Forward Error Correction Coding

EE564: Digital Communication and Coding Systems

Keith M. Chugg Spring 2017 (updated 2020)

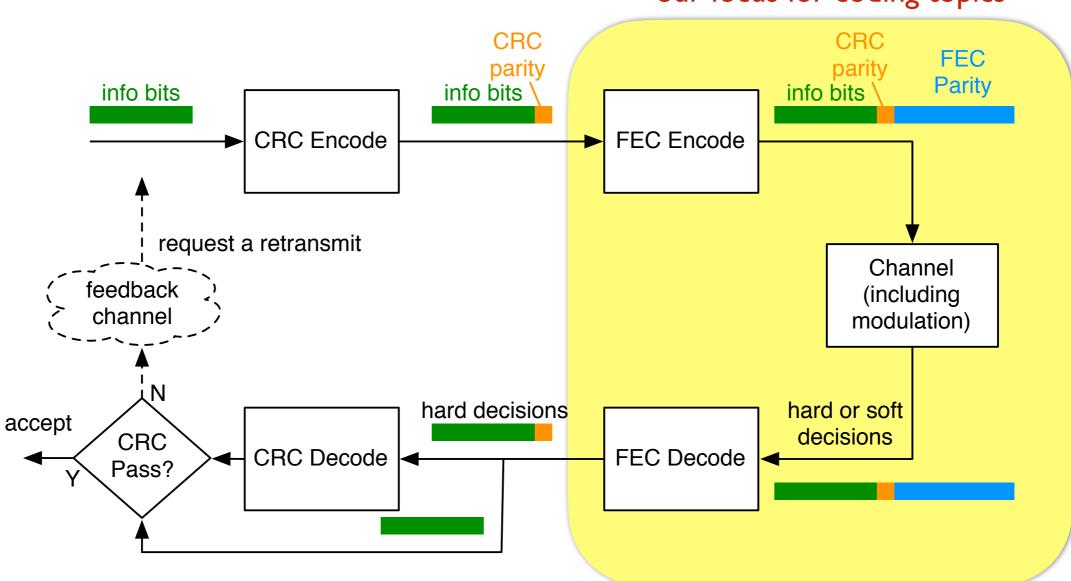
Course Topic (from Syllabus)

- Overview of Comm/Coding
- Signal representation and Random Processes
- Optimal demodulation and decoding
- Uncoded modulations, demod, performance
- Classical FEC
- Modern FEC
- Non-AWGN channels (intersymbol interference)
- Practical consideration (PAPR, synchronization, spectral masks, etc.)

Coding Topics

- Coding channel models
- Basics of code constructions
- Decoding rules HIHO, SIHO, SISO
- Classical coding
- Modern Coding
- Performance limits
 - Capacity and finite block-size bounds)
 - Bounds for specific codes

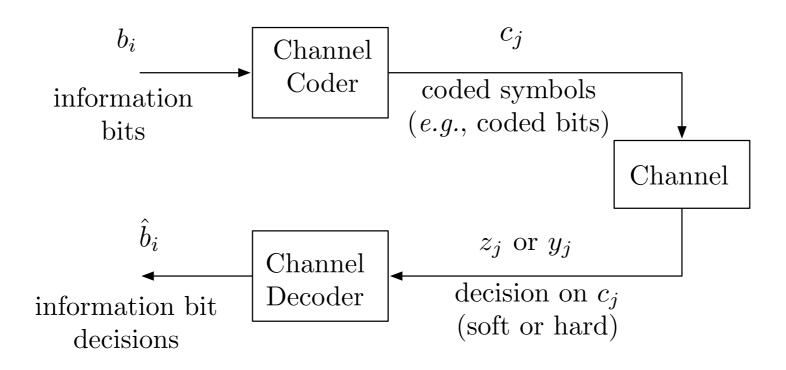
Typical Use of Coding in Modern System



our focus for coding topics

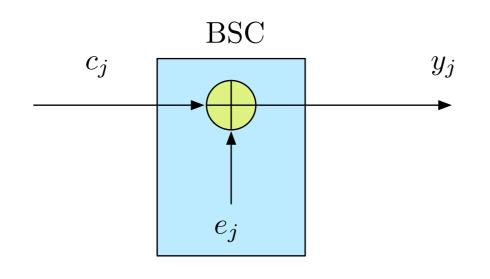
Hybrid ARQ (H-ARQ) System

Coding Channel Models

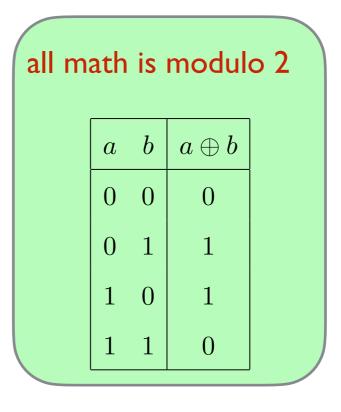


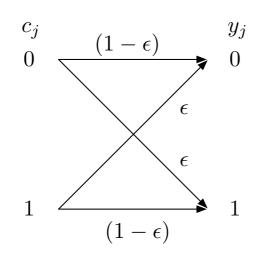
- Typically the coding channel is an abstraction of a more detailed model
 - e.g., it may encapsulate modulation/demod/demapping

Binary Symmetric Channel



 $e_j(u) \sim \text{iid Bernoulli}(\epsilon)$



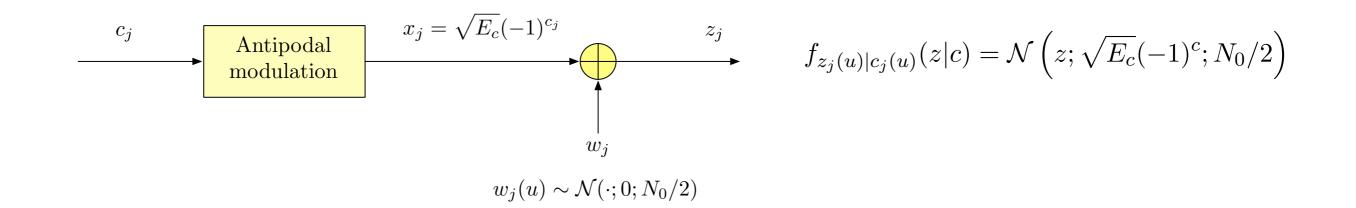


labels: $p_{y_j(u)|c_j(u)}(y_j|c_j)$

BSC is a special case the discrete memoryless channel (DMC) (non-binary)

DMCs are fully characterized by this type of transition diagram

BPSK-AWGN or BI-AWGN Channel



BI-AWGN Channel is a special case of the modulation-constrained AWGN channel

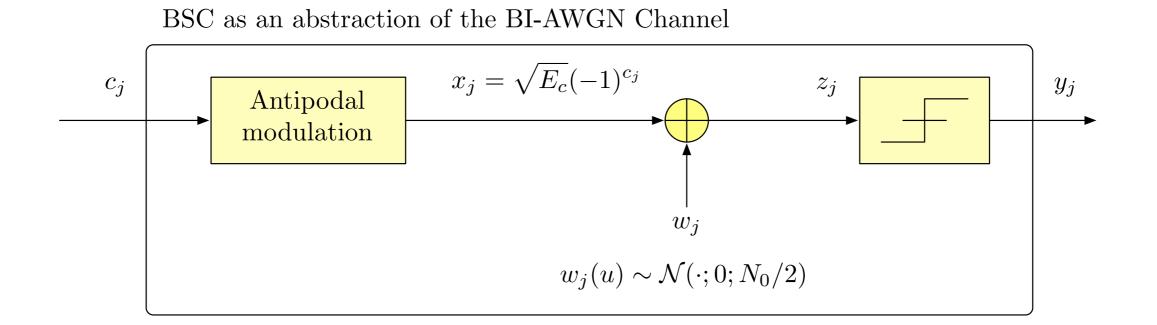
e.g., the 16-PSK constrained AWGN channel

$$\mathbf{z}_k(u) = \mathbf{x}(u) + \mathbf{w}(u)$$
$$\mathbf{w}(u) \sim \mathcal{N}_2\left(\cdot; \mathbf{0}; \frac{N_0}{2}\mathbf{I}\right)$$

 $\mathbf{x}(u) \in 16$ PSK constellation

7

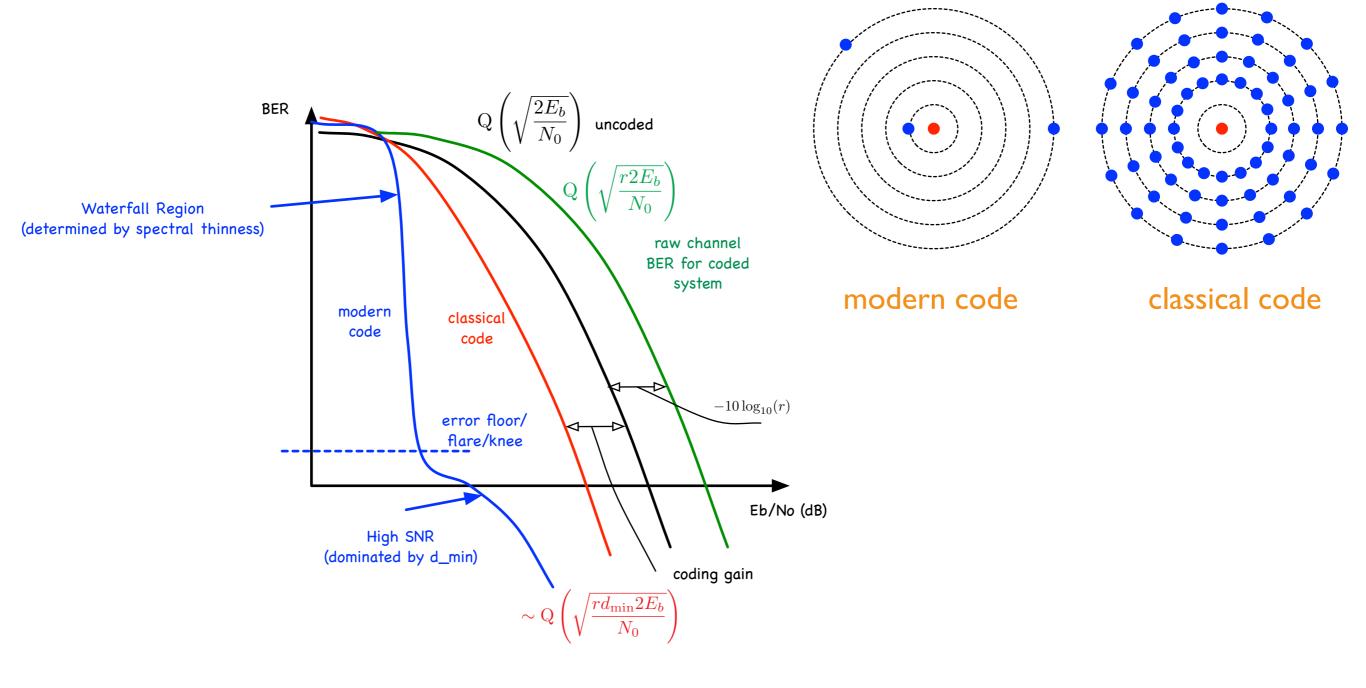
BSC as Abstraction of BI-AWGN Channel



$$\epsilon = \mathcal{Q}\left(\sqrt{\frac{2E_c}{N_0}}\right) = \mathcal{Q}\left(\sqrt{\frac{r2E_b}{N_0}}\right)$$

raw channel error probability

Typical Performance on BI-AWGN



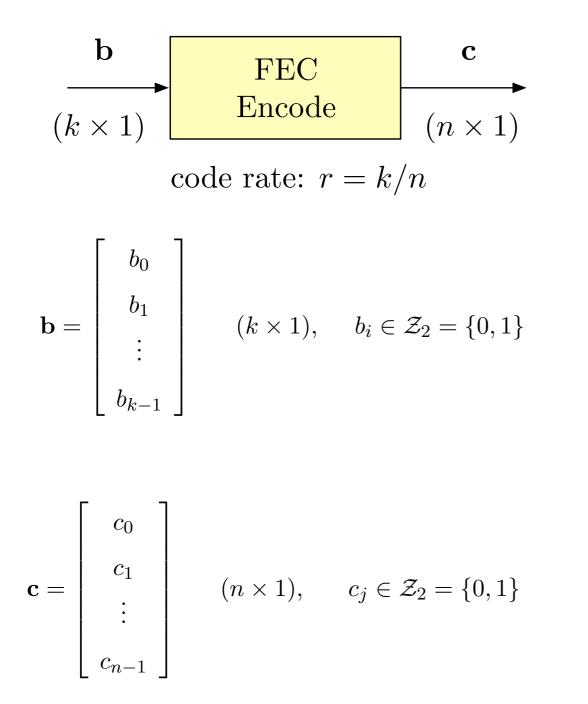
Coding Topics

- Coding channel models
- Basics of code constructions
- Decoding rules HIHO, SIHO, SISO
- Classical coding
- Modern Coding
- Performance limits
 - Capacity and finite block-size bounds)
 - Bounds for specific codes

Code Constructions

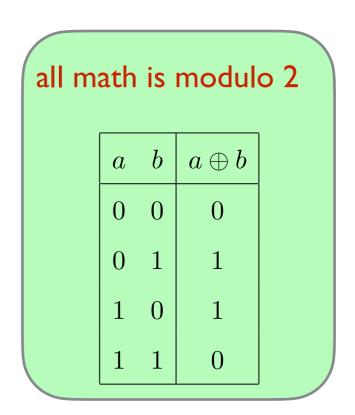
- We are focused on **linear binary** codes
 - binary inputs, binary outputs
 - linear: sum of two codewords is also a codeword
- Linear (binary) block codes
- Linear (binary) convolutional codes
- Modern codes
 - Low Density Parity Check (LDPC) Codes
 - Concatenated convolutional codes e.g., Turbo codes

Linear Block Codes



 $\mathbf{c}^{ ext{t}} = \mathbf{b}^{ ext{t}}\mathbf{G}$ $\mathbf{c} = \mathbf{G}^{ ext{t}}\mathbf{b}$

 $\mathbf{c}^{\mathrm{t}} = \mathbf{b}^{\mathrm{t}}\mathbf{G}$ \mathbf{G} $(k \times n)$ Generator Matrix



Coding Conventions/Notation

- (n,k) code n, k almost universal notation
 - n = (output) block size
 - k = input/info block size
- row vectors are often used
 - (I use column vectors)
- Mod-2 arithmetic is not explicitly denoted
 - just a+b and (a+b)%2 is implied

Linear Block Codes - Generator Matrix

 $\mathbf{c}^{t} = \mathbf{b}^{t}\mathbf{G}$

 $\mathbf{c} = \mathbf{G}^{\mathrm{t}}\mathbf{b}$

b
FEC
Encode

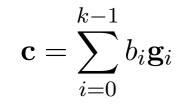
$$(k \times 1)$$

 c
 $(n \times 1)$
 c
 c
 $(n \times 1)$

G $(k \times n)$ Generator Matrix

$$\mathbf{G}^{\mathrm{t}} = \left[\begin{array}{cccc} \mathbf{g}_0 & \mathbf{g}_1 & \cdots & \mathbf{g}_{k-1} \end{array} \right]$$

Only interested in full-rank **G** - no repeated codewords

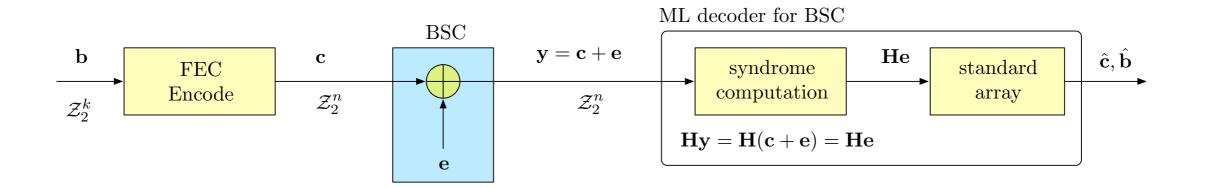


columns of G-transpose are a basis and the info bits are the coefficients of codeword expansion in this basis

A linear block code is a linear subspace of the space of all $(n \times I)$ binary vectors

$$\mathcal{C} = \left\{ \mathbf{c} : \mathbf{c} = \mathbf{G}^{t} \mathbf{b}, \mathbf{b} \in \mathbb{Z}_{2}^{k} \right\} \subset \mathbb{Z}_{2}^{n}$$
$$\dim(\mathcal{C}) = k$$
$$M = 2^{k} = \text{number of codewords}$$

Linear Block Codes - Parity Check Matrix



The parity check matrix **H** also characterizes the code

 $Hc = 0 \iff c \in C$ $H \text{ is } ((n - k) \times n)$ rank(H) = n - k $HG^{t} = O$

the code as a constraint

$$\mathcal{C} = \{\mathbf{c} : \mathbf{H}\mathbf{c} = \mathbf{0}\} \subset \mathcal{Z}_2^n$$

 $\dim(\mathcal{C}) = k$

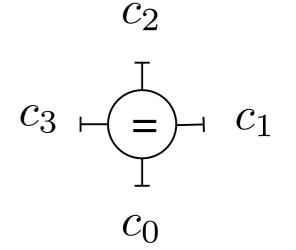
 $M = 2^k =$ number of codewords

Example: Repetition Code

Codewords for n = 4: 0000 IIII

Number of codewords =2, so k = 1

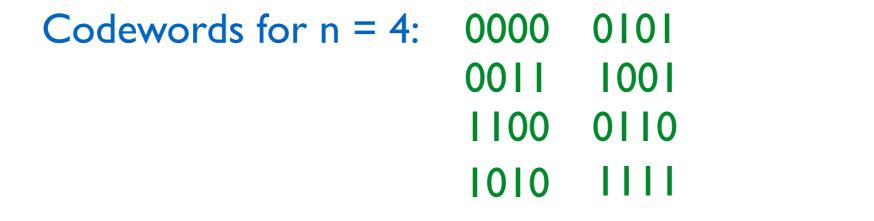
rate = I/n (info bits per channel use)

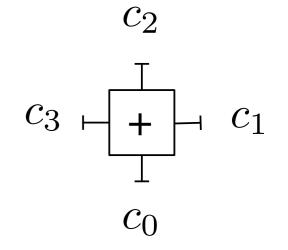


$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

In general, this is an (n, 1) code

Example: Single Parity Check Code





Number of codewords = 8, so k = 3 = n-1

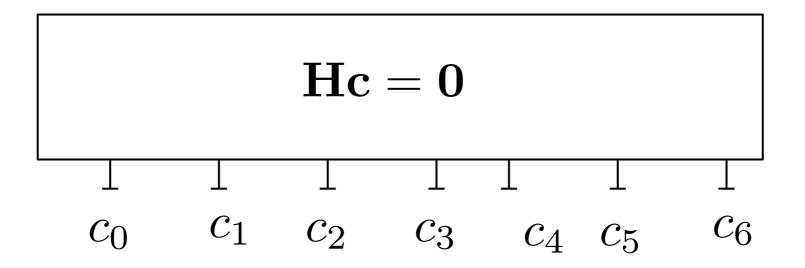
rate = (n-1)/n (info bits per channel use)

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

In general, this is an (n, n-1) code

Example: (7,4) Hamming Code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

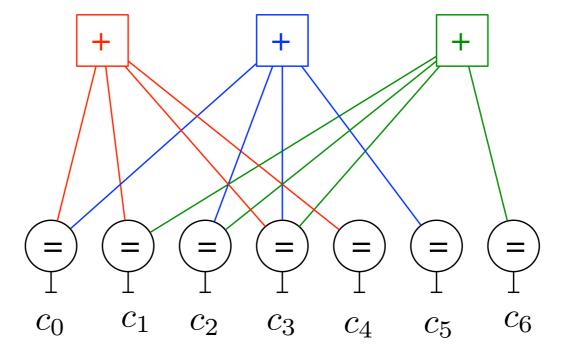


Linear Block Code ("Multiple Parity Check Code") All three SPCs must be satisfied simultaneously

