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Course Topic (from Syllabus)

• Overview of Comm/Coding

• Signal representation and Random Processes

• Optimal demodulation and decoding

• Uncoded modulations, demod, performance

• Classical FEC

• Modern FEC

• Non-AWGN channels (intersymbol interference)

• Practical consideration (PAPR, synchronization, spectral masks, etc.)
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Coding Topics

• Coding channel models

• Basics of code constructions

• Decoding rules — HIHO, SIHO, SISO

• Classical coding

• Modern Coding

• Performance limits 

• Capacity and finite block-size bounds)

• Bounds for specific codes
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Typical Use of Coding in Modern System
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Hybrid ARQ (H-ARQ) System

CRC Encode

info bits info bits 

CRC 
parity

FEC Encode

info bits 

CRC 
parity FEC 

Parity

Channel 
(including 

modulation)

CRC Decode FEC Decode

hard decisions hard or soft 
decisionsCRC 

Pass?

feedback 
channel

accept

Y

N

request a retransmit

our focus for coding topics
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Coding Channel Models

5

• Typically the coding channel is an abstraction of a more detailed 
model 

• e.g., it may encapsulate modulation/demod/demapping

Channel
Decoder

Channel
Coder

Channel

bi
cj

decision on cj

(soft or hard)

b̂i

information
bits

information bit
decisions

coded symbols
(e.g., coded bits)

zj or yj
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Binary Symmetric Channel
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all math is modulo 2

a b a� b

0 0 0

0 1 1

1 0 1

1 1 0

cj

ej

yj

ej(u) ⇠ iid Bernoulli(✏)

BSC

cj yj

✏

✏

(1� ✏)

(1� ✏)

0

1

0

1

pyj(u)|cj(u)(yj |cj)labels:

BSC is a special case the discrete 
memoryless channel (DMC) (non-binary)

DMCs are fully characterized by 
this type of transition diagram
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BPSK-AWGN or BI-AWGN Channel
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BI-AWGN Channel is a special case of the 
modulation-constrained AWGN channel

e.g., the 16-PSK constrained AWGN channel 

cj
Antipodal
modulation

xj =
p

Ec(�1)cj

wj

wj(u) ⇠ N (·; 0;N0/2)

zj
fzj(u)|cj(u)(z|c) = N

⇣
z;
p
Ec(�1)c;N0/2

⌘

fzj(u)|cj(u)(z|c) = N
⇣
z;
p
Ec(�1)c;N0/2

⌘

zk(u) = x(u) +w(u)

w(u) ⇠ N2

✓
·;0; N0

2
I

◆

x(u) 2 16 PSK constellation
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BSC as Abstraction of BI-AWGN Channel

8

raw channel error probability

cj
Antipodal
modulation

xj =
p

Ec(�1)cj

wj

wj(u) ⇠ N (·; 0;N0/2)

zj yj

BSC as an abstraction of the BI-AWGN Channel
fzj(u)|cj(u)(z|c) = N

⇣
z;
p

Ec(�1)c;N0/2
⌘

zk(u) = x(u) +w(u)

w(u) ⇠ N2

✓
·;0; N0

2
I

◆

x(u) 2 16 PSK constellation

✏ = Q

 r
2Ec

N0

!
= Q

 r
r2Eb

N0

!
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Typical Performance on BI-AWGN

9

modern code

Waterfall Region
(determined by spectral thinness)

High SNR 
(dominated by d_min)

Eb/No (dB)

BER
uncoded

classical 
code

modern 
code

error floor/
flare/knee

raw channel 
BER for coded 

system

�10 log10(r)

coding gain

Q

 r
r2Eb

N0

!

Q

 r
2Eb

N0

!

