently; she estimates that it occurs with probability π5 = p < 1/5. The original 4
QPSK signals are well-modeled as equally likely, each occuring with probability πm =
(1− p)/4 for m = 0, 1, 2, 3.

i. Based on the assumption of these a-priori probabilities, reconsider your answers
above: Skecth the decision regions for the MAP symbol detector below (add your
A5 answer too) – label the boundaries:

ii. Note that, for suffiently small p, A4 is never selected. Give the minimum value of p,
pmin for which the decision region for A4 is not empty

iii. Assuming that p ∈ (pmin, 1/5), determine the average energy transmitted E and
give good upper and lower bounds for the performance of the 5-ary system.

3.25. (Final Exam, Spring 1998) You are working on a BPSK data link which is not meeting the
required BER specifications. The current system uses standard rectangular pulse shaping so
that the received signal is

r(u, t) =

√
2Eb
Tb

B(u) cos(2πfct) + n(u, t) t ∈ [0, Tb)

where n(u, t) is the standard AWGN process. The transmitted bit is B(u) = +1 under H0

and B(u) = −1 under H1, which are equally likely a-priori.

Your colleague, who has no experience in digital communications, suggests that the reliability
will be improved if a “send-negate-repeat” (SNR) signaling scheme is used. In his SNR-
signaling format, for each value of B(u), the random variables C1(u) = B(u), C2(u) = −B(u),
and C3(u) = B(u) are constructed. The data rate of the system must be maintained so all
three of these pulses are sent during the bit time. Specifically, the following signal is sent
during [0, Tb]:

r(u, t) =

√
2Eb
Tb

C1(u) cos(2πfct) + n(u, t) t ∈ [0, Tc)

r(u, t) =

√
2Eb
Tb

C2(u) cos(2πfct) + n(u, t) t ∈ [Tc, 2Tc)

r(u, t) =

√
2Eb
Tb

C3(u) cos(2πfct) + n(u, t) t ∈ [2Tc, 3Tc),

where Tc = Tb/3. After looking at the standard BPSK detector, your colleague suggests the
receiver shown in Fig. 9 for his SNR signaling format

Since your colleague has never had EE564, he asks you to determine the MAP decision rule
for deciding between H0 and H1 based on Ĉ1(u), Ĉ2(u), and Ĉ3(u).

(a) You point out that ĉ(u) = [ Ĉ1(u) Ĉ2(u) Ĉ3(u) ]t can take on only 8 possible values – i.e.,
Ĉn(u) = ±1, so ĉ(u) takes on the values g(k) = [ G1(k) G2(k) G3(k) ]t for k = 0, 1, . . . 7
as shown below.
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where n(u, t) is the standard AWGN process. The transmitted bit is B(u) = +1 under
H0 and B(u) = −1 under H1, which are equally likely a-priori.

Your colleague, who has no experience in digital communications, suggests that the
reliability will be improved if a “send-negate-repeat” (SNR) signaling scheme is used. In
his SNR-signaling format, for each value of B(u), the random variables C1(u) = B(u),
C2(u) = −B(u), and C3(u) = B(u) are constructed. The data rate of the system must
be maintained so all three of these pulses are sent during the bit time. Specifically, the
following signal is sent during [0, Tb]:

r(u, t) =

√
2Eb

Tb
C1(u) cos(2πfct) + n(u, t) t ∈ [0, Tc)

r(u, t) =

√
2Eb

Tb
C2(u) cos(2πfct) + n(u, t) t ∈ [Tc, 2Tc)

r(u, t) =

√
2Eb

Tb
C3(u) cos(2πfct) + n(u, t) t ∈ [2Tc, 3Tc),

where Tc = Tb/3. After looking at the standard BPSK detector, your colleague suggests
the following receiver for his SNR signaling format:

Since your colleague has never had EE564, he asks you to determine the MAP decision
rule for deciding between H0 and H1 based on Ĉ1(u), Ĉ2(u), and Ĉ3(u).

(a) You point out that ĉ(u) = [ Ĉ1(u) Ĉ2(u) Ĉ3(u) ]t can take on only 8 possible values
– i.e., Ĉn(u) = ±1, so ĉ(u) takes on the values g(k) = [ G1(k) G2(k) G3(k) ]t for
k = 0, 1, . . . 7 as shown below.

Figure 9: The suggested receiver for the SNR signal format.

k G1(k) G2(k) G3(k) Pr {ĉ(u) = g(k)|H0} Pr {ĉ(u) = g(k)|H1} Rule: B̂(u) =

0 +1 +1 +1
1 +1 +1 -1
2 +1 -1 +1
3 +1 -1 -1
4 -1 +1 +1
5 -1 +1 -1
6 -1 -1 +1
7 -1 -1 -1

For each possible value of ĉ(u), determine the likelihood of each hypothesis on B(u).
Finally, determine the rule that minimizes the BER based on observing ĉ(u). List your
answers in the above table. Feel free to use any shorthand notation you like as long as
you clearly define it.

(b) Determine the probability of error for the SNR signaling scheme with the optimal decision
rule based on observing ĉ(u).

Based on your experience in EE564 you tell your colleague that his SNR signaling scheme
and the above decision rule will never achieve the performance of the current, standard
BPSK system. Furthermore, his scheme introduces at least one clear undesirable prop-
erty. Rigorously support this claim below and indicate the undesirable property.

3.26. (CSI Qualifying Exam, Fall 1998) Consider the M -ary vector hypothesis-testing problem with

Hm : z(u) = sm + w(u) m = 0, 1 . . .M − 1

where w(u) is a complex-circular white Gaussian vector (i.e., zero mean and covariance Kw =
N0
2 I) and P (Hm) = πm.

(a) Prove that the performance of the MAP decision rule for the above problem is the same
as the MAP decision rule for the problem

Hm : z(u) = xm + w(u) m = 0, 1 . . .M − 1

where w(u) is as above and the set of signals is given by xm = Usm + b, where U is
any unitary matrix and b is an arbitrary constant vector.
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(b) Is this true if the noise covariance Kw 6= N0
2 I? If so, prove it; if not, state why and given

an analogous condition for U and b such that the performance of the two systems is the
same.

(c) State a practical consequence of the fact proved in the first part of this problem.

3.27. (Spring 1998 Midterm) Consider an M -ary digital modulation technique where information
is conveyed via discrete shifts in the carrier’s frequency. The received signal is modeled by
(πm = 1/M)

Hm : r(u, t) =

√
2E

T
cos(2π[fc + ∆m]t) + n(u, t) t ∈ [0, T ]; m = 0, 1, . . .M − 1

where n(u, t) is the standard AWGN (i.e., Kn(τ) = (N0/2)δD(τ)). You should assume that
0 < ∆m � fc so that the narrowband assumption is valid.

(a) Find a set of frequency shifts {∆m}M−1
m=0 for which the signals are orthogonal – i.e.,

i 6= j =⇒
∫ T

0
si(t)sj(t) dt = 0.

Determine the dimensionality of the signal space k and give a set of orthonormal basis
functions {φi(t)}k−1

i=0 .

(b) Determine the equivalent (k × 1) vector model for the decision problem in terms of

R(u, i) =

∫ T

0
r(u, t)φi(t) i = 0, 1, . . . k − 1

Specifically, the equivalent model is of the form

Hm : R(u) = Sm + N(u) (k × 1); m = 0, 1, . . .M − 1

Determine the following: Sm and fN(u)(z).

(c) Determine the decision rule the minimizes the probability of error for the M -ary decision
problem conditioned on the observation R(u) = r. Simplify this result to the extent
possible.

(d) In this part, the performance of the optimal decision rule is to be determined. To do so,
first determine the following densities: fR(u)(r|H0) and

fR(u,1),R(u,2)···R(u,k−1)|R(u,0)(r(1), r(1), . . . r(k − 1)|H0, r(0))

(e) For M = 2, compute the probability of a correct decision given H0 and R(u, 0) = r(0).

(f) Generalize the above to an arbitrary M .

(g) Write an expression down for the probability of error given H0 by completely defining
an integral.
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39. A new start-up company has been started started by a recent MBA graduate, Eddie
K. Ayear. Eddie wants to bid for an FCC license in an up-coming auction, but needs
investors. Eddie wants you to invest. He shows you a business plan which shows that
he plans to provide compressed video services at a data rate of 1.5 Megabits/sec across
his 100 KHz of licensed bandwidth. You read in the IEEE Spectrum that this type of
system operates at Pave/N0 = 107 Hz. Do you invest? Explain in detail.

40. A typical radio link is designed to operate in the region of

10 dB-Hz ≤ (Pave/N0)dB (dB-Hz) = 10 log10(Pave/N0) ≤ 120 dB-Hz

The entire library of congress is about 5×1012 bits. Taking the upper-end of the range
(i.e., 120 dB-Hz) and assuming a very large bandwidth is available, how quickly could
the Library of Congress be transmitted across such a link – i.e., how many seconds?
What is the minimum Eb/N0 (in dB) required to achieve this transfer reliably?

41. Consider two different channels for providing communications to two users. In channel
A, there is a separate AWGN channel available for each of the users. In channel B,
both users communicate across the same AWGN channel. This is diagrammed below:

In either case assume that the (real) signals used by each user are

s1(u, t) = A1(u)
√

E1φ1(t)

s2(u, t) = A2(u)
√

E2φ2(t)

where φk(t) is nonzero only for t ∈ [0, T ], A1(u) and A2(u) are i.i.d. and both equally
likely to be −1 or +1, and

∫ T

0
φ2

i (t)dt = 1 (i = 1, 2)
∫ T

0
φ1(t)φ2(t)dt = ρ,

assume that |ρ| < 1. For channel B, the two noise signals are independent AWGN
processes with two-sided PSD-level N0/2, as is n(u, t). All noise signals are independent
of the user signals.

Figure 10: Two channels with two users. Channel B has multiuser interference and channel A does
not.

(h) Suppose that the it is learned that the noise is actually colored Gaussian noise. The
eigenfunctions and eigenvalues of the noise covariance operator are known and denoted
by ei(t), λi for i = 0, 1, 2, . . .. Determine a set of signals s

′
m(t) that could be used for

this colored Gaussian noise channel that would result in the same performance as the
white noise system investigated above:

Determine the specifics of this model: s
′
m(t) as a function of t, E,fc, ∆, T , {ei(t)}, {λ},

and N0.

3.28. Consider two different channels for providing communications to two users. In channel A,
there is a separate AWGN channel available for each of the users. In channel B, both users
communicate across the same AWGN channel. This is diagrammed in Fig. 10.

In either case assume that the (real) signals used by each user are

s1(u, t) = A1(u)
√
E1φ1(t)

s2(u, t) = A2(u)
√
E2φ2(t)

where φk(t) is nonzero only for t ∈ [0, T ], A1(u) and A2(u) are i.i.d. and both equally likely
to be −1 or +1, and

∫ T

0
φ2
i (t)dt = 1 (i = 1, 2)

∫ T

0
φ1(t)φ2(t)dt = ρ,

assume that |ρ| < 1. For channel B, the two noise signals are independent AWGN processes
with two-sided PSD-level N0/2, as is n(u, t). All noise signals are independent of the user
signals.

(a) Determine and sketch the receiver processing which minimizes the joint error probability
for channel A based on the observation r1(t) and r2(t) for t ∈ [0, T ].

(b) Determine and sketch the receiver processing which minimizes the joint error probability
for channel B based on the observation r(t) t ∈ [0, T ].
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(c) What is the best space-time code for this problem? Specifically, with an energy
constraint ‖s0‖2 = ‖s1‖2 = E, describe the best choice for the signal vectors.

52. (Spring 2000, midterm exam) Consider the problem of detecting antipodal signaling
in the additive Gaussian noise

H0 : R(u) = +
√

E + N(u)

H1 : R(u) = −
√

E + N(u)

where N(u) is mean-zero, Gaussian with variance N0/2. You have access to a decision
device as illustrated below:

where B̂ = 0 corresponds to deciding H0 and B̂ = 1 corresponds to H1.

However, you now are informed that π0 = 0.9 and π1 = 0.1. This problem deals with
modifying the above detector to account for this knowledge.

(a) What is the performance the receiver shown above? Explain why this receiver is
not the minimum error probability receiver.

(b) If you have access to the realization of R(u), r, what is the minimum error prob-
ability rule?

What is the probability of error for this receiver?

(c) Suppose that only you have access to the decisions at the output of the receiver
from (a). Then, the channel can be modeled as a Binary Symmetric channel.
Specifically, let B̂(u) be the decision provided by the receiver in (a)

Find the minimum error probability receiver based on observing B̂(u). Let your
final decision be denoted by d ∈ {0, 1}. Describe your rule by giving the condition
for changing the decisions B̂.

Change B̂ = 0 to d = 1 ⇐⇒
Change B̂ = 1 to d = 0 ⇐⇒

(d) What is the probability of error for the receiver in (c)? Note that you will have
to describe this function separately on different regions of E/N0.

53. (Spring 2000, midterm exam) Two bits are to be communicated using four (4 × 1)
vectors. These bits are represented by the random variables A(u) and B(u) which are

Figure 11: The decision device available for deciding between antipodal signals.

(c) Compute and compare the probability of joint error for the two systems.

(d) For channel B, how does this performance vary with ρ? If you could design φ1(t) and
φ2(t), what would you choose?

3.29. Space-time coding is a method where signals are sent from multiple transmit antennas to
multiple receive antennas. Consider the case of two antennas at both the receiver and trans-
mitter. Then, the observation at the receiver is a vector r(u). Consider the case where one
of two equally likely signals is sent so that

H0 : r(u) = Hs0 + w(u)

H1 : r(u) = Hs1 + w(u)

where H is a known channel matrix defining the the gain for each transmit-receive antenna
pair. The noise is AWGN with mean zero and Kn = σ2I.

(a) Find the decision rule that minimizes the probability of error.

(b) What is the probability of error of the receiver derived in part (a)?

(c) What is the best space-time code for this problem? Specifically, with an energy constraint
‖s0‖2 = ‖s1‖2 = E, describe the best choice for the signal vectors.

3.30. (Spring 2000, midterm exam) Consider the problem of detecting antipodal signaling in the
additive Gaussian noise

H0 : R(u) = +
√
E +N(u)

H1 : R(u) = −
√
E +N(u)

where N(u) is mean-zero, Gaussian with variance N0/2. You have access to a decision device
as illustrated in Fig. 11 where B̂ = 0 corresponds to deciding H0 and B̂ = 1 corresponds to
H1.

However, you now are informed that π0 = 0.9 and π1 = 0.1. This problem deals with
modifying the above detector to account for this knowledge.

(a) What is the performance the receiver shown above? Explain why this receiver is not the
minimum error probability receiver.
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(e) Compare the performance of ESK with the corresponding PSK technique:

M = 2 : ESK performs Worse Same Better than PSK

M = 4 : ESK performs Worse Same Better than PSK

M = 8 : ESK performs Worse Same Better than PSK

56. (Spring 2001, Midterm) A large box containing standard (fair) dice and another
containing loaded (unfair) dice have been mixed together. Each loaded die is bi-
ased to roll a 1 or a 6. Specifically, let R(u) denote the outcome of a roll, then
Pr {R(u) = 1|loaded} = Pr {R(u) = 6|loaded} = 3/10 and Pr {R(u) = r|loaded} =
1/10 for r ∈ {2, 3, 4, 5}. Of course, each fair die is equally likely to roll any integer
between 1 and 6.

Consider randomly selecting a die from the box containing an equal number of fair and
loaded dice. Based on one roll, you would like to determine if the selected die if fair or
loaded.

(a) Find the decision rule that minimizes the probability of error in deciding whether
the selected die is fair or loaded based on a given roll – i.e., given R(u) = r,
specify either “Fair” or “Loaded” for r = 1, 2, 3, 4, 5, 6.

(b) What is the probability of error of the receiver derived in part (a)?

57. (Spring 2001, Midterm) An 8-ary signal set in two-dimensional real space has been
defined as a mixture of two 4-ary PSK signal sets at two different amplitudes. The 8
signal points are shown below.

Each of the 8 signals are equally likely to be transmitted. Under hypothesis Hm, the
received waveform is r(u) = sm + w(u), where w(u) is a mean-zero Gaussian vector
with covariance matrix Kw = σ2I.

Figure 12: An 8-ary signal set based on two concentric circles.

(b) If you have access to the realization of R(u), r, what is the minimum error probability
rule?

What is the probability of error for this receiver?

(c) Suppose that only you have access to the decisions at the output of the receiver from
(a). Then, the channel can be modeled as a Binary Symmetric channel. Specifically, let
B̂(u) be the decision provided by the receiver in (a)

Find the minimum error probability receiver based on observing B̂(u). Let your final
decision be denoted by d ∈ {0, 1}. Describe your rule by giving the condition for changing
the decisions B̂.

Change B̂ = 0 to d = 1 ⇐⇒
Change B̂ = 1 to d = 0 ⇐⇒

(d) What is the probability of error for the receiver in (c)? Note that you will have to
describe this function separately on different regions of E/N0.

3.31. (Spring 2001, Midterm) An 8-ary signal set in two-dimensional real space has been defined
as a mixture of two 4-ary PSK signal sets at two different amplitudes. The 8 signal points
are shown in Fig. 12.

Each of the 8 signals are equally likely to be transmitted. Under hypothesis Hm, the received
waveform is r(u) = sm + w(u), where w(u) is a mean-zero Gaussian vector with covariance
matrix Kw = σ2I.

(a) Determine the decision rule that minimizes the probability of error. Specify this de-
cision rule by carefully and accurately drawing the decision regions on the the signal
constellation.

(b) Let d(i, j) = ‖si − sj‖ be the Euclidian distance between two signals. In constructing
a good upper and lower bound on P (E), state which values of d2(i, j) are used. State
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good lower and upper bounds on the probability of error for the receiver described in
part (a).

3.32. Consider the 8-ary modulation by the following two dimensional signals

si,j =

[
i

2j

]

where (i, j) takes on the values (+1,+1), (+1,−1), (−1,+1), (−1,−1), (+2,+2), (+2,−2),
(−2,+2), and (−2,−2).

The detection problem is then

Hi,j r(u) = si,j + w(u)

where the pdf of w(u) is N2(·;0;σ2I). All hypotheses occur with equal a-priori probability.

(a) Carefully draw and label the signals. Specify the MAP 8-ary receiver for this problem by
carefully drawing the decision regions. Be sure to label the diagram so as to completely
define the rule.

(b) Find a good lower and upper bound for the probability of error for the MAP receiver of
part (a).

3.33. (Spring 2001, Midterm) A particular practical binary modulation format has the following
equivalent (2× 1) vector model:

H0 : r(u) =
√
E




1

0


+ w(u)

H1 : r(u) =
√
E




sinc(2∆)

√
1− sinc2(2∆)


+ w(u)

The parameter ∆ is a real number that defines the precise form of the waveforms used. The
sinc function is sinc(x) = sin(πx)/(πx). The noise is AWGN with mean zero and Kw = σ2I.
The a-priori probabilities are equal.

(a) Find the decision rule, based on the realization r(u) = r, that minimizes the probability
of error. Sketch the preferred receiver processing to implement this rule.

(b) What is the probability of error of the receiver derived in part (a)?