Example: (7,4) Hamming Code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

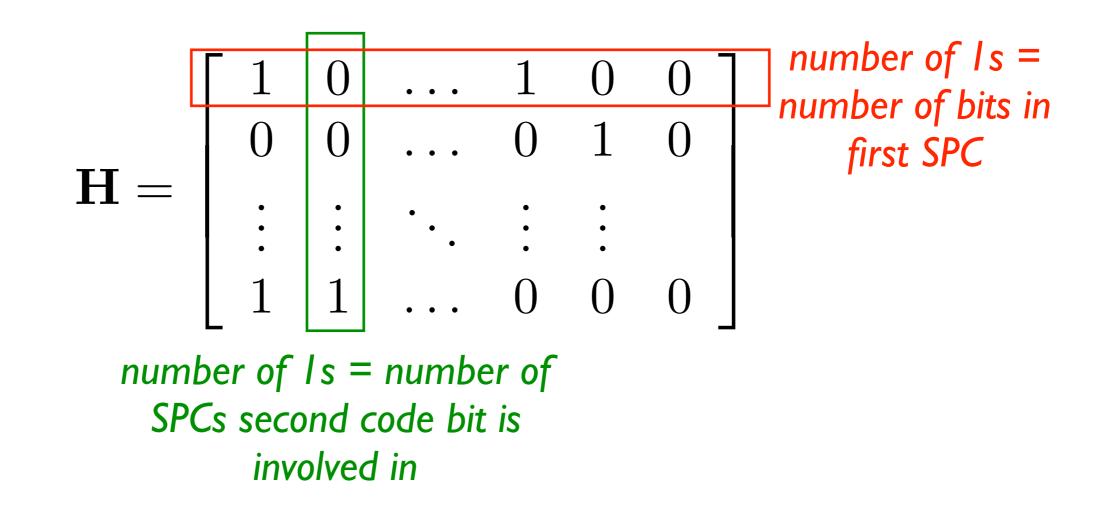
Parity Check Graph or Tanner Graph



All local constraints must be satisfied simultaneously

Example: Low Density Parity Check (LDPC) Code

Just a very large (multiple) parity check code with mostly Os



A systematic way to build codes with very large block size

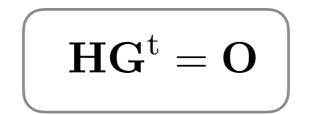
Example: (7,4) Hamming Code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

These H and G examples are in a specific format

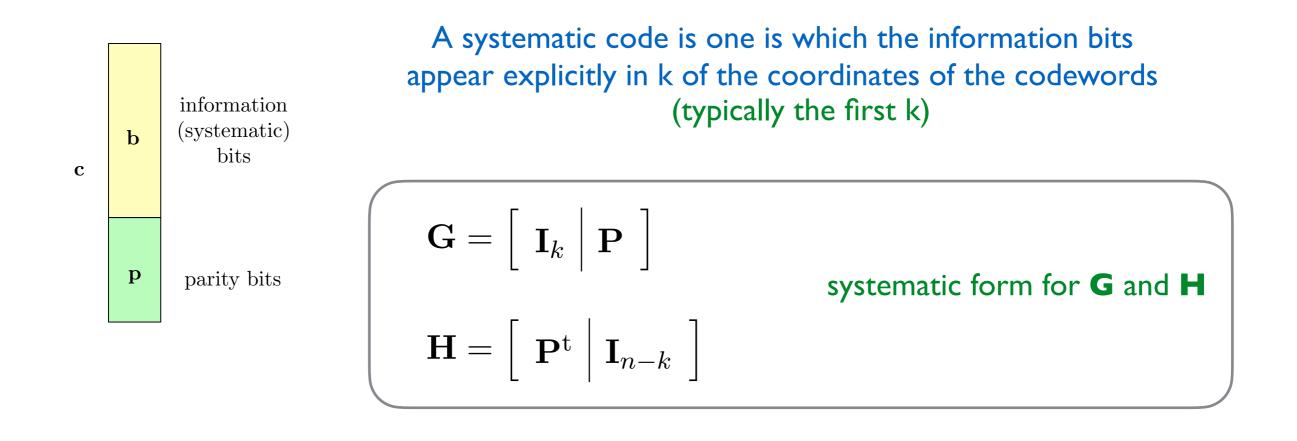
Relation Between Generator/Parity Check

$$\mathbf{Hc} = \mathbf{HG}^{\mathrm{t}}\mathbf{b} = \mathbf{0} \quad \forall \ \mathbf{b} \in \mathcal{Z}_{2}^{k}$$



All H and G for a given code must satisfy this

Systematic Code/Form



$$\begin{split} \mathbf{G}^{\mathrm{t}}\mathbf{b} &= \left[\begin{array}{c} \mathbf{I}_{k} \\ \mathbf{P}^{\mathrm{t}} \end{array} \right] \mathbf{b} = \left[\begin{array}{c} \mathbf{b} \\ \mathbf{P}^{\mathrm{t}}\mathbf{b} \end{array} \right] = \left[\begin{array}{c} \mathbf{b} \\ \mathbf{p} \end{array} \right] \\ \mathbf{H}\mathbf{c} &= \mathbf{H} \left[\begin{array}{c} \mathbf{b} \\ \mathbf{p} \end{array} \right] = \left[\begin{array}{c} \mathbf{P}^{\mathrm{t}} \mid \mathbf{I}_{n-k} \end{array} \right] \left[\begin{array}{c} \mathbf{b} \\ \mathbf{p} \end{array} \right] = \left[\begin{array}{c} \mathbf{p} + \mathbf{p} \end{array} \right] = \mathbf{0} \end{split}$$

Code vs. Encoder

$$\mathcal{C} = \left\{ \mathbf{c} : \mathbf{c} = \mathbf{G}^{\mathrm{t}}\mathbf{b}, \mathbf{b} \in \mathcal{Z}_{2}^{k}
ight\} = \left\{ \mathbf{c} : \mathbf{H}\mathbf{c} = \mathbf{0}
ight\}$$

A code is the linear space — think of this as the signal set

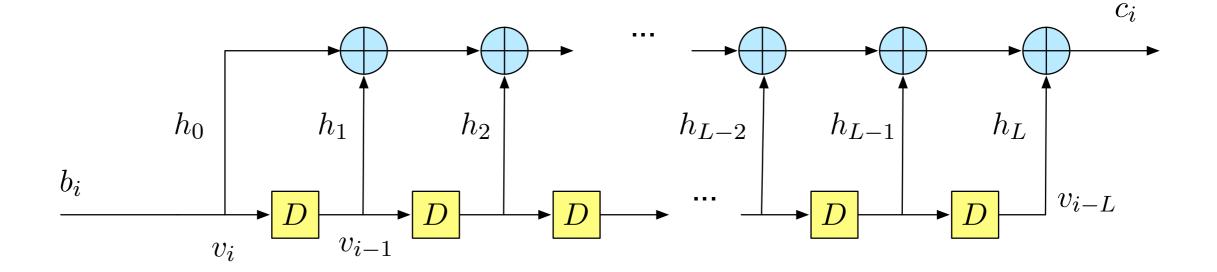
There are many generators for the same code

e.g., can do row operations on G without affecting row-space which is the code

An encoder is the mapping from **b** to **c** — i.e., the generator matrix **G** think of this as the bit-labeling of the signal set

If we do MAP codeword decoding, changing encoders will not affect the probability of codeword error, but may affect the probability of bit error

non-recursive or feedforward convolutional encoder



$$v_i = b_i$$

 $c_i = h_0 v_i + h_1 v_{i-1} + h_2 v_{i-2} + \dots + h_L v_{i-L}$

generator polynomial:

$$G(D) = h_0 + h_1 D + h_2 D^2 \dots + h_L D^L$$

state:

 $s_i = (v_{i-1}, v_{i-2}, \dots, v_{i-L})$

L = memory of the convolution code

K = (L+I) constraint length of the convolution code

Number of states $= 2^L$

Finite State Machine (FSM) Model

 $s_{i+1} = \text{next_state}(b_i, s_i)$

 $\mathbf{c}_i = \operatorname{output}(b_i, s_i)$

FSM model of Convolution Code (encoder) is given by any of the following:

- State transition table (above rules)
- State transition diagram
- Trellis diagram

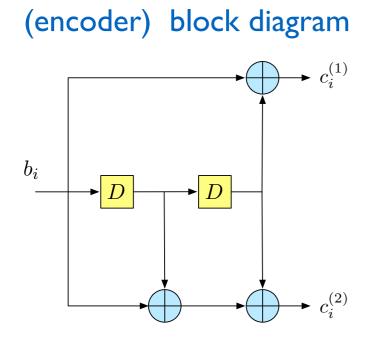
Feedforward CC Example

00

11

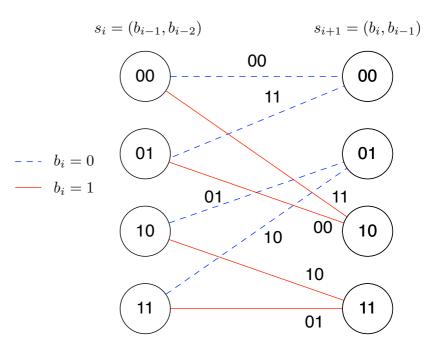
00

11

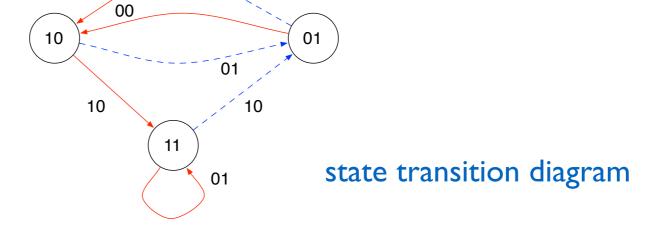


GI = 5 = (101)

G2 = 7 = (|||)

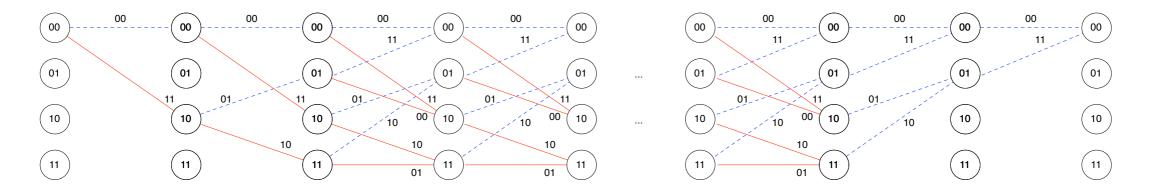


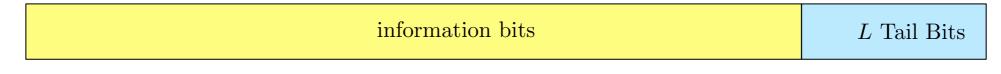
trellis diagram (one stage)



trellis (typical usage)

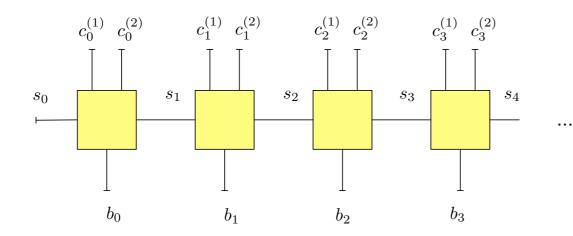
all valid configurations of the code

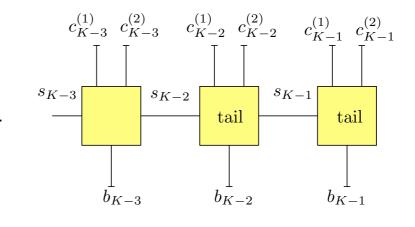




known initial state $s_0 = (00)$

Tail bits drive to zero final state





Non-recursive CCs are common in classical coding

"Oldenwalder Code": 64 state, r=1/2 GI = 133G2 = 171 $d_free = 10$

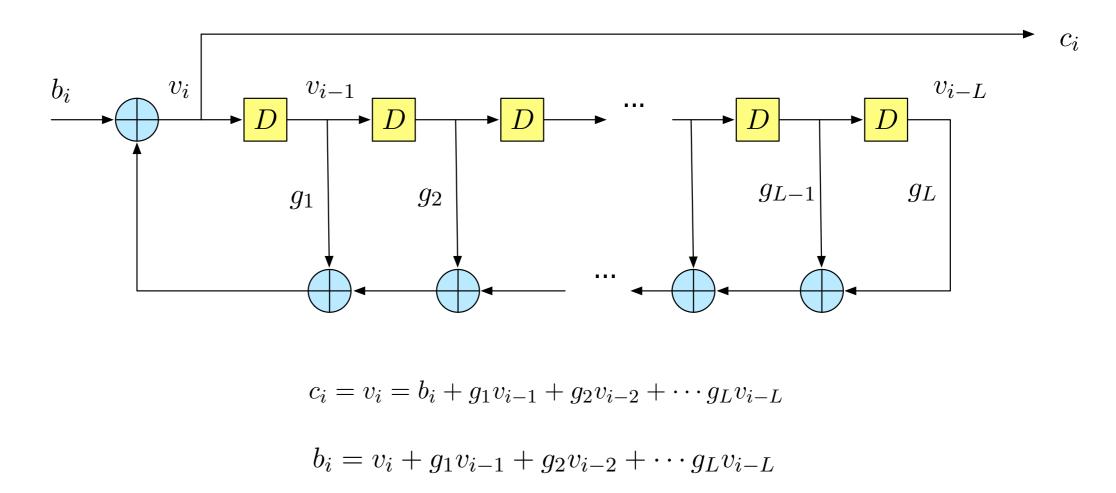
NASA's Voyager mission, many satellite modems, Wi-Fi

CDMA Cellular	256 state, r=1/2	GI = 752	d_free = I2
(IS-95):		G2 = 561	

As L increase: decoder complexity increases, performance improves

see Benedetto, page 549 for list of best CCs

recursive or feedback convolutional encoder



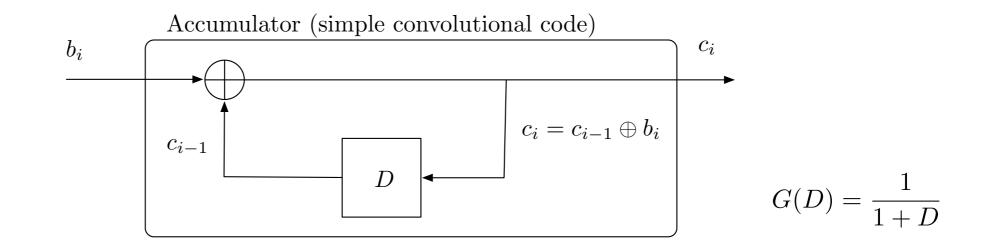
generator polynomial:

$$G(D) = \frac{1}{1 + g_1 D + g_2 D^2 + \dots + g_L D^L}$$

 $s_i = (v_{i-1}, v_{i-2}, \dots, v_{i-L})$

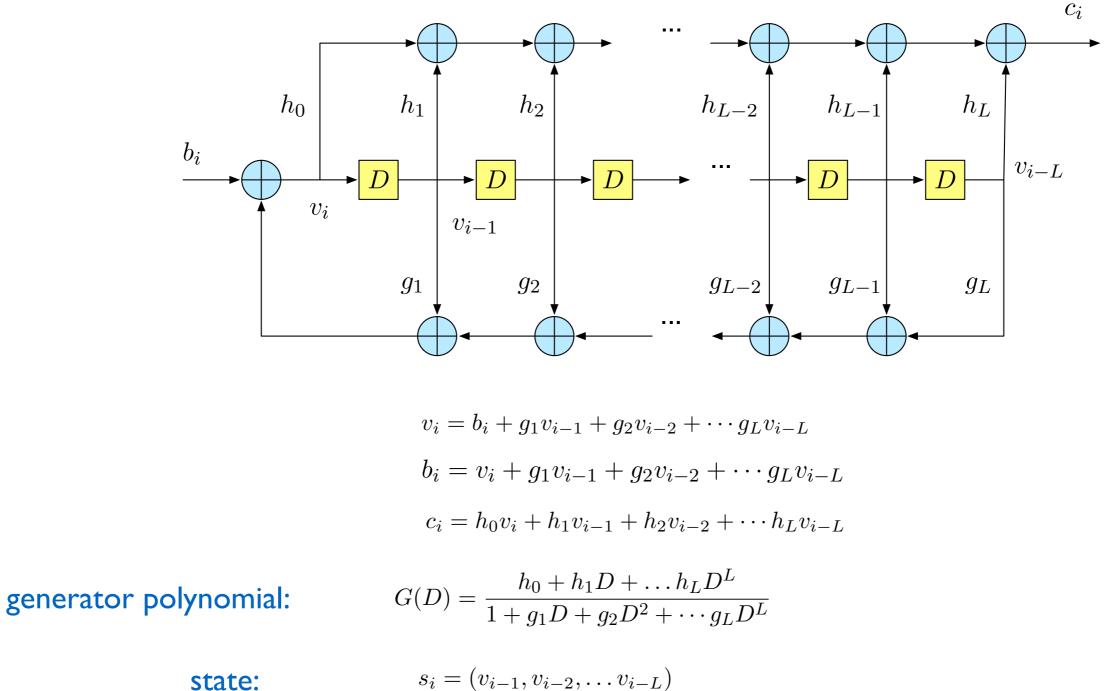
state:

recursive or feedforward convolutional encoder

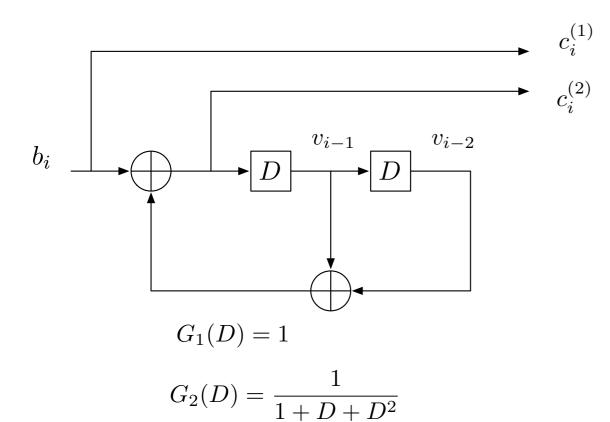


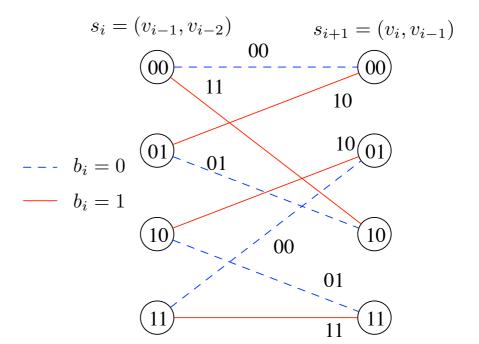
example: accumulator (recall binary differential encoder)

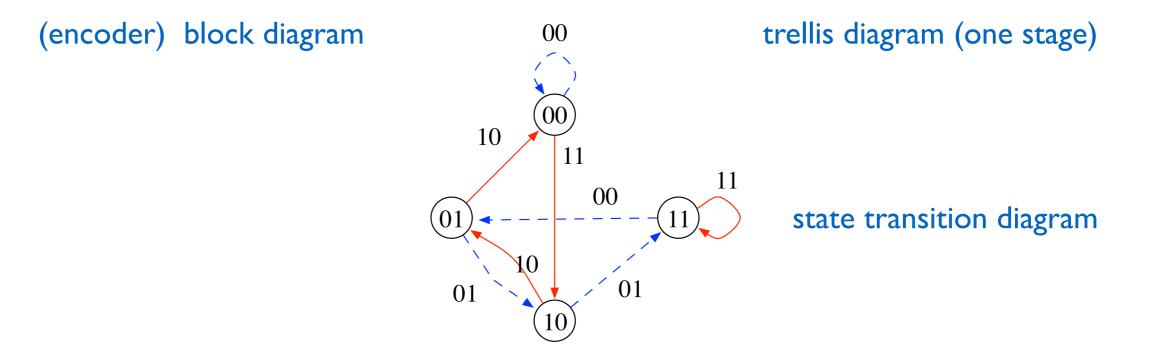
feedforward/feedback encoder (general case) - recursive if denominator != I