⇠ Q

 r
rdmin2Eb

N0

!

classical code
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Coding Topics

• Coding channel models

• Basics of code constructions

• Decoding rules — HIHO, SIHO, SISO

• Classical coding

• Modern Coding

• Performance limits 

• Capacity and finite block-size bounds)

• Bounds for specific codes

10



© Keith M. Chugg, 2017

Code Constructions

11

• We are focused on linear binary codes

• binary inputs, binary outputs

• linear: sum of two codewords is also a codeword

• Linear (binary) block codes

• Linear (binary) convolutional codes

• Modern codes

• Low Density Parity Check (LDPC) Codes

• Concatenated convolutional codes - e.g., Turbo codes
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Linear Block Codes
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b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

G (k ⇥ n) Generator Matrix

all math is modulo 2

FEC
Encode

b c

(k ⇥ 1) (n⇥ 1)

code rate: r = k/n

a b a� b

0 0 0

0 1 1

1 0 1

1 1 0
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Coding Conventions/Notation
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• (n,k) code - n, k almost universal notation

• n = (output) block size

• k = input/info block size

• row vectors are often used 

• (I use column vectors)

• Mod-2 arithmetic is not explicitly denoted 

• just a+b and (a+b)%2 is implied
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Linear Block Codes - Generator Matrix

14

b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

b =

2

6666664

b0

b1
...

bk�1

3

7777775
(k ⇥ 1), bi 2 Z2 = {0, 1}

c =

2

6666664

c0

c1
...

cn�1

3

7777775
(n⇥ 1), cj 2 Z2 = {0, 1}

ct = btG

c = Gtb

G (k ⇥ n) Generator MatrixFEC
Encode

b c

(k ⇥ 1) (n⇥ 1)

code rate: r = k/n

a b a� b

0 0 0

0 1 1

1 0 1

1 1 0

Gt =
h
g0 g1 · · · gk�1

i

c =
k�1X

i=0

bigi

Only interested in full-rank G - no repeated codewords

columns of G-transpose are a basis and the info bits are 
the coefficients of codeword expansion in this basis

A linear block code is a linear subspace of the space of all (n x1) binary vectors

a b a� b

0 0 0

0 1 1

1 0 1

1 1 0

Gt =
h
g0 g1 · · · gk�1

i

c =
k�1X

i=0

bigi

C =
n
c : c = Gtb,b 2 Zk

2

o
⇢ Zn

2

dim(C) = k

M = 2k = number of codewords
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Linear Block Codes - Parity Check Matrix

15

The parity check matrix H also characterizes the code

FEC
Encode

b c
syndrome

computation

y = c+ e

e

BSC

Zk
2

Zn
2 Zn

2

Hy = H(c+ e) = He

He
standard
array

ĉ, b̂

ML decoder for BSC

Hc = 0 () c 2 C

H is ((n� k)⇥ n)

rank(H) = n� k

HGt = O

Hc = 0 () c 2 C

H is ((n� k)⇥ n)

rank(H) = n� k

HGt = O

C = {c : Hc = 0} ⇢ Zn
2

dim(C) = k

M = 2k = number of codewords

the code as a constraint
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Example: Repetition Code

16

Codewords for n = 4: 0000 1111

Number of codewords =2 , so k = 1

rate = 1/n (info bits per channel use)

= c1

c2

c3

c0

G =
h
1 1 1 1

i

H =

2

6664

1 1 0 0

1 0 1 0

1 0 0 1

3

7775

In general, this is 
an (n, 1) code
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Example: Single Parity Check Code
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Codewords for n = 4: 0000

Number of codewords = 8 , so k = 3 = n-1

rate = (n-1)/n (info bits per channel use)

0011
1100
1010

0101
1001
0110
1111

+ c1

c2

c3

c0

G =
h
1 1 1 1

i

H =

2

6664

1 1 0 0

1 0 1 0

1 0 0 1

3

7775

H =
h
1 1 1 1

i

G =

2

6664

1 0 0 1

0 1 0 1

0 0 1 1

3

7775

In general, this is 
an (n, n-1) code
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Example: (7,4) Hamming Code

18

Linear Block Code (“Multiple Parity Check Code”)

H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

c1 c2 c3c0 c4 c5 c6

Hc = 0

All three SPCs must be satisfied simultaneously
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Example: (7,4) Hamming Code

19

H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

All local constraints must be satisfied simultaneously

=

+

= = =

+ +

= = =

c1 c2 c3c0 c4 c5 c6

Parity Check Graph 
or Tanner Graph
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Example: Low Density Parity Check (LDPC) Code

20

number of 1s = 
number of bits in 

first SPC

Just a very large (multiple) parity check code with mostly 0s

H =

2

6664

1 0 . . . 1 0 0
0 0 . . . 0 1 0
...