(c) What is the best choice for the parameter ∆ – i.e., the value ∆opt that minimizes the error
probability? Please use sketches to describe this best choice and give an approximate
numerical value for this optimal choice and the corresponding error probability.
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3.34. (Spring 2000, Final Exam) A potential improvement to PSK has been suggested which shifts
the phase at the midpoint of the symbol time. Specifically, M -ary “double PSK” is defined
by the signal set

sm(t) =





√
2E
T cos

(
2πfct+ 2πm

M

)
0 ≤ t ≤ T/2

−
√

2E
T sin

(
2πfct+ 2πm

M

)
T/2 < t ≤ T

for m = 0, 1, . . .M − 1. Consider the case where the above is the received signal in AWGN

Hm : r(u, t) = sm(t) + n(u, t) t ∈ [0, T ]

where n(u, t) is AWGN with spectral level N0/2. Assume that fc � 1/T and that each of
the M signals are equally likely to be transmitted.

(a) There is an equivalent vector model that contains a set of sufficient statistics for detecting
the double-PSK signal from a realization {r(t), t ∈ [0, T ]} of the form

Z(u) = Sm + N(u) (k × 1)

where N(u) is a real, mean-zero Gaussian vector with covariance matrix KN = N0
2 I.

Assume that M > 2 and specify k and Sm.

Sketch and label the receiver processing that yields this model.

(b) Consider the special case where M = 4. Specify explicitly the 4 signal vectors for the
equivalent model obtained in (a) and give upper and lower bounds on the probability of
error.

(c) Can double-PSK be used as a direct substitute in a system that currently uses PSK with
rectangular pulse shaping? Explain briefly.

3.35. (Spring 2000, Final Exam) SquareComm is a hot new wireless communications company.
According to their webpage, their key patented technology if Epoch Shift Keying (ESK)
which is the concept of PSK extended to square-wave carriers in place of sinusoidal carriers.
According to their webpage “the square-wave provides the most efficient mapping from binary
data to 2-level waveforms.”

From their patent, you learn that the carrier is the based on the basic square wave q(t) with
period 1 as shown in Fig. 13.

The ESK signal is the direct analogy of PSK applied to the square-wave carrier:

sm(t) =

√
E

T
q(Kct+ εm) t ∈ [0, T ]

where εm = m
M for m = 0, 1 . . .M − 1. You can assume that T � 1/Kc and T/Kc is an

integer.

Assume that the ESK signal is observed in AWGN

Hm : r(u, t) = sm(t) + n(u, t) t ∈ [0, T ]

where n(u, t) is AWGN with spectral level N0/2. Assume that each of the M signals are
equally likely to be transmitted.
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(b) Consider the special case where M = 4. Specify explicitly the 4 signal vectors
for the equivalent model obtained in (a) and give upper and lower bounds on the
probability of error.

(c) Can double-PSK be used as a direct substitute in a system that currently uses
PSK with rectangular pulse shaping? Explain briefly.

55. (Spring 2000, Final Exam) SquareComm is a hot new wireless communications com-
pany. According to their webpage, their key patented technology if Epoch Shift Keying
(ESK) which is the concept of PSK extended to square-wave carriers in place of si-
nusoidal carriers. According to their webpage “the square-wave provides the most
efficient mapping from binary data to 2-level waveforms.”

From their patent, you learn that the carrier is the based on the basic square wave q(t)
with period 1 as shown below:

The ESK signal is the direct analogy of PSK applied to the square-wave carrier:

sm(t) =

√
E

T
q(Kct + εm) t ∈ [0, T ]

where εm = m
M for m = 0, 1 . . . M − 1. You can assume that T # 1/Kc and T/Kc is

an integer.

Assume that the ESK signal is observed in AWGN

Hm : r(u, t) = sm(t) + n(u, t) t ∈ [0, T ]

where n(u, t) is AWGN with spectral level N0/2. Assume that each of the M signals
are equally likely to be transmitted.

(a) Consider the special case of Binary ESK – i.e., M = 2. Sketch and label the
optimal B-ESK receiver.

What is the probability of error for B-ESK?

Figure 13: Square wave used as a carrier waveform.

(a) Consider the special case of Binary ESK – i.e., M = 2. Sketch and label the optimal
B-ESK receiver.

What is the probability of error for B-ESK?

(b) Each of the M ESK signals has energy E. In order to characterize the ESK signal set
you should compute the correlation coefficient for a epoch shift ε of the square-wave
carrier:

β(ε) =
1

T

∫ T

0
q(Kct)q(Kct+ ε)dt

Evaluate this correlation coefficient for 0 ≤ ε ≤ 1. Sketch and label β(ε):

Hint: β(ε) is symmetric around ε = 1/2.

Define the correlation coefficient between signals as usual:

ρ(m,n) =
1

E

∫ T

0
sm(t)sn(t)dt

Give ρ(m,n) for M -ESK signals in terms of β(·).
What is the squared-distance between two ESK signals in terms of ρ(·)

(c) Consider the special case of M = 4. Fill in the following table for ρ(m,n)

n = 0 n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

m = 3

What is the dimensionality of the M = 4 ESK signal set?

What is the probability of symbol error for the optimal 4-ary detector?
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3 Minor Shifts (30 points)
A variation on BPSK with phase shaping has been suggested. Given a binary information
sequence bi ∈ {0, 1}, the modulated waveform is

s(t; {bi}) =
∑

i

sbi(t − iT )

where

s0(t) =

√
2Eb

T
cos(2πfct + θ0(t)) t ∈ [0, T )

s1(t) =

√
2Eb

T
cos(2πfct + θ1(t)) t ∈ [0, T )

with the phase shaping functions for a 0 and a 1 data bit shown below:

Specifically, θ1(t) transitions from 0 to π at t = T (1/2− α) and θ0(t) transitions from 0 to π at
t = T (1/2 + α) – where 0 < α < 1/2.

Assume that an iid information sequence with π0 = π1 is transmitted and that the above
signals are received in standard AWGN (spectral level N0/2).

(a) (10 points) Based on the observation r(t), state the decision rule for the bit bi(u):

Decide bi = 0 ⇐⇒ (Function of M , T )

(Function of r(t), α, Eb, N0, T )

Figure 14: The phase pulses used in the suggested BPSK modification.

(d) Consider the M = 8 case. Again, fill in a table for ρ(m,n).

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

What is the dimensionality of the M = 8 ESK signal set?

Give simple bounds for the probability of symbol error for the optimal 8-ary detector?

(e) Compare the performance of ESK with the corresponding PSK technique:

M = 2 : ESK performs Worse Same Better than PSK

M = 4 : ESK performs Worse Same Better than PSK

M = 8 : ESK performs Worse Same Better than PSK

3.36. A variation on BPSK with phase shaping has been suggested. Given a binary information
sequence bi ∈ {0, 1}, the modulated waveform is

s(t; {bi}) =
∑

i

sbi(t− iT )

where

s0(t) =

√
2Eb
T

cos(2πfct+ θ0(t)) t ∈ [0, T )

s1(t) =

√
2Eb
T

cos(2πfct+ θ1(t)) t ∈ [0, T )

with the phase shaping functions for a 0 and a 1 data bit shown in Fig. 14.
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Specifically, θ1(t) transitions from 0 to π at t = T (1/2− α) and θ0(t) transitions from 0 to π
at t = T (1/2 + α) – where 0 < α < 1/2.

Assume that an iid information sequence with π0 = π1 is transmitted and that the above
signals are received in standard AWGN (spectral level N0/2).

(a) Based on the observation r(t), state the decision rule for the bit bi(u). Sketch the simplest
form of this optimal receiver.

(b) Determine the probability of error for this system. What is the difference in performance
between this modification and standard BPSK as measured as a change in the effective
Eb/N0?

(c) The proponents of this modulation format claim that it can achieve a bandwidth effi-
ciency of 90 bits-per-second/Hz when α = 1/8. What is the minimum value of Eb/N0

required of any signaling scheme which achieves this spectral efficiency on the AWGN
channel?

(d) Show that, if the centroid of the signal set is subtracted from s0(t) and s1(t), that this
modified BPSK format can be viewed as standard BPSK with amplitude pulse shaping.
Sketch and label this effective pulse shape, p(t). Based on this interpretation, do you
expect this signal to achieve a bandwidth efficiency of 90 bps/Hz? Explain.

3.37. (Matching Robustness) Consider a binary communication system with

H0 : r(u, t) = +

√
E

T
+ n(u, t) t ∈ [0, T ]

H1 : r(u, t) = −
√
E

T
+ n(u, t) t ∈ [0, T ]

where n(u, t) is mean-zero Gaussian noise. Assume that P (H0) = P (H1) = 1/2.

(a) For the case with Rn(τ) = N0
2 δ(τ), specify the following:

i. The processing of the receiver that minimizes the probability of error based on a
realization r(t), t ∈ [0, T ].

ii. The probability of error for this receiver

(b) Consider the case when

Rn(τ) =
N0

4αT
e−
|τ |
αT

where α > 0 is a constant.

i. What is the performance of the receiver designed in part 1 of this problem when
this noise is present at the receiver front-end?

ii. Is the receiver for part 1 optimal in the sense of minimum error probability in the
presence of this Gaussian noise process observed on [0, T ]? Explain.

iii. Discuss and interpret your result as a function of α.
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3.38. (Midterm Exam, Spring 1998) A simple binary communication system is intended to send a
+1 or −1 across a Gaussian channel. However, distortion occurs in the channel resulting in
intersymbol interference (ISI). Specifically, the observation is

R(u) = A(u) + αB(u) +N(u),

where A(u) is the signal of interest, B(u) is the previous signal sent across the channel, α is a
real number with |α| < 1, and N(u) is a mean-zero, Gaussian random variable with variance
of σ2. You may assume that A(u), B(u), and N(u) are mutually independent. Each of A(u)
and B(u) are take on +1 and −1 with probability 1/2.

The objective is to decide whether A(u) = +1 (i.e., H0) or A(u) = −1 (i.e., H1). Hence the
problem may be formulated as

H0 : R(u) = +1 + αB(u) +N(u)

H1 : R(u) = −1 + αB(u) +N(u).

Three methods of making a decision for A(u) are considered:

Method A: Ignore the ISI. The decision device is designed assuming that α = 0

Method B: Joint detection. The problem is reformulated as a four hypothesis test

H(4)
m,n : R(u) = (−1)m + α(−1)n +N(u)

A MAP decision is made on Hm,n. If H(4)
0,0 or H(4)

0,1 is decided, then the decision is made
that H0 is true (i.e., A(u) is detected as a +1). Otherwise H1 is decided.

Method C: The MAP rule for deciding on Hm is applied.

For each of these three techniques, determine the decision rule based on R(u) = r, draw the
decision region (label all quantities), and determine the error probability. Specifically, provide
the following for each method:

(a) Rule: Decide H0 ⇐⇒ and athe derivation/reasoning.

(b) Sketch the decision region.

(c) Determine the error probability P (E).

3.39. Consider a system that uses the vectors associated with the Discrete Fourier Transform (DFT)
as signal vectors. Specifically, consider the M -ary modulation format with model

Hm : z(u) = sm + w(u)

where w(u) is (M × 1) complex circular Gaussian noise with Kw = N0I and the signals are

sm =

√
E√
M




exp
[
j 2π
Mm(0)

]

exp
[
j 2π
Mm(1)

]

exp
[
j 2π
Mm(2)

]

...

exp
[
j 2π
Mm(M − 1)

]




=

√
E√
M




1

exp
[
j 2π
Mm(1)

]

exp
[
j 2π
Mm(2)

]

...

exp
[
j 2π
Mm(M − 1)

]



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This system is realized by sending the M consecutive complex symbols that define sm using
a standard QASK systems with Nyquist pulse shaping. This is illustrated below.

map to sm
M -ary message

...
p(t)

n(u, t)

xk r(u, t)

sm

p∗(−t)

kT

...

xk + w(u, k)

z(u) = sm + w(u)

Receiver Front-End Processing Model (Complex BB)

Transmitter/Channel Model (Complex BB) Complex signal

In other words, the signal sm can be viewed as a sequence of M complex symbols

sm(n) =
1

M
exp

[
j

2π

M
m(n)

]
n = 0, 1, . . .M − 1

and these are sent using a standard QASK link – i.e., it takes MT seconds to send all M
components of sm. Notice that because of the memoryless channel, the optimal receiver makes
decisions on the M × 1 blocks, each modeled by the vector model above.

(a) Based on the vector model, determine and state the Maximum Likelihood M -ary rule.
Sketch the processing for this rule.

(b) Find good upper and lower bounds for the the M -ary probability of error for the receiver
obtained in (a).

(c) Suppose that you have access to a processor that computes an M -point FFT, can you
use this to implement the receiver derived in (a)? If so, illustrate how this can be used.

Compare this format to standard QPSK. Specifically, if exactly the same Nyquist-pulse
QASK link is used to send QPSK, how will it compare to the Fourier modulation in
terms of power and bandwidth efficiency?

For bandwidth efficiency, define η as the bandwidth effiecny in bits per second per Hz.
State the relative bandwidth efficiency of the Fourier modulation to that of QPSK.

For power efficiency, the error probability for each modulation requires a certain mini-

mum value of Eb/N0 – i.e., .
(
Eb
N0

)
req

. Define β as the ratio of Eb/N0 required for the
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two modulations:

β =

(
Eb
N0

)
req,Fourier(

Eb
N0

)
req,QPSK

Using this definition, is the Fourier modulation (M > 4) more or less power efficient
than QPSK?

3.40. (Spring 1998 Final Exam) You have just started at LEO.com, working on their mobile satellite
system. They have decided to use 8PSK modulation with rectangular pulses. Due to the
rapid velocity of the satellites, the frequency tracking loops cannot maintain accurate carrier
frequency lock. However, perfect phase lock and symbol timing can be assumed.

The receiver correlation processing is normalized so that, for a given output sample (i.e.,
every symbol time), if no frequency error was present, the output of the complex baseband
equivalent matched filter is

Hm : R(u) =
√
Ese

j π
4
m +N(u), m = 0, 1 . . . 7

whereN(u) is a circular complex Gaussian random variable with E {N(u)} = 0 and E
{
|N(u)|2

}
=

N0.

In this problem, we are concerned with the case where the 8PSK receiver uses the carrier
frequency estimate f̂c assuming that f̂c = fc, when in actuality α = f̂c − fc 6= 0. Since
sophisticated offset compensation and frequency tracking loops are used, you may assume
that |αT | < 1.

(a) Under hypothesis Hm, the output of the complex-baseband correlator operating with
frequency error α can be written as

R(u;α) = Sm(α) +N(u;α)

Determine the signal parameters of this model – i.e., Sm(α) and fN(u;α)(z). Below, the
noise free signals for no frequency offset are shown in the complex plane. Indicate on
this same sketch where each Sm(α) is for a fixed value of α > 0.

(b) Determine a good upper and lower bound for the probability of symbol error given the
frequency error α: P (E ;α).

(c) Your boss hasn’t worked with frequency offsets before, but has studied the effect of phase
error on the detection of MPSK. He suggests that the effect of the frequency error (with
perfect θc estimation) should be about the same as an effective phase error φeff = θc− θ̂c
(with perfect fc estimation). His intuition suggests that φeff is the total integrated offset
– i.e., φeff = 2παT . Do you agree?

(d) Provide justification to the above answer. If the concept of an approximately equivalent
phase offset is invalid, explain why. If the concept is valid, explain why your boss’
intuition is correct, or identify and justify the value of φeff .
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(b) Determine a good upper and lower bound for the probability of symbol error given
the frequency error α: P (E ; α).

(c) Your boss hasn’t worked with frequency offsets before, but has studied the effect of
phase error on the detection of MPSK. He suggests that the effect of the frequency
error (with perfect θc estimation) should be about the same as an effective phase
error φeff = θc − θ̂c (with perfect fc estimation). His intuition suggests that φeff

is the total integrated offset – i.e., φeff = 2παT . Do you agree?

(d) Provide justification to the above answer. If the concept of an approximately
equivalent phase offset is invalid, explain why. If the concept is valid, explain why
your boss’ intuition is correct, or identify and justify the value of φeff .

51. (Spring 2000, midterm exam) Space-time coding is a method where signals are sent
from multiple transmit antennas to multiple receive antennas. Consider the case of two
antennas at both the receiver and transmitter. Then, the observation at the receiver is
a vector r(u). Consider the case where one of two equally likely signals is sent so that

H0 : r(u) = Hs0 + w(u)

H1 : r(u) = Hs1 + w(u)

where H is a known channel matrix defining the the gain for each transmit-receive
antenna pair. The noise is AWGN with mean zero and Kn = σ2I.

(a) Find the decision rule that minimizes the probability of error.

(b) What is the probability of error of the receiver derived in part (a)?

Figure 15: The 8PSK constellation used by LEO.com.

3.41. This problem considers the effects of amplitude mismatch in an 8-ary PAM system. Specifi-
cally, the post matched-filter model for a given time index is given by

Hm : Z(u) = A(Sm +N(u))

where Sm ∈ {±1,±3,±5,±7} is the 8-ary PAM signal that takes on all 8 levels with equal
probability and N(u) is real Gaussian noise. The average energy per symbol Es to noise
spectral level is specified via

2Es
N0

=
1
8

∑7
m=0 S

2
m

E {N2(u)}
The positive constant, A is set by an automatic gain control (AGC) circuit. The intent is
to have the AGC maintain the condition A = 1. Decisions on the 8-ary message are made
assuming that A = 1.

(a) For this part assume that the AGC is working perfectly (i.e., A = 1) and illustrate the
decision rule that minimizes the probability of 8-ary error by indicating the decisions
regions.

What is the probability of error for this system with perfect AGC?

(b) Consider the case when 1 ≤ A ≤ 6
5 and the slicer described in (a) is used – i.e., the

decision rule is based on perfect AGC. Find the error probability for this receiver P (E ;A).

(c) For 1 ≤ A ≤ 6
5 , the degradation can be approximately characterized as an effective loss

in Es/N0 for moderate to high Es/N0. Specify this loss.

Determine the performance for A = 6.1
5 as Es/N0 tends to infinity.

For 6/7 < A ≤ 1, the degradation can be approximately characterized as an effective
loss in Es/N0 for moderate to high Es/N0. Specify this loss.
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3.42. (Spring 2000, Final Exam) Consider a binary FSK modulation format with

s0(t) =

√
2Eb
T

cos

(
2π

[
fc +

1

2T

]
t

)
t ∈ [0, T ]

s1(t) =

√
2Eb
T

cos

(
2π

[
fc −

1

2T

]
t

)
t ∈ [0, T ]

and equally likely hypotheses. The channel corrupts these signals by introducing a carrier
phase rotation and standard AWGN (spectral level N0/2). The receiver uses a phase tracking
loop, but with probability p it fails. Thus, the received signal can be modeled as

H0 : r(u, t) =

√
2Eb
T

cos

(
2π

[
fc +

1

2T

]
t+ θc(u)

)
+ n(u, t) t ∈ [0, T ]

H1 : r(u, t) =

√
2Eb
T

cos

(
2π

[
fc −

1

2T

]
t+ θc(u)

)
+ n(u, t) t ∈ [0, T ]

where, as motivated above, the phase pdf is modeled by

fθc(u)(φ) = pU(φ) + (1− p)δD(φ)

where U(φ) = 1/(2π) for |φ| < π and zero otherwise.

(a) Determine and state the receiver that minimizes the probability of error based on the
observation r(t) or, if you prefer, the complex baseband equivalent r̄(t). Sketch a block
diagram showing the operation of this receiver.

(b) State the probability of error for this system (with the above optimal receiver) in the
following two limiting cases.

3.43. In this problem, M -ary orthogonal signaling is used. Due to the method used to obtain
estimates of the synchronization parameters, there is a sign uncertainty at the receiver. The
resulting model is

Hm : z(u) = F (u)sm + w(u)

where ‖sm‖2 = E, and w(u) is a zero mean, real Gaussian random vector with covariance
Kw = N0

2 I. The sign ambiguity is modeled by the random variable F (u) which takes on the
values +1 and −1, each with probability 0.5, and is statistically independent of both the noise
and signal.