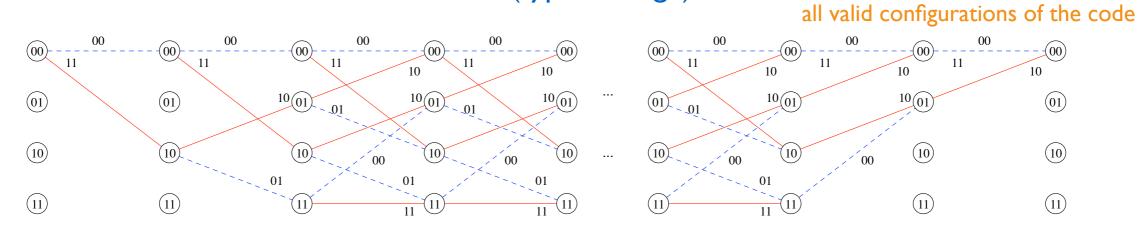
© Keith M. Chugg, 2017

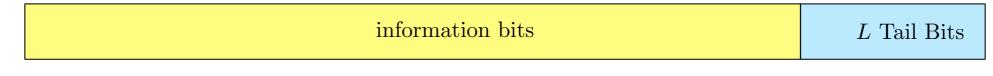






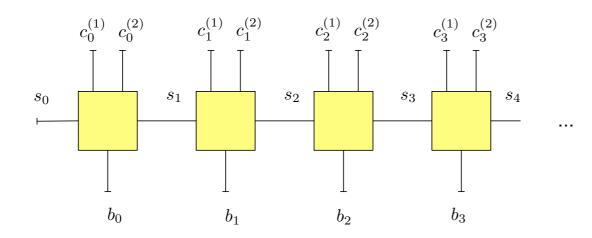
trellis (typical usage)

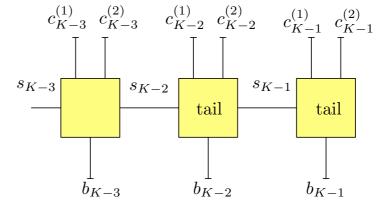




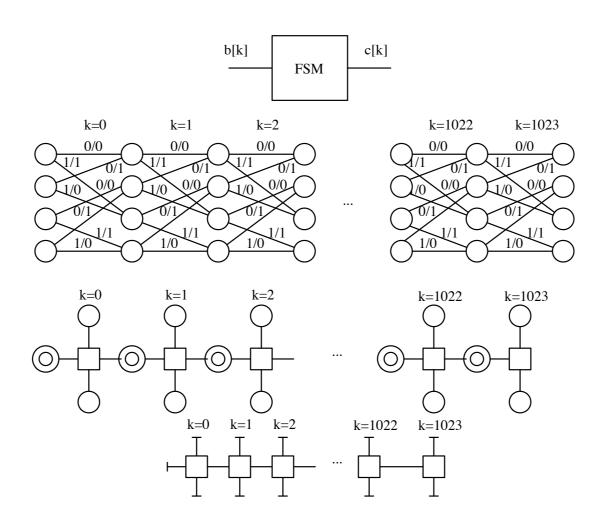
known initial state $s_0 = (00)$

Tail bits drive to zero final state

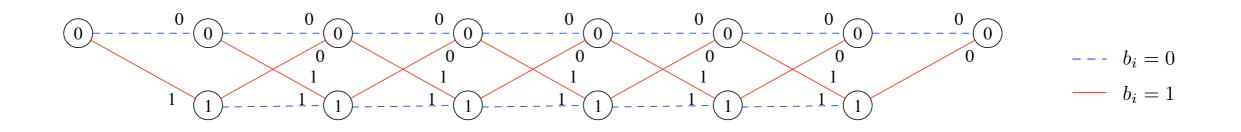




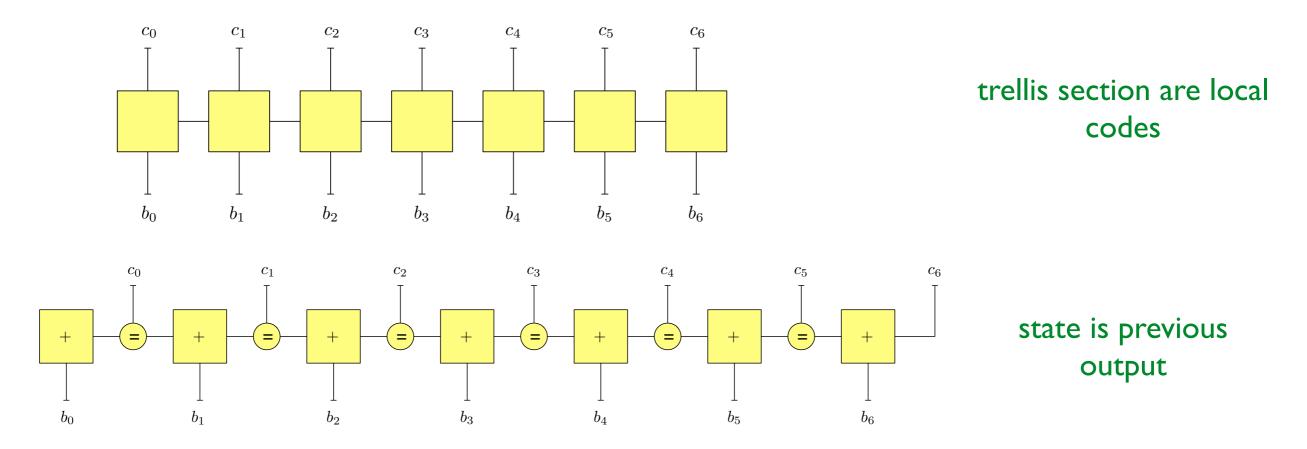
Model	Time (index)	Values
Block Diagram	implicit	implicit
Trellis	explicit	explicit
Graph	explicit	implicit



Accumulator Trellis & Graphical Model

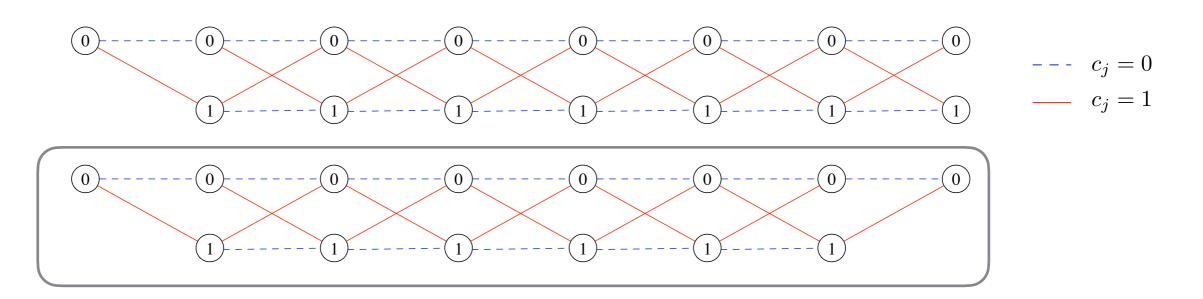


 $c_i = c_{i-1} + b_i = s_i + b_i$



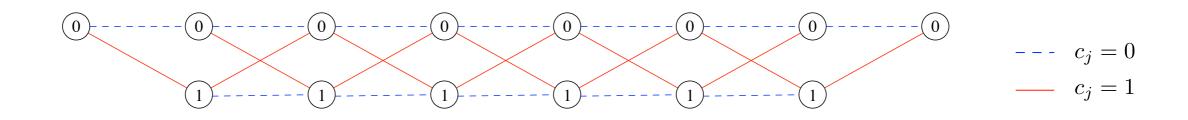
Parity Check Trellis For Linear Block Codes

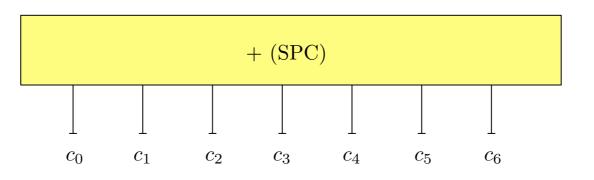
(n,n-1) SPC $\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$ $s_j = \sum_{m=0}^{j-1} c_j = s_{j-1} + c_j$

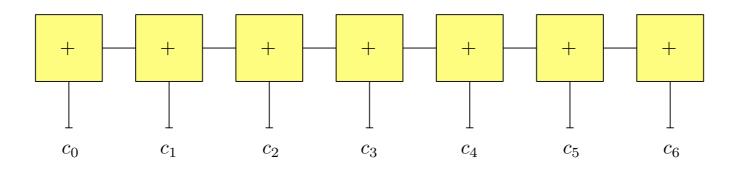


all valid codewords are paths in this trellis (total parity 0)

Parity Check Trellis For Linear Block Codes

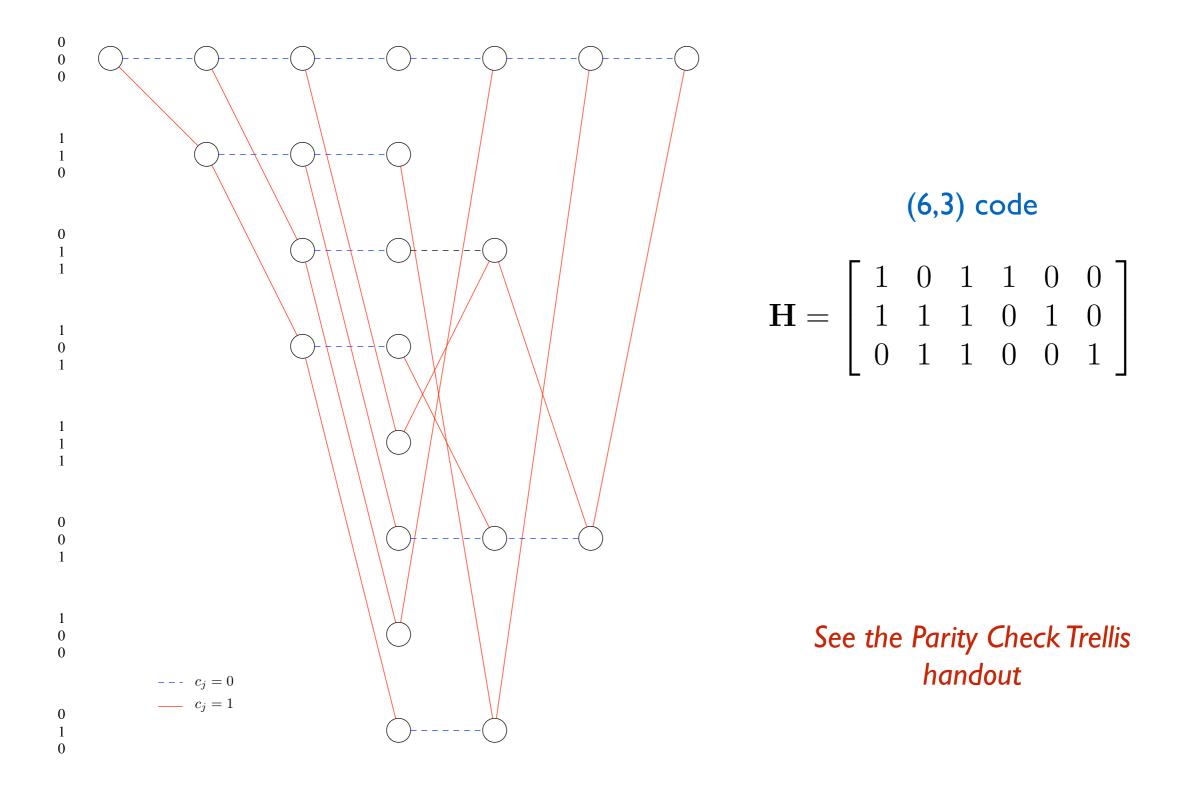




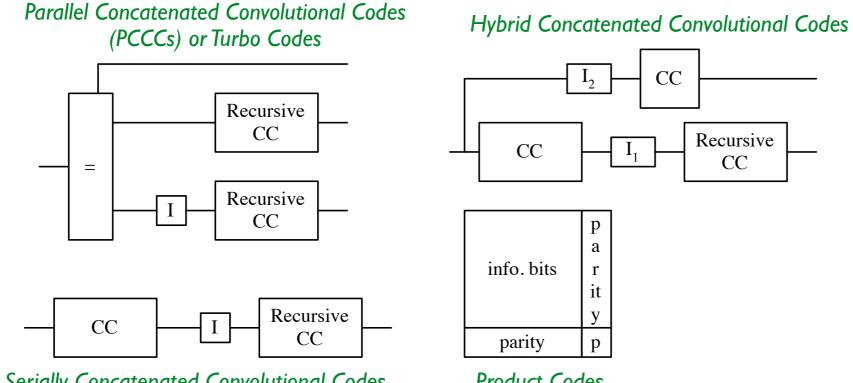


notice that this is very similar to the accumulator trellis (w/ no "output")

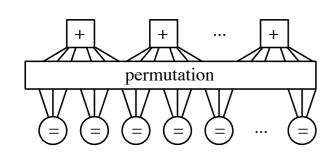
Parity Check Trellis For Linear Block Codes



Modern Codes



Serially Concatenated Convolutional Codes (SCCCs)



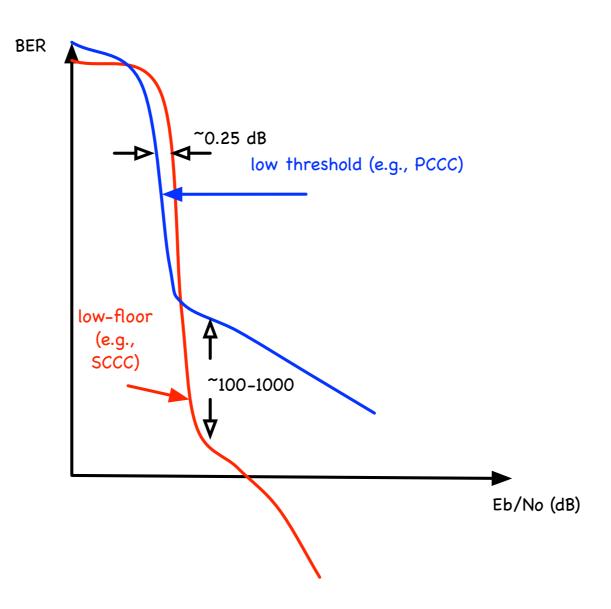
Low Density Parity Check (LDPC)

All are variations on a theme:

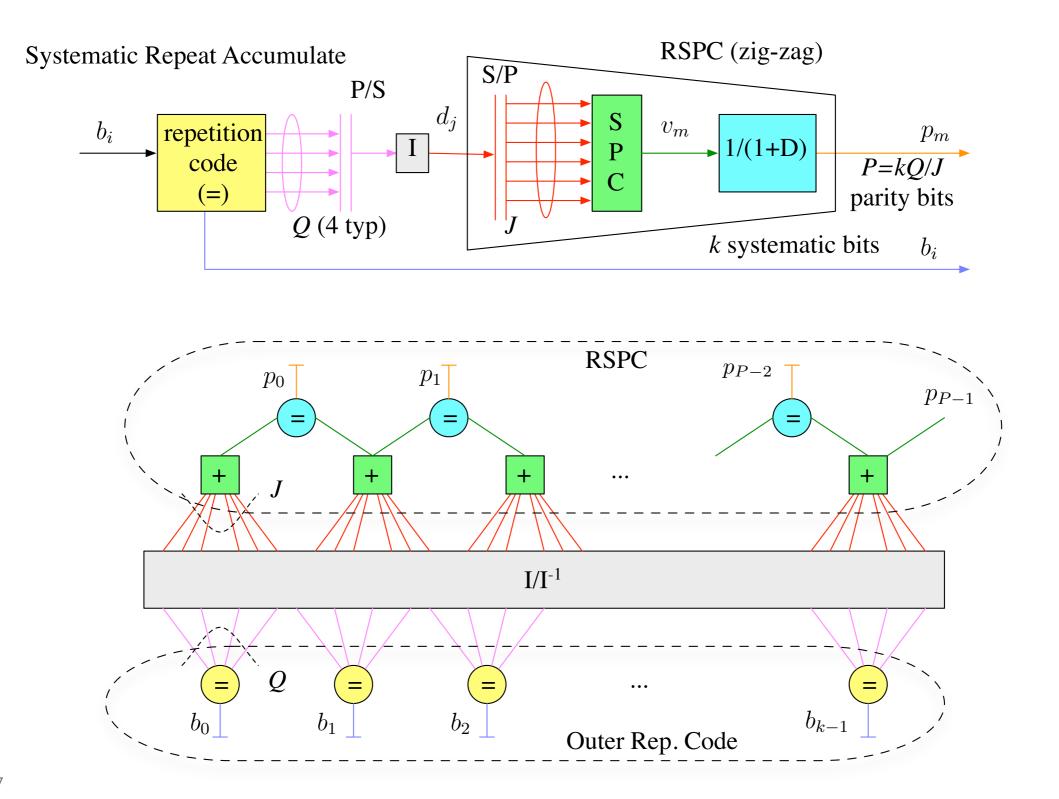
- Build big, global code from small local codes
- Local codes share common variables through permutations

Modern Codes

Common performance trade-off

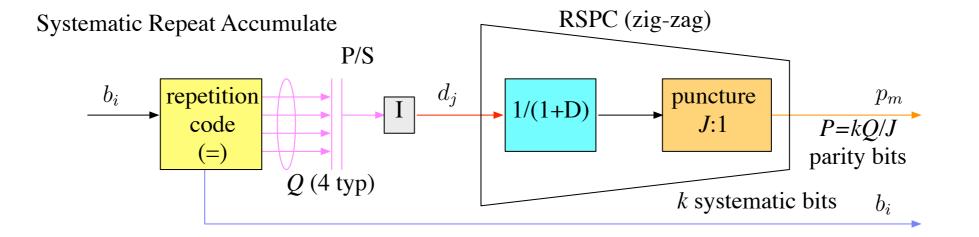


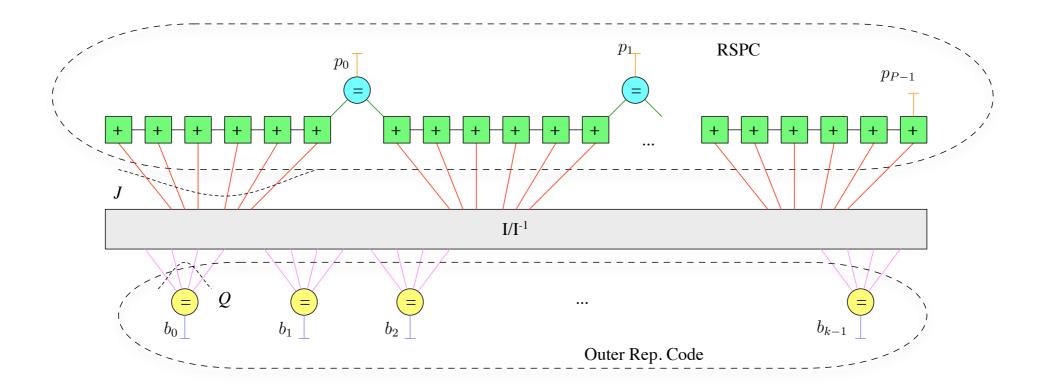
Modern Code Example: Systematic Repeat Accumulate