...
. . .

...
...

1 1 . . . 0 0 0

3

7775

number of 1s = number of 
SPCs second code bit is 

involved in

A systematic way to build codes with very large block size
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Example: (7,4) Hamming Code

21

These H and G examples are in a specific format

H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

si+1 = next state(bi, si)

ci = output(bi, si)

G =

2

6666664

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

3

7777775
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Relation Between Generator/Parity Check

22

All H and G for a given code must satisfy this

Hc = HG
t
b = 0 8 b 2 Zk

2

C =
n
c : c = Gtb,b 2 Zk

2

o
= {c : Hc = 0}

Hc = HGtb = 0 8 b 2 Zk
2

HGt = O
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Systematic Code/Form

23

b

p

c

parity bits

information
(systematic)

bits

A systematic code is one is which the information bits 
appear explicitly in k of the coordinates of the codewords

(typically the first k)

G =

2

6666664

1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 0 0 0 1

3

7777775

G =
h
Ik P

i

H =
h
P

t
In�k

i
systematic form for G and H

C =
n
c : c = Gtb,b 2 Zk

2

o
= {c : Hc = 0}

Hc = HGtb = 0 8 b 2 Zk
2

HGt = O

G =
h
Ik P

i

H =
h
Pt In�k

i

Gtb =

2

4 Ik

Pt

3

5b =

2

4 b

Ptb

3

5 =

2

4 b

p

3

5

Hc = H

2

4 b

p

3

5 =
h
Pt In�k

i
2

4 b

p

3

5 =
h
p+ p

i
= 0

C =
n
c : c = Gtb,b 2 Zk

2

o
= {c : Hc = 0}

Hc = HGtb = 0 8 b 2 Zk
2

HGt = O

G =
h
Ik P

i

H =
h
Pt In�k

i

Gtb =

2

4 Ik

Pt

3

5b =

2

4 b

Ptb

3

5 =

2

4 b

p

3

5

Hc = H

2

4 b

p

3

5 =
h
Pt In�k

i
2

4 b

p

3

5 =
h
p+ p

i
= 0
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Code vs. Encoder

24

A code is the linear space — think of this as the signal set

There are many generators for the same code

C =
n
c : c = G

t
b,b 2 Zk

2

o
= {c : Hc = 0}

e.g., can do row operations on G without 
affecting row-space which is the code

An encoder is the mapping from b to c — i.e., the generator matrix G
think of this as the bit-labeling of the signal set

If we do MAP codeword decoding, changing encoders will not affect the probability 
of codeword error, but may affect the probability of bit error
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Linear Binary Convolutional Codes

25

non-recursive or feedforward convolutional encoder

state:

generator polynomial:

D D D D D
bi

vi vi�1

vi�L

ci

h0

...

...

h1 h2 hL�1hL�2 hL

si = (vi�1, vi�2, . . . vi�L)

vi = bi

ci = h0vi + h1vi�1 + h2vi�2 + · · ·hLvi�L

G(D) = h0 + h1D + h2D
2 . . .+ hLD

L
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Models for Convolutional Codes

26

Number of states = 2L

L = memory of the convolution code

K = (L+1) constraint length of the convolution code

Finite State Machine (FSM) Model

si+1 = next state(bi, si)

ci = output(bi, si)

FSM model of Convolution Code (encoder) is given by any of the following:

• State transition table (above rules)
• State transition diagram
• Trellis diagram
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Feedforward CC Example

27

(encoder)  block diagram 

trellis diagram (one stage)

state transition diagram

D D
bi

c(1)
i

c(2)
i

G1 = 5 = (101)
G2 = 7 = (111)

bi = 0

bi = 1

00

01

10

11

00

01

10

11

00

11

11

10

01

01

10 00

00

01

10

11

si = (bi�1, bi�2) si+1 = (bi, bi�1)