(a) Assuming that the M hypotheses are equally likely a-priori, find the receiver that mini-
mizes the probability of M -ary error based on the observation z(u) = z. First give the
rule without

(b) Simplify the rule in (a) as much as possible and state this simplified rule. Sketch the
receiver processing for this receiver.

3.44. Symbol Synchronization Errors (Fall 1998, Final Exam) Consider a basedband transmission
system that sends a signal based on the information sequence {Ai(u)}, which is a sequence of
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kT (k + ε)T

ideal synchronization error

 �  �  �   �  

20 K.M. Chugg - January 17, 2003

43. Symbol Synchronization Errors (Fall 1998, Final Exam) Consider a basedband trans-
mission system that sends a signal based on the information sequence {Ai(u)}, which
is a sequence of independent, identically distributed random random varioables, each
taking −1 and +1 with probablity 1/2. Specifically, for a given realization of {Ai(u)}
(i.e., {ai}), the received signal is

r(u, t) = s(t; a) + n(u, t)

where n(u, t) is additive white Gaussian noise with (two-sided) power spectral height
N0/2. The signal is defined by

s(t; a) =
√

E
∑

i

aip(t− iT )

p(t) =

{
1√
T

t ∈ [0, T ]

0 otherwise

(a) Given a realization of the received signal r(t), state the decision rule that mini-
mizes the probability of bit errors. Sketch the processing of the optimal receiver.
What is the probability of error for this receiver?

(b) The optimal receiver in (a) requires symbol synchronization – i.e., sampling at
t = kT . Consider the effects of a symbol synchronization error. Specifically,
consider the receiver that samples at (k + ε)T , where ε ∈ [0, 1]. In other words,
the ideal sampler is replaced by the following

There is an equivalent (i.e., post-correlation) symbol spaced signal model for the
receiver from (a) using the imperfect sampler. This model is

zk = xk + wk

where wk is an iid sequence of Gaussian random variables with mean zero and
variance N0/2. Determine xk for this model.

Determine the performance of the receiver with symbol synchorization error Dis-
cuss the performance as ε approaches 1. Is this the worst value of ε?

44. Emergency Signal (Fall 1998 Final Exam) A particular communication system
uses QPSK and each of the four messgages are equally likely. It is desired to add
another point to the QPSK constellation to send a fifth special (emergency) message.

Figure 16: An ideal sampler and one with timing error.

independent, identically distributed random random varioables, each taking −1 and +1 with
probablity 1/2. Specifically, for a given realization of {Ai(u)} (i.e., {ai}), the received signal
is

r(u, t) = s(t;a) + n(u, t)

where n(u, t) is additive white Gaussian noise with (two-sided) power spectral height N0/2.
The signal is defined by

s(t;a) =
√
E
∑

i

aip(t− iT )

p(t) =

{
1√
T

t ∈ [0, T ]

0 otherwise

(a) Given a realization of the received signal r(t), state the decision rule that minimizes the
probability of bit errors. Sketch the processing of the optimal receiver. What is the
probability of error for this receiver?

(b) The optimal receiver in (a) requires symbol synchronization – i.e., sampling at t = kT .
Consider the effects of a symbol synchronization error. Specifically, consider the receiver
that samples at (k + ε)T , where ε ∈ [0, 1]. In other words, the ideal sampler is replaced
by the one with sampling error as illustrated in Fig. 16.

There is an equivalent (i.e., post-correlation) symbol spaced signal model for the receiver
from (a) using the imperfect sampler. This model is

zk = xk + wk

where wk is an iid sequence of Gaussian random variables with mean zero and variance
N0/2. Determine xk for this model.

Determine the performance of the receiver with symbol synchorization error Discuss the
performance as ε approaches 1. Is this the worst value of ε?

3.45. (CSI Qualifying Exam Fall 1998) Consider an 8PSK system in AWGN. Suppose the the
receiver’s estimate of the carrier phase is θ̂c. Due to a cheap oscillator component in the
receiver, this phase estimate is know to have three “lock points” – i.e., θ̂c takes on the values
θc, θc+φg, and θc−φg, where φg ∈ [0, π8 ) is the “glitch” angle. Based on this fact, the received
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signal is modeled as

Hm : r(u, t) = sm(t; Θc(u)) + n(u, t) t ∈ [0, T ] m = 0, 1 . . .M − 1

sm(t; Θc(u)) =

√
2Es
T

cos
(

2πfct+ Θc(u) +
mπ

4

)
,

with the associated model for the random phase being

Θc(u) =





−φg with probability p

0 with probability 1− 2p

+φg with probability p

Assume that all 8 signals are equally likely.

(a) Suppose that a coherent receiver is utilized based on the phase estimate θ̂c (i.e., the
assumption that θc = 0 is the above signal model is made for the purpose of designing
the receiver). Answer the following:

i. Sketch the processing.

ii. What is an upper and lower bound for the performance (SER) of this receiver if
p = 0?

iii. What is an upper and lower bound for the performance (SER) of this receiver when
p 6= 0?

iv. What is an approximate expression for the SER for this receiver for given values
of p and φg? Can you characterize the effects of the phase glitch as a rough SNR
degradation? If so, provide such a characterization; if not, explain why.

(b) Suppose that the model for Θc(u) described above is taken into account during the
design of the receiver. Determine and sketch the optimal (SER) receiver which is based
on this model. What can you say regarding the performance of this receiver? How about
relative to the coherent receiver discussed above?

3.46. (Fall 1998 Midterm) The phase noise produced by a particular phase estimator is modeled
as additive with pdf

fΦ(u)(φ) =
1

2πI0(γL)
eγL cosφ φ ∈ [−π,+π)

where γL > 0 is the loop SNR and I0(·) is the modified Bessel function of the first kind. When
using an MPSK modulation, the phase estimator has M lock points, so that the overall phase
error may be modeled as

Hm : Θ(u) =
2π

M
m⊕2π Φ(u) m = 0, 1, 2, . . .M − 1

where ⊕2π indicates modulo 2π addition.

(a) Determine the ML decision rule for determining the lock point based on observing a
realization θ of Θ(u); simplify as much as possible.
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(b) Suppose that instead of one phase estimate, you have access to a sequence of phase
estimates, each locked to the same point, but observed in i.i.d. phase noise:

Hm : Θ(u, n) =
2π

M
m⊕2π Φ(u, n) n = 1, 2, . . . N

Specifically, Φ(u, n) is an i.i.d. sequence, each with pdf as above.

Determine the ML decision rule based on the observation {θ(n)}Nn=1. Sketch the opera-
tion of the lock-detector below for the special case of M = 4.

3.47. The field signal of a binary optical communication system must be detected in the intensity
domain. If the system is dominated by field noise, resulting in “speckle” at the intensity
detector, then the the model at the output of the detector is

H0 : R(u) = ‖w(u)‖
H1 : R(u) = ‖s + w(u)‖

where w(u) is a (2×1) Gaussian random vector with zero mean and Kw = σ2I and ‖s‖2 = E.

It can be shown that the pdf of R(u) is Rayleigh under H0 and Rician under H1 – i.e.,

fR(u)(r|H0) =
r

σ2
e−

r2

2σ2 U(r)

fR(u)(r|H1) =
r

σ2
e
−
(
r2+E

2σ2

)
I0

(
r
√
E

σ2

)
U(r)

where U(r) is the unit step function and I0(·) is the zero-order modified Bessel function of
the first kind.

The a-priori probabilities are π0 = π1 = 0.5.

Determine the probability of error as a function of E/σ2 and plot this result on a log-scale
with E/σ2 in dB.

Note: The CDF of the Rician random variable is

FR(u)(r|H1) = 1−Q1

(√
E

σ
,
r

σ

)
,

where Q1(a, b) is the Marcum Q-function

Q1(a, b) =

∫ ∞

b
xe
−
(
x2+a2

2

)
I0 (ax) dx

For numerical evaluation, use (see the letter by M. K. Simon in Feb. 1998 IEEE Communi-
cations Letters)

Q1(ζb, b) =
1

2π

∫ π

−π

[
1 + ζ sin θ

1 + 2ζ sin θ + ζ2

]
exp

(
−b

2

2
[1 + 2ζ sin θ + ζ2]

)
dθ (0 ≤ ζ < 1)

Q1(a, ζa) = 1 +
1

2π

∫ π

−π

[
ζ2 + ζ sin θ

1 + 2ζ sin θ + ζ2

]
exp

(
−a

2

2
[1 + 2ζ sin θ + ζ2]

)
dθ (0 ≤ ζ < 1)

Note that ζ is a/b in the first expression and b/a in the second expression. You’ll have to
evaluate I−1

0 (·) to plot this.
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and the pulse p(t) is real-valued and is as shown below:

Assume that, for a given realization of the data sequence, the signal is observed in
standard AWGN – i.e., under the hypothesis that ā was sent

r(u, t) = s(t; ā) + n(u, t)

where n(u, t) is Gaussian with PSD equal to N0/2 at all frequencies.

(a) Determine the optimal receiver for detecting the sequence {āi}. Sketch the re-
ceiver that minimizes the probability of sequence error (carefully describe the
operation of each “box”). Justify this receiver and state the equivalent discrete-
time statistical model for this problem.

(b) What is the probability of error for this system, P (E ; ∆)? Restate this result in
terms of the standard measure of Eb/N0, P (E ; Eb/N0).

(c) Consider bit-labeling this constellation with three bits for a voice system. Suppose
that making errors in the most significant bit location causes more distortion
than making errors in the other two bit locations. Suggest a good bit labeling for
moderate to high SNR.

60. (Spring 2000, Final Exam) A variation on BPSK with phase shaping has been sug-
gested. Given a binary information sequence bi ∈ {0, 1}, the modulated waveform
is

s(t; {bi}) =
∑

i

sbi(t− iT )

Figure 17: The 8-ary QASK constellation considered.

3.48. A current wireless point-to-point communication system operates using 8-PSK with an un-
coded bit error rate (BER) of Pb = 10−4. The system operates between the roof-tops of
two buildings (linking LANs) and the channel is well-approximated by an AWGN channel.
Each transmitter has access to the power supply of the building. The FCC strictly regulates
the bandwidth and the system currently operates at 19.2 kbps and occupies the maximum
bandwidth.

The company just got some multimedia computers and would like to double the data rate
of the link without degrading the BER. What would you suggest? Justify your answer –
specifically, describe how your design affects the bandwidth and power requirements.

3.49. A new start-up company has been started started by a recent MBA graduate, Eddie K. Ayear.
Eddie wants to bid for an FCC license in an up-coming auction, but needs investors. Eddie
wants you to invest. He shows you a business plan which shows that he plans to provide
compressed video services at a data rate of 1.5 Megabits/sec across his 100 KHz of licensed
bandwidth. You read in the IEEE Spectrum that this type of system operates at Pave/N0 =
107 Hz. Do you invest? Explain in detail.

3.50. A typical radio link is designed to operate in the region of

10 dB-Hz ≤ (Pave/N0)dB (dB-Hz) = 10 log10(Pave/N0) ≤ 120 dB-Hz

The entire library of congress is about 5× 1012 bits. Taking the upper-end of the range (i.e.,
120 dB-Hz) and assuming a very large bandwidth is available, how quickly could the Library
of Congress be transmitted across such a link – i.e., how many seconds? What is the minimum
Eb/N0 (in dB) required to achieve this transfer reliably?

3.51. (Spring 2001, Final Exam) Consider the modulated signal of the form

s(t; ā) = <
{∑

i āip(t− iT )
√

2ej2πfct
}

where the modulating sequence āi(u) is an independent, identically distributed sequence, with
each symbol uniformly distributed over the 8-ary constellation shown in Fig. 17 and the pulse
p(t) is real-valued and is as shown in Fig. 18.

Assume that, for a given realization of the data sequence, the signal is observed in standard
AWGN – i.e., under the hypothesis that ā was sent

r(u, t) = s(t; ā) + n(u, t)
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and the pulse p(t) is real-valued and is as shown below:

Assume that, for a given realization of the data sequence, the signal is observed in
standard AWGN – i.e., under the hypothesis that ā was sent

r(u, t) = s(t; ā) + n(u, t)

where n(u, t) is Gaussian with PSD equal to N0/2 at all frequencies.

(a) Determine the optimal receiver for detecting the sequence {āi}. Sketch the re-
ceiver that minimizes the probability of sequence error (carefully describe the
operation of each “box”). Justify this receiver and state the equivalent discrete-
time statistical model for this problem.

(b) What is the probability of error for this system, P (E ; ∆)? Restate this result in
terms of the standard measure of Eb/N0, P (E ; Eb/N0).

(c) Consider bit-labeling this constellation with three bits for a voice system. Suppose
that making errors in the most significant bit location causes more distortion
than making errors in the other two bit locations. Suggest a good bit labeling for
moderate to high SNR.

60. (Spring 2000, Final Exam) A variation on BPSK with phase shaping has been sug-
gested. Given a binary information sequence bi ∈ {0, 1}, the modulated waveform
is

s(t; {bi}) =
∑

i

sbi(t− iT )

Figure 18: The pulse used for the 8-ary QASK modulation considered.

−3∆ +3∆−2∆ +2∆

s0 s1 s2 s3

0

(b1, b0)

(0, 0) (0, 1) (1, 1) (1, 0)

Figure 19: A multilevel PAM constellation.

where n(u, t) is Gaussian with PSD equal to N0/2 at all frequencies.

(a) Determine the optimal receiver for detecting the sequence {āi}. Sketch the receiver that
minimizes the probability of sequence error (carefully describe the operation of each
“box”). Justify this receiver and state the equivalent discrete-time statistical model for
this problem.

(b) What is the probability of error for this system, P (E ; ∆)? Restate this result in terms
of the standard measure of Eb/N0, P (E ;Eb/N0).

(c) Consider bit-labeling this constellation with three bits for a voice system. Suppose that
making errors in the most significant bit location causes more distortion than making
errors in the other two bit locations. Suggest a good bit labeling for moderate to high
SNR.

3.52. The following is a model for one sample at the output of a matched-filter for a “multilevel
PAM” type of modulation

Hm : z(u) = sm + w(u)

where w(u) is zero mean, Gaussian with variance N0/2 and sm is defined in Fig. 19.

Each of the 4 signals is sent by the transmitter with equal probability.

(a) Determine the average energy per symbol and average energy per bit.
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−3∆ +3∆

s0 s1 s2 s3

0 +∆−∆

Figure 20: A 4-PAM constellation.

(b) Carefully diagram and label the decision regions for the rule that minimizes the proba-
bility of symbol error. Determine the probability of symbol error for this decision rule.

(c) Determine the probability of deciding b1 incorrectly, Pb1 , and the probability of deciding
b0 incorrectly, Pb0 , for the decision rule above.

(d) Suppose you have side information that the source produces two classes of bits – i.e., high
priority bits and low priority bits – such that it is desired to have a low error rate on the
high priority bits. Would you associate the high priority bits with the label b0 or b1?

3.53. The following is a model for one sample at the output of a matched-filter for standard 4-PAM
modulation

Hm : z(u) = A(u)sm + w(u)

with some amplitude estimation error. Specifically, w(u) is zero mean, Gaussian with variance
N0/2 and sm is defined in Fig. 20.

The amplitude A(u) is modeled as uniform on the interval [3/4, 5/4] – i.e., the amplitude is
known only within ±25%.

Each of the 4 signals is sent by the transmitter with equal probability.

(a) Let L(z|Hm) denote the average likelihood for when signal sm is present. Determine
this quantity.

(b) Order the average likelihoods using assuming ∆ = 1 and N0 = 2 for z = 0. Repeat for
z = 2∆.

(c) Based on the results of part b, do you expect that maximizing the average likelihood
will yield significantly lower error probability than simply assuming that A(u) = 1?

3.54. Consider the 8-ary, two dimensional constellation obtained by taking one QPSK constellation
with energy Eo as an “outer ring” and another QPSK constellation with energy Ei as an
“inner ring”. The inner ring energy is Ei = αEo where 0 < α < 1. In addition, the inner
QPSK constellation is rotated counterclockwise by an angle φ. This constellation is shown in
Fig. 21.

In this problem, the parameters α and φ are to be designed. Note that, by symmetry ar-
guments, φ need only be considered on the range 0 ≤ φ ≤ π/2. The signal is observed in
2-dimensional AWGN, with variance per dimension of N0/2. The 8 signals have equal a-priori
probability.
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s1
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s3

s4

s5

s6

s7

Figure 21: The constellation for Problem 3.54.

(a) Find the minimum squared distance for s0 – i.e., the smallest squared distance between
s0 and any other signal. Sketch d2

min(0) as a function of φ for α = 1/4. Find the
minimum squared distance between s4 and any inner-ring signal – denote this d2

i (4).

(b) Based on your results above, determine the value of φ that maximizes the minimum
distance properties for the constellation. For this choice of φ, determine the value of α
that maximizes the d2

min for the constellation.

(c) For the this part of the problem, consider the values of α and φ to be fixed to those
found in the previous part. Sketch the constellation with the decision boundaries that
minimizes the 8-ary error probability.

(d) Find good upper and lower bounds for the probability of 8-ary error for this rule.

3.55. Consider the 16-ary, two dimensional constellation shown in Fig. 3.22.

In this problem, the parameter ∆ is fixed and positive. The signal is observed in 2-dimensional
AWGN, with variance per dimension of N0/2. The 16 signals have equal a-priori probability.

(a) What is the average energy per symbol E for the above constellation? Sketch and label
the decision boundaries corresponding on to the MAP symbol decision rule

(b) Determine the error probability for the above rule. Using the above expression, find a
good approximation for the error probability for moderate to high E/N0

3.56. A modulation format comprises M/2, equal energy (E), orthogonal signals {s0, s1, . . . sM/2−1}
and the corresponding antipodal complements {sM/2 = −s0, sM/2+1 = −s1, . . . sM−1 =
−sM/2−1}. Here si is an (M × 1) real-valued vector equivalent signal.
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Figure 22: The constellation for Problem 3.55.

(a) Find the optimal decision rule when this modulation is observed in AWGN and the a-
priori probability of transmission is uniform. Give the simplest form of the rule in terms
of the observation r.

(b) For the specific example of M = 8, consider implementing these signals using Hadamard
sequences. Give the 8 vector signals for this case.

(c) Consider the general case of M being a power of 2 and this modulation format im-
plemented using Hadamard sequences as above. Assuming that the components of the
signal vector are sent sequentially using root-raised cosine pulse shaping with 50% excess
bandwidth, what is the spectral efficiency of the transmitted waveform in bps/Hz?

3.57. For each of the following signals, plot the complimentary CDF for the envelope and the I/Q
signal trajectory:

• 16-PSK signal with a root-raised cosine pulse shape with 25% excess bandwidth

• 16-PSK signal with a root-raised cosine pulse shape with 75% excess bandwidth

• 16-QAM signal with a root-raised cosine pulse shape with 25% excess bandwidth

• 16-QAM signal with a root-raised cosine pulse shape with 75% excess bandwidth

Note that you will need to generate the signal of sufficient time duration and at a sufficient
number of samples per symbol to obtain accurate results.
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4 Performance Metrics and Channel Models for Coding

4.1. The goal of this problem is to extract a discrete memoryless channel model for a quantized
BPSK-AWGN channel. Consider the standard BPSK-AWGN channel with signal gain ad-
justed to the level ±2 – i.e., z(u) = 2(−1)c(u) + w(u). We can consider the following 3-bit
(8-level) quantizer mapping which maps z to an integer q ∈ {−4,−3,−2,−1, 0,+1,+2,+3}:

z
-4 -3 -2 -1 0 +1 +2 +3q=

Note that the labels are offset to account for simple two’s complement digital logic.