Modern Code Example: Systematic Repeat Accumulate

punctured accumulator model

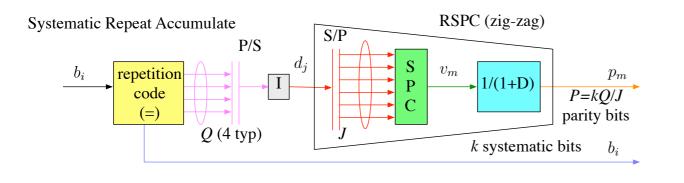






+

Modern Code Example: Systematic Repeat Accumulate

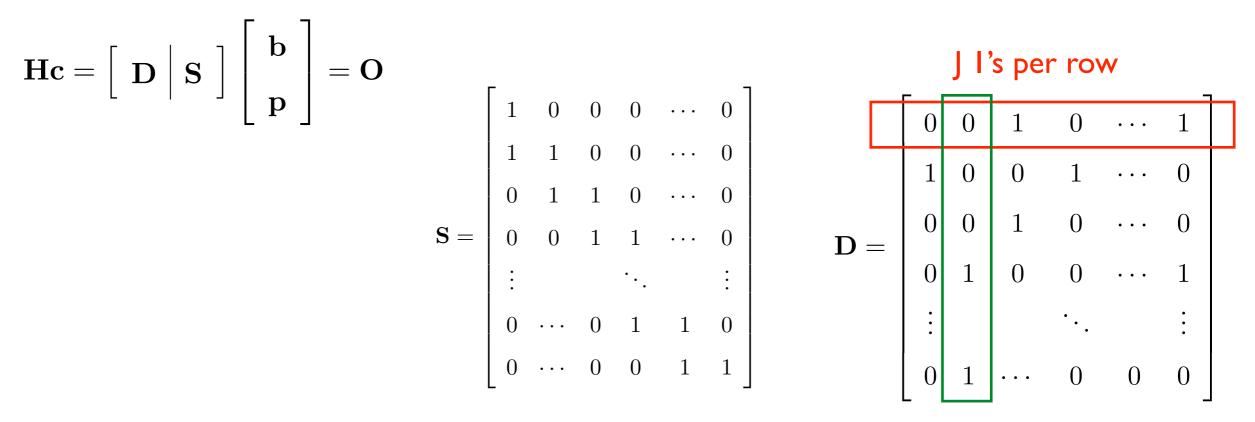


$$v_m = d_{mJ} + d_{mJ+1} + \dots + d_{mJ+(J-1)}$$

 $p_m = p_{m-1} + v_m$

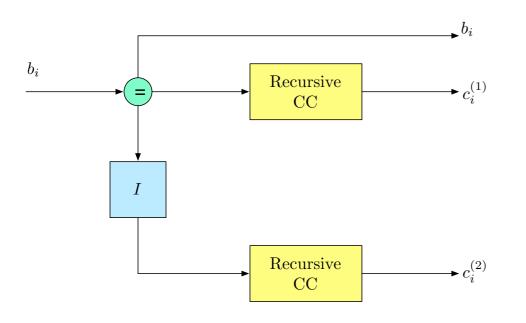
$$0 = p_m + p_{m-1} + (d_{mJ+1} + \dots + d_{mJ+(J-1)})$$

 $d_{I(i)} = b_i$

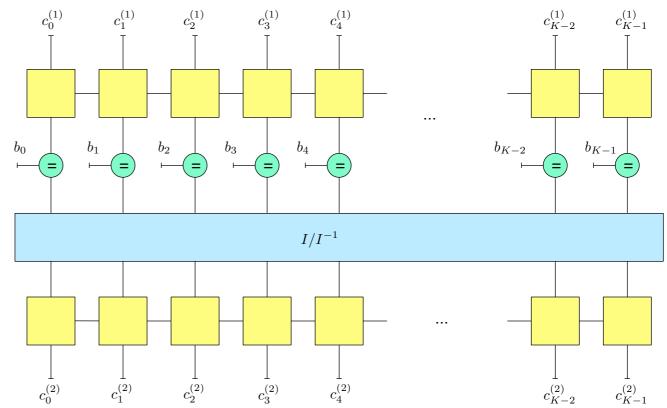


Q I's per column

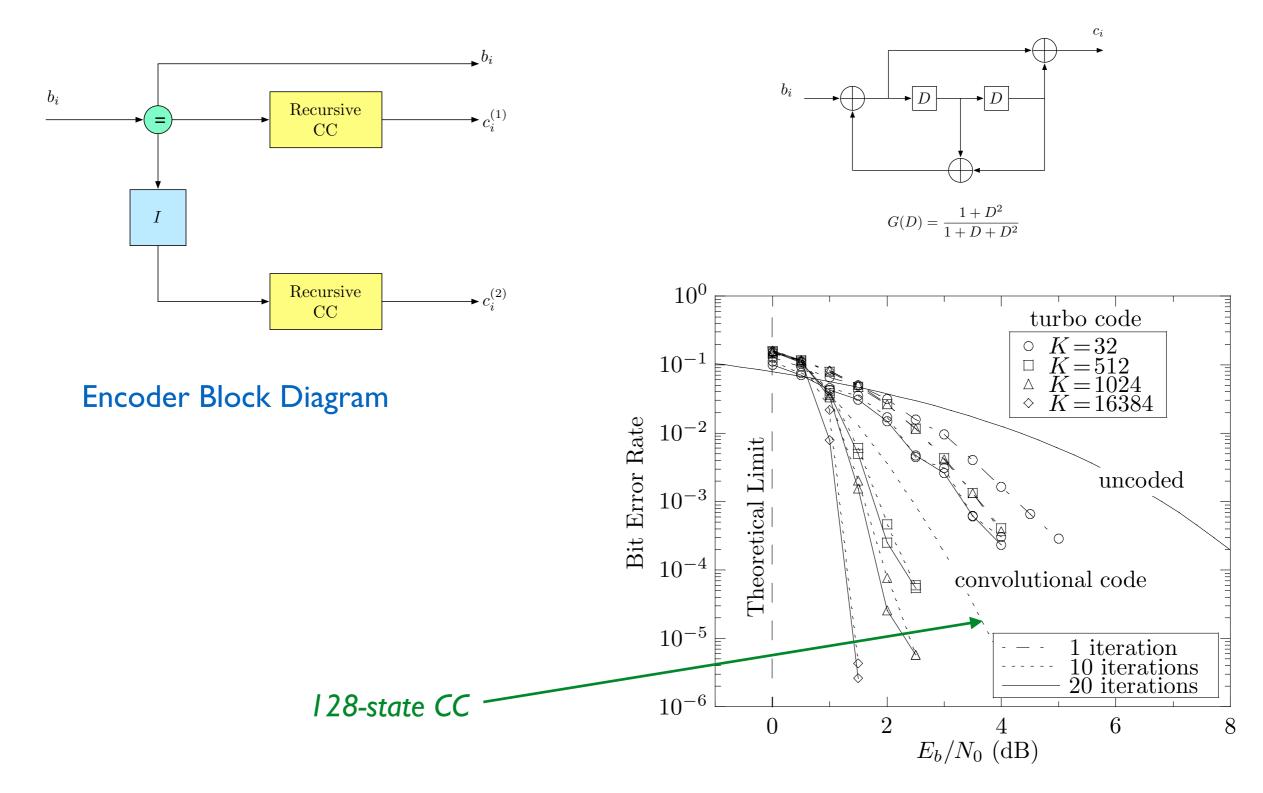
Modern Code Example: PCCCC



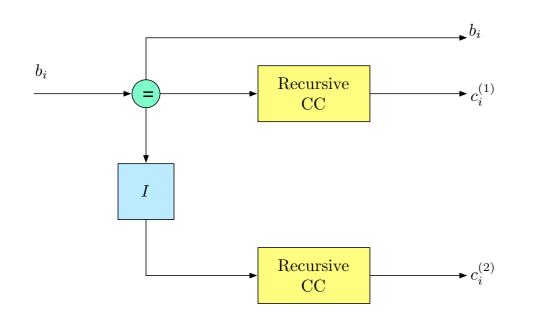
Encoder Block Diagram

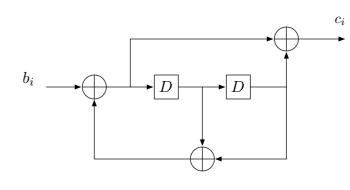


Modern Code Example: PCCCC



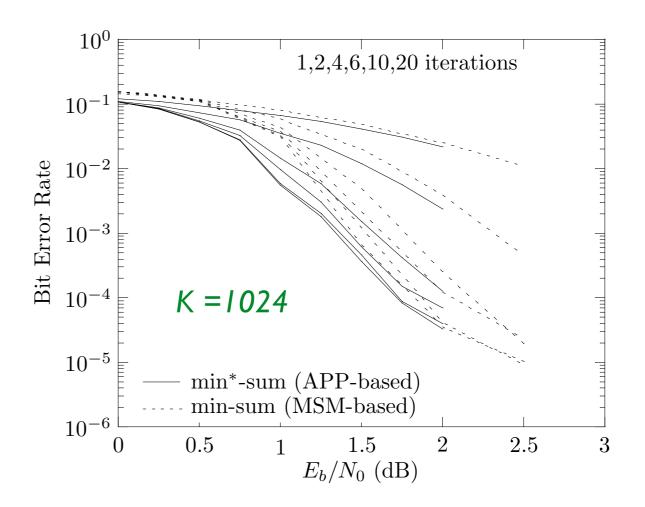
Modern Code Example: PCCCC





 $G(D) = \frac{1 + D^2}{1 + D + D^2}$

Encoder Block Diagram



Coding Topics

- Coding channel models
- Basics of code constructions
- Decoding rules HIHO, SIHO, SISO
- Classical coding
- Modern Coding
- Performance limits
 - Capacity and finite block-size bounds)
 - Bounds for specific codes

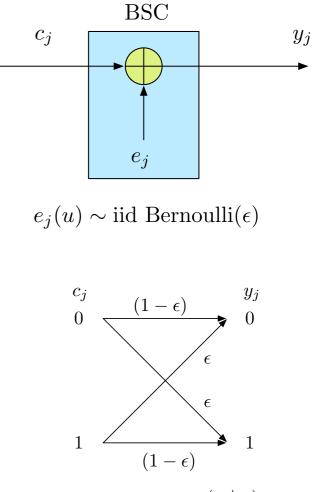
Decoding: Hard-in/Hard-out

MAP codeword decoding over the BSC

Assuming all inputs bits are iid, Bernoulli(1/2):

$$p_{\mathbf{y}(u)|\mathbf{c}(u)}(\mathbf{y}|\mathbf{c}) = \prod_{j=0}^{n-1} p_{y_j(u)|c_j(u)}(y_j|c_j) = \epsilon^{d_H(\mathbf{y},\mathbf{c})} (1-\epsilon)^{n-d_H(\mathbf{y},\mathbf{c})}$$

$$-\ln\left[p_{\mathbf{y}(u)|\mathbf{c}(u)}(\mathbf{y}|\mathbf{c})\right] \equiv d_H(\mathbf{y},\mathbf{c})\ln\left[\frac{1-\epsilon}{\epsilon}\right]$$



labels: $p_{y_j(u)|c_j(u)}(y_j|c_j)$

ML CW Decoding = Minimum Hamming Distance Decoding

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c} \in \mathcal{C}} d_H(\mathbf{y}, \mathbf{c})$$

Minimum Distance of Linear Code

$$d_{\min} = \arg\min_{\mathbf{c}\neq \tilde{\mathbf{c}}\in\mathcal{C}} d_H(\mathbf{c},\tilde{\mathbf{c}})$$

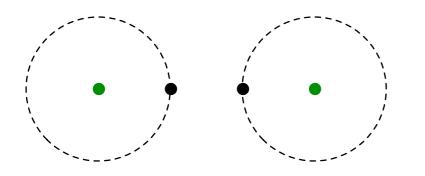
$$= rg\min_{\mathbf{c} \neq \tilde{\mathbf{c}} \in \mathcal{C}} d_H(\mathbf{0}, \mathbf{c} + \tilde{\mathbf{c}})$$

 $= \arg \min_{\mathbf{c} \neq \mathbf{0} \in \mathcal{C}} d_H(\mathbf{0}, \mathbf{c}) \qquad \text{linear code: sum of codewords is a codeword}$

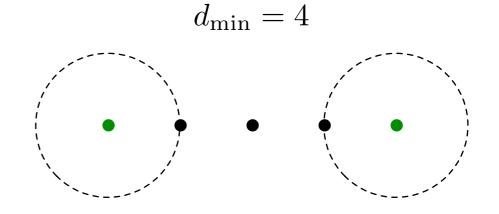
Minimum (Hamming) distance or minimum (Hamming) weight of the code

Error Correction Capability of Linear Code

 $d_{\min} = 3$



Can correct all errors of weight 0 or 1



Can correct all errors of weight 0 or 1

Error correction capability of code

$$t_c = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor$$

can correct all error patterns of weight t_c or smaller

Decoding: Hard-in/Hard-out

minimum Hamming distance decoding via the standard array

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

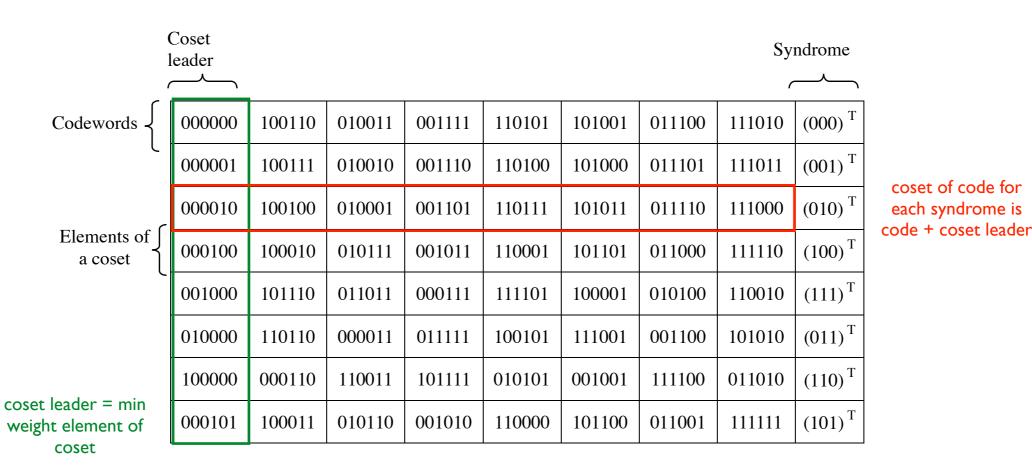
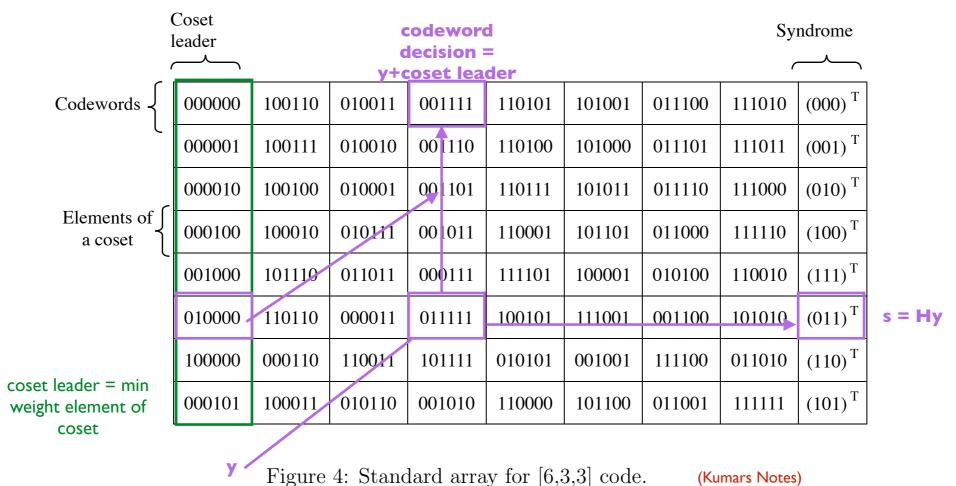


Figure 4: Standard array for [6,3,3] code. (Kumars Notes)

Minimum Hamming Distance Decoding via Syndromes

- 1. Priori to decoding, for each of the 2^{n-k} cosets, store the minimum weight element. This is the coset leader: $\mathbf{l}(\mathbf{s})$.
- 2. When \mathbf{y} is received, compute the syndrome $\mathbf{s} = \mathbf{H}\mathbf{y}$.
- 3. The minimum Hamming distance decision is: $\hat{\mathbf{c}} = \mathbf{y} + \mathbf{l}(\mathbf{s})$.

The standard array also includes all possible 2ⁿ binary vectors arranged in cosets so that when a given n-tuple is received, it decodes to the codeword above it in the zero-coset.



Interpreting the Standard Array

Note that the coset leaders are all of the correctable error patterns

All weight t_c and below vectors must be coset leaders!

Typically, will have some coset leaders with weight t_c+1 which means that the code can correct some patterns of weight t_c+1

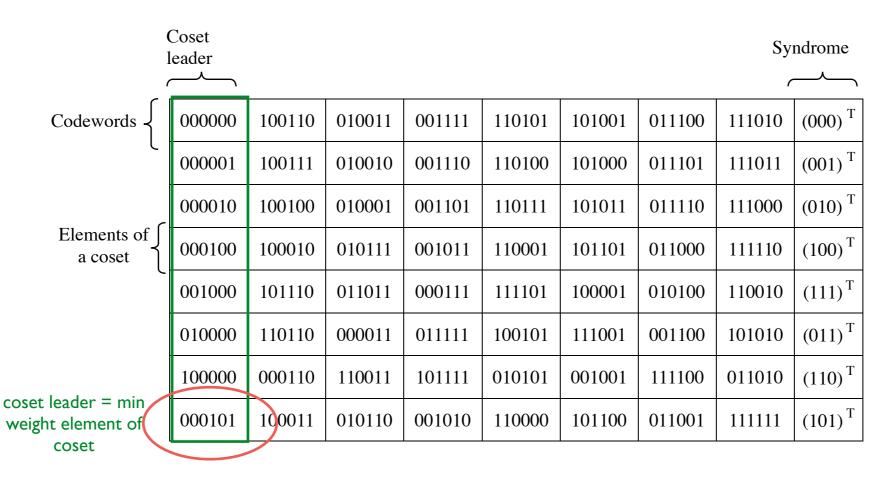


Figure 4: Standard array for [6,3,3] code. (Kumars Notes)

Performance of HIHO Decoding on BSC

Since all weight t_c and lower error patterns are correctable:

$$1 - P_{CW} = 1 - \Pr\{\hat{\mathbf{c}}(u) \neq \mathbf{c}(u)\}$$
$$\geq \Pr\{w_H(\mathbf{e}(u)) \leq t_c\}$$

$$=\sum_{w=0}^{t_c} \begin{pmatrix} n \\ w \end{pmatrix} \epsilon^w (1-\epsilon)^{n-w}$$

$$P_{CW} \le 1 - \sum_{w=0}^{t_c} \binom{n}{w} \epsilon^w (1-\epsilon)^{n-w}$$
$$= \sum_{w=t_c+1}^n \binom{n}{w} \epsilon^w (1-\epsilon)^{n-w}$$

 $\approx \binom{n}{t_c+1} \epsilon^{(t_c+1)} (1-\epsilon)^{n-(t_c+1)}$ small epsilon

Performance of HIHO Decoding on BSC

If you have the coset leaders:

 $P_{CW} = \Pr\{\mathbf{e}(u) \neq \text{a coset leader}\}$

 $= 1 - \Pr\{\mathbf{e}(u) \text{ is a coset leader}\}$

For example (6,3,3) code:

$$P_{CW} = 1 - \left[(1 - \epsilon)^6 + 6\epsilon(1 - \epsilon)^5 + \epsilon^2(1 - \epsilon)^4 \right]$$

Note that the bound yields:

$$P_{CW} \le 1 - \left[(1 - \epsilon)^6 + 6\epsilon (1 - \epsilon)^5 \right]$$

Interpreting the Standard Array

The number of coset leaders:

 2^{n-k}

Coset leaders with weight <= t_c:

$$\sum_{w=0}^{t_c} \binom{n}{w}$$

$$\sum_{w=0}^{t_c} \binom{n}{w} \le 2^{n-k}$$

This is a bound on d_min — Sphere packing or Hamming bound

$$\sum_{w=0}^{t_c} \binom{n}{w} = 2^{n-k}$$

Possible?