00

0110

11

1111

10

01

10

00

01

00
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Models for Convolutional Codes

28

trellis (typical usage)

information bits L Tail Bits

known initial state s0 = (00) Tail bits drive to zero final state

s0 s1 s2 s3

...

b0 b1 b2 b3

c(1)0 c(2)0 c(1)1 c(2)1 c(1)2 c(2)2 c(1)3 c(2)3

bK�1bK�2bK�3

c(1)K�1 c(2)K�1
c(1)K�2 c(2)K�2c(1)K�3 c(2)K�3

sK�1sK�2sK�3s4

tail tail

Graphical Model (Normal Graph)

all valid configurations of the code

00

01

10

11

00

01

10

11

00

11

00

01

10

11

00

01

10

11

00

11

10

01

00

01

10

11

00

01

10

11

00

11

11

10

01

01

10 00

00

01

10

11

00

11

11

10

01

01

10 00

00

01

10

11

00

01

10

11

00

11

01

10

00

01

10

11

00

01

10

11

00

11
00

01

10

11

00

01

10

11

00

11

11

10

01

01

10 00

...

...
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16 state, r=1/2

Linear Binary Convolutional Codes

29

Non-recursive CCs are common in classical coding

NASA’s Voyager mission, many satellite modems, Wi-Fi

GSM Cellular: G1 = 23 = (10011)
G2 = 35 = (11101)

d_free = 6

“Oldenwalder Code”: 64 state, r=1/2
G1 = 133
G2 = 171

d_free = 10

CDMA Cellular 
(IS-95):  256 state, r=1/2

G1 = 752
G2 = 561

d_free = 12

As L increase: decoder complexity increases, performance improves

see Benedetto, page 549 for list of best CCs
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Linear Binary Convolutional Codes

30

recursive or feedback convolutional encoder

state:

generator polynomial:

D D D D D

g1 g2 gLgL�1

bi vi vi�1 vi�L

ci

ci = vi = bi + g1vi�1 + g2vi�2 + · · · gLvi�L

bi = vi + g1vi�1 + g2vi�2 + · · · gLvi�L

...

...

G(D) =
1

1 + g1D + g2D2 + · · · gLDL

si = (vi�1, vi�2, . . . vi�L)
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Linear Binary Convolutional Codes

31

recursive or feedforward convolutional encoder

D

bi ci

ci�1
ci = ci�1 � bi

Accumulator (simple convolutional code)

example: accumulator (recall binary differential encoder)

G(D) =
1

1 +D
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Linear Binary Convolutional Codes

32

feedforward/feedback encoder (general case) - recursive if denominator != 1

state:

generator polynomial:

D D D D D

g1 g2 gLgL�1

bi

vi vi�1

vi�L

ci

bi = vi + g1vi�1 + g2vi�2 + · · · gLvi�L

G(D) =
h0 + h1D + . . . hLDL

1 + g1D + g2D2 + · · · gLDL

h0

...

...

...

h1 h2 hL�1hL�2

gL�2

hL

si = (vi�1, vi�2, . . . vi�L)

vi = bi + g1vi�1 + g2vi�2 + · · · gLvi�L

ci = h0vi + h1vi�1 + h2vi�2 + · · ·hLvi�L
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Models for Convolutional Codes

33

(encoder)  block diagram 

D D
bi

c(1)
i

c(2)
i

G1(D) = 1

G2(D) =
1

1 +D +D2

vi�1 vi�2

trellis diagram (one stage)

00

01

10

11

00

10

11
11

01

00

10
01

state transition diagram

00

01

10

11

00

01

10

11

00

10

10

11

11

01
00

01

si = (vi�1, vi�2) si+1 = (vi, vi�1)

bi = 0

bi = 1
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Models for Convolutional Codes

34

trellis (typical usage)

00

01

10

11

00

01

10

11

00

11
00

01

10

11

00

10

11

01

00

01

10

11

00

10

10

11

11

01
00

01

00

01

10

11

00

10

10

11

11

01
00

01

00

01

10

11

00

10

10

11

11

01
00

01

00

01

10

11

00

01

10

11

00

10

10

11

00

00

01

10

11

00

10
11

...