Let Ec/N0 be 2 dB and determine the corresponding abstracted DMC.

4.2. Using the results of Problem 1.12 and the FEC limits program (or BPSK-AWGN capacity
curve), characterize the degradation in Eb/N0 for using hard-in decoding rather than soft-in
decoding on the BPSK-AWGN channel. Specifically, plot the difference in required Eb/N0

(in dB) for the two cases against the maximum rate in bits per channel use.

4.3. Determine the ML decoding rule for the BSC channel when the channel error rate is greater
than 0.5.

4.4. Consider a standard BPSK-AWGN channel with real-valued observation

zj(u) =
√
Ec(−1)cj(u) + wj(u)

where Ec is the energy per coded bit, cj(u) is the jth coded bit, and wj(u) is an i.i.d. sequence
of Gaussian random variables with mean zero and variance N0/2.

The receiver converts the real-valued observation zj(u) into a discrete observation yj(u) =
h(zj(u)) where the function h(z) is defined as

h(z) =





0 z ≥ +
√
Ec/2

E |z| < √Ec/2
1 z ≤ −√Ec/2

This results in the discrete memoryless channel (DMC) shown below
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ρ

ρ

where ε is the error probability, ρ is the erasure probability, and E is the channel output
corresponding to an erasure.

(a) Determine ρ and ε for the above DMC.

(b) Consider performing maximum likelihood codeword decoding (assuming a purely random
source of information bits) on this channel. Determine the normalized channel metrics
for each of the three values of yj – i.e., If yj = 0, what is MI[cj ] = L0; if yj = E, what
is MI[cj ] = LE ; if yj = 1, what is MI[cj ] = L1?

(c) Consider ML codeword decoding the (5, 1) repetition code over the above channel with
Eb/N0 = 3 dB. First, determine numerical values for the following: Ec/N0, Ec/N0, ε, ρ,
L0, LE , L1. State the ML decoding rule for this case in the simplest form.

For this case, decode each of the following observation vectors y using the rule derived
to obtain a decision on the information bit, denoted b̂.

yt = (1 1 E 0 E)
yt = (E E 0 E E)
yt = (1 E 0 E 0)
yt = (1 1 E 0 0)

4.5. Consider the repetition code over the BPSK-AWGN channel (i.e., with soft-in decoding).
Does this provide any coding gain? Discuss this in the context of the results of Problem 1.11.

4.6. Recall the definition of the min* operator is

min∗(x1, x2 . . . xn)
∆
= − ln(e−x1 + e−x2 + · · · e−xn)

Prove that

(a) min∗(x, y) = min(x, y)− ln
(
1 + e−|x−y|

)

(b) min∗(x, y, z) = min∗(min∗(x, y), z)

4.7. Consider the (7,4) Hamming code as described in lecture with i.i.d. input data, each bit
equally likely to be a 1 or a 0.
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(a) List all the codewords for this code.

(b) Consider using the BPSK-AWGN channel to transmit this information. Specifically,
assume that zj = (−1)cj +wj for j = 0, 1, . . . 6, and where wj is a realization of AWGN.
Consider the following realizations of the observation vector (zt = [z0 z1 . . . z6]).

zA =




−1.77
1.671
0.516
1.445
−1.67
−0.99692

1.169




zB =




−1.153
0.827
0.176
0.638
−1.047
−0.845
1.248




where zA was generated at Eb/N0 = 0 dB and zB was generated at Eb/N0 = 6 dB. For
each of these two cases, answer the following:

i. What are the equivalent observations for the binary symmetric channel – i.e., hard
decisions on the channel bits?

ii. Specify the properly normalized soft-in metric: MI[bi] for i = 0, 1, 2, 3 and MI[cj ] for
j = 0, 1 . . . 6.

iii. Using hard-in information what is the decision that minimizes the probability of
block error?

iv. Using soft-in information, what is the decision that minimizes the probability of
block error?

v. Using soft-in information what is the decision that minimizes the probability of bit
error?

vi. Using min-sum SISO decoding, what is MO[bi] for i = 0, 1, 2, 3?

vii. Using min-sum SISO decoding, what is MO[cj ] for j = 0, 1, . . . 6?

viii. Using min*-sum SISO decoding, what is MO[bi] for i = 0, 1, 2, 3?

ix. Using min*-sum SISO decoding, what is MO[cj ] for j = 0, 1, . . . 6?

x. If the soft-in metrics for cj are replaced by zj , how do the output metrics change
for the min-sum and min*-sum cases?

4.8. Consider the binary variables {di}qi=0 which are constrained by a repetition code. For example,
you may view d0 as the input to a repetition code and d1, d2, . . . dq as the outputs. Show that
min-sum and min*-sum SISO processing for the repetition code yields

MO[di] =
∑

j 6=i
MI[dj ]

4.9. Consider real numbers x and y. Prove the following

min(x, y)−min(0, x+ y) = min(|x|, |y|)sgn(x)sgn(y)

where sgn(z) is +1 if z ≥ 0 and −1 if z < 0.
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4.10. Consider the binary variables {di}qi=0 which are constrained by a single parity check code –
i.e., these variables must sum to zero mod 2.

(a) Consider q = 2 and show that min-sum SISO processing for the SPC code yields

MO[di] = min
j 6=i
|MI[dj ]|

∏

j 6=i
sgn(MI[dj ])

Hint: you may consider using the results of Problem 9.

(b) Show that this generalizes to arbitrary q. Hint: One method is to use induction to
establish the above recursive relation.

(c) Given the set of incoming metrics, suppose the following has been computed: (i) Mmin =
the minimum of |MI[di]| over all i, (ii) Msec = the second smallest value of |MI[di]| (possi-
bly the same as Mmin if two input metrics are the same) and (iii) S =

∏q
j=0 sgn(MI[dj ]),

the product of the signs of all incoming metrics. Show how MO[di] can be computed
easily given these three quantities.

4.11. We did not consider the case of hard-in/soft-out decoding. Is this a reasonable concept? If so,
describe the appropriate method and demonstrate this on the (7,4) Hamming code example.

4.12. Consider a binary digital communication system that transmits no signal to send a ‘0’ and
sends a signal to send a ‘1’. The simplified model for the received signal in this case is

zj(u) = xj(u) + wj(u)

where wj(u) is an i.i.d. sequence of Gaussian random variables with mean zero and variance
σ2. The signal xj(u) is a function of the binary channel input cj(u). Specifically, when
cj = 0, xj = 0 and when cj = 1, xj = A, where A is a positive constant. Note that this is a
memoryless channel.

(a) Determine the normalized metric on the channel inputs; simplify your answer as much
as possible.

(b) Consider a single parity check code that constrains {cj}4j=0. These bits are then sent
through the above channel and the following channel observations are made.

z0 = +2.0

z1 = +3.0

z2 = −1.0

z3 = −3.5

z4 = +0.5

Assuming that A = 2 and σ2 = 2, determine the normalized incoming and outgoing
metrics using min-sum processing and specify the best hard decision on the bits.

(c) Assuming the same values for the channel observations, A and σ2, repeat the SISO
decoding using min*-sum processing.
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4.13. Consider the BPSK-AWGN channel with channel observation

zj(u) = (−1)cj(u) + wj(u)

where wj(u) is an i.i.d. Gaussian sequence with zero mean and variance N0/2.

The real-valued observation zj is put through a memoryless quantizer to produce qj . Specif-
ically,

qj =





0 zj < −1

1 −1 ≤ zj < 0

2 0 ≤ zj < +1

3 zj ≥ +1

This problem deals with decoding based on the observation {qj}.

(a) The channel with input cj and output qj is a discrete memoryless channel (DMC).
Specify this DMC model by determining the conditional probability mass function (pmf)
pqj(u)|cj(u)(q|c).

(b) Based on the channel observation qj , what is the incoming, normalized metric MI[cj = 1]
?

(c) Consider performing min-sum SISO decoding of the (5,3) code from the toy-SISO spread-
sheet for the BSC. The 8 codewords are shown below for reference:

c(0) = (0 0 0 0 0)t

c(1) = (0 0 1 0 1)t

c(2) = (0 1 0 1 1)t

c(3) = (0 1 1 1 0)t

c(4) = (1 0 0 1 0)t

c(5) = (1 0 1 1 1)t

c(6) = (1 1 0 0 1)t

c(7) = (1 1 1 0 0)t

For this code consider the observation vector qt = (1 0 3 2 1) andN0 = 2. Further assume
that the input bits {bi} are i.i.d., and each equally probable to be 0 or 1. Compute the
outgoing extrinsic metrics in normalized form. Determine the best hard decisions on
these 5 bits.

4.14. A BPSK-AWGN channel has channel observation

zj(u) =
√
Ec(−1)cj(u) + wj(u)

where wj(u) is a mean zero, Gaussian random variable with variance N0/2.
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This observation is converted to hard decision information on cj to produce the observation
yj ∈ {0, 1}. Because of front-end hardware imperfections, this does not result in the standard
BSC channel. Specifically, the conversion rule is

yj =

{
0 zj ≥ α

√
Ec

1 zj < α
√
Ec

where α is a real-valued constant between 0 and 1.

(a) The resulting channel mapping cj to yj is a discrete memoryless channel. Determine the
following probabilities associated with this DMC:

• ε0 = p(yj = 1|cj = 0)

• ε1 = p(yj = 0|cj = 1)

Which is larger, ε0 or ε1?

(b) Draw the DMC transition diagram for this channel and label the edges with the associ-
ated conditional probabilities

(c) Determine the Maximum Likelihood Codeword decoding rule for this DMC. Specify this
rule in the simplest form possible. This can be in terms of ε0 and ε1. Clearly define any
other terms that you use to simplify the expression of the rule.

(d) Consider performing ML-CW decoding of the (5,3) code from the toy-SISO spreadsheet
for this DMC. For this code consider the observation vector yt = (1 1 1 0 1) and, for
purposes of numerical evaluation, take ε1 = 2.34× 10−4 and ε0 = 0.0154. Determine the
best codeword decision

(e) Describe in words the effect that ε0 6= ε1 has on the ML-CW decoding rule.

4.15. Consider the standard binary symmetric channel with inputs cj(u) and outputs yj(u) and
error probability p(yj = 1|cj = 0) = p(yj = 0|cj = 1) = ε < 1/2. In this problem we
consider soft-out decoding based on this channel observation. Specifically, assume that any
information bits associated with the code are equally likely a-priori to be 0 or 1. The goal
is to compute MO[cj = 1] given the BSC observations and knowledge of the code constraint
using min-sum processing.

(a) Based on the channel observation yj , what is the incoming, normalized metric MI[cj = 1]?

(b) Since min-sum processing is being used and the normalized metrics for the information
bits is zero, it is natural to multiply all of the normalized metrics by a constant K so as
to remove the dependency on ε. Specify this constant.

In the following parts of the problem use these scaled metrics as MI[cj = 1].

(c) Consider performing min-sum SISO decoding of the (5,3) code from the toy-SISO spread-
sheet for the BSC. For this code consider the observation vector yt = (1 1 1 0 1) and
compute the outgoing extrinsic metrics in normalized form.
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(d) Consider performing this SISO decoding for an n = 6 single parity check code over the
BSC. Complete the table for the following two sets of BSC channel observations.

j : 0 1 2 3 4 5

yj : 0 0 1 0 1 0

M0[cj = 1] :

ĉj :

j : 0 1 2 3 4 5

yj : 1 0 1 0 1 0

M0[cj = 1] :

ĉj :

Describe in words what this min-sum SISO rule for the BSC channel does for an SPC.

4.16. Consider a coded binary digital communication system that uses antipodal signaling

zj(u) = (−1)cj(u)
√
Ec + wj(u)

where wj(u) is an i.i.d. sequence of Laplacian random variables with mean zero and variance
σ2. Specifically, the probability density function of wj(u) is

fwj(u)(w) =
1√
2σ2

e
−
√

2
σ2
|w|

(a) Sketch the channel likelihoods fzj(u)|cj(u)(z|1) and fzj(u)|cj(u)(z|0).

(b) Determine the normalized metric on the channel inputs; simplify your answer as much
as possible.

(c) Consider a single parity check code that constrains {cj}4j=0. Assuming that Ec = 4 and

σ2 = 2, determine the normalized incoming and outgoing metrics using min-sum pro-
cessing and specify the best hard decision on the bits given the following observations:

j : 0 1 2 3 4

zj : −4 +3 −1 −3.5 +6.6

MI[cj = 1] :

M0[cj = 1] :

ĉj :

Assuming the same values for Ec and σ2, repeat the SISO decoding using min*-sum
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cj yj
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1 − α

α

0
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1

Figure 23: The channel transition diagram for the Z channel.

processing for an n = 3 SPC with the given observations:

j : 0 1 2

zj : −4 +3 −1

MI[cj = 1] :

M0[cj = 1] :

ĉj :

4.17. Consider a binary code comprising all (n× 1) binary vectors with exactly three 1’s.

(a) Determine the number of valid configurations M and specify the valid configurations
when n = 5.

(b) Is this code linear? What is the minimum distance of this code?

(c) Given a set of incoming normalized metrics for the variables {MI[cj ]}n−1
j=0 , determine the

outgoing, normalized extrinsic metric for ci obtained with min-sum processing. Express
this rule in the simplest form possible.

(d) Demonstrate the soft-in/soft-out rule derived above by processing the incoming metrics
below to obtain the out-going metrics and the best hard decisions on the variables {cj}
with n = 7.

j : 0 1 2 3 4 5 6

MI[cj ] : 0.7 2 −3 4 1 6 −2

M0[cj ] :

ĉj :

4.18. Consider the DMC called the “Z-channel” as diagrammed in Fig. 23 where α ∈ (0, 0.5).

(a) Describe the ML codeword decoding rule for this code in the simplest terms possible.
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(b) Demonstrate your understanding of this rule by decoding the (5,3) code from the toy-
SISO spreadsheet for this channel with the observation yt = (1 0 0 0 0) and α = 0.25.
For reference, the codewords in this code are:

c(0) = (0 0 0 0 0)t

c(1) = (0 0 1 0 1)t

c(2) = (0 1 0 1 1)t

c(3) = (0 1 1 1 0)t

c(4) = (1 0 0 1 0)t

c(5) = (1 0 1 1 1)t

c(6) = (1 1 0 0 1)t

c(7) = (1 1 1 0 0)t

Is this decision unique?

4.19. Show that for the BPSK-AWGN channel with equal a-priori probabilities, the random coding
bound can be written as

P̄word ≤ e−k(Eb/N0)



 min

0≤ρ≤1
2ρr+1

∫ ∞

0

e
−y2
2√
2π

cosh1+ρ

(
y
√

2r(Eb/N0)

1 + ρ

)
dy





n

Note that this is equation (16) in Dolinar, Divsalar and Pollara with a slight correction (i.e.,
the exponent has a factor of 1/2).

4.20. Consider two potential solutions for a signal design to achieve 2 bps/Hz. System one uses
a rate 2/3 binary code with 8PSK modulation. System two uses a rate 1/2 binary code
with 16-QAM modulation. For each system the input block length of the code is limited to
k = 2048 bits. Estimate the minimum value of Eb/N0 (in dB) required to achieve a block
error rate (BLER) of 10−4 for each system using any possible code. Which system is preferred
from this viewpoint? What is the advantage, in dBs of Eb/N0, for the preferred system?

4.21. For a given block size and rate, the symmetric sphere-packing bound approximation and the
symmetric random coding bound both predict a value of minimum Eb/N0 for a given BLER.
For BPSK modulation and a target BLER of 10−4, plot the difference between these two
values of Eb/N0 in dB vs. block size. Do this for various code rates. What can you conclude
from these plots?

4.22. You have just been hired as a communication systems engineer by FliTunes, a company selling
digital music via satellite download. Your first task is to review the current design. The senior
engineers have selected a rate r = 2/3 binary convolutional code along with a proprietary
QASK-type modulation. The constellation for this modulation is shown below:
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xI

xQ

The system uses a data packet structure with k = 1024 input bits per packet. The design
goal is to operate with a decoded error probability on these blocks of 10−4 or lower. You are
told that the current design operates at an Eb/N0 of 9.0 dB.

You have lost your copy of “FEC_limits” but you were able to find the symmetric information
rate (SIR) for the above modulation using Matlab. This is shown below and assumes that
one symbol per sec per Hz of bandwidth is achieved:
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You got this job because during your interview you explained that you knew all about “modern
codes” from your USC EE568 class. So now, your bosses are calling on you to determine if
using such codes can improve the performance of their modem.

(a) What is the spectral efficiency of the current design – i.e., ηbps/Hz in bps/Hz assuming
one symbol per second per Hz?

(b) Based on using block of size k = 1024 and a required block error rate of 10−4, and
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maintaining the current spectral efficiency, estimate the required Eb/N0 for well-designed
modern coded system with this modulation and explain your reasoning.

What is the additional coding gain that you predict for such a modern code relative to
that provided by the current system?

(c) For the same spectral efficiency and Eb/N0 found in part b, suppose one desires to achieve
a block error probability of 10−6 by using a different value of k – i.e., knew. What value
of knew would be required to achive this with a well-designed modern code?

(d) For this spectral efficiency, what is the lowest value of Eb/N0 (in dB) possible for reliable
communication using any modulation format?

4.23. Consider designing a modem for the AWGN channel using 4-ary Pulse Amplitude Modulation
(4-PAM) modulation. This modulation has constellation points −3A, −A, +A, +3A where
A is a positive constant. Note that, like BPSK, this is a one-dimensional signal constellation.
The Symmetric Information Rate (SIR) for this modulation is provided below:
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(a) A linear binary code with rate r = 7/10 is to be used for this link.

• Specify the rate of this coded modulation system – i.e., ηb/sym and ηb/2d.

• Using the SIR as a good approximation for the modulation-constrained capacity,
what is the minimum value of Eb/N0 required to operate at this rate with 4-PAM
modulation?
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• What is the corresponding value of Es/N0 – i.e., the minimum value of the energy
per 4-PAM modulation symbol to noise spectral level?

(b) Because of latency constraints, the number of information bits to be coded per block
is k = 768. A good modern turbo-like code is available with this rate, block size and
modulation format. The link will use this modern code and operate at Eb/N0 = 6 dB.
Determine the resulting codeword error probability.

4.24. Consider the (12, 4)-PSK (also known as (12, 4) amplitude shift keying) constellation given
in Fig. 24.

A4 A12

Figure 24: The (12, 4)-PSK signal constellation.

The radii of the inner and outer circles satisfy

A4 sin
(π

4

)
= A12 sin

( π
12

)

so that the distance between closest points on the inner and outer circles is the same. Also,
the signals on the inner circle are separated by π/2 radians and one is located at angle θ = π/4
off the x-axis. One of the signals on the outer circle is also at angle π/4 off of the x-axis.
Points on the outer circle are separated by an angle of π/6.

(a) For equally likely signals (pm = 1/(16)), determine the value of A4 and A12 as a function
of Es.

(b) Consider designing a system that uses this modulation and achieves a throughput of 2.5
bits per symbol, uses an input block length of k = 512, and must achieve a codeword
error probability of 10−3.

i. How many output symbols will there be per code block?

ii. Estimate the minimum value of Eb/N0 (in dB) for a good modern code to achieve
this performance. What value of Es/N0 (in dB) does this correspond to?
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4.25. A system design is being considered using a binary r = 1/2 code with 8PSK modulation over
an AWGN channel.

(a) What is the spectral efficiency measured in bits/sec/Hz?