Yes: called a "perfect code" (rare)

only 3 known perfect binary codes

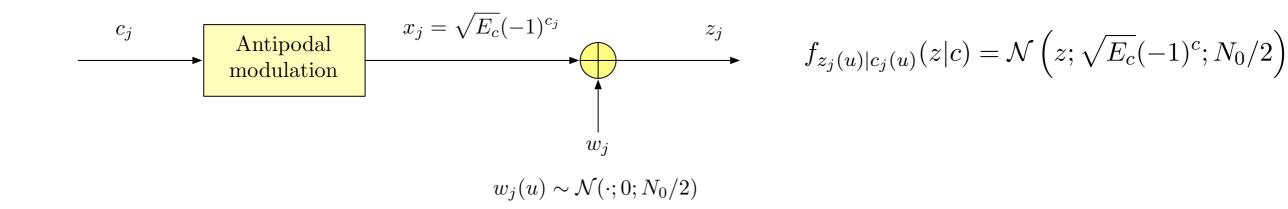
Hamming code is perfect

(see page 470 of Benedetto for the standard Array for the (7,4,3) Hamming code)

(n, I, n) repetition code is perfect for n odd

(23, 12,7) Golay code is perfect

Decoding: Soft-in/Hard-out



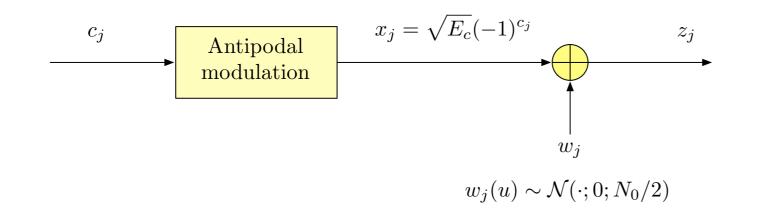
$$f_{\mathbf{z}(u)|\mathbf{c}(u)}(\mathbf{z}|\mathbf{c}) = \prod_{j=0}^{n-1} f_{z_j(u)|c_j(u)}(y_j|c_j)$$

$$-\ln\left[f_{\mathbf{z}(u)|\mathbf{c}(u)}(\mathbf{z}|\mathbf{c})\right] \equiv \frac{1}{N_0} \|\mathbf{z} - \mathbf{x}(\mathbf{c})\|^2$$

ML CW Decoding = Minimum Euclidean Distance Decoding

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c} \in \mathcal{C}} \|\mathbf{z} - \mathbf{x}(\mathbf{c})\|^2$$

SIHO Decoding Performance (BI-AWGN)



$$f_{z_j(u)|c_j(u)}(z|c) = \mathcal{N}\left(z; \sqrt{E_c}(-1)^c; N_0/2\right)$$

$$P(\mathcal{E}|\mathbf{c}) \leq \sum_{\tilde{\mathbf{c}}\neq\mathbf{c}\in\mathcal{C}} P_{PW}(\mathbf{c},\tilde{\mathbf{c}})$$

$$P_{PW}(\mathbf{c}, \tilde{\mathbf{c}}) = Q\left(\sqrt{\frac{\|\mathbf{x}(\mathbf{c}) - \mathbf{x}(\tilde{\mathbf{c}})\|^2}{2N_0}}\right)$$

$$= \mathbf{Q}\left(\sqrt{\frac{d_H(\mathbf{c}, \tilde{\mathbf{c}}) 4E_c}{2N_0}}\right)$$

$$= \mathbf{Q}\left(\sqrt{d_H(\mathbf{c}, \tilde{\mathbf{c}}) r \frac{2E_b}{N_0}}\right)$$

For a linear code, the CW error probability the same conditioned on any codeword i.e., can condition on zero CW

SIHO Decoding Performance (BI-AWGN)

$$\left(\mathbf{Q}\left(\sqrt{d_{\min}r\frac{2E_b}{N_0}}\right) \le P_{CW} \le \sum_{d \ge d_{\min}} A_d \mathbf{Q}\left(\sqrt{dr\frac{2E_b}{N_0}}\right) \right)$$

 $A_d =$ number of codewords with weight d

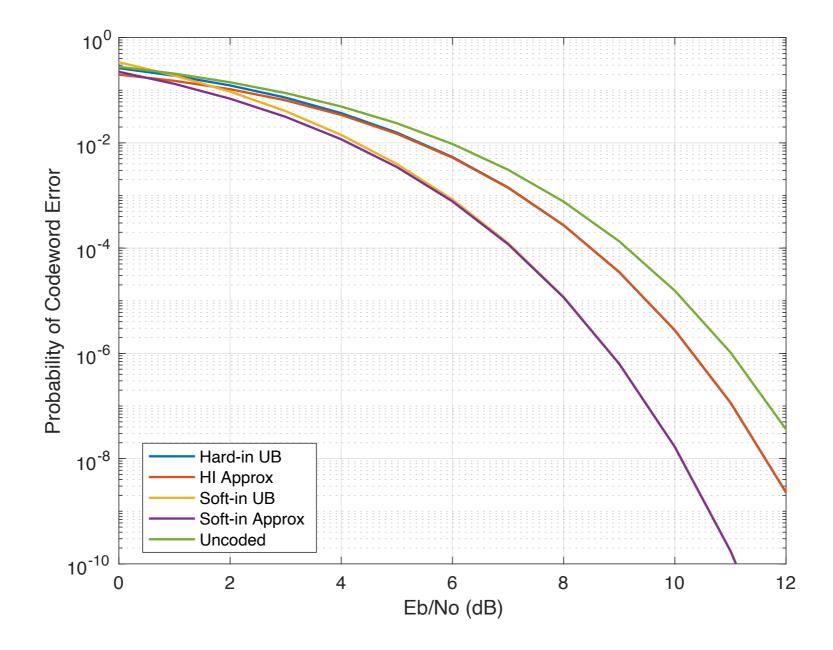
weight distribution of the code

SIHO Decoding Performance (BI-AWGN)

 $P_b = P_{b|\mathbf{0}}$

 $B_{w,d}$ = number of configurations with input weight w and output weight dInput/output weight distribution of the code

HIHO and SIHO Decoding Example



this is for the (7,4,3) Hamming Code

Other Bounds on Minimum Distance

Singleton Bound: $d_{\min} \le (n-k) + 1$

Mostly useful for non-binary codes — (non-binary) codes that achieve this bound are calls **Maximum Distance Separable (MDS)**.

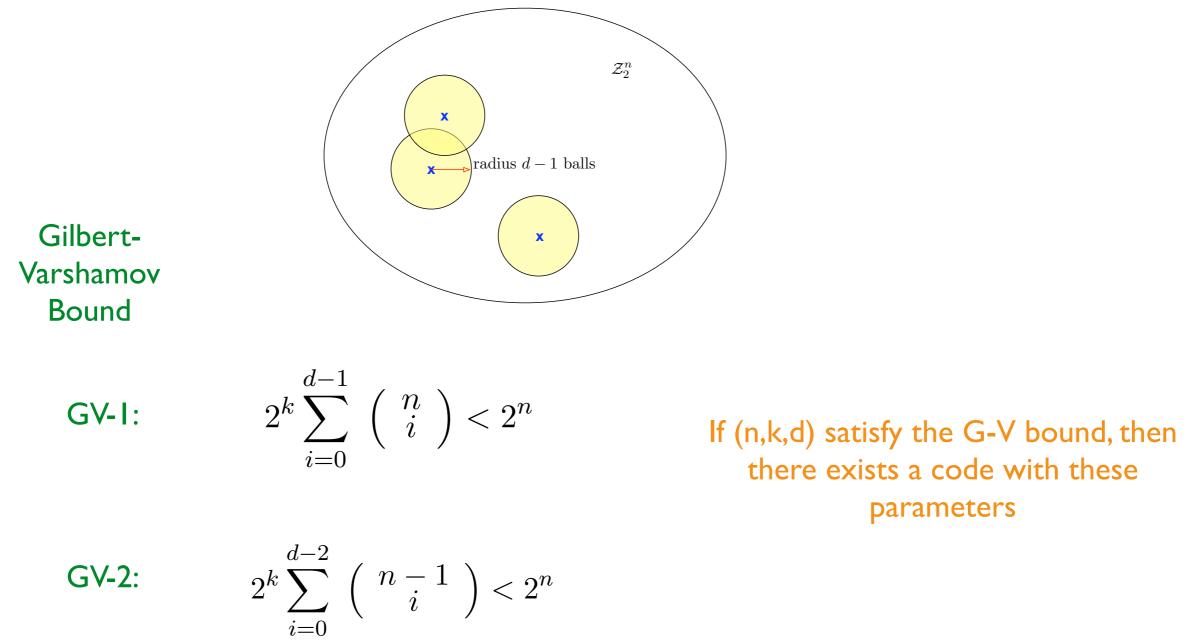
Reed-Solomon codes are (non-binary) MDS codes. If you receive any k symbols of an MDS code, you can decode on erasure channel

Plotkin Bound: $d_{\min} \le d_{ave}$ $d_{\min} < n/2:$ $2(d_{\min} - 1) - \log_2(d_{\min}) \le (n - k)$ $d_{\min} \ge n/2:$ $d_{\min} \le \frac{n2^{k-1}}{2^k - 1}$

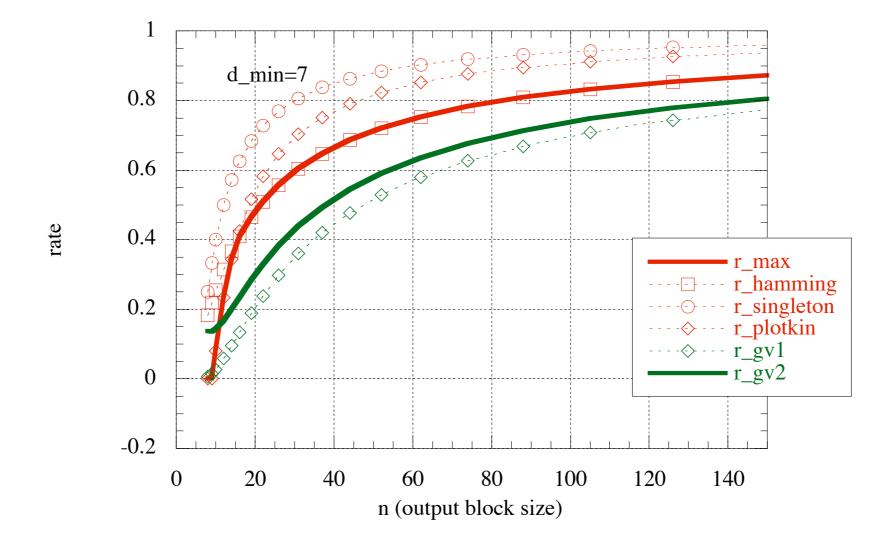
For binary codes, the Hamming bound is usually tightest. Plotkin is tightest for very low rate codes

"Existence" Bounds on Minimum Distance

Suppose we build a code by randomly selecting a points, making sure that no two points are closer than d in Hamming distance?

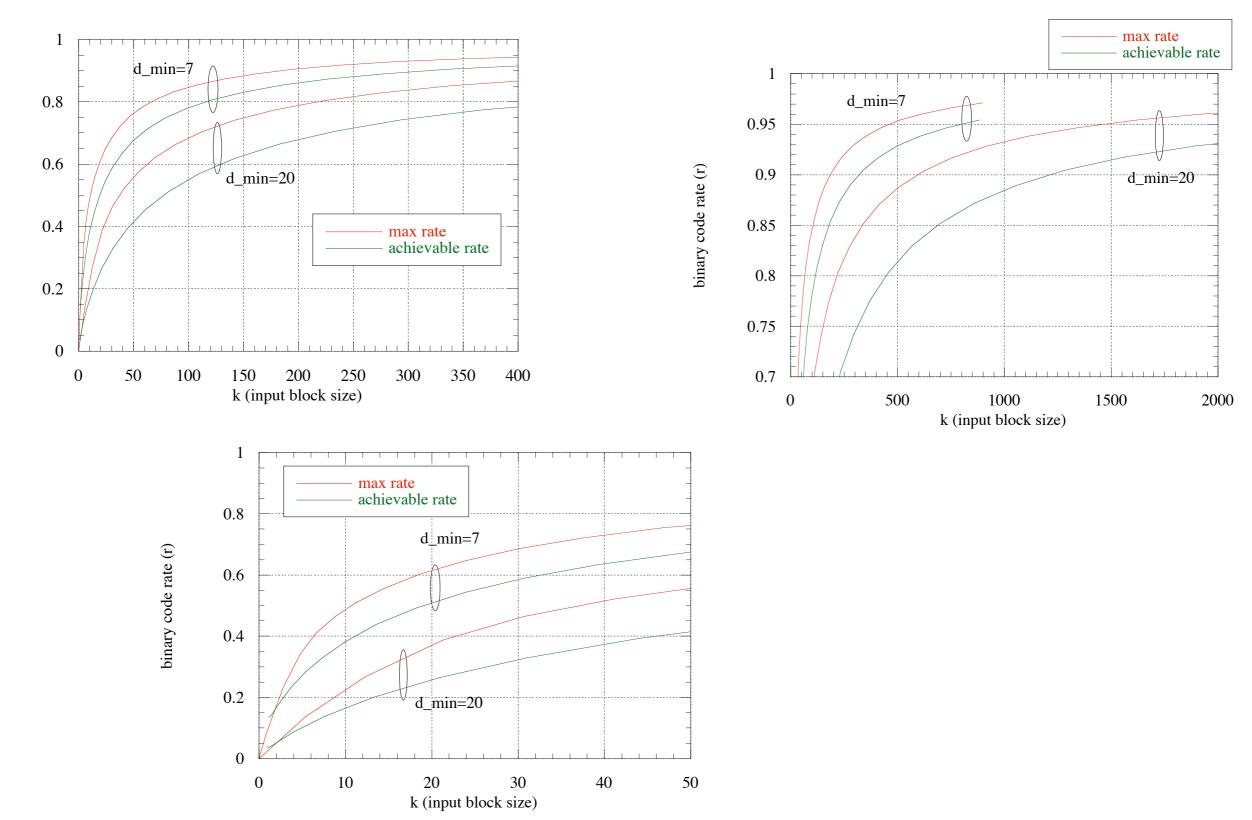


Bounds on Minimum Distance

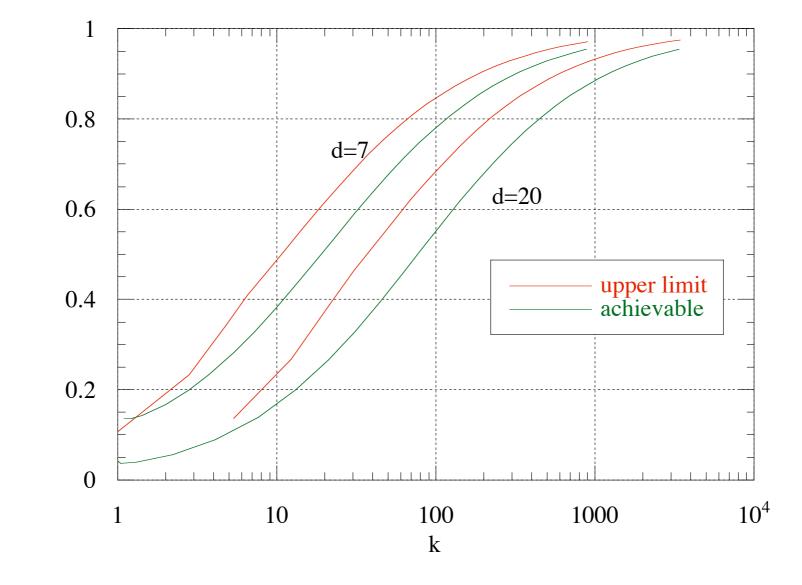


d_min = 7 codes exist with rate between the solid green and red curves

Bounds on Minimum Distance



Bounds on Minimum Distance



rate

Hamming Family of Codes

This is a family of perfect, single error correcting block codes

$$\begin{array}{ll} m = n - k & \\ n = 2^m - 1 & \\ k = 2^m - 1 - m & \\ d_{\min} = 3 & \\ \end{array} \begin{array}{ll} \mathsf{m} = 2: (3, 1, 3) & - \text{aka repetition code} \\ \mathsf{m} = 3: (7, 4, 3) & \\ \mathsf{m} = 4: (15, 11, 3) & \\ \end{array}$$

Note: the rate increases with block size

Construction: the parity check matrix has all non-zero (m x I) binary vector

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Reed-Mueller Family of Codes

$$\operatorname{RM}(r,m) \implies (n = 2^m, k_{r,m}, d_{\min} = 2^{m-r}) \qquad 0 \le r \le m$$
$$k_{r,m} = \sum_{j=0}^r \binom{m}{j}$$
$$\operatorname{The} |u|u+v| \text{ construction suggests the following the following suggests the following$$

The |u|u+v| construction suggests the following tableau of RM codes:

r is called the **order** of the RM code

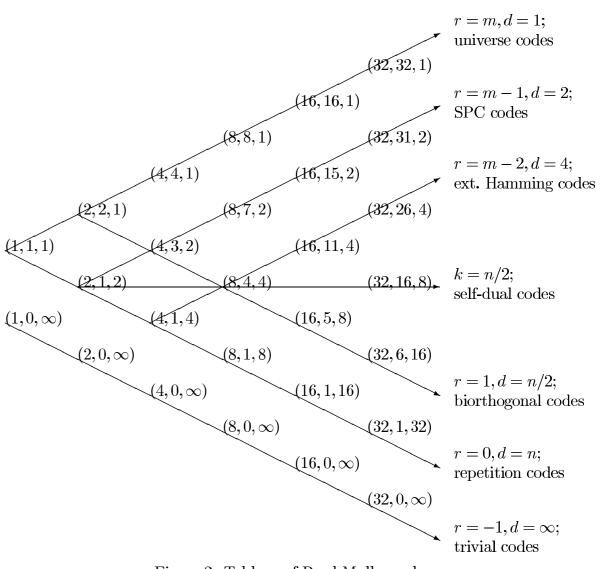


Figure 2. Tableau of Reed-Muller codes.

Forney's notes, 6.4

Reed-Mueller Family of Codes

Construction: many constructions. Here is on based on Hadamard matrices

$$\begin{aligned} \mathbf{U}_{0} &= 1 \\ \mathbf{U}_{1} &= \begin{bmatrix} \mathbf{U}_{0} & \mathbf{U}_{0} \\ \mathbf{U}_{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ \mathbf{U}_{2} &= \begin{bmatrix} \mathbf{U}_{2} & \mathbf{U}_{2} \\ \mathbf{U}_{2} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\ \mathbf{U}_{i} &= \begin{bmatrix} \mathbf{U}_{i-1} & \mathbf{U}_{i-1} \\ \mathbf{U}_{i-1} & \mathbf{0} \end{bmatrix} \end{aligned}$$

 $U_m \sim 2^m \times 2^m$

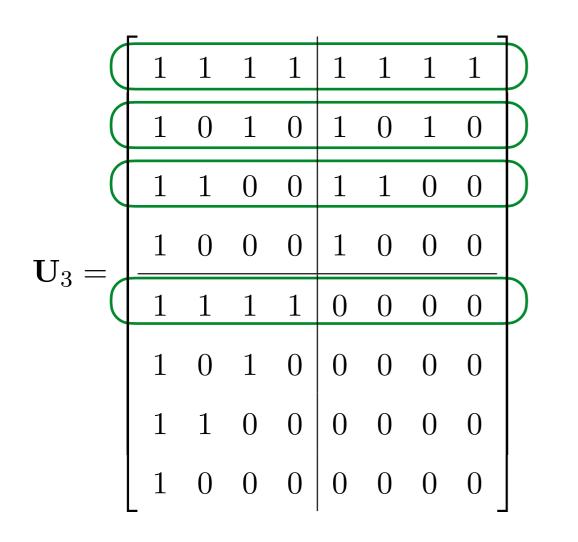
RM(r,m) has generator comprising all rows of U_m with weight 2^{m-r} or greater

Reed-Mueller Family of Codes

Construction: example RM(1,3) code which is (8,4,4) code

RM(r,m) has generator comprising all rows of U_m with weight 2^{m-r} or greater

$$r = 1, m = 3$$
 $2^{m-r} = 4$



$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dual Codes

Original Code:

 $\mathcal{C}:(n,k,d)$

Generator : $\mathbf{G}, (k \times n)$

Parity Check : $\mathbf{H}, (n - k \times n)$

Dual Code:

$$\mathcal{C}^{\perp}:(n,k^{\perp}=n-k,d^{\perp})$$

Generator : $\mathbf{G}^{\perp} = \mathbf{H}, (k^{\perp} \times n)$

Parity Check : $\mathbf{H}^{\perp} = \mathbf{G}, (n - k^{\perp} \times n)$

It is possible to be self-dual — i.e., the the generator G is a valid parity check matrix H!