...

information bits L Tail Bits

known initial state s0 = (00) Tail bits drive to zero final state

s0 s1 s2 s3

...

b0 b1 b2 b3

c(1)0 c(2)0 c(1)1 c(2)1 c(1)2 c(2)2 c(1)3 c(2)3

bK�1bK�2bK�3

c(1)K�1 c(2)K�1
c(1)K�2 c(2)K�2c(1)K�3 c(2)K�3

sK�1sK�2sK�3s4

tail tail

Graphical Model (Normal Graph)

all valid configurations of the code
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Models for Convolutional Codes

35

Model Time (index) Values
Block Diagram implicit implicit
Trellis explicit explicit
Graph explicit implicit

FSM

b[k] c[k]

0/0

1/1 0/1

0/01/0

1/1
1/0

0/1

k=0

0/0

1/1 0/1

0/01/0

1/1
1/0

0/1

k=1

0/0

1/1 0/1

0/01/0

1/1
1/0

0/1

k=2

0/0

1/1 0/1

0/01/0

1/1
1/0

0/1

k=1022

0/0

1/1 0/1

0/01/0

1/1
1/0

0/1

k=1023

k=0 k=1 k=2 k=1022 k=1023

...

...

k=0 k=1 k=2 k=1022 k=1023

...
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Accumulator Trellis & Graphical Model

36

trellis section are local 
codes

0 0

1

0

1

0

1

0

1

0

1

0

1

0
0

1

0

1

0
1

0

0

0

1

0
1

0

1

0
1

0

1

0
1

0

1

0
1

bi = 0

bi = 1

ci = ci�1 + bi = si + bi

c0 c1 c2 c3 c4 c5 c6

+ +

b0 b1 b2 b3 b4 b5 b6

= = + = + = + = + = + state is previous 
output

c0 c1 c2 c3 c4 c5 c6

b0 b1 b2 b3 b4 b5 b6
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Parity Check Trellis For Linear Block Codes

37

(n,n-1) SPC

C =
n
c : c = Gtb,b 2 Zk

2

o
= {c : Hc = 0}

Hc = HGtb = 0 8 b 2 Zk
2

HGt = O

H =
h
1 1 1 · · · 1

i

G =
h
Ik P

i

H =
h
Pt In�k

i

Gtb =

2

4 Ik

Pt

3

5b =

2

4 b

Ptb

3

5 =

2

4 b

p

3

5

Hc = H

2

4 b

p

3

5 =
h
Pt In�k

i
2

4 b

p

3

5 =
h
p+ p

i
= 0

C =
n
c : c = Gtb,b 2 Zk

2

o
= {c : Hc = 0}

Hc = HGtb = 0 8 b 2 Zk
2

HGt = O

H =
h
1 1 1 · · · 1

i

sj =
j�1X

m=0

cj = sj�1 + cj

G =
h
Ik P

i

H =
h
Pt In�k

i

Gtb =

2

4 Ik

Pt

3

5b =

2

4 b

Ptb

3

5 =

2

4 b

p

3

5

Hc = H

2

4 b

p

3

5 =
h
Pt In�k

i
2

4 b

p

3

5 =
h
p+ p

i
= 0

0 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 0

1

0

1

0

1

0

1

0

1

0

1

0

cj = 0

cj = 1

all valid codewords are paths in this trellis (total parity 0)
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Parity Check Trellis For Linear Block Codes
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cj = 0

cj = 1

notice that this is very similar to the accumulator trellis (w/ no “output”)

0 0

1

0

1

0

1

0

1

0

1

0

1

0

c0 c1 c2 c3 c4 c5 c6

+ (SPC)

c0 c1 c2 c3 c4 c5 c6

+ + + + + + +
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Parity Check Trellis For Linear Block Codes
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EE568 - K.M. Chugg - Spring 2007 Last Name: 7

2 Trellis for Kumar’s Toy Code (35 points)

In his notes, Prof. Kumar uses a (n, k, dmin) = (6, 3, 3) code with the following parity check
matrix

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

In this problem you will use a parity check trellis for this code in order to perform ML codeword
decoding on the BPSK-AWGN channel.