(b) If any modulation could be used, what is the smallest value of Eb/N0 required to reliably
communicate over an AWGN channel at this spectral efficiency?

(c) For a codeword error probability requirement PCW < 10−4, what is the minimum value
of input block size k required to achieve a ∆dB < 1 for the 8PSK system?

(d) If a good, practical modern code is used and PCW < 10−4 is required, what is the mini-
mum value of k required to operate within 1 dB in Eb/N0 of the modulation constrained
capacity?

(e) For this value of k, how many 8PSK channel symbols are required to be sent?

5 Classical Coding

5.1. Consider a (8, 4) linear code whose parity-check equations are given by

v0 = u1 + u2 + u3 (1)

v1 = u0 + u1 + u2 (2)

v2 = u0 + u1 + u3 (3)

v3 = u0 + u2 + u3 (4)

where u0, u1, u2, u3 are the message symbols and v0, v1, v2, v3 are the parity-check symbols.
Find generator and parity-check matrices for this linear code.

5.2. Write down a parity check matrix for the binary linear code whose generator matrix is given
by

G =




1 1 1 0 0
1 1 0 1 0
1 0 0 0 1




5.3. Determine the minimum distance of the (7, 3) linear block code having parity-check matrix

H =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1




5.4. Write down the weight distribution of the (7, 4) Hamming code discussed in lecture.

5.5. Consider a (5, 2) systematic linear code having generator matrix

G =

[
1 0 1 1 0
0 1 1 0 1

]

(a) Find the standard array for this code.
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(b) What is the minimum distance of the code?

(c) On a certain transmission across the Binary symmetric channel (BSC), the channel
introduces the error vector e = [01011]T , i.e., the received vector y is given by

y = c + e

where c is the transmitted codeword and e is as given above. If ĉ is the decoded codeword
as a result of the maximum likelihood decoding (MLD) using the standard array, what
is the Hamming distance dH(c, ĉ)?

(d) What is the probability of the codeword error with minimum Hamming distance decod-
ing? Assume a BSC with channel error rate below 0.5.

(e) What is the probability of message-bit error with minimum Hamming distance decoding?
Assume a BSC with channel error rate below 0.5.

5.6. Repeat problem 21 with

G =

[
1 0 1 1 0
1 1 0 1 1

]

and discuss the results relative to those obtained in problem 19.

5.7. A code with (n, k, dmin) = (15, 9, 5) is desired. Describe a search procedure to find such a
code.

5.8. Specify a generator matrix for the RM(2, 4) code. What is the rate and minimum distance
of this code?

5.9. Specify (n, k, dmin) and a generator matrix for the the m = 4 Hamming code.

5.10. Consider the two conditions for a linear code C and its dual C⊥ and prove if A, then B:

A : The dual code C⊥ can correct all weight one error patterns.

B : The linear code C has no repeated bits

A code has a repeated bit if two bits of every codeword agree – i.e., cj = cm for some j 6= m
and this holds for every c ∈ C.

5.11. Diagram the parity check trellis for the (7, 4) Hamming code. Using the observation values
zA from Problem 7, run the FBA to determine the soft-out information and confirm that this
is the same as obtained by exhaustive marginalization and combining used in Problem 7.

5.12. Consider the linear block code with generator matrix

G =

[
1 0 1 1 1 0
0 1 1 0 1 1

]

(a) Code Structure: Determine the following for this code: a parity check matrix H, the
rate r, the number of codewords, M .
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(b) Distance Properties: Determine the following for this code: the weight enumerating
function (WEF) A(D), the minimum Hamming distance dmin
Determine the number of cosets and list 5 of the coset leaders.

Answer the following questions:

i. Is this a perfect binary code?

ii. For this block size and rate, is it possible a dmin larger than that of this code can
be achieved?

(c) Dual Code: Determine the following for this code: the rate rD, the number of codewords
MD, the WEF AD(D), and minimum distance dmin,D.

(d) Assume that the coded bits are indexed by ct = [ c0 c1 c2 c3 c4 c5 ] and the channel
observation model

zj(u) = (−1)cj(u) + wj(u) j = 0, 1, . . . 5

where wj(u) is an i.i.d. sequence of Gaussian random variables with zero mean and
variance one. Assume that the information (input) bits are i.i.d. random binary digits,
equally likely to be 0 or 1 a-priori.

Consider the realization of the observation

zt = [ z0 z1 z2 z3 z4 z5 ] = [ + 0.1 − 0.2 − 0.8 − 0.5 + 0.1 − 0.4 ]

and determine the normalized (MI[v = 0] = 0) input metrics for SISO decoding.

Based on this observation z, find the codeword decision that minimizes the probability
of codeword error and specify the associated decision for codeword and information bits:
ĉSID and b̂SID.

(e) HI Decoding: Consider the above observation and determine the associated “hard deci-
sions” on the channel bits. Specifically, let yj ∈ {0, 1} be the decision for cj based only
on zj and specify yj for j = 0, . . . 5.

Based on this observation y, find the codeword decision that minimizes the probability
of codeword error – i.e., specify ĉHID and b̂HID.

i. Are the decoded decisions the same under soft-in and hard-in decoding?

ii. What can be said about the actual value of the transmitted codeword? Explain.

(f) SISO Decoding: Based on the channel observation z given above, determine the normal-
ized (MO[v = 0] = 0) output extrinsic metrics based on min-sum processing for each of
the information and coded bits.

5.13. A rate 1/2 code with 3 input bits b0, b1, b2 is generated using

c0 = b0

c1 = b1

c2 = b2

c3 = b0 + b1

c4 = b1 + b2

c5 = b0 + b1 + b2
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where all addition is modulo two and b represents the logical complement of the binary variable
– i.e., if b = 0, b = 1 and if b = 1, b = 0.

(a) For each of the following properties, answer ‘yes’, ‘no’, or ‘not enough information’
according to whether the code exhibits the property. Properties: Systematic, Linear,
Perfect, MDS, Self-Dual. What is the minimum distance of this code?

(b) Suppose that this code is used in conjunction with BPSK modulation over the AWGN
channel. After proper scaling and normalization, the incoming channel metrics are

MI[c0] = +2

MI[c1] = +4

MI[c2] = +1

MI[c3] = +3

MI[c4] = +1

MI[c5] = +5

Assuming that there is no a-priori information on the input bits, find the codeword
decision that minimizes the probablity of codeword error: ĉ.

For standard min-sum SISO processing, determine the following normalized extrinsic
output metrics: MO[b0], MO[c0], MO[b2], MO[c2], MO[c5].

5.14. Consider a linear binary code with parity check matrix

H =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]

(a) Specify the input (k) and output (n) block sizes and the code rate r.

(b) Determine the minimum distance of this code. What does the Hamming bound on dmin
say for these code parameters?

(c) List the possible syndromes and for each, list a coset leader. Suppose that this code is
used over a binary symmetric channel with ε = 0.2 and the received vector is

y =




1
0
0
0
0
0
0
1



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Using standard array decoding based on the coset leaders specified above, provide the
codeword decision ĉ. Repeat this for

y =




1
1
1
1
1
1
1
1




5.15. Consider a linear binary code with generator matrix

G =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1




This problem considers this code with an input bits bi that are i.i.d., taking on 0 and 1 with
equal probability.

(a) Determine the following regarding this code: k, n, r, dmin, and H .

(b) Consider the following observation from a BPSK-AWGN channel:

z =




+1
+2
−3
−5
+4
+4
−2




If this is processed by the receiver to convert to hard decisions on the coded bits without
using the code structure, what will be the vector of corresponding binary observations (
y)?

Using the observation y perform hard-in decoding to minimize the codeword error prob-
ability and provide the best codeword.

Using the observation z perform soft-in decoding to minimize the codeword error prob-
ability and provide the best codeword:

(c) Using the same observation z from above, and taking MI[cj ] = zj , compute the following
normalized extrinsic messages using min-sum processing: MO[c0], MO[b0], and MO[c6].

5.16. Consider a set of n binary variables {dj}nj=1 with dj ∈ {0, 1} that are constrained by a local
switching circuit. This switching circuit allows the configuration with all of the dj variables
equal to 0 and it also allows all configurations with exactly one of the dj variables equal to 1
and the rest set to 0.
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(a) Determine the number of valid configurations, M . Specify the valid configurations when
n = 5. This constraint defines a code; is this code linear? What is the minimum distance
of this code?

(b) Given a set of incoming normalized metrics for the variables {MI[dj ]}nj=1, determine the
outgoing, normalized extrinsic metric for di obtained with min-sum processing.

(c) Demonstrate the soft-in/soft-out rule derived above by processing the incoming metrics
below to obtain the out-going metrics and the best hard decisions on the variables {dj}
with n = 5. Fill in the tables below for

j : 1 2 3 4 5

MI[dj ] : 0.7 2 −3 4 1

M0[dj ] :

d̂j :

5.17. Consider the toy (5,3) code from the spreadsheet used to first explain SISO decoding. This
code has generator matrix

G =




1 0 0 1 0
0 1 0 1 1
0 0 1 0 1




(a) Determine a parity check matrix for this code.

(b) Give the weight distribution for this code {Ad} for all values of d such that Ad 6= 0.

(c) Give the input-output weight distribution for this code {Bw,d} for all values of input
weight w and output weight d for which Bw,d is nonzero.

(d) Give upper bounds on the average bit error probability and codeword error probability
for ML-CW decoding over the BPSK-AWGN channel.

5.18. Consider a set of n binary variables {dj}nj=1 with dj ∈ {0, 1} that are constrained to odd
parity. Specifically,

∑n
j=1 dj = 1 mod 2.

(a) Determine the number of valid configurations, M . Specify the valid configurations when
n = 4:

(b) This constraint defines a code; determine the rate and the minimum distance this code.
Is this code linear?

(c) Given a set of incoming normalized metrics for the variables {MI[dj = 1]}nj=1, deter-
mine the outgoing, normalized extrinsic metric for di obtained with min-sum processing
(simplify as much as possible).

(d) Demonstrate the soft-in/soft-out rule derived above by processing the incoming metrics
below to obtain the out-going metrics and the best hard decisions on the variables {dj}
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with n = 5. Fill in the tables below for

j : 1 2 3 4 5

MI[dj = 1] : 0.7 2 −3 −4 1

M0[dj = 1] :

d̂j :

j : 1 2 3 4 5

MI[dj = 1] : 1 3 2 0.1 0.1

M0[dj = 1] :

d̂j :

5.19. This problem is based on the map of the continental US given in lecture.

(a) Run the Viterbi algorithm from the east coast to the west coast. Show your results in
the same format shown in lecture.

(b) Identify the shortest path from the east coast to Newport, Oregon.

(c) Using the results of the forward and backward Viterbi algorithm runs, determine the
milage of the shortest route that passes through each of the cities on the map (i.e., this
is an MSM calculation).

(d) You want to visit friends in Salt Lake and Nashville during your trip. What is the
best route? Can you describe a general algorithm approach for obtaining MSM[si, si+D]
where D is a given integer?

5.20. The third generation digital cellular standard uses a parallel concatenated convolutional
(“turbo”) code based on an eight-state, rate 1/2, recursive systematic convoutional code
which has generators

G(D) =

[
1,

1 +D +D3

1 +D2 +D3

]

Specify an FSM next-state and output table for this code. Draw the state transition diagram
and a trellis section for this code.

5.21. Consider the sample four-state RSC discussed in lecture – i.e., with

G(D) =

[
1,

1 +D2

1 +D +D2

]

and shown below.

D D

vk(0)

vk(1)

qk qk−1 pk−1uk
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where vk(0) and vk(1) are the systematic and parity channel bit sequences. Assume that the
channel is a BPSK-AWGN channel with

zk(0) = (−1)vk(0) + wk(0) (5)

zk(1) = (−1)vk(1) + wk(1) (6)

where the two noise sequences are mutually independent and both are AWGN with variance
0.5 – i.e., Ec/N0 = 0 dB. Consider the case where the encoder is started in s0 = (00) and 8
input bits are to be encoded – i.e., {bk}7k=0. An additional two bits b8 and b9 are used by the
encoder to force termination into the zero state. The following information is available from
the source statistics and the channel:

k = 0 1 2 3 4 5 6 7 8 9

zk(0) = 0.1 −0.2 +0.4 −1.1 −0.5 +0.1 +0.1 +0.8 −0.6 −0.3
zk(1) = −0.6 −0.8 +1.4 0 +0.3 +0.6 −0.5 +0.8 +0.9 +0.6

p(bk = 1) = 0.7 0.4 0.5 0.2 0.7 0.1 0.4 0.6 − −

Note that the values of b8 b9 are determined with probability given the state s8.

(a) Convert the observations into hard decisions on the coded bits. Ignoring the a-priori
probabilities (i.e., assume that input bits are equally likely), run the Viterbi algorithm.
Document your results by showing the state metric values and the survivor sequences at
each stage as well as identifying the decoded bit decisions.

(b) Convert the observation and a-priori probabilities into the proper normalized input met-
rics. Run the Viterbi algorithm and document it as above.

(c) Repeat, part b running the backwards Viterbi algorithm.

(d) Use the results of the previous two parts to determine MSM9
0[bk] 0 ≤ k ≤ 7 and MSM9

0[sk]
for 0 ≤ k ≤ 10.

(e) Determine the second best path for this soft-in min-sum decoding. How much larger is
the metric of this path and the best path?

(f) What is the metric of the shortest path consistent with v5(1) = 0? What about v5(1) =
1? Determine the normalized extrinsic output metric for v5(1) for the min-sum SISO
decoder.

(g) Repeat the above SISO operations using min*-sum processing.

Note/Hint: You probably want to create a spreadsheet or program to compute these results.
Future problems will require similar calculations to perform iterative decoding of a PCCC.

5.22. The goal of this problem is to develop some insight into survivor merging or the decay of
message effects in min-sum processing. Consider a four-state trellis that is fully connected
– i.e., each state at time k can be reached from each state at time k − 1. For example, this
can be a model double steps through the four state trellises considered in class. Consider a
Viterbi-like algorithm that randomly selects survivors for each state at each time. Plot the
probability that all survivors have merged in d stages vs. d. Do you expect merging in the
VA to occur sooner or later than this algorithm?
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Hint: Define pd as the vector of probabilities that there are 1, 2, 3, or 4 survivors d steps
back – i.e., the component corresponding to 1 survivor is the probability of merging. Obtain
a recursion on pd using the combinatorics of the random selection algorithm.

5.23. Consider the 8-state recursive systematic convolutional code considered in a previous HW.
Specifically, the code with generators

G(D) =

[
1,

1 +D +D3

1 +D2 +D3

]

Determine the free distance of this code.

5.24. Draw the state diagram for the rate 1/2, 4-state feedforward convolutional code with gener-
ators (110) and (101). This code is catastrophic. Show that there are input sequences with
an arbitrarily large number of ones that are mapped into an output sequence with a fixed
number of ones.

5.25. In this problem you will consider decoding of a four-state convolutional code over the binary
symmetric channel. The code has generator polynomials G1(D) = 1 and G2(D) = (1 +

D)/(1 +D +D2) and maps a sequence of input bits bi into two sequences of coded bits c
(1)
i

and c
(2)
i . The input bits are independent and each has equal probability of being 0 or 1.

The input information bit sequence is

(b0 b1 b2 b3) = (1010)

and the encoder is started in the zero state.

(a) Draw one section of the trellis diagram for this convolutional code, being sure to clearly
indicate all the values of the input and output bits associated with each transition.

(b) Determine the encoded sequences and the state of the encoder after b3 has been encoded:

Two tail-bits b4 and b5 are to be used to terminate into the zero state – i.e., s6 = 0.
Determine the required value of these two tail-bits and the associated coded bits.

(c) Consider the case where the coded bits are sent through a binary symmetric channel.

The observations from this channel are {z(1)
i }5i=0 and {z(2)

i }5i=0, which are either 0 or 1.
Consider the case where there are three channel errors:

z
(2)
2 6= c

(2)
2 , z

(1)
3 6= c

(1)
3 , z

(2)
3 6= c

(2)
3

Except for these three, z
(j)
i = c

(j)
i for j = 1, 2 and i ∈ {0, . . . 5}.

Run the Viterbi algorithm to decode this code with this set of observations. Document
this by showing the survivor sequences and forward state metrics for each state at each
time.

(d) If instead of the above errors, the channel caused two errors – i.e., z
(j)
i 6= c

(j)
i for exactly

two variables – would this Viterbi decoder correct them? Prove your assertion.

5.26. Consider a rate r = 2/3 convolutional code that takes in two bits and outputs 3 bits at every
time as shown below
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Conv. 
Code

(r=2/3)b(2)
i

b(1)
i

c(1)
i

c(2)
i

c(3)
i

The input output relations are

c
(1)
i = b

(1)
i ⊕ b

(2)
i−1

c
(2)
i = b

(2)
i ⊕ b

(2)
i−1

c
(3)
i = b

(1)
i ⊕ b

(2)
i ⊕ b

(2)
i−1

(a) Show that this convolutional code can be represented by a two-state FSM. Show this
by defining the state variable si and showing all allowable state transitions. Show each
transition and label each with the values of the variables as indicated below.

0

1

0

1

Label with: (b(1)
i , b(2)

i , c(1)
i , c(2)

i , c(3)
i )

si si+1

(b) Determine the free distance of this code.

(c) Consider the case when 6 input bits b
(1)
0 , b

(2)
0 , b

(1)
1 , b

(2)
1 , b

(1)
2 , b

(2)
2 are encoded, starting from

s0 = 0, without any termination of the endocer. Let z
(m)
i be the output of a BPSK-

AWGN channel when the input is c
(m)
i and consider the following set of observations:

i 0 1 2

z
(1)
i −3 +1 −2

z
(2)
i −4 −2 −2

z
(3)
i −1 +5 +2

Consider min-sum decoding, taking these channel measurements as the incoming chan-
nel metrics and assuming that the inputs are independent, and have uniform a-priori
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probability distribution over {0, 1}. Determine the forward and backward state metrics
{Fi[s1 = j]} for i = 0, 1 and j = 0, 1 and {Bi[s1 = j]} for i = 1, 2 and j = 0, 1. Determine
the normalized, extrinsic output metrics for each of the variables at time i = 1.

5.27. Consider a two state convolutional encoder with two input bits b0, b1, output bits d
(1)
i and

d
(2)
i generated by generator polynomials G1(D) = 1 and G2(D) = 1 +D, respectively. After

the two input bits are encoded, the encoder is driven to the zero state with a single tail bit.

The bits d
(2)
0 and d

(1)
2 are punctured.

(a) Draw the full trellis diagram for this terminated convolutional code, labeling each state
transition with input bit and output bit(s).

Specify the k, n, r, and dmin for this code.

(b) Specify a parity check matrix for this code and specify a corresponding standard decoding
array, including the syndromes.

(c) Assume that independent, random input bits are encoded and the codeword is trans-
mitted through a binary symmetric channel with ε < 1/2 and that the received binary
vector is

yt = (1 1 1 1)

Use the standard array to perform ML codeword decoder. Specify your result by giving
the syndrome, the corresponding coset leader and the codeword decision.

Repeat this hard-in decoding using the Viterbi algorithm running on the trellis from
part (a). Report your results by drawing the trellis from part (a) with survivors and
state metrics. Illustrate the best path and report the decoded bit decisions

(d) Using the parity check matrix from (b), specify the parity check trellis for this code. Is
this trellis related to the trellis from part (a)? Explain.

5.28. Consider using a two-state convolutional code with generators G1(D) = G2(D) = 1 + D to
encode 100 information bits. What is the minimum distance of this code if the encoder is
started and terminated into the zero state (dmin,0)? What is the minimum distance of this
code when tail-biting termination is used (dmin,tb)?