Example: (8,4,4) RM code on previous slide

Weight Enumerating Function

 A_d = number of codewords with weight d

$$A(D) = \sum_{d=0}^{n} A_{d} D^{d} \quad (\text{weight enumerating function})$$

Example: (7,4,3) Hamming Code: $A(D) = 1 + 7D^3 + 7D^4 + D^7$

MacWilliams Identity:

$$A_{\text{dual}}(D) = 2^{-k} (1+D)^n A\left(\frac{1-D}{1+D}\right)$$

The WEF of the dual code is determined from the original code

Decoding: Soft-in/Soft-out

I. <u>Combine</u> incoming marginal metrics to get configuration metrics for all valid configurations

$$\overline{\mathbf{M}}[\operatorname{config} = m] = \sum_{j} \overline{\mathbf{MI}}[d_{j}(m)]$$

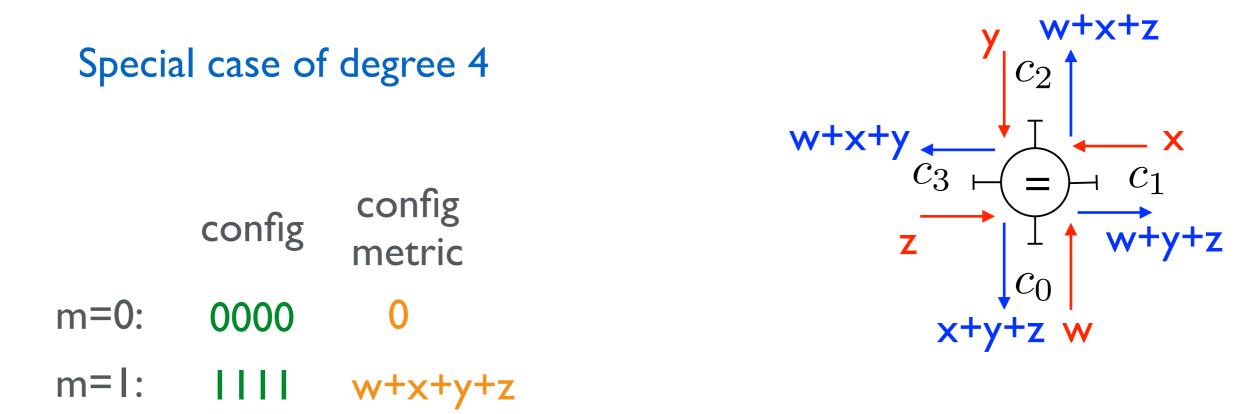
2. Marginalize configuration metrics to get outgoing marginal metrics

$$\overline{\mathrm{MO}}[d_j] = \left(\min_{\substack{m:d_j=1}} \overline{\mathrm{M}}[\mathrm{config} = m] - \min_{\substack{m:d_j=0}} \overline{\mathrm{M}}[\mathrm{config} = m]\right) - \overline{\mathrm{MI}}[d_j]$$

Decoding: Soft-in/Soft-out

see SISO summary handout and 633_SISO.xlsx

Example: Repetition Code SISO



Note that there is no marginalizing in this case min-sum and min*-sum are same

Example: SPC SISO

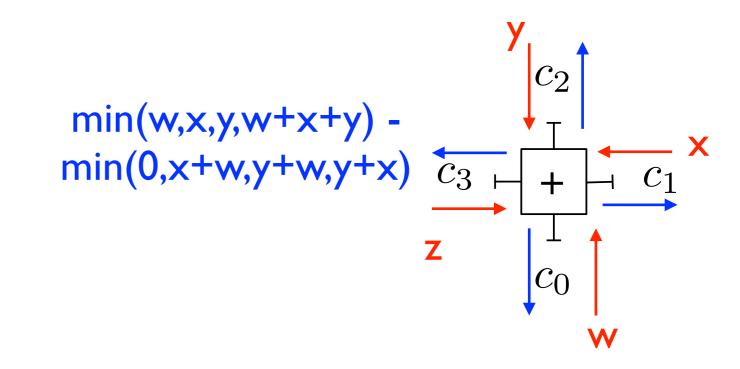
Consider degree 4:

	config (3,2,1,0)	config metric
m=0:	0000	0
m=I:	0011	x+w
	0101	y+w
	0110	y+x
	1001	z+w
	1010	z+x
	1100	z+y
		z+y+x+w

 c_2 $\frac{\min(w,x,y,w+x+y)}{\min(0,x+w,y+w,y+x)} \xrightarrow{c_3} +$ Ζ \mathcal{C}_0 for min*-sum, change

min to min*

Example: min-sum SPC SISO

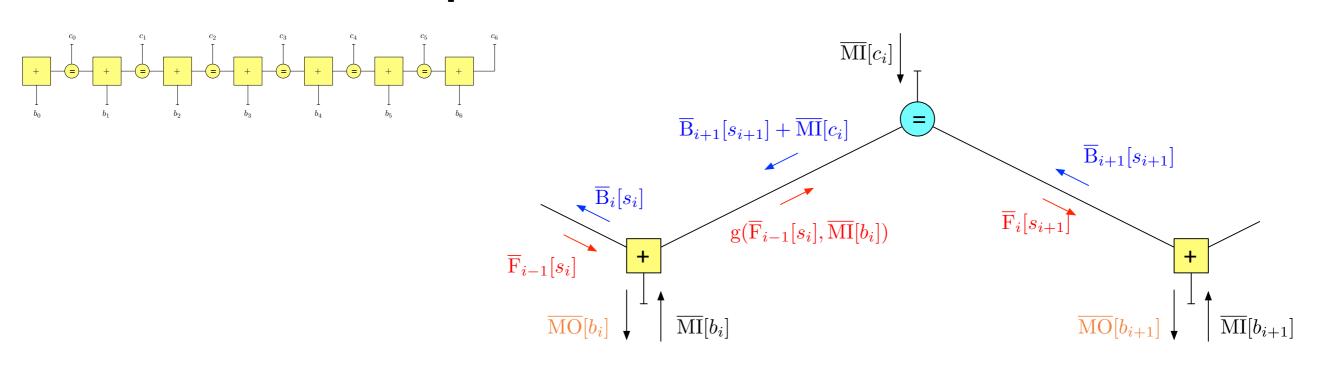


 $\min(w, x, y, w + x + y) - \min(0, x + w, y + w, y + x) = [\min(|w|, |x|, |y|)] \operatorname{sgn}(w) \operatorname{sgn}(x) \operatorname{sgn}(y)$

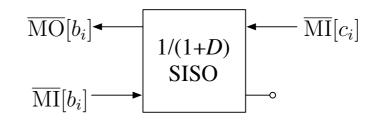
This is valid for min-sum only (cannot change mins to min*) (example of a non-semi-ring property/algorithm)

"min-mag/sign-product" shortcut for SPC min-sum SISO

Example: Accumulator SISO



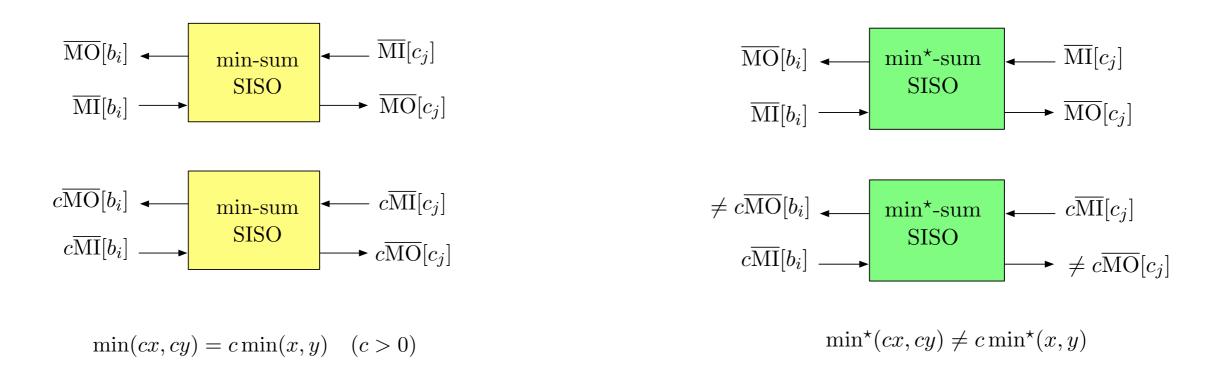
Forward Recursion: $\overline{F}_i[s_{i+1}] = \overline{MI}[c_i] + g(\overline{F}_{i-1}[s_i], \overline{MI}[b_i])$ Backward Recursion: $\overline{B}_i[s_i] = g(\overline{B}_{i+1}[s_{i+1}] + \overline{MI}[c_i], \overline{MI}[b_i])$ Completion on input: $\overline{MO}[b_i] = g(\overline{B}_{i+1}[s_{i+1}] + \overline{MI}[c_i], \overline{F}_{i-1}[s_i])$



Special case of the Forward-Backward Algorithm

 $g(x,y) = \min(x,y) - \min(0,x+y)$ $= \min(|x|,|y|)\operatorname{sgn}(x)\operatorname{sgn}(y)$ $g^*(x,y) = \min^*(x,y) - \min^*(0,x+y)$

min-sum vs min*-sum



This is a non-semi-ring property that holds for min-sum

min-sum vs min*-sum

$$\overline{\text{MO}}[b_i] \longleftarrow \underset{\text{SISO}}{\text{min-sum}} \longleftarrow \frac{4\sqrt{E_s}}{N_0} z_j$$
$$\longrightarrow \overline{\text{MO}}[c_j]$$

$$c\overline{\mathrm{MO}}[b_i] \longleftarrow \min\operatorname{sum}_{\operatorname{SISO}} \xleftarrow{z_j}_{} 0 \longrightarrow c\overline{\mathrm{MO}}[c_j]$$

min-sum processing does not require knowledge of Es or No when the inputs are iid uniform

Viterbi Algorithm & FBA

Model: FSM in memoryless noise (e.g., AWGN)

 $z_i(u) = x_i(b_i, s_i) + w_i(u)$

Sequence/Configuration APP — recursive computation $f(\mathbf{z}_0^{I-1}|\mathbf{b}_0^{I-1}, s_0)p(\mathbf{b}_0^{I-1}, s_0) = p(s_0)\prod_{i=0}^{I-1} f(z_i|b_i, s_i)p(b_i)$

(State) Transition Metrics

$$M[\mathbf{t}_0^{I-1}] = -\ln[p(s_0)] + \sum_{i=0}^{I-1} M_i[t_i]$$

 $t_i = (b_i, s_i)$

Viterbi Algorithm & FBA

$$\begin{aligned} f(\mathbf{z}_{0}^{I-1}|\mathbf{b}_{0}^{I-1},s_{0}) &= f(z_{I-1}|\mathbf{z}_{0}^{I-2},\mathbf{b}_{0}^{I-1},s_{0})f(\mathbf{z}_{0}^{I-2}|\mathbf{b}_{0}^{I-1},s_{0}) \\ &= f(z_{I-1}|\mathbf{b}_{0}^{I-1},s_{0})f(\mathbf{z}_{0}^{I-2}|\mathbf{b}_{0}^{I-2},s_{0}) \\ &= f(z_{I-1}|b_{i},s_{i})f(\mathbf{z}_{0}^{I-2}|\mathbf{b}_{0}^{I-2},s_{0}) \\ &= \prod_{i=0}^{I-1} f(z_{i}|b_{i},s_{i}) \\ &= p(b_{I-1}|\mathbf{b}_{0}^{I-2},s_{0})p(\mathbf{b}_{0}^{I-2},s_{0}) \\ &= p(b_{I-1})p(\mathbf{b}_{0}^{I-2},s_{0}) \\ &= p(b_{I-1})p(\mathbf{b}_{0}^{I-2},s_{0}) \\ &= p(s_{0})\prod_{i=0}^{I-1} p(b_{i}) \\ &\mathrm{MI}[x_{i}(t_{i})] = -\ln(f(z_{i}|x_{i}(t_{i}))) \end{aligned}$$

 $\mathrm{MI}[b_i(t_i)] = -\ln[p(b_i)]$

Viterbi Algorithm

Forward State Metric Recursion

$$\begin{split} \text{MSM}_{0}^{i}[s_{i+1}] &= \min_{\mathbf{t}_{0}^{i}:s_{i+1}} \left[\sum_{j=0}^{i} \text{M}_{j}[t_{j}] \right] \\ &= \min_{\mathbf{t}_{0}^{i}:s_{i+1}} \left[\text{M}_{i}[t_{i}] + \sum_{j=0}^{i-1} \text{M}_{j}[t_{j}] \right] \\ &= \min_{t_{i}:s_{i+1}} \left[\text{M}_{i}[t_{i}] + \min_{\mathbf{t}_{0}^{i-1}:s_{i+1}} \sum_{j=0}^{i-1} \text{M}_{j}[t_{j}] \right] \\ &= \min_{t_{i}:s_{i+1}} \left(\text{M}_{i}[t_{i}] + \text{MSM}_{0}^{i-1}[s_{i}] \right) \end{split}$$

$$F_{i}[s_{i+1}] = \min_{t_{i}:s_{i+1}} \left(M_{i}[t_{i}] + F_{i-1}[s_{i}] \right)$$

Viterbi Algorithm

Forward State Metric Recursion

+ Survivor Path Storage (non-semi-ring) + Survivor Traceback and Decode

Forward-Backward Algorithm

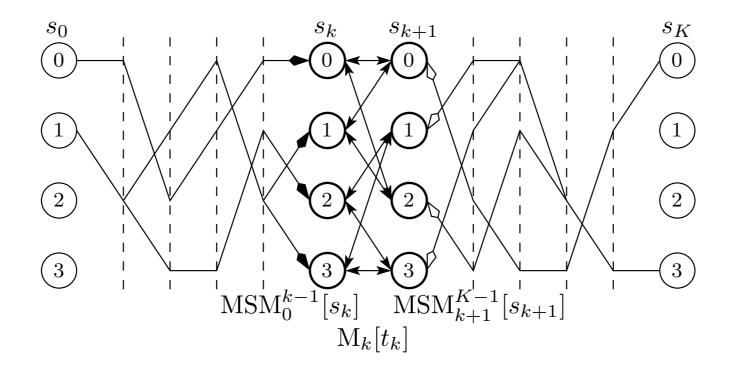


Figure 1.13. The MSM for a given transition may be computed by summing the transition metric and the forward and backward state metrics.

$$MSM_0^{K-1}[t_k] = \min_{\mathbf{t}_0^{K-1}:t_k} \sum_{i=0}^{K-1} M_i[t_i]$$
(1.66a)
$$= \min_{\mathbf{t}_0^{K-1}:t_k} \left[\sum_{i=0}^{k-1} M_i[t_i] + M_k[t_k] + \sum_{i=k+1}^{K-1} M_i[t_i] \right]$$
(1.66b)

Forward-Backward Algorithm

$$\begin{split} \mathbf{M}_{i}[t_{i}] &= \mathbf{MI}[c_{i}(t_{i})] + \mathbf{MI}[b_{i}(t_{i})] \qquad i = 0, 1, \dots I - 1 & \text{Metric Computation} \\ \mathbf{F}_{i}[s_{i+1}] &= \min_{t_{i}:s_{i+1}} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}]\right) \qquad i = 0, \dots I - 2 & \text{Forward Recursion} \\ \mathbf{B}_{i}[s_{i}] &= \min_{t_{i}:s_{i}} \left(\mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) \qquad i = I - 2, I - 3, \dots 1 & \text{Backward Recursion} \\ \overline{\mathbf{MO}}[b_{i}] &= \min_{t_{i}:b_{i}=1} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) & -\min_{t_{i}:b_{i}=0} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) - \overline{\mathbf{MI}}[b_{i}] & i = 0, \dots I - 1 & \text{Completion} \\ \overline{\mathbf{MO}}[c_{i}] &= \min_{t_{i}:c_{i}=1} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) & -\min_{t_{i}:c_{i}=0} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) & -\min_{t_{i}:c_{i}=0} \left(\mathbf{F}_{i-1}[s_{i}] + \mathbf{M}_{i}[t_{i}] + \mathbf{B}_{i+1}[s_{i+1}]\right) - \overline{\mathbf{MI}}[b_{i}] & i = 0, \dots I - 1 & \text{Completion} \end{split}$$

Forward-Backward Algorithm

$$p(\mathbf{z}_{0}^{K-1}, t_{k}) = p(\mathbf{z}_{k+1}^{K-1} | t_{k}) p(\mathbf{z}_{0}^{k}, t_{k})$$

$$= p(\mathbf{z}_{k+1}^{K-1} | t_{k}) p(\mathbf{z}_{0}, \mathbf{z}_{k} | \mathbf{z}_{k}) p(\mathbf{z}_{0}^{k-1} | \mathbf{z}_{k})$$
(1.69a)
(1.69b)

$$= p(\mathbf{z}_{k+1}^{n-1}|t_k)p(z_k, a_k|s_k)p(\mathbf{z}_0^{n-1}, s_k)$$
(1.69b)

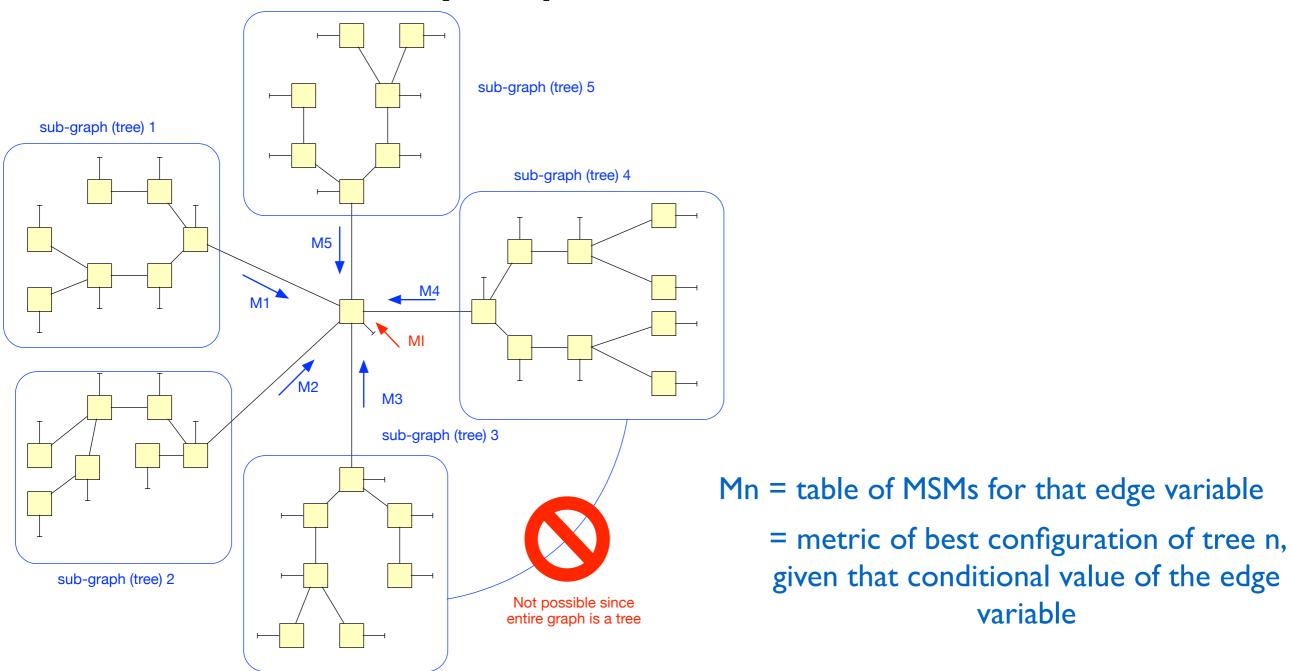
$$= [p(\mathbf{z}_0^{k-1}, s_k)][p(z_k|x_k(t_k))p(a_k)][p(\mathbf{z}_{k+1}^{K-1}|s_{k+1})] \quad (1.69c)$$

$$p(\mathbf{z}_0^k, s_{k+1}) = \sum_{t_k:s_{k+1}} \left[p(\mathbf{z}_0^{k-1}, s_k) p(z_k | x_k(t_k)) p(a_k) \right]$$
(1.70a)

$$p(\mathbf{z}_{k}^{K-1}|s_{k}) = \sum_{t_{k}:s_{k}} \left[p(\mathbf{z}_{k+1}^{K-1}|s_{k+1})p(z_{k}|x_{k}(t_{k}))p(a_{k}) \right]$$
(1.70b)

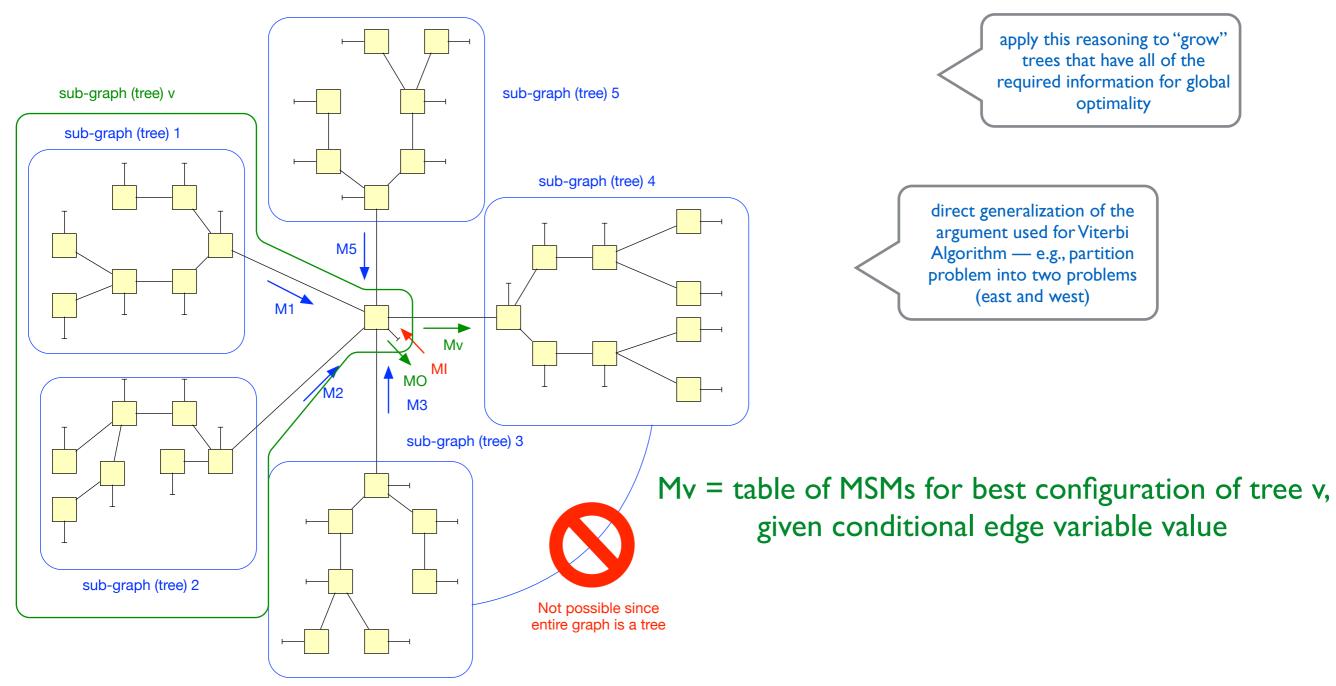
Sum-product version via probability manipulations

Why Optimal For Trees?