(a) (15 points) Draw and label a trellis diagram for this code. You may use a line style
convention to indicate data values (e.g., dashed and solid).

Trellis Diagram:

(6,3) code

0
0
0

1
1
0

0
1
1

1
0
1

1
1
1

0
0
1

1
0
0

0
1
0

cj = 0

cj = 1

See the Parity Check Trellis 
handout 
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Modern Codes
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Low Density Parity Check (LDPC)

Recursive 
CC

Recursive 
CC

=

I

Recursive 
CCICC

info. bits

p
a
r
it
y

parity p

Recursive 
CC

I1CC

CCI2

= = = = =...

permutation

+ + +

=

...

Serially Concatenated Convolutional Codes 
(SCCCs)

Parallel Concatenated Convolutional Codes 
(PCCCs) or Turbo Codes

Hybrid Concatenated Convolutional Codes

Product Codes All are variations on a 
theme:

• Build big, global code from 
small local codes 

• Local codes share common 
variables through permutations 
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Modern Codes
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Common performance trade-off

low-floor 
(e.g., 
SCCC)

low threshold (e.g., PCCC)

Eb/No (dB)

BER

~0.25 dB

~100-1000
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Modern Code Example: Systematic Repeat Accumulate
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P=kQ/J 
parity bits

repetition 
code
(=)

P/S

Q (4 typ)

S
P
C

1/(1+D)

J
k systematic bits

RSPC (zig-zag)
S/P

Ibi
dj vm pm

bi

Systematic Repeat Accumulate

I/I-1

=

+ + + +

= = =

= = =Q

J

...

...

b0 b1 b2 bk�1

p0 p1
pP�1

RSPC

Outer Rep. Code

pP�2
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P=kQ/J 
parity bits

repetition 
code
(=)

P/S

Q (4 typ)

1/(1+D)

k systematic bits

RSPC (zig-zag)

Ibi dj pm

bi

Systematic Repeat Accumulate

puncture 
J:1

RSPC

I/I-1

=

=

= = =Q

J

...

b0 b1 b2 bk�1

p0

p1

Outer Rep. Code

++++++ ++++++

=

++++++...

pP�1

punctured accumulator model



+ + + + +

+

+

+

+

+

+

+

+

+

+= = = =

+ + + + += = = =

+ =++ + =++ + =++ + =++ +++

Accumulator

Accumulator

Punctured Accumulator

J=3 SPC
+Accumulator
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P=kQ/J 
parity bits

repetition 
code
(=)

P/S

Q (4 typ)

S
P
C

1/(1+D)

J
k systematic bits

RSPC (zig-zag)
S/P

Ibi
dj vm pm

bi

Systematic Repeat Accumulate

J 1’s per row

vm = dmJ + dmJ+1 + · · · dmJ+(J�1)

pm = pm�1 + vm

0 = pm + pm�1 + (dmJ+1 + · · · dmJ+(J�1))

dI(i) = bi

h
D S

i
2

4 b

p

3

5 = O

S =

2

66666666666666664

1 0 0 0 · · · 0

1 1 0 0 · · · 0

0 1 1 0 · · · 0

0 0 1 1 · · · 0
...

. . .
...

0 · · · 0 1 1 0

0 · · · 0 0 1 1

3

77777777777777775

vm = dmJ + dmJ+1 + · · · dmJ+(J�1)

pm = pm�1 + vm

0 = pm + pm�1 + (dmJ+1 + · · · dmJ+(J�1))

dI(i) = bi

Hc =
h
D S

i
2

4 b

p

3

5 = O

S =

2

66666666666666664

1 0 0 0 · · · 0

1 1 0 0 · · · 0

0 1 1 0 · · · 0

0 0 1 1 · · · 0
...

. . .
...

0 · · · 0 1 1 0

0 · · · 0 0 1 1

3

77777777777777775

D =

2

66666666666664

0 0 1 0 · · · 1

1 0 0 1 · · · 0

0 0 1 0 · · · 0

0 1 0 0 · · · 1
...