5.29. Consider a rate one, convolutional code with generator g(D) = 1/(1 +D).

(a) Determine the associated difference equation and sketch an encoder block diagram.

(b) Draw and label the trellis diagram.

(c) Describe how one can terminate the encoder into the zero state.

(d) Let bi be the input sequence and ci be the output sequence. Let MI[bi] and MI[ci] be
the normalized input metric on these variables. Also, define Fi−1[si] and Bi+1[si+1] be
the forward and backward state metrics in normalized form (e.g., so that Fi−1[si = 0] =
0). Show that the forward state recursion, backward state recursion and completion
operations can each be carried out with one call of the function

g(x, y) = min(x, y)−min(0, x+ y) = min(|x|, |y|)sgn(x)sgn(y)
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(e) How many additions are required to process one trellis stage as above?

(f) This code is called an accumulator and may be viewed as outputting the running parity
check over all previous inputs. Consider this code is terminated into the zero state and
discuss the relationship between this code and the SPC code and SISO considered in
problem 11.

(g) Consider the convolutional code with generator g(D) = 1 + D. Show that the SISO
processor for the above 1/(1 + D) code can used to carry out the SISO processing for
this (1 +D) code with a change in the input message ports used.

5.30. This problem concerns codes that contain the following three codewords



1
1
1
0
0
0







0
0
1
0
1
1







1
0
1
1
1
0




(a) Consider the smallest linear code that contains these codewords, CL. Specify all the
codewords in this code excluding the three given above.

(b) Specify the following standard parameters of this code: k, n, r, dmin, and tc.

(c) Provide valid generator and parity check matrices for CL from the linear code defined
above.

(d) Consider the smallest code (i.e., not necessarily linear) that contains the three codewords,
C. Specify all the codewords in this code excluding the three given above.

(e) Specify the following standard parameters of this code: k, n, r, dmin, and tc.

5.31. Consider a set of n binary variables {dj}nj=1 with dj ∈ {0, 1} that are constrained by a local
switching circuit. This switching circuit allows only configurations with exactly two of the
variables set to 1 (others must be 0). Assume that n ≥ 3.

(a) Determine the number of valid configurations M .

(b) Specify the valid configurations when n = 5:

(c) This constraint defines a code. Is this code linear? What is dmin for this code?

(d) Given a set of incoming normalized metrics for the variables {MI[dj ]}nj=1, determine the
outgoing, normalized extrinsic metric for di obtained with min-sum processing (simplify
as much as possible).

(e) Demonstrate the soft-in/soft-out rule derived above by processing the incoming metrics
below to obtain the out-going metrics and the best hard decisions on the variables {dj}
with n = 5. Fill in the tables below for

j : 1 2 3 4 5

MI[dj ] : 0.7 2 −3 −4 1

M0[dj ] :

d̂j :
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j : 1 2 3 4 5

MI[dj ] : 1 3 2 0.1 0.1

M0[dj ] :

d̂j :

5.32. Consider an additive noise channel with real-valued observation

zj(u) = cj(u) + wj(u)

where cj(u) ∈ {0, 1} is the jth coded bit, and wj(u) is an i.i.d. sequence of exponentially
distributed random variables with probability density function (pdf) given by

fwj(u)(w) = λe−λwu(w) =

{
λe−λw w ≥ 0

0 w < 0

where λ > 0 is a constant characterizing the noise power and u(w) is the unit step function.

This problem considers both soft-in/hard-out and hard-in/hard-out decoding on this channel.

(a) Determine and provide a labeled sketch of the conditional pdf of zj(u) given cj(u).

(b) It can be shown that if one is to make hard decisions on the bits cj without taking into
consideration the structure of the code (i.e., convert soft-decision information into hard
decisions information), the best rule is

yj =

{
1 zj ≥ 1

0 zj < 1

Given this rule for conversion from {zj} to {yj}, the channel mapping {cj} to {yj} is a dis-
crete memoryless channel (DMC). Determine the transition probabilities pyj(u)|cj(u)(y|c)
for all values of y and c (you may choose to present this in tabular format).

Provide a labeled sketch of this DMC (i.e., the channel transition diagram used for
DMCs):

(c) Consider performing maximum likelihood codeword decoding (assuming a purely random
source of information bits) on this channel. Determine the normalized channel metrics
for each of the two values of yj :

(d) Give the simplified ML-CW decoding rule for this channel based on the observations
{yj}. You may describe this using words and mathematical formulas as you see fit to
make your answer most clear.

(e) Demonstrate your understanding of the above decoding rule by decoding the (5,3) code
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from the toy-SISO spreadsheet. The 8 codewords are shown below for reference:

c(0) = (0 0 0 0 0)

c(1) = (0 0 1 0 1)

c(2) = (0 1 0 1 1)

c(3) = (0 1 1 1 0)

c(4) = (1 0 0 1 0)

c(5) = (1 0 1 1 1)

c(6) = (1 1 0 0 1)

c(7) = (1 1 1 0 0)

For this code, decode each of the following observation vectors y using the rule derived
(you may specify the decision as c(m) with m numerical).

yt = (0 0 1 1 1)

yt = (1 1 1 1 1)

(f) Now consider soft-in decoding on this channel – i.e., using {zj} directly to decode.
Determine the normalized channel metrics as a function of zj

(g) Give the simplified ML-CW decoding rule for this channel based on the observations
{zj}. You may describe this using words and mathematical formulas as you see fit to
make your answer most clear.

(h) For the (5,3) code given in (c), decode each of the following observation vectors z using
the rule derived (you may specify the decision as c(m) with m numerical).

zt = (0.7 0.9 1.2 12 4)

zt = (1.5 2.1 1.04 2.1 3.3)

(i) For the BPSK-AWGN channel, we saw that soft-in decoding provides approximately
0.2 dB of additional coding gain relative to hard-in decoding. How much additional
coding gain would you expect on this channel when soft-in decoding is used over hard-in
decoding? EXPLAIN.

5.33. In his notes, Prof. Kumar uses a (n, k, dmin) = (6, 3, 3) code with the following parity check
matrix

H =




1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1




In this problem you will use a parity check trellis for this code in order to perform ML
codeword decoding on the BPSK-AWGN channel.
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(a) Draw and label a trellis diagram for this code. You may use a line style convention to
indicate data values (e.g., dashed and solid).

(b) Let the BPSK-AWGN channel observation for bit cj be zj . Consider the set of observa-
tions

j 0 1 2 3 4 5

zj −4 +2 −6 −4 +1 −5

Show the results of running the Viterbi algorithm using these observations by redrawing
the trellis and showing the survivor sequences and the forward state metrics at each
stage. Illustrate the best path by boxing the corresponding transitions.

Summarize your results by giving the decisions on cj and the information bits bi by
filling out the table below with a 0 or 1 in each position.

j 0 1 2 3 4 5

ĉj
b̂j • • •

5.34. Consider the binary linear code with parity check matrix

H =




0 1 0 1 1 0
1 1 1 0 1 0
1 0 0 0 1 1




(a) Determine the following parameters of this code: n, k, r and give a valid generator
matrix for this code.

(b) Draw the unterminated parity check trellis for the code, labeling the syndromes corre-
sponding to states.

(c) Draw the terminated parity check trellis for the code (i.e., all paths are valid codewords).

(d) Using the parity check trellis from part (c), determine the ML codeword decision for the
BSC channel by running the Viterbi algorithm when the channel observation is:

yt = ( 0 0 0 0 1 1)

Show the results on the trellis – i.e., show the survivor state metric for each state at
each time – and give the resulting codeword decision.

(e) Using the unterminated parity check trellis from part (b), determine the coset leaders for
this code by running the Viterbi algorithm. Show the results on the trellis – i.e., show
the survivor state metric for each each state at each time. Give the coset leaders in the
order of the states on the trellis diagram:

(f) What is dmin for this code?

(g) For the channel observation from part (d), specifically,

yt = ( 0 0 0 0 1 1)

what is the corresponding syndrome and coset leader? Is this consistent with result
obtained with the Viterbi decoder from part (d)? Explain.
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5.35. Consider the rate 1/2 convolutional code with generator polynomials given by G(1)(D) =
1 +D +D2 +D3 and G(2)(D) = 1 +D +D3. Diagram an encoder for this code using delay
elements and mod-2 adders. Diagram one stage of the trellis diagram for this code. Use
dashed lines to indicate a 0 input and solid lines for a 1 input. Label each transition with
two output bits.

5.36. Consider the rate 1/2 convolutional code with generator polynomials G(1)(D) = 1 +D2 and

G(2)(D) = 1+D+D2. This code is punctured in the following way: for odd times i, only c
(2)
i

is output – i.e., , c
(1)
i is punctured for odd i. Both c

(1)
i and c

(2)
i are sent for even i. Determine

the rate of this code and find the free distance.

5.37. Consider the binary linear block code obtained using a terminated convolutional code with
generator polynomials G(1)(D) = 1 + D2 and G(2)(D) = 1 + D + D2. Specifically, let b0, b1
and b2 be input bits to this encoder and terminate the encoder into the zero state using tail
bits. The three input bits are independent and each is equally likely to be 0 or 1.

(a) Determine the following parameters of this code: n, k, r, and the generator matrix.

(b) Draw a full trellis diagram for this code. Label the transitions with the output bits and
use dashed lines for zero input and solid for one input.

(c) Determine the minimum distance of this code.

(d) The coded bits are sent through a BPSK-AWGN channel and the channel observations
are

j 0 1 2 3 4

z
(1)
j 2 −3 4 2 0

z
(2)
j −5 −1 1 −1 1

Use these channel measurements to run the min-sum version of the forward-backward
algorithm. Document your results by drawing the code trellis with the forward state
metrics and backward state metrics for each time and each state clearly labeled.

(e) Using the state metrics from the previous part, determine the normalized MSM for each
of the information bits and the corresponding best hard decisions.

5.38. Consider the linear block code defined by the following generator matrix

G =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




(a) Specify the n, k, and r for this code.

(b) Specify a valid parity check matrix for this code.

(c) What is the weight enumerating function of this code, A(D)?

(d) What is the minimum distance of this code?

(e) Now consider the dual of this code and specify the following parameters of the dual code:
n⊥, k⊥, r⊥, and A⊥(D).
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+
4-state 

Convolutional 
Code

di vj pj

Inner Parity Generator

Figure 25: A parity generator used in a modern code.

5.39. The encoder in Fig. 25 is used as a parity generator (PG) in a modern code.

(a) The generator for the convolutional code is G(D) = 1/(1 + D + D2). Provide a block
diagram of an encoder for this convolutional code.

(b) There are 9 bits {d0, d1, . . . d8} at the input to the J = 3 mod-2 block summer resulting in
3 input bits to the convolutional code {v0, v1, v2}. The convolutional code is terminated
into the zero state using 2 tail bits. This results in 5 output bits {p0, p1, p2, p3, p4}. The
channel metrics on pj are

MI[p0 = 1] = +2

MI[p1 = 1] = +1

MI[p2 = 1] = +4

MI[p3 = 1] = −1

MI[p4 = 1] = −3

In addition to these channel metrics, an outer code SISO provides normalized input
metrics on di. Using the above channel metrics and the values of MI[di = 1] shown below,
perform the locally optimal SISO processing for the PG and determine the normalized
extrinsic output metrics for dj .

i : 0 1 2 3 4 5 6 7 8

MI[di = 1] : +1 −2 −3 +4 +1 +6 −2 0 +4

M0[di = 1] :

5.40. A rate 1/2 convolutional code has generators

G(1)(D) = 1 +D +D2 +D3

G(2)(D) = 1 +D +D3
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(a) Provide a block diagram of an encoder for this code and diagram one stage of the trellis
for this code; use dashed lines to indicate a 0 input and solid for a 1 input and label

each transition with c
(1)
i , c

(2)
i .

(b) Find the free distance of this code and provide and input/output sequence pair realizing
this free distance (i.e., give an output sequence with weigh dfree and its corresponding
input sequence) – include your reasoning.

(c) Consider terminating this convolutional code by driving the encoder to the zero state.
The resulting code can be viewed as a linear block code with k input bits, n output
bits, and minimum Hamming distance dmin. Determine n and dmin as a function of k
for k ≥ 1.

Consider the specific case of k = 2. Specify the following:

• n, dmin, tc

• Number of Coset Leaders defined by tc value.

• Does a linear code exists with this same n, k, with larger dmin? Explain.

6 Modern Coding

6.1. Consider the random variable Y (u) = (−1)ci(u) 4
√
Ec

N0
zi(u). This random variable may be

viewed as a measure of confidence for the correct bit value when the observation model

zi(u) = (−1)ci(u)
√
Ec + wi(u)

is assumed with wi(u) being a Gaussian random variable with mean zero and variance N0/2.
Show that Y (u) is a Gaussian random variable and find the mean and variance of Y (u).
Express the variance as a function of the mean. This simple relation is called the symmetry
condition for Gaussian channel negative log-likelihood ratios.

6.2. Consider one stage of an FSM trellis as a simple code constraint. Namely, the inputs are the

input information bit, bi, the current state, si, and the outputs are the coded bits {c(l)
i }l, and

the next state, si+1. For a specific example, consider the rate 1/2, four state feed-forward code
considered in lecture (i.e., with generators (101) and (111)). The objective of this problem
is to show that the forward-backward algorithm may be viewed as activating locally optimal
SISO processing nodes corresponding to these simple code constraints. This notion is shown
in the figure below.

How many valid configurations does this simple code constraint have? List this valid config-
urations, with the associated values of all input and output variables.



EE 564 Problem Set – c©K.M. Chugg - November 23, 2020 79

si si+1

bi

c(1)
i c(2)

i

MI[c(2)
i ]

MO[c(2)
i ]MI[c(1)

i ]

MO[c(1)
i ]

MO[bi]MI[bi]

MI[si]

MO[si] MI[si+1]

MO[si+1]

Describe the standard (min-sum) SISO processing for this simple code constraint. Show that
the following correspondences hold:

• MI[si] −→ MO[si+1] is the forward state metric recursion.

• MI[si+1] −→ MO[si] is the backward state metric recursion.

• MO[bi] computation is completion on the input bit.

• MO[c
(l)
i ] computation is completion on the coded bit.

6.3. Consider a PCCC as shown in the figure below where the recursive systematic encoders
are each the 4-state convolutional code used in HW4, problem 3 – i.e., ck(0) and dk(0) are
systematic bits and ck(1) and dk(1) are generated by G(D) = (1 +D2)/(1 +D +D2).

bK−2bK−1

aK−2aK−1

bk
0/1 to +1/-1

0/1 to +1/-1

xk(0)

xk(1)

modulate
puncture and

k odd

k even

a0a1 · · · aK−3

data bits
uncoded

b0b1 · · · bK−3

ck(1)

I

RSC1

RSC2

dk(0)

dk(1)

ck(0)

Consider an input block size of 8 bits and consider encoding the bit sequence

(b0 b1 · · · b7) = (1 0 0 1 1 1 0 0)

with the interleaver given by

k 0 1 2 3 4 5 6 7

I(k) 2 6 3 0 4 1 7 5

Specifically, aI(k) = bk. For example, a6 = b1.

(a) Determine the input sequence to the bottom RSC, a.

(b) Determine the two tail bits required to terminate each encoder into the zero state.

(c) Determine the two parity bit sequences {ck(1)}9k=0 and {dk(1)}9k=0.
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(d) Determine the sequences {xk(0)}9k=0 and {xk(1)}9k=0.

(e) What is the rate of this code, including the effects of the tail? What would the rate be
if the input block size was 2048?

(f) Perform 3 iterations of the min-sum iterative decoder for this encoded sequence realiza-
tion. The noise sequence realization is:

k 0 1 2 3 4 5 6 7 8 9

wk(0) −0.2 +0.3 −1.2 −0.5 −0.1 +1.2 +0.4 +0.5 −0.3 +0.1
wk(1) +0.3 +1.3 +0.5 −1.4 +1.2 +0.8 −0.4 −0.6 +1.6 −0.5

for the observation model is zk(i) = ±1 + wk(i), with Ec/N0 = 1 (0 dB).

Define one iteration as an activation of SISO1, the interleaver, SISO2, and the deinter-
leaver. At the end of each iteration, give the best hard decisions for {bk}7k=0 available,
as well as the associated soft decision information. How many errors are there in the
final decisions?

6.4. Using the results of Problems 1.8 and 1.??, consider iterative decoding of the (7,4) Hamming
code. More specifically,

(a) Draw the parity check graph representing this code.

(b) Using the observation values zA from Problem 7, perform 4 iterations of the iterative
decoder based on this parity check graph. At each iteration, compute the best soft
decision information for the coded bits – i.e., MI[cj ] + MO[cj ] – and the corresponding
implied hard decisions. How close are these hard and soft decisions to the optimal values
computed in Problem 7?

6.5. Repeat Problem 4 using the graphical model associated with the systematic generator matrix.
Why is it necessary to use the systematic generator form?

6.6. Verify equations (5)-(7) in PiHu01 for the for the forward, backward, and completion opera-
tions of the min-sum SISO for the recursive single parity check code (RSPC)

6.7. Consider a repetition code constraint with 4 associated binary variables {di}3i=0. Consider
the incoming normalized metrics MI[di] and assume that these are well-modeled by negative
log-likelihood ratios for an AWGN channel (i.e., assume they are Gaussian and satisfy the
symmetry condition). If the mean of (−1)diMI[di] is mi, and these are assumed to be mutually
independent, determine the distribution of (−1)diMO[di].

6.8. Consider the concatenated convolutional code shown below:

Go
1(D) = 1

Go
2(D) = 1 + D

Gi(D) =
1

1 + DI

bi

c(1)
i

c(2)
i

dj

P/S

aj

The input bits are independent and each has equal probability of being 0 or 1.
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(a) Draw one section of the trellis diagram for the outer and inner codes. Be sure to clearly
indicate all the values of the input and output bits associated with each transition.

(b) What is the minimum distance of the outer code?

Does uniform interleaver analysis suggest that this code will provide interleaver gain for
bit error probability performance? Specify the maximum exponent of n for this case.

(c) In this part, you will execute the min-sum version of the soft-in/soft-out decoder for the
outer code. Specifically, assume that the input block size is 4 bits, and that the outer
encoder is started in state 0 and is not terminated. At the particular iteration under
consideration, the incoming metrics provided to the outer SISO are

i : 0 1 2 3

MI[c
(1)
i ] + 1 − 4 + 2 + 3

MI[c
(2)
i ] + 1 + 1 − 2 + 1

These incoming metrics are in normalized extrinsic form, so that the metric associated
with the zero conditional value is 0 and the numbers above are for the one conditional
values.

Run the forward-backward algorithm based on your trellis description above to obtain

the normalized extrinsic output metrics for {bi}, {c(1)
i } and {c(2)

i } for i = 0, 1, 2, 3 and
the best decisions for the information bits after this SISO activation. Fill in the table
below with these values:

i : 0 1 2 3

MO[c
(1)
i ]

MO[c
(2)
i ]

MO[bi]

b̂i

6.9. During this class, we repeatedly used the fact that the min-sum SISO for an SPC constraint
can be computed using the function

g(x, y) = min{|x|, |y|}sgn(x)sgn(y)

Specifically, for c0, c1, . . . cn−1, constrained to satisfy an even SPC, we found that

MO[ci] = g
(
MI[c0], . . .MI[ci−1],MI[ci+1], . . .MI[cn−1]

)

with g(·) defined for multiple arguments using the recursion

g(x, y, z) = g(g(x, y), z)

and MI[cj ] being the incoming normalized, extrinsic metrics.