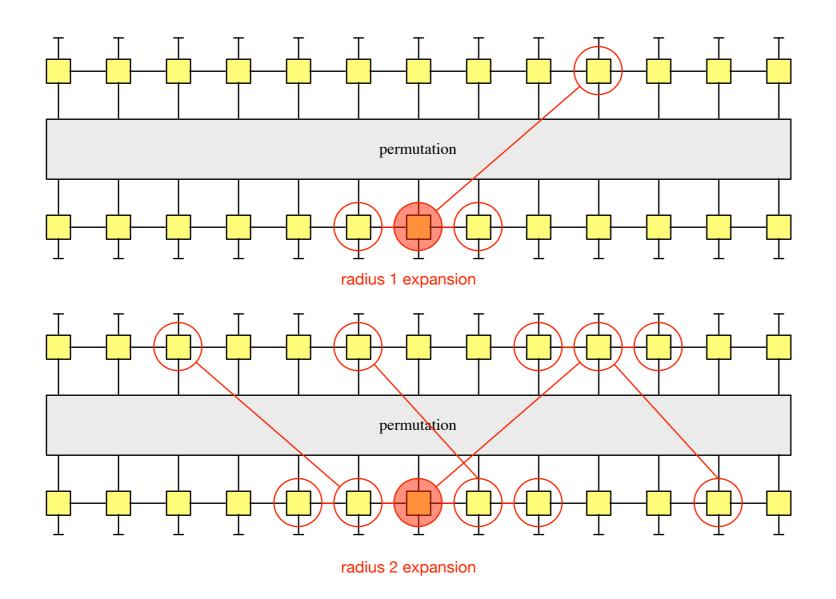
Use Viterbi Algorithm to find minimum weight simple error pattern

Why Optimal For Trees?



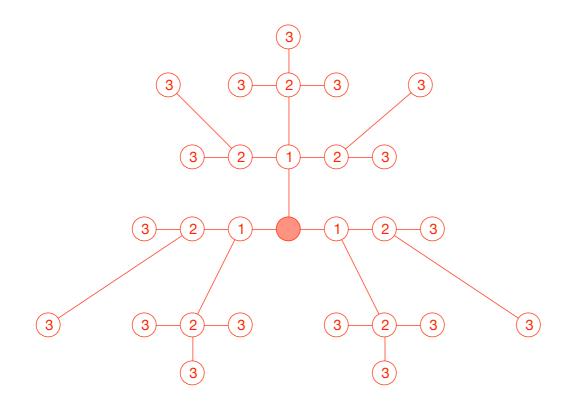
MO = globally optimal extrinsic soft information

Why Good Heuristic for Cyclic Graphs?



For an expansion by looking out r steps from a given node

Why Good Heuristic for Cyclic Graphs?



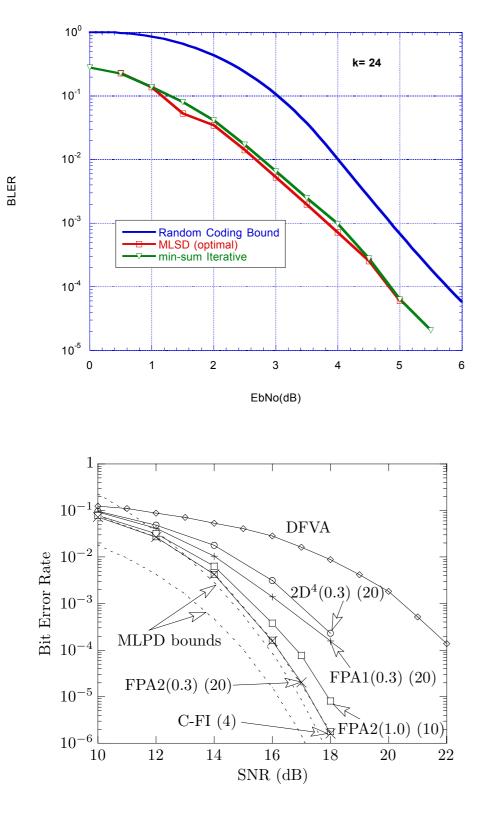
r = 3 expansion

Note: if radius r expansion is cycle free, then after r flooding activations, the central node can perform optimal decision based on all incoming messages within radius r

Conclusion: If the minimal cycle length is longer than the "survivor merging" radius of the graph, then standard message-passing should approximate optimal inference

In practice: Long cycles and random cycle structure is sought for near-optimal performance — intuition, do not want all (weak) echoes coming back to source at once

Example of Heuristic vs. Optimal



Input block size 24, 4 state PCCC (Turbo Code)

MLSD (optimal) decoder adopted from d_min paper:

R. Garello, F. Chiaraluce, P. Pierleoni, M. Scaloni, and S. Benedetto. On error floor and free distance of turbo code. In *Proc. International Conf. Communications*, pages 45–49, Helsinki, Finland, jun. 2001.

2-dimensional ISI problem - MLPD bounds are similar to our error probability bounds (Ch. 5 of my book)

Coding Topics

- Coding channel models
- Basics of code constructions
- Decoding rules HIHO, SIHO, SISO
- Classical coding
- Modern Coding
- Performance limits
 - Capacity and finite block-size bounds)
 - Bounds for specific codes

Performance Limits

- Performance limits (information theory based bounds)
 - Infinite block length, zero error probability
 - Channel capacity
 - Modulation-unconstrained AWGN Channel
 - Symmetric Information Rate (SIR)
 - Modulation-constrained AWGN Channel
 - Finite block size, finite error probability
 - Sphere packing bound (SPB)
 - Random Coding Bound (RCB)
 - Pragmatic guideline

Channel Capacity

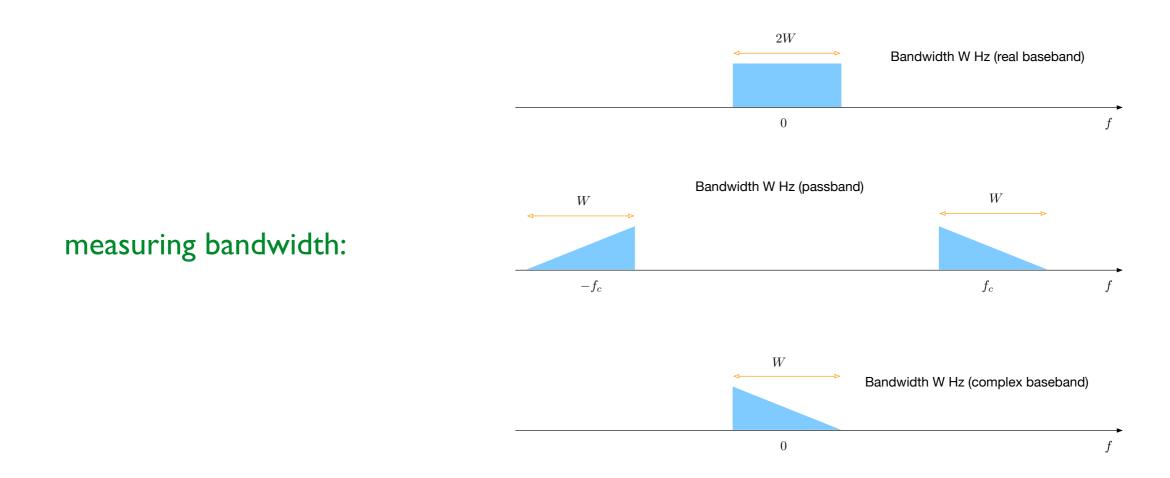
Mutual Information

$$I(x(u); y(u)) = \sum_{y} \sum_{x} p_{x(u), y(u)}(x, y) \left[\log_2 \left(\frac{p_{x(u), y(u)}(x, y)}{p_{x(u)}(x) p_{y(u)}(y)} \right) \right]$$
$$= \sum_{y} \sum_{x} p_{x(u), y(u)}(x, y) \left[\log_2 \left(\frac{1}{p_{x(u)}(x)} \right) - \log_2 \left(\frac{1}{p_{x(u)|y(u)}(x|y)} \right) \right]$$
$$= \underbrace{H(x(u))}_{\text{Entropy in } x(u)} - \underbrace{H(x(u)|y(u))}_{\text{Entropy in } x(u) \text{ given } y(u)}$$

Channel Capacity for Memoryless Channel

$$\max_{p_{x(u)}(\cdot)} \mathsf{I}(x(u); y(u)) \xrightarrow{x_n} \operatorname{Channel} \xrightarrow{y_n} P(\mathbf{y}|\mathbf{x}) = \prod_n P(y_n|x_n)$$

AWGN Channel Capacity



With this, we can get \sim 2WT dimensions in W Hz of bandwidth and T secs

$$\begin{aligned} \mathbf{z}_{i}(u) &= \mathbf{x}_{i}(u) + \mathbf{w}_{i}(u) & (D \times 1) \\ D &= 2WT \\ \mathbf{w}_{i}(u) &\sim \mathcal{N}_{D}(\cdot; 0; N_{0}/2\mathbf{I}) \\ \mathbb{E}\left\{ \|\mathbf{x}(u)\|^{2} \right\} &\leq PT \end{aligned}$$
memoryless channel

AWGN Channel Capacity

$$C_{\text{AWGN}} = (2WT)\frac{1}{2}\log_2\left(1 + \frac{P}{N_0W}\right)$$
$$= W\log_2\left(1 + \frac{P}{N_0W}\right)$$

bits per $D \times 1$ channel use

bits per second

Achieved when x is Gaussian!

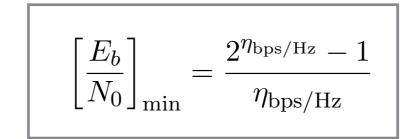
$$\frac{C_{\rm AWGN}}{W} = \log_2\left(1 + \frac{P}{N_0 W}\right) \qquad bps/Hz$$

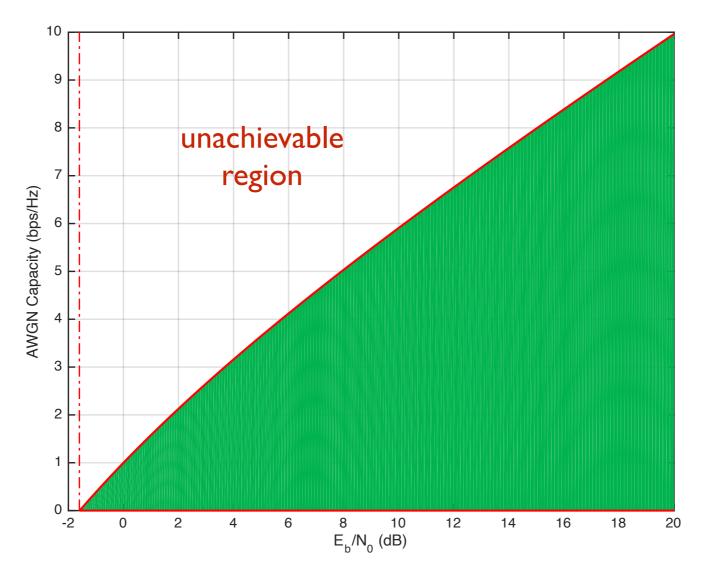
$$\frac{C_{\text{AWGN}}}{W} = \log_2 \left(1 + \frac{P}{N_0 W} \right) \qquad \text{bps/Hz}$$
$$= \log_2 \left(1 + \frac{E_b R_b}{N_0 W} \right)$$

Operating at capacity (Rb = C):

$$\frac{C_{\text{AWGN}}}{W} = \log_2 \left(1 + \left[\frac{E_b}{N_0} \right]_{\text{min}} \frac{C_{\text{AWGN}}}{W} \right) \qquad \text{bps/Hz}$$

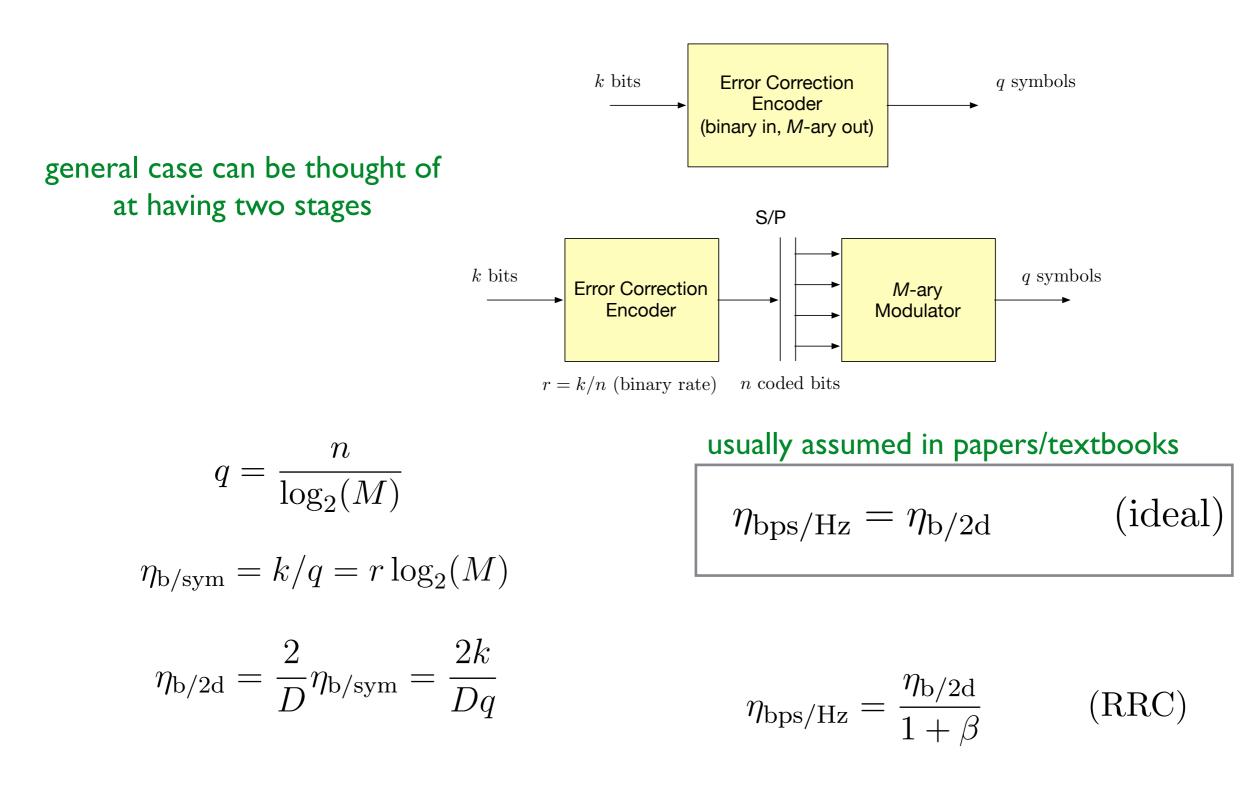
AWGN Capacity





Eb/No = -1.6 dB is the smallest value of Eb/No for reliable communications on the AWGN channel

Computing Rates for Coded-Modulation



Modulation Constrained AWGN Capacity

$$\mathbf{z}(u) = \sqrt{\frac{E_s}{N_0}} \mathbf{x}(u) + \mathbf{w}(u) \qquad (D \times 1)$$
(1)

Signal Model:

$$\mathbb{E}\left\{\|\mathbf{x}(u)\|^{2}\right\} = \sum_{m=0}^{M-1} p_{m} \|\mathbf{s}_{m}\|^{2} = 1$$
(2)

$$\mathbb{E}\left\{\mathbf{w}(u)\mathbf{w}^{\mathrm{t}}(u)\right\} = \frac{1}{2}\mathbf{I}$$
(3)

$$p(\mathbf{z}|\mathbf{s}_m) = \frac{1}{\pi^{D/2}} \exp\left(-\left\|\mathbf{z} - \sqrt{\frac{E_s}{N_0}}\mathbf{s}_m\right\|^2\right)$$
(4)

Normalized so noise variance is I per real dimension

Modulation Constrained AWGN Capacity/SIR

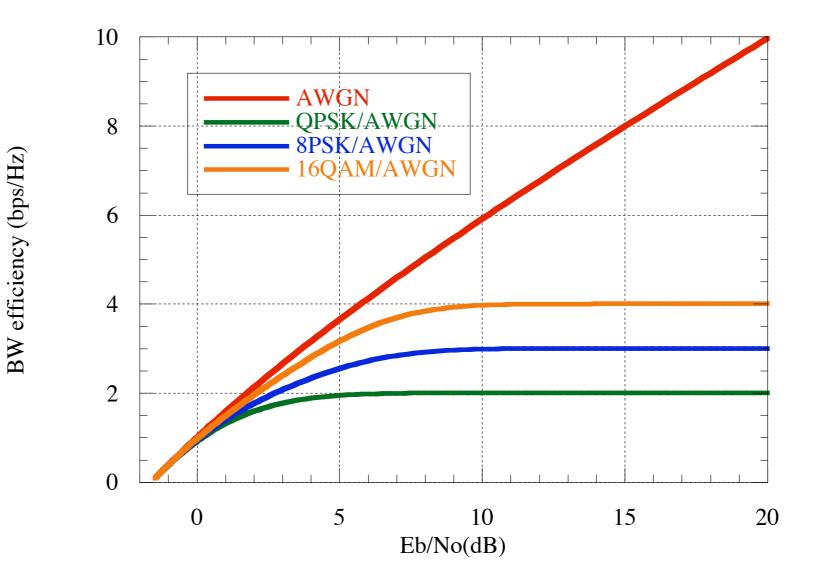
Symmetric Information Rate (SIR)

$$I(\mathbf{z}(u); \mathbf{x}(u)) = \sum_{m=0}^{M-1} p_m \int_{R^D} p(\mathbf{z}|\mathbf{s}_m) \log_2\left(\frac{p(\mathbf{z}|\mathbf{s}_m)}{p(\mathbf{z})}\right) d\mathbf{z}$$
(9a)
$$= \sum_{m=0}^{M-1} p_m \int_{R^D} p(\mathbf{z}|\mathbf{s}_m) \log_2\left(\frac{p(\mathbf{z}|\mathbf{s}_m)}{\sum_{n=0}^{M-1} p(\mathbf{z}|\mathbf{s}_n)p_n}\right) d\mathbf{z}$$
(9b)

Capacity:
$$C = \max_{\mathbf{p}} I(\mathbf{z}(u); \mathbf{x}(u))$$
 SIR <= Capacity