The goal of this problem is to express the min∗-sum SISO for this SPC constraint in a related
form.
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(a) The min∗-sum SISO for this SPC constraint can be computed as above where g(x, y) is
replaced by

g∗(x, y) = g(x, y) + ∆(x, y)

Determine the “correction factor” function ∆(x, y) and show your derivation of this
result.

(b) Demonstrate the operation of this min∗-sum SISO calculation by considering 4 bits,
{cj}3j=0 constrained by an SPC with

MI[c0 = 1] = +3, MI[c1 = 1] = −2, MI[c2 = 1] = −0.5, MI[c3 = 1] = −1.5

Specifically, determine the normalized (MO[cj = 0] = 0) output metrics for min∗-sum
SISO decoding.

(c) Compare this result to that obtained using min-sum processing.

6.10. Consider a linear binary code defined by the (“star”) graphical model shown below:

+ +

+ +

=

c8

c0

c1 c2 c3 c4

c5c6c7

Here, lines represent variables and boxes represent constraints. The two types of boxes are
an even parity constraint and an equality constraint. The graph shows the constraints for
the codeword bits. The input bits are independent and each has equal a-priori probability of
being 0 or 1.

(a) Determine the rate of this code, a parity check matrix H, the number of states in the
associated parity check trellis S, and the minimum distance of this code.

(b) A codeword from this code has been transmitted over the BPSK-AWGN channel using
the standard convention and the corresponding observations are:

z0 z1 z2 z3 z4 z5 z6 z7 z8

−3 +5 −1 +1 −2 −5 −4 +2 −2
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It is desired to compute the ML codeword decision. Use message-passing decoding on
the graph provided to obtain this result. Document your work by showing the stable
set of messages at convergence and the final hard decisions implied – i.e., show each of
these messages near the corresponding arrow.

(c) Consider performing hard-in decoding of this code. First, convert the set of observations
{zi} to the corresponding hard channel decisions {yi}, where each yi ∈ {0, 1}. Is y a
valid codeword? Explain. Perform minimum Hamming distance decoding of this code
using message-passing on the graph provided. Document your results by labeling the
graph with the stable set of messages and providing the final hard decisions.

6.11. Consider the concatenated code shown below:

Hamming 
Code I 1/(1+D)

S/P P/S

nhkh (nh, kh)

bi cj dj

The k input bits are encoded first, in block by block manner, by a Hamming code. These
coded bits are then interleaved and put through an accumulator, that is not terminated, to
produce the n coded bits dj . The Hamming code takes in kh bits and outputs nh output bits.

(a) Answerthe following:

• Will interleaver gain in PCW be achieved? Explain.

• What is the size of interleaver (function of k, kh, nh)

• What is the overall code rate (function of k, kh, nh)

(b) If an overall code rate of r ≥ 0.93 is sought, then what is the smallest value of kh, kh,min,
possible? Consider the code with this minimum value of kh. The soft-in/soft processing
for the outer code is implemented using the forward-backward algorithm on the parity
check trellis of each Hamming block. Determine the following for the Hamming code
parity check trellis:

• State complexity of the trellis.

• Number of trellis sections per Hamming block.

6.12. Consider the code defined by the graph below.
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c0 c1 c2 c3 c4 c5 c6 c7

+ + + +

+ +

+

Describe the global code structure by specifying the parity check matrix. Consider the fol-
lowing incoming metrics for {cj}

MI[c0] MI[c1] MI[c2] MI[c3] MI[c4] MI[c5] MI[c6] MI[c7]

−4 −2 −9 +2 −3 +1 −6 +2

Label the diagram below with the stable set of messages associated with min-sum processing.

6.13. Consider a code constructed by adding a single parity check bit to each row and each column
of an (m×m) array of input bits. Specifically, the code structure is diagrammed in the table
below

b0 b1 · · · bm−1 p0

bm bm+1 · · · b2m−1 p1
...

...
. . .

...
...

bm(m−1) bm(m−1)+1 · · · bm2−1 pm−1

q0 q1 · · · qm−1 ·
where pi is the parity over row i and qj is the parity over column j

pi = bim + bim+1 + · · ·+ b(i+1)m−1

qj = bj + bj+m + · · ·+ bj+m(m−1)

where all addition is modulo 2.

All information bits, row parity bits and column parity bits are transmitted as the codeword.

(a) Find k, n, r, and dmin as a function of m.

(b) Specify a cyclic graphical model for this code that comprises a set of equality constraints
and single parity check constraints. Describe a soft-in decoder associated with graphi-
cal model. Specify an activation schedule, define one iteration, and state whether the
decoder is optimal or not. Your activation schedule will need to start with the equality
constraints. Do not count the initial activation of these equality constraints as part of
the first iteration.
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(c) Consider the specific case of m = 3. The values in the table below are the channel
likelihood values for each codeword bit.

+2 +2 −1 +3
−4 −1 +3 +3
−1 −1 +2 −3

−2 −6 +5 ·

Run your min-sum decoder for two iterations and specify the results for each iteration
by filling in tables with the best soft decision value for each of the 9 information bits
after that iteration.

(d) Show that this code can be viewed as an LDPC code. Specify the parity check matrix for
a general value of m. Clearly label the matrix so that the dimensions and the locations
of nonzero elements is clear. Specify the degree distribution for the check nodes and
variables nodes. Specifically, give all values for the check degree (dc(i)) along with the
fraction of check nodes with each of these values. Report the variable degree distribution
similarly.

6.14. Consider a systematic repeat accumulate code (as shown below) with 4 input bits b0, b1, b2,
and b3. There are Qi repetitions of bit bi fed into the interleaver where Qi = 2 for even i and
Qi = 4 for odd i. The inner accumulator is unterminated.

=

S/P

...

Qi

bi

bi

vm
I + 1/(1 + D)

pj

P/S

dm

J = 2

The interleaver is listed below:

m = 0 1 2 3 4 5 6 7 8 9 10 11

I(m) = 6 1 3 8 10 4 2 11 9 0 5 7

Note the convention is vm = dI(m).

(a) Determine the output blocksize of this code, the rate, and the parity check matrix.

(b) Draw a graphical model for this code corresponding to the encoder shown above. Label
all variables.

Draw the parity check graph for this code corresponding to the parity check matrix given
above. Label all variables.
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=

S/P

bi

bi

vm
I + 1/(1 + D)

pj

P/S

dm +

Recursive SPC (RSPC)

Figure 26: The encoder for the systematic RA code considered.

=

SISO I

P/S

Inner RSPC SISO

Rm

Lm
I−1

0

MI[bi = 1]

MI[pj = 1]

Figure 27: The iterative decoder considered for the RA code.

6.15. Consider a systematic repeat accumulate code (as shown in Fig. 26) with 3 input bits b0, b1,
and b2. There are Q = 3 repetitions of each bit bi fed into the interleaver. The size of the
inner SPC is J = 3 and the inner accumulator is unterminated.

The interleaver is listed below:

m = 0 1 2 3 4 5 6 7 8

I(m) = 0 3 7 6 2 5 4 1 8

Note the convention is vm = dI(m).

(a) Determine the output blocksize of this code, the rate, and the parity check matrix.

(b) Consider the iterative decoder for this code as illustrated in Fig. 27.

Consider the systematic channel metrics (in normalized form):

MI[b0 = 1] = −2, MI[b1 = 1] = +5, MI[b2 = 1] = −1

and parity channel metrics

MI[p0 = 1] = +2, MI[p1 = 1] = −4, MI[p2 = 1] = +6

You will perform a few iterations of this decoder and list the messages for variables dm.
These are listed as Lm and Rm for the left-going and right-going normalized metrics on
dm.
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Starting the decoding by activating the outer equality SISO, specify Rm.

m = 0 1 2 3 4 5 6 7 8

Rm =

After activating the interleaver, the inner RSPC SISO and the deinterleaver, what are
Lm?

m = 0 1 2 3 4 5 6 7 8

Lm =

After activating the outer equality SISO again, specify Rm.

m = 0 1 2 3 4 5 6 7 8

Rm =

After activating the interleaver, the inner RSPC SISO and the deinterleaver again, what
are the new values of Lm?

m = 0 1 2 3 4 5 6 7 8

Lm =

(c) The outer equality SISO is activated one last time to compute decision metrics for the
information bits; determine the resulting hard decisions on the information bits.

6.16. Consider a rate 1/2 convolutional code with generators G1(D) = G2(D) = 1 + D. This
problem considers the case where this encoder is started and terminated (using tail bits as
necessary) in the zero state. The BPSK-AWGN channel is considered.

(a) Denote the input to the convolutional encoder by bi and the outputs c
(1)
i and c

(2)
i . Write

the difference equation for generating each output. Sketch an encoder diagram for this
code. Sketch and label one trellis section for this code.

(b) If a large number of input bits are encoded, what is the minimum distance of the resulting
code?

(c) If 1000 input bits are encoded with this convolutional code, the probability of bit error
with soft-in Viterbi decoding will be approximately

Pb = KQ(A)

where K is a constant. What is A?

(d) Consider the case where 5 input bits b0, b1, . . ., b4 are encoded along with a single tail
bit to produce 12 output bits. Draw the graphical model corresponding to the trellis
model for this code. Label all variables (hidden and visible). Consider the case when the
information bits are a-priori equally likely to be 1 or 0 and the coded bits are transmitted
across a BPSK-AWGN channel with corresponding observations:

i 0 1 2 3 4 5

z
(1)
i +3 −2 +5 −4 −1 +2

z
(2)
i +1 −3 0 +3 +3 +4
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Consider min-sum decoding, so that the above may be taken as normalized incoming
metrics on the coded bits. Sketch the graphical model from above without the variable
labels and label the edges with a convergent set of messages. State the associated ML-
CW hard decisions for the information bits.

(e) Consider using the convolutional code above in a modern code. Specifically, consider
the two codes below:

S/P

bi

I + 1/(1 + D)

P/S

Recursive SPC (RSPC)

1 + D

1 + D

J = 4

S/P

bi

I + 1/(1 + D)

P/S

Recursive SPC (RSPC)

1 + D

1 + D

J = 4

=

P/S

cj

cj

CODE A

CODE B

Let rA and rB be the rate of code A and B, respectively (neglecting the effect of tail
bits). Determine these rates. Let αA,max and αB,max be the maximum exponent of N in
the uniform interleaver analysis for code A nd B, respectvely. What are these values?

6.17. Consider the code defined by the graph shown in Fig. 28. Given the incoming messages
(normalized metrics), perform min-sum decoding. Show your results by labeling the arrows
with the set of stable messages. Also note the final hard decision for each of the visible
variables.

6.18. Consider the linear block code defined by the following parity check matrix:

H =




1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1




This problem deals with this code used over the erasure channel. The erasure channel is a
discrete memoryless channel with transition diagram shown in Fig. 29 where p is the eraure
probability and0 < p < 0.5. The channel output E corresponds to an erasure – i.e., the
decoder either receives the bit without error or the bit is erased on the channel. Assume each
of the codewords is sent with the same probability.
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+ = + = + = + = +

+

=

+

=

=

+

=

+

=

-3

+2 -6 +3 -5

+1 0 +9

-3

+7

-4

-2

+1

-1

-12

+3

Figure 28: A cycle free graph defining a code.

cj zj

E

p

1− p

0

1

0

1

p

1− p

Figure 29: The DMC diagram for the erasure channel.
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(a) Draw the Tanner graph for this parity check matrix.

(b) Determine the normalized channel metrics for this channel. Specifically, determine
MI[cj = 1] for each of the possible values of the channel output (zj). Summarize in
words what the decoding rule is for this erasure channel.

(c) Consider the set of observations:

j 0 1 2 3 4 5

zj E E E 1 1 1

Use these observations to perform min-sum iterative decoding on the Tanner graph from
part (a). This iterative decoder will converge, but fail to decode to a codeword. Show
this by drawing the Tanner graph and labeling the edges with convergent messages in
both directions.

Can an optimal decoder decode this observation? If so, show how and provide the
codeword decision. If not, explain why it cannot.

(d) Is it possible to specify a different parity check matrix for this code for which iterative
decoding on the associated Tanner graph will successfully decode the above channel
observations? If yes, then provide such a parity check matrix and show the convergent
set of messages on the corresponding Tanner graph. If not, explain why this is not
possible.

6.19. Consider iterative decoding of the (6, 3, 3) code from Kumar’s notes using its parity check
graph. This graph is shown in Fig. 30 – the degree 1 variables nodes are shown above the
check nodes to simplify the diagram. Also shown on this diagram are the incoming channel
metrics in normalized form.

(a) Show the messages after the following processing: (i) activation of all variable nodes, (ii)
activation of all check nodes, (iii) activation of all variable nodes.

(b) Continue the iterative decoding and show the messages after additional activation of (i)
all check nodes and (ii) all variable nodes. Also indicate the best hard decision for each
of the 6 visible variables.

6.20. Consider the linear block code defined by the graphical model shown in Fig. 31

(a) Given the channel and a-priori metrics

MI[b0 = 1] = −4 MI[c0 = 1] = +2

MI[b1 = 1] = −3 MI[c1 = 1] = +1

MI[b2 = 1] = +1 MI[c2 = 1] = +4

MI[c3 = 1] = −1

MI[c4 = 1] = −3

perform min-sum decoding and provide a convergent set of messages on a labeled graph-
ical model.
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=

+ +

= =

+

+3 -1 +2

-4 +1 +6

Figure 30: The Tanner graph for the (6, 3, 3) code.

=+ +

c0 c3 c1 c2c4

=

b0 b1 b2

=

Figure 31: A graphical model defining a code.
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What are the decisions on the information bits based on minimum codeword error prob-
ability decoding?

(b) Provide a generator and parity check matrix for the code defined by this graph.

(c) Consider syndrome-based decoding of this code. Suppose the information bits are a-
priori uniform on {0, 1} and that BSC channel observations {yj} are obtained by thresh-
olding the channel negative log-likelihoods {MI[c0 = 1]}. Specify this observation vector
y and perform syndrome-based decoding. Is this decision unique? Is it the same as the
decision obtained in part (b)?

7 Short Problems on Signals, Modulation, and Detection

7.1. (a) TRUE

(b) FALSE

Reliable communication over an AWGN channel is not possible if the energy per bit Eb in
Joules is less than the one-sided noise PSD level N0 in Watts/Hz.

7.2. For a QASK modulation scheme, the Nyquist condition on the pulse assures that

(a) the sampling is robust to synchronization error

(b) the samples of the matched filter are independent

(c) the pulse bandwidth is sufficiently limited

7.3. (a) TRUE

(b) FALSE

For a given Eb/N0, the bit error performance of QPSK with Gray mapping is the same as
the bit error probability of BPSK

7.4. What is the minimum required value of Eb/N0 (in dB) required to communicate with a
spectral efficiency of 10 bits/sec/Hz?

7.5. (a) TRUE

(b) FALSE

The minimum distance characterizes the low SNR performance of a signaling scheme on an
AWGN channel

7.6. (a) TRUE

(b) FALSE

For an M-ary system, the minimum bit error probability decision rule is the same as the
minimum symbol error probability rule as long as the noise is AWGN and all hypotheses are
equally likely

7.7. A receiver for a BPSK assumes square pulse shaping, but the actual pulse shape used, while
limited to [0, T ] and having the same energy, is not square. What is the degradation in SNR
due to this mismatch?
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7.8. The performance of simplex signaling is the same as that of orthogonal; what is the advantage
of simplex signaling? Why would orthogonal signaling ever be used over simplex signaling?

7.9. (a) TRUE

(b) FALSE

Accurate phase synchronization becomes less critical for QAM as M is increased

7.10. Name one modulation technique that is appropriate for each of the following cases:

(a) Bandwidth constrained, high throughput desired

(b) Power constrained, low error rates required

7.11. (a) TRUE

(b) FALSE

There is always an implementation of the MAP detector for (colored) Gaussian noise channels
with exactly k correlators (k being the dimension of the signal space).

7.12. (a) TRUE

(b) FALSE

MAP detection is equivalent to minimum distance detection only if the a-priori probabilities
are equal and the noise is AWGN.

7.13. (a) TRUE

(b) FALSE

16-QAM is approximately 10 dB in Eb/N0 better than 16-PSK.

7.14. (a) TRUE

(b) FALSE

64-ary Walsh function modulation was used in the IS-95 cellular standard because it slightly
outperforms 64-ary orthogonal FSK.

7.15. (a) TRUE

(b) FALSE

P (E) ≤ (M − 1)Q

(√
d2min
2N0

)
is a valid upper bound for any M -ary signaling technique with

πm = 1/M and an AWGN channel (here d2
min = mini 6=j d

2(si, sj)).

7.16. (a) TRUE

(b) FALSE

Rayleigh fading results in a degradation in Eb/N0 of about 3 dB relative to no fading for
BPSK.

7.17. (a) TRUE
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(b) FALSE

The robustness to sampling time error for a matched filter decreases with the pulse bandwidth.

7.18. (a) TRUE

(b) FALSE

For an SNR= Pave
WN0

= 10−10, reliable communication is not possible at any data rate.

7.19. (a) TRUE

(b) FALSE

Two user waveforms with a correlation coefficient ρ > 0.5 cannot be reliably separated once
added together on a common AWGN channel.

7.20. (a) TRUE

(b) FALSE

A matched filter provides a small advantage over the corresponding correlator because the
output SNR is maximized.

7.21. (a) TRUE

(b) FALSE

Any data pulse with duration less than or equal to a symbol time satisfies the Nyquist
condition for no ISI.

7.22. The topic of Claude Shannon’s M.S. thesis was (no penalty for guessing):

(a) Boolean mathematics applied to digital circuit design

(b) The maximum achievable compression ratio for English text

(c) IQ testing

(d) Shannon never received a Masters or Ph.D. degree.

7.23. (a) TRUE

(b) FALSE

For 8PSK with natural bit labeling and uniform a-priori probabilities, the MAP bit and
symbol detection rules are equivalent.

7.24. (a) TRUE

(b) FALSE

The I and Q channel of a QPSK signal may be staggered to provide better symbol error
probability for an AWGN channel

7.25. (a) TRUE

(b) FALSE

The only pulses satisfying the Nyquist criteria are those that are zero outside [0, T ] and the
family of raised-cosine pulses.
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7.26. (a) TRUE

(b) FALSE

MPSK is preferred over MQAM because it yields better performance for a given Eb/N0.

7.27. (a) TRUE

(b) FALSE

If two binary signal sets have the same distance, then the performance over an AWGN channel
will be the same.

7.28. (a) TRUE

(b) FALSE

Phase noncoherent methods are used because they provide a small performance improvement
at the cost of additional receiver complexity.

7.29. (a) TRUE

(b) FALSE

For the colored-Guassian noise channel, the signals can be rotated without affecting the
performance of the optimal receiver.

7.30. (a) TRUE

(b) FALSE

It is theoretically possible to communicate without error using finite energy waveforms over
some colored-Gaussian noise channels with non-singular covariance functions (no zero eigen-
values).

7.31. (a) TRUE

(b) FALSE

Upper and lower bounds should be used for M -ary PAM signaling since a closed form expres-
sion for P (E) is not available.

7.32. (a) TRUE

(b) FALSE

The Maximum Likelihood decision criterion is equivalent to the minimum distance rule.

7.33. The narrowband assumption requires

(a) That fcT is an integer

(b) That fc � B where B is the bandwidth of the equivalent baseband modulation.

(c) That the carrier phase θc is known precisely at the receiver.

7.34. (a) TRUE

(b) FALSE

The a-priori probabilities yielding largest P (E) for binary MAP detection are π0 = π1 = 1/2?
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7.35. (a) TRUE

(b) FALSE

Fading typically leads to an effective SNR degradation.

7.36. (a) TRUE

(b) FALSE

A good QASK constellation will be symmetric around the origin.

7.37. (a) TRUE

(b) FALSE

A matched-filter can be used to replace many correlators by sampling at different time in-
stants.

7.38. (a) TRUE

(b) FALSE

FSK with a tone separation of 1/(2T ) provides a noncoherent orthogonal signal set.

7.39. (a) TRUE

(b) FALSE

The minimum number of correlators needed for the MAP symbol-detector is always deter-
mined by M , the number of possible signals.

7.40. (a) TRUE

(b) FALSE

If s0(t) and s1(t) are passband signals and
∫ T

0 s0(t)s1(t)dt = 0, then these two signals can be
detected (phase) noncoherently.

7.41. Staggering of the I and Q channels is used in some cases to

(a) Relax the requirements for synchronization accuracy

(b) Add robustness against filtered nonlinearities

(c) Simplify the integrate and dump circuits

7.42. (a) TRUE

(b) FALSE

A BPSK system will perform better in an AWGN channel if the bandwidth is spread using
high bandwidth pulse shapes.

7.43. (a) TRUE

(b) FALSE

A deep-space satellite system is using QPSK modulation and only a portion of the available
bandwidth. To improve the link BER, one reasonable option is to use 8PSK.
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(a) TRUE

(b) FALSE

7.44. (a) TRUE

(b) FALSE

For a standard QAM system, the pulse shape affects on the spectrum, not the performance.

7.45. (a) TRUE

(b) FALSE

In theory, it is possible to communication effectively over an AWGN channel with Eb/N0

below 0 dB.

7.46. (a) TRUE

(b) FALSE

The Nyquist condition for no ISI ensures that the noise samples at the output of the matched
filter are independent.

7.47. (a) TRUE

(b) FALSE

The Craig form for the Q-function is used to get tighter upper bounds on the performance of
MPSK in AWGN.

7.48. (a) TRUE

(b) FALSE

Mini-max detection requires that π0 = π1.

7.49. (a) TRUE

(b) FALSE

Adding a constant signal; to each of a possible set of message signals will typically improve
the performance.

7.50. (a) TRUE

(b) FALSE

The sensitivity of MPSK to synchronization errors typically increases with M

7.51. (a) TRUE

(b) FALSE

There is a standard degradation of 3 dB to be expected between coherent detection and
noncoherent detection.

7.52. (a) TRUE

(b) FALSE

Fast Hadamard transforms can be used for 64 orthogonal FSK demodulation
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7.53. (a) TRUE

(b) FALSE

As few as one correlator is sometimes required for M -ary detection.

7.54. The set of 64-ary Walsh functions provides an orthogonal signal set in the noncoherent sense.

(a) TRUE

(b) FALSE

7.55. A satellite link uses OQPSK with a standard rectangular pulse shape. It is desired to use
shaped OQPSK (precoded MSK) by replacing the T -second rectangular pulse with the fol-
lowing T -second pulse:

p(t) =

√
2

T
sin(πt/T ) t ∈ [0, T ]

The satellite receiver cannot be reprogrammed, however, so it will still correlate to the rect-
angular pulse – e.g., integrate and dump. This will result in a degradation in performance of
X dB of E/N0. Determine X:

7.56. Consider the unknown phase model

Hm : r(u) = sme
jθc + w(u) m = 0, 1, . . . (M − 1)

Using the fact that θc is a constant in [0, 2π), determine the generalized likelihood given Hm,
G(r|Hm).

If M = 2 and orthogonal, equal energy (E) signals are used, what is the maximum generalized
likelihood rule and the associated probability of error?

7.57. For binary AWGN communications, coherent detection of orthogonal signals performs better
than differentially coherent BPSK.

(a) TRUE

(b) FALSE

7.58. A company licenses 10 MHz of bandwidth. Assuming a standard AWGN channel, what is
the minimum Eb/N0 value required to achieve reliable communications at a rate of 60 Mbps
in this band?

7.59. Due to imperfect receiver processing in a standard QPSK system, the signal constellation is
shifted to the right by εE > 0 before entering the slicer as shown in Fig. 32.

Specifically, the slicer decision boundaries remain the axes, but the signals are

sm =
√
E

[
cos(mπ/4) + ε

sin(mπ/4)

]
m = 0, 1, 2, 3

and this is observed in AWGN with zero mean and variance N0/2 per dimension. Find the
probability of symbol error in this case.
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Figure 32: The effect of imperfect receiver processing is to shift teh constellation.

7.60. It is desired to achieve 2.5 bps/Hz over an AWGN channel. What is the minimum value
of the Eb/N0 required to achieve this spectral efficiency using any signaling approach? Can
this spectral efficiency be approached at this Eb/N0 with very low error probability using the
following 8PSK? 64-QAM? If yes, then briefly explain how; if no, the explain why not.

7.61. For EE564 we model the information sequence as an independent, identically distributed
Bernoulli sequence with p = 1/2 because this a good model for most multimedia courses such
as voice, images, and text files.

7.62. For phase noncoherent reception, antipodal binary signaling is preferred since it maximizes
the signal distance and therefore minimizes the error probability.

(a) TRUE

(b) FALSE

7.63. For equally likely signals in any additive noise channel, the MAP decision rule is a minimum
distance rule.

(a) TRUE

(b) FALSE

7.64. For equally likely information bits and ML symbol detection, the bit error probability of
QPSK and BPSK are the same regardless of the bit labeling.

(a) TRUE

(b) FALSE

7.65. Differentially coherent detection of differentially encoded MPSK performs within 1 dB of
coherent MPSK for all values of M .

(a) TRUE
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(b) FALSE

7.66. The separation theorem implies that, with sufficient latency, source coding can be done sep-
arately from channel coding in practice without any loss of optimality

(a) TRUE

(b) FALSE

8 Short Problems on Coding

8.1. Consider 4 bits, {cj}3j=0 that are inputs/outputs associated with an even single parity check

constraint and the normalized (MI[cj = 0] = 0) input metrics given by

MI[c0 = 1] = +3, MI[c1 = 1] = −2, MI[c2 = 1] = −0.5, MI[c3 = 1] = −1.5

determine the normalized (MO[cj = 0] = 0) output metrics for min-sum SISO decoding.

8.2. Repeat the above for the case in which the 4 bits are constrained to be equal.

8.3. Consider a “non-perfect” linear block code with minimum Hamming distance 5 transmitted
over the binary symmetric channel. With ML codeword decoding, this code can

(a) correct all error patterns of weight 0, 1, 2, 3

(b) correct only error patterns of weight 0, 1, 2

(c) correct all error patterns of weight 0, 1, 2, and at least one pattern with weight ≥ 3

8.4. True or False?: Computed exactly, the block error probability predicted by the sphere
packing bound must always be lower than that of the random coding bound.

8.5. True or False?: For the BPSK-AWGN channel, one needs to use an 8-bit analog to digital
converter to achieve most of the soft-in decoding advantage.

8.6. Consider an (n, k, dmin) = (6, 2, 3) linear block code used over the binary symmetric channel
(BSC). Assume that the BSC is an abstraction of the BPSK-AWGN channel. Give a good
upper bound on the codeword error probability as a function of Eb/N0 on the underlying
BPSK-AWGN channel for the ML codeword decoder.

8.7. The repetition code can provide coding gain on the BPSK-AWGN channel if optimal decoding
is performed

(a) TRUE

(b) FALSE

8.8. Find the minimum possible value for Eb/N0 to achieve a spectral efficiency of 1 bps/Hz using
any modulation:
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8.9. Based only on information theory results, the expected performance gain associated with
soft-in decision decoding on the BPSK-AWGN channel is approximately how many dB in
Eb/N0 over hard-in decoding.

8.10. The most important characteristic for determining the performance of a modern turbo-like
code is the minimum Hamming distance.

(a) TRUE

(b) FALSE

8.11. Convolutional codes were used extensively in the 1980s because they mimic the properties of
the random codes used in proving the Shannon limit.

(a) TRUE

(b) FALSE

8.12. Let d0, d1 . . . dn−1 be binary variables constrained to take even parity. Suppose that the
incoming normalized metrics for these bits are MI[d0] = MI[d1] = 0 and MI[di] = i2 for
i = 2, 3, . . . n. Determine the output normalized metrics (in extrinsic form) for standard
min-sum SISO processing.

8.13. For the BPSK/AWGN channel, the performance gain associated with soft-in decoding relative
to hard-in decoding for most code rates is approximately

(a) 1 dB in Eb/N0

(b) 0.5 dB in Eb/N0

(c) 2 dB in Eb/N0

(d) No gain, if optimal decoding is used for both hard-in and soft-in

8.14. Trellis-Coded Modulation and similar coded modulation methods achieve coding gain without
bandwidth expansion via

(a) The use of a modulation constellation with more points and redundancy through error
correction coding

(b) A special modulation constellation formed by superposition of other constellations

(c) Binary channel signaling with non-binary error correction codes

8.15. Consider the interleaver that swaps even and odd indices (assume that there are an even
number of bits in the block). Specifically

I(k) =

{
k + 1 k even

k − 1 k odd

Consider this interleaver used in constructing a parallel concatenated convolutional code with
input block size 4096 bits. Briefly describe how you expect this to perform and describe why.
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8.16. As described in lecture, the RSPC (recursive single parity check or zig-zag) ‘code’ takes in J
bits and outputs one bit. What is the minimum distance of this ‘code’?

8.17. A tail-biting convolutional code is one in which the final state of the encoder must be equal
to the initial state. This may be used to avoid inserting tail bits to terminate the encoder.
Specifically, if 8 bits, {bi}7i=0, are encoded s0 = s8, but the value of this common state can
be any state of the convolutional encoder. For example, considering an 8-state encoder,
instead of just starting and ending in state 0, it could also start/end in state 1, 2 . . . 7. Draw
a graphical model and briefly describe the associated min-sum decoder processing based on
AWGN channel observations for times i = 0, . . . 7.

8.18. The minimum distance is the characteristic of a code that determines the performance in
nearly all practical situations

8.19. The number of states in the constituent codes used in the third generation cellular telephone
system turbo code is

(a) 2

(b) 4

(c) 8

(d) 16

8.20. True or False?: The limits established by the random coding bound are far from what is
practically achievable, so we rely on the channel cut-off rate to guide our practical designs

8.21. True or False?: There is a min∗-sum version of the Viterbi algorithm that provides hard-
decisions that minimize the probability of bit error.

8.22. A rate 1/2 convolutional code has an output weight enumerator function for simple sequences
that is

2D9 + 6D12 + 12D15 + · · ·
What is the asymptotic coding gain for this code in dB?

8.23. The standard decoding algorithm for turbo codes performs MAP decoding

(a) TRUE

(b) FALSE

8.24. Consider a code with parity check matrix

H =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]

Draw the associated parity check trellis below. Indicate transistions associated with cj = 0
by a dashed line and cj = 1 by a solid line.

8.25. True or False?: Since Gaussian signaling achieves capacity on the AWGN channel, it is the
modulation most often used in modern digital communication systems.
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8.26. If a link operates at Eb/N0 = 40 dB, what is the maximum spectral efficiency one could
achieve using any modulation (you may round to the nearest integer value)?

8.27. You are system engineer in need of a r = 2/3 code with an input block size of k = 2048 using
QPSK modulation. What is your target spectral efficiency?

A company offers a decoding chip that achieves this spectral efficiency with a codeword error
probability of 10−4 at an Es/N0 value of 5.0 dB. Is this good performance or should you keep
searching for a better product?

8.28. True or False?: The standard decoding algorithm for turbo codes performs MAP decoding

8.29. True or False?: The parallel concatenated convolutional codes (turbo codes) studied in this
class are linear block codes

8.30. True or False?: Uniform interleaver analysis for parallel concatenated convolutional codes
imply that these codes cannot have a block error probability of below 10−2 regardless of block
size.

8.31. A new modern code has been suggested and uniform interleaver analysis determines that
αmax = −2.

(a) This code will exhibit interleaver gain in Pb, but not Pcw

(b) This code will exhibit interleaver gain in Pb and Pcw

(c) One needs to known what the specific form of the new modern code is before determining
the interleaver gain properties.

(d) This code will not exhibit interleaver gain.

8.32. True or False?: EXIT charts can be used to determine which constituent codes should be
used in modern codes to optimize the SNR threshold.

8.33. True or False?: Minimum Euclidean Distance decoding over the BPSK-AWGN channel is

the same as selecting the m that minimizes
∑n−1

j=0 MI[c
(m)
j ] =

∑n−1

j=0,c
(m)
j 6=0

4
√
Ec

N0
zj .

8.34. You are consulting for a venture capital firm. A potential client is proposing to market a
point to point communication system operating in AWGN. It is claimed that the system will
achieve 3 bps/Hz at an Eb/N0 of 4 dB. Is this possible? Is it practical? Explain.

8.35. A current system uses a good modern coding scheme comprising a binary r = 2/3 code
mapped onto 8PSK. The input block length k is 868 bits and Pcw = 10−3. Holding everything
else fixed, it is desired to increase k to achieve an additional 0.5 dB of coding gain.

(a) Estimate the smallest value of k that can achieve this.

(b) If k = 868 is maintained and it is desired to achieve Pcw = 10−5, how much larger would
Eb/N0 have to be (in dB) relative to the current system’s required Eb/N0?
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Figure 33: Concatenated code structure considered.

8.36. The binary variables {dj}39
j=0 are constrained by a single parity check (even). How many

allowable configurations of these variables M are there?

The following is given regarding the incoming messages on these variables

39∏

j=0

sgn(MI[dj ]) = −1

min
j
|MI[dj ]| = 0.2

If MI[d6] = 1.2 determine MO[d6].

8.37. Consider the concatenated code shown in Fig. 33.

Select the best answer:

(a) This code will exhibit interleaver gain in Pb, but not Pcw

(b) This code will exhibit interleaver gain in Pb and Pcw

(c) This code will not exhibit interleaver gain.

(d) The block size needs to be specified to determine if this code will exhibit interleaver
gain.

8.38. Consider the linear code on the variables {cj}7j=0 defined by the cyclic graphical model shown
in Fig. 34.

(a) Determine the rate and minimum distance for this code.

(b) Give a cycle-free graphical model for this code (label completely).

(c) Let the normalized input metrics for the 8 code bits be MI[cj = 1] be as given below:

i 0 1 2 3 4 5 6 7

MI[cj = 1] −3 +2 −6 −4 +1 −5 −10 −4

Redraw your acyclic graphical model and label the edges with the stable set of messages
after convergence of the min-sum algorithm. Note that each edge should have a message
going in each direction.

8.39. Consider a linear block code with n = 16 and dmin = 8. What values of k ∈ {0, 1, 2, . . . 16}
are not achievable? Explain your answer.
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Figure 34: Cyclic graphical model constraining the 8 binary variables {cj}7j=0.
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Figure 35: Encoder diagram for r = 1/2 convolutional code.

8.40. The Golay code is a perfect code with n = 23, k = 12.

(a) What is the error correcting capability of this code tc?

(b) Describe all of the coset leaders for this code.

8.41. Consider performing min-sum iterative decoding of an LDPC code based on observations from
the binary symmetric channel. The same message update rules used for the BPSK-AWGN
channel can be used if the channel metrics are defined properly. Suppose the BSC has error
probability ε = 0.1. The BSC channel observation yj takes values 0 and 1; determine the
normalized metric value MI[cj = 1] for each of these observation values.

8.42. An encoder for a rate 1/2 convolutional code is shown in Fig. 35. Determine the two generator
polynomials and draw one section of the trellis.

8.43. True or False?: Shannon codes are capacity achieving codes introduced in the proof of
channel capacity and remain widely used in practical systems.

8.44. For cellular voice communications a typical decoder bit error probability is
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(a) 10−1

(b) 10−3

(c) 10−6

(d) 10−9

8.45. True or False?: Turbo codes were discovered and published in 1983.

8.46. Iterative decoding of modern codes is optimal in the minimum codeword error probability
sense.

(a) TRUE

(b) FALSE

(c) It depends on whether min-sum or min∗-sum iterative decoding is used.

8.47. True or False?: LDPC codes are linear codes.

(a) TRUE

(b) FALSE

8.48. Determine a generator matrix for the (15,11) Hamming code.

8.49. A short single-error correcting code with rate r ≥ 1/2 is sought. Based on the Hamming
bound, values of n can you rule out as too short for this to be possible?

8.50. A block code has parity check matrix given by

H =




1 1 1 1 0
0 1 0 1 1
1 0 1 0 1




Draw the Tanner graph for this code

8.51. True or False?: A convolutional code with generators G1(D) = 1 + D2 and G2(D) =
1 +D +D2 is not a linear code if the encoder is started in the state (11)

8.52. True or False?: A coded modulation satellite data system operating at 1 bps/Hz requires an
Eb/N0 of 0.6 dB. This design cannot be significantly improved in terms of Eb/N0 sensitivity.

8.53. Consider the linear block code defined by the parity check matrix




1 0 1 1 0 0
0 1 0 1 1 0
1 1 0 1 0 1




(a) Specify the number of codewords in this code and the rate of this code.

(b) Draw the Tanner Graph corresponding to this parity check matrix.
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8.54. A communication channel has been modeled as a binary symmetric channel with error prob-
ability ε = 0.0179. Determine the maximum rate of reliable (i.e., arbitrarily small error
probability) communication across this channel in bits/channel-use.

8.55. The binary variables d0, d1, d2, and d3 are constrained by a repetition code. Consider
performing min-sum SISO decoding for this code with following incoming normalized metrics:

MI[d0 = 1] = +1.5

MI[d1 = 1] = −2

MI[d2 = 1] = +2.5

MI[d3 = 1] = −1

(a) Determine the corresponding outgoing normalized metrics and teh associated hard de-
cisions.

(b) Repeat the above for min∗-sum SISO processing using the same incoming metrics.

8.56. Specify the minimum Hamming distance for the following linear block codes:

(a) Hamming (7,4)

(b) Repetition (n,1)

(c) Single Parity Check (n,n− 1)

(d) Toy-SISO (5,3)

8.57. The relation min∗(x, y) ≤ min(x, y) holds for all real x, y.

(a) TRUE

(b) FALSE

8.58. A design engineer tells you that a good rule of thumb for good modern code performance is the
following: if you quadruple the block size ( i.e., make 4 times larger), you obtain approximately
0.5 dB of additional coding gain. Is this statement true or false? Explain.

(a) TRUE

(b) FALSE

8.59. List the coset leaders for the n = 5 repetition code.

8.60. Assuming that the (7, 4) Hamming code is decoded with soft decisions on the BPSK-AWGN
channel, what is the expected coding gain at high Eb/N0?

8.61. (5 points) The relation min∗(x, y)−min∗(x+ y, 0) = min∗(|x|, |y|)sgn(x)sgn(y) holds for all
real x, y.

(a) TRUE

(b) FALSE
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8.62. Historically, soft-in decoding methods were slow to be adopted because they require approxi-
mately 8-bit quantization of the channel observations to realize the additional coding gain. So,
soft-decoding did not become commonplace until 8-bit A/D converters were readily available.

(a) TRUE

(b) FALSE

8.63. Low Density Parity Check codes were discovered shortly after Turbo codes were introduced
in 1993.

(a) TRUE

(b) FALSE

8.64. The reason one is interested in performing “soft-out” decoding is

(a) Debugging decoder hardware;

(b) Iterative decoding/processing;

(c) It is usually most computationally efficient to produce soft-decisions on variables and
then threshold these to obtain hard decisions;

(d) All of the above.