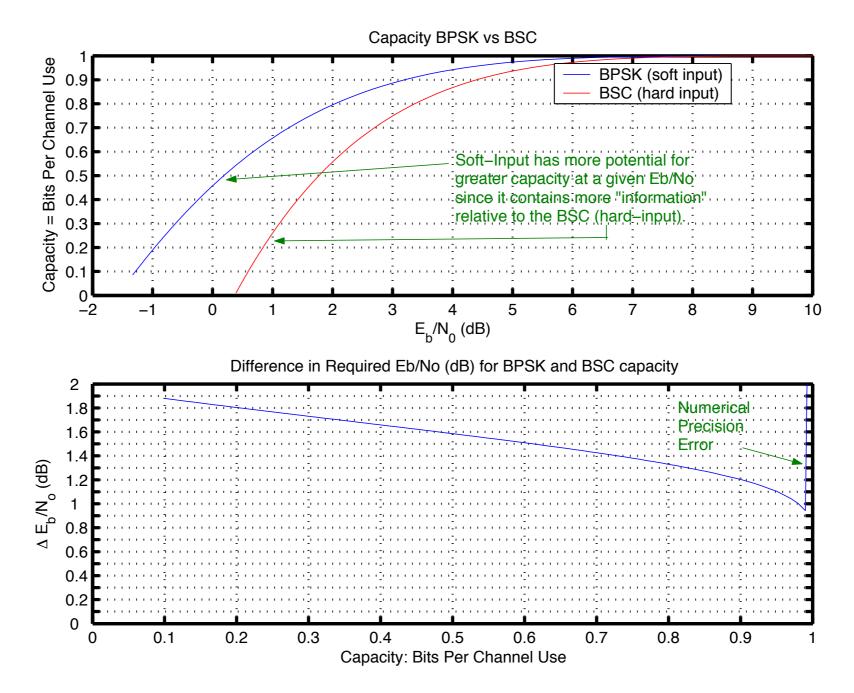
SIR is often used in place of Capacity for simplicity (not always clearly stated) For PSKs, SIR=C, for QAMS, SIR is strictly less than capacity (difference is called "shaping gain")

Modulation Constrained AWGN Capacity/SIR



SIR is computed via numerical integration

Modulation Constrained AWGN Capacity/SIR - example



Use information theory to predict soft-in vs hard-in coding gain (Problem 4.2)

Finite Block Size, Finite Error Probability Bounds

• Sphere packing bound (SPB)

- Lower bound on P_cw for **any** code of a given rate and block size
- Random Coding Bound (RCB)
 - Upper bound on P_cw, averaged over all random codes

Common Features

- Both converge to capacity as block length goes to infinity
 - So they "sandwich" capacity
- Both are challenging to evaluate numerically (SPB more so)
- Both have optimizations over a-priori like capacity, so both have "symmetric" versions

Random Coding Bound

$$\bar{P}_{\rm cw} \le \exp\left(-qE_r(\eta_{\rm b/sym})\right) \tag{17}$$

$$E_r(\eta_{\rm b/sym}) = \max_{0 \le \rho \le 1} \max_{\mathbf{p}} \left[E_0(\rho, \mathbf{p}, \eta_{\rm b/sym}) - \rho \ln(2) \eta_{\rm b/sym} \right]$$
(18)

$$E_{0}(\rho, \mathbf{p}, \eta_{\rm b/sym}) = \int_{R^{D}} \left[\sum_{m=0}^{M-1} p_{m} \left\{ p(\mathbf{z}|\mathbf{s}_{m}) \right\}^{\frac{1}{1+\rho}} \right]^{1+\rho} d\mathbf{z}$$
(19)

Symmetric version uses p_m = I/M

$$\bar{P}_{word} \le e^{-k(E_b/N_0)} \left\{ \min_{0 \le \rho \le 1} 2^{\rho r+1} \int_0^\infty \frac{e^{\frac{-y^2}{2}}}{\sqrt{2\pi}} \cosh^{1+\rho} \left(\frac{y\sqrt{2r(E_b/N_0)}}{1+\rho} \right) dy \right\}^n$$

[3] R. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, 1968.

Sphere Packing Bound

[8] S. Dolinar, D. Divsalar, and F. Pollara, "Code performance as a function of block size," tech. rep., JPL-TDA, May 1998. 42–133.

This report generates an approximation to the S-SPB for binary codes and BPSK.

I have found this generalizes to M-ary coded modulation

$$\left(\frac{E_b}{N_o}\right)_{\min} = \frac{2^{\eta_{\rm bps/Hz}} - 1}{\eta_{\rm bps/Hz}} \tag{35}$$

$$\Delta_{\rm dB} = \sqrt{\frac{20\eta_{\rm b/2d} \left(2^{\eta_{\rm b/2d}} + 1\right) \left[10 \log_{10}(1/P_{\rm CW})\right]}{k \ln(10) \left(2^{\eta_{\rm b/2d}} - 1\right)}} \tag{36}$$

SPB approximation AWGN no modulation constraint

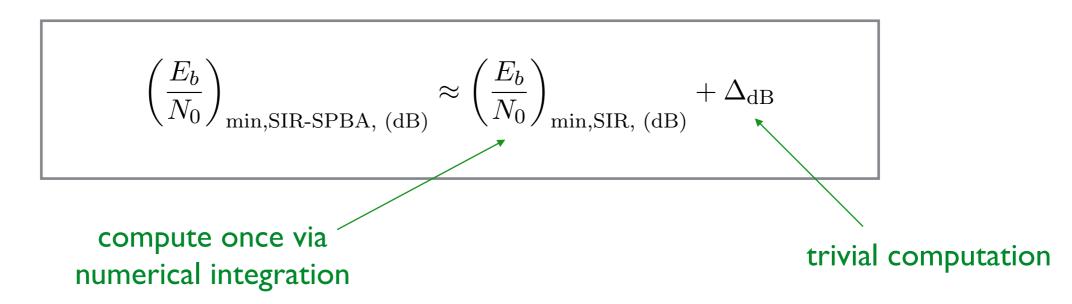
$$\left(\frac{E_b}{N_0}\right)_{\min,\text{SPB, (dB)}} \approx 10 \log_{10} \left[\frac{2^{\eta_{\text{b/2d}}} - 1}{\eta_{\text{b/2d}}}\right] + \Delta_{\text{dB}}$$

S-SPB Approximation for Modulation Constrained AWGN Channel

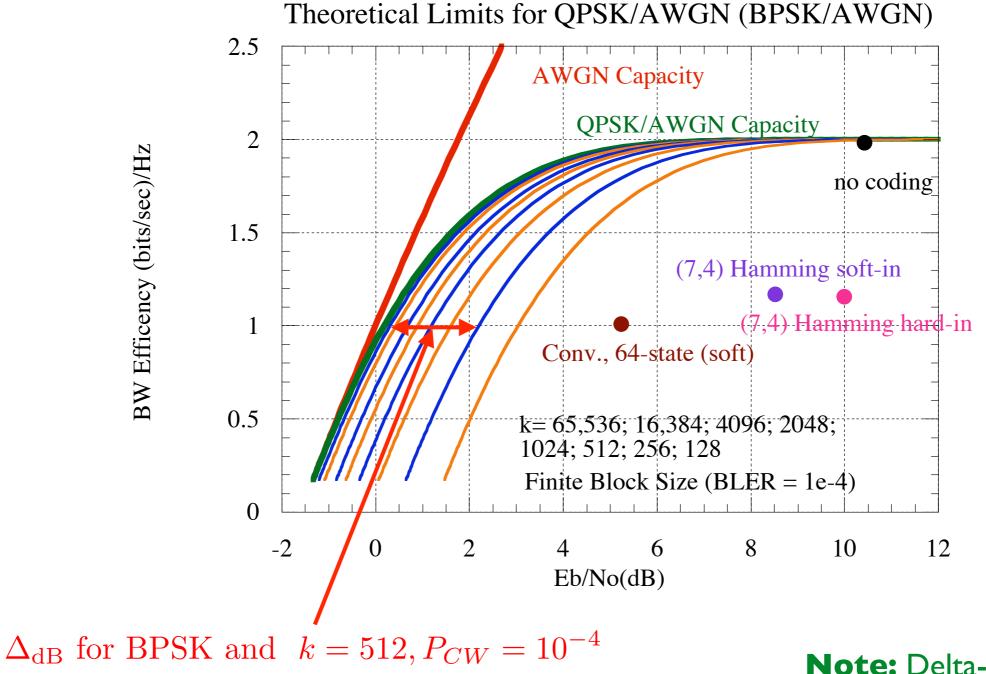
$$\left(\frac{E_b}{N_0}\right)_{\min,\text{SIR-SPBA, (dB)}} \approx \left(\frac{E_b}{N_0}\right)_{\min,\text{SIR, (dB)}} + \Delta_{\text{dB}}$$
(39)

$$\Delta_{\rm dB} = \sqrt{\frac{20\eta_{\rm b/2d} \left(2^{\eta_{\rm b/2d}} + 1\right) \left[10 \log_{10}(1/P_{\rm CW})\right]}{k \ln(10) \left(2^{\eta_{\rm b/2d}} - 1\right)}} \tag{36}$$

SPB approximation Modulation-Constrained AWGN Channel



S-SPB Approximation for Modulation Constrained AWGN Channel



Note: Delta-dB is a weak function of eta

Pragmatic Guideline

• S-SPB Approximation and S-RCB are very close to each other

- User k >~ 512, r <~ 8/9
- Only need simple to compute S-SPB Approximation

• Pragmatic Guideline

- Best modern code designs are about 0.5 dB from S-SPB Approximation
- Hardware codecs should be within I dB of S-SPB Approximation

performance_limits_chugg.xls

S-RCB vs. S-SPB-Approximation

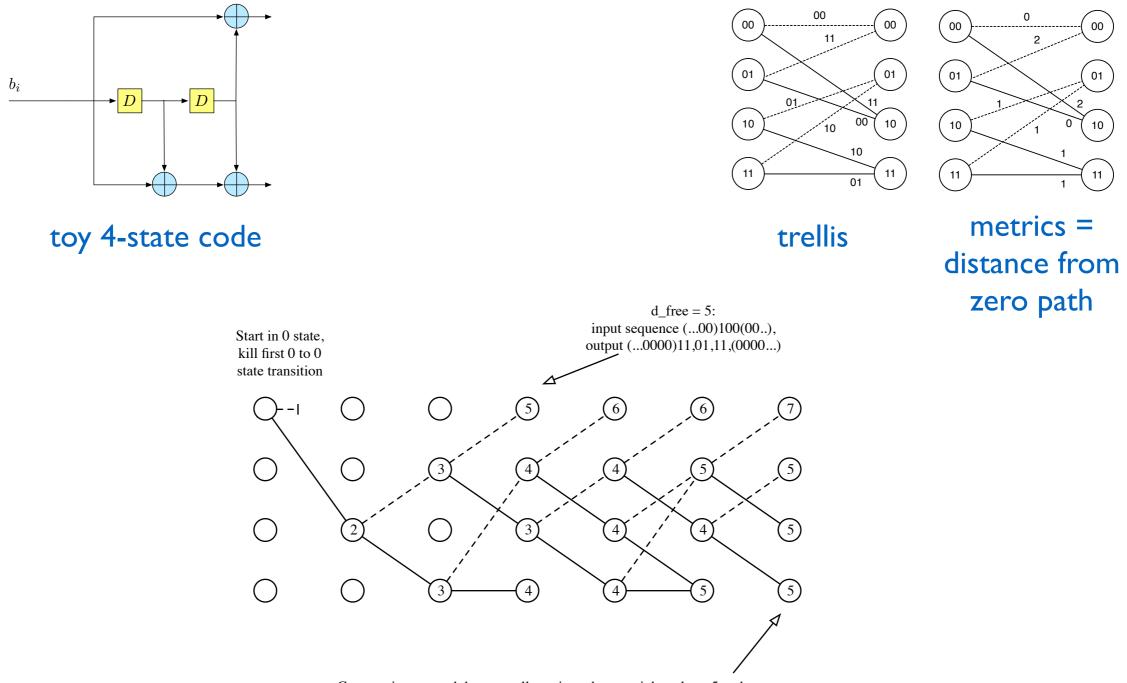
(add plot from limits.c)

These are very close (<~ 0.1 dB of Eb/No) for: input block sizes

Performance Bounds for Convolutional Codes

covered on the PAD notes

Example Free Distance Computation



Can terminate search because all survivors have weight at least 5 and a path that remerges with all 0 path with weight 5 has been found earlier

Use Viterbi Algorithm to find minimum weight simple error pattern

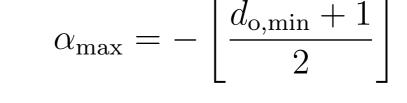
Uniform Interleaver Analysis (summary)

- Analyze union bound as block size tends toward infinity
 - Average over all possible interleaves (N!)
 - Determine trends in BER, BLER
 - Determine design rules

$$P_b \leq \sum_{d \geq d\min} K_d Q\left(\sqrt{\frac{rdE_b}{2N_0}}\right)$$
$$K_d \sim C_d\left(\sum_{\alpha(d)} N^{\alpha(d)}\right)$$

Uniform Interleaver Analysis (summary)

- PCCCs (w/ recursive encoders):
 - BER interleaver gain
 - No BLER interleaver gain
- SCCCs (w/ recursive inner code):
 - BER & BLER interleaver gain for do,min>=3

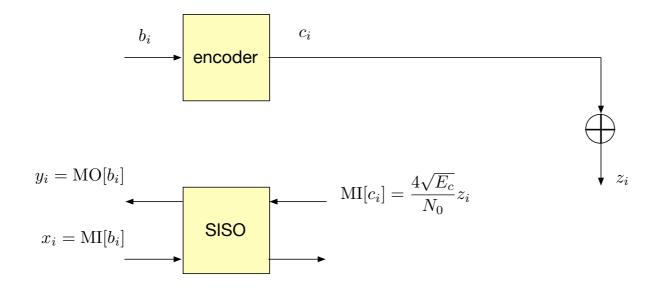


 $\alpha_{\rm max} = -1$

Some constructions naturally have better floor properties - eg, SCCCs have lower floors than PCCCs

Threshold Optimization & Irregular Designs

Idea: treat each SISO node as an amplifier of soft-information quality



For various values of E_c/N_0 , plot the mutual information between y_i and b_i vs. the mutual information x_i and b_i

Generate negative log-likelihoods x_i using the symmetry condition & Gaussian model:

$$\sigma_{x_i}^2 = 2\mathbb{E}\left\{x_i(-1)^{b_i}\right\}$$

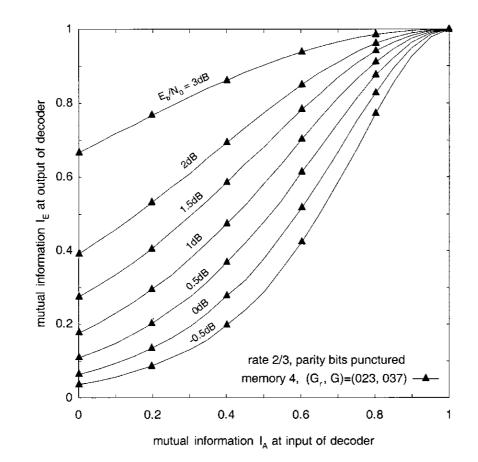
EXIT Charts

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 10, OCTOBER 2001

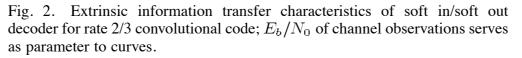
Transactions Papers.

Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes

Stephan ten Brink, Member, IEEE



characterizing a single constituent convolutional code



1727

EXIT Charts

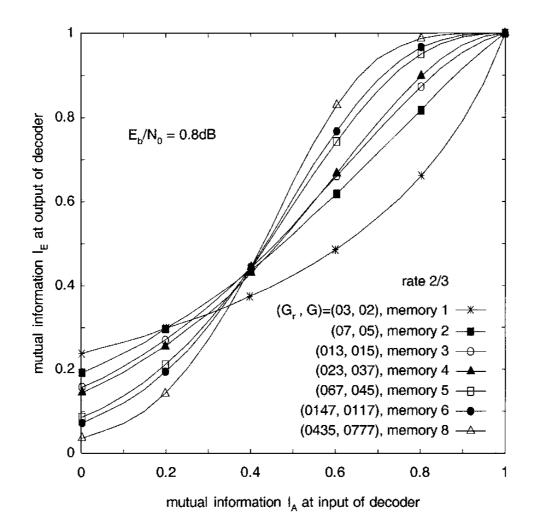


Fig. 3. Extrinsic information transfer characteristics of soft in/soft out decoder for rate 2/3 convolutional code, $E_b/N_0 = 0.8$ dB, different code memory.

varying code parameters affects these mutual information curves

EXIT Charts

EXIT chart for two fixed codes, above and below the threshold

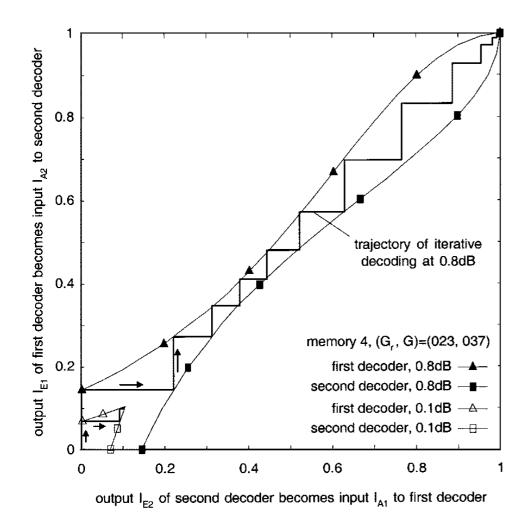
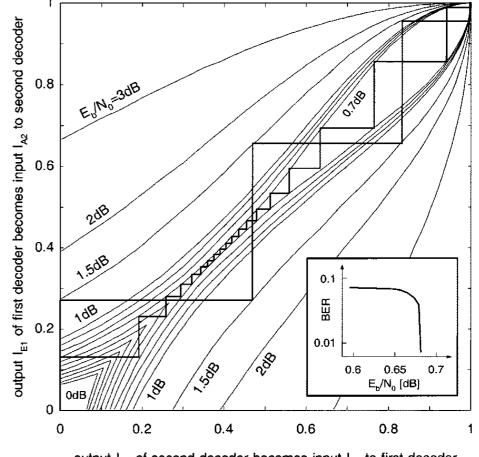


Fig. 5. Simulated trajectories of iterative decoding at $E_b/N_0 = 0.1$ dB and 0.8 dB (symmetric PCC rate 1/2, interleaver size 60 000 systematic bits).



output $\boldsymbol{I}_{\text{E2}}$ of second decoder becomes input $\boldsymbol{I}_{\text{A1}}$ to first decoder

Fig. 6. EXIT chart with transfer characteristics for a set of E_b/N_0 -values; two decoding trajectories at 0.7 dB and 1.5 dB (code parameters as in Fig. 5, PCC rate 1/2); interleaver size 10⁶ bits.

Examples References

SNR Threshold Optimization

- [4] S. ten Brink, "Convergence of iterative decoding," *IEE Electronics Letters*, pp. 1117–1119, June 1999.
- [5] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes," *IEEE Trans. Communication*, pp. 1727–1737, October 2001.
- [6] T.J. Richardson and R.L. Urbanke, "The capacity of low-density paritycheck codes under message-passing decoding," *IEEE Trans. Information Theory*, vol. 47, pp. 599–618, Feb. 2001.
- [7] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," *IEEE Trans. Information Theory*, vol. 47, no. 2, pp. 619–673, February 2001.

Uniform Interleaver Analysis

- [10] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding," *IEEE Trans. Information Theory*, vol. 44, no. 3, pp. 909–926, May 1998.
- [11] D. Divsalar and F. Pollara, "Hybrid concatenated codes and iterative decoding," Tech. Rep., JPL-TDA, August 1997, 42–130.

ISI-AWGN Channel

with QASK Modulation

a post-matched filter model:
$$z_k = f_k * x_k + w_k = \sum_{m=0}^{L} f_m x_{k-m} + w_k$$

FIR ISI in AWGN

Optimal processing is Viterbi Algorithm (hard-out) or FBA (soft-out)

Number of states is M^L — bad complexity scaling

OFDM (discrete multitone)