. . .
...

0 1 · · · 0 0 0

3

77777777777775

vm = dmJ + dmJ+1 + · · · dmJ+(J�1)

pm = pm�1 + vm

0 = pm + pm�1 + (dmJ+1 + · · · dmJ+(J�1))

dI(i) = bi

Hc =
h
D S

i
2

4 b

p

3

5 = O

S =

2

66666666666666664

1 0 0 0 · · · 0

1 1 0 0 · · · 0

0 1 1 0 · · · 0

0 0 1 1 · · · 0
...

. . .
...

0 · · · 0 1 1 0

0 · · · 0 0 1 1

3

77777777777777775

D =

2

66666666666664

0 0 1 0 · · · 1

1 0 0 1 · · · 0

0 0 1 0 · · · 0

0 1 0 0 · · · 1
...

. . .
...

0 1 · · · 0 0 0

3

77777777777775

vm = dmJ + dmJ+1 + · · · dmJ+(J�1)

pm = pm�1 + vm

0 = pm + pm�1 + (dmJ+1 + · · · dmJ+(J�1))

dI(i) = bi

Hc =
h
D S

i
2

4 b

p

3

5 = O

S =

2

66666666666666664

1 0 0 0 · · · 0

1 1 0 0 · · · 0

0 1 1 0 · · · 0

0 0 1 1 · · · 0
...

. . .
...

0 · · · 0 1 1 0

0 · · · 0 0 1 1

3

77777777777777775

D =

2

66666666666664

0 0 1 0 · · · 1

1 0 0 1 · · · 0

0 0 1 0 · · · 0

0 1 0 0 · · · 1
...

. . .
...

0 1 · · · 0 0 0

3

77777777777775

Q 1’s per column



© Keith M. Chugg, 2017

Modern Code Example: PCCCC
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Recursive
CC

=

I

Recursive
CC

bi

bi

c(1)i

c(2)i

b0 b1 b2 b3 b4
= = = = = = =

bK�1bK�2

c(1)0 c(1)1 c(1)2 c(1)3 c(1)4 c(1)K�2 c(1)K�1

c(2)0 c(2)1 c(2)2 c(2)3 c(2)4 c(2)K�2 c(2)K�1

I/I�1

...

...

Encoder Block Diagram

Graphical Model
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Modern Code Example: PCCCC
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Recursive
CC

=

I

Recursive
CC

bi

bi

c(1)i

c(2)i

Encoder Block Diagram

100

10−1

10−2

10−3

10−4

10−5

10−6

0 2 4 6 8

B
it

E
rr

or
R

at
e

Eb/N0 (dB)

K =32
K =512
K =1024
K =16384

1 iteration
10 iterations
20 iterations

uncoded

convolutional code

turbo code

T
h
eo

re
ti
ca

l
L
im

it

D D
bi

ci

G(D) =
1 +D2

1 +D +D2

128-state CC
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Recursive
CC

=

I

Recursive
CC

bi

bi

c(1)i

c(2)i

Encoder Block Diagram

100

10−1

10−2

10−3

10−4

10−5

10−6

0 1 2 3

B
it

E
rr

or
R

at
e

Eb/N0 (dB)
0.5 1.5 2.5

1,2,4,6,10,20 iterations

min∗-sum (APP-based)
min-sum (MSM-based)

D D
bi

ci

G(D) =
1 +D2

1 +D +D2

K =1024



© Keith M. Chugg, 2017

Coding Topics

• Coding channel models

• Basics of code constructions

• Decoding rules — HIHO, SIHO, SISO

• Classical coding

• Modern Coding

• Performance limits 

• Capacity and finite block-size bounds)

• Bounds for specific codes

49



© Keith M. Chugg, 2017

Decoding: Hard-in/Hard-out
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MAP codeword decoding over the BSC

Assuming all inputs bits are iid, Bernoulli(1/2):

cj

ej

yj

ej(u) ⇠ iid Bernoulli(✏)

BSC

cj yj

✏

✏

(1� ✏)

(1� ✏)

0

1

0

1

pyj(u)|cj(u)(yj |cj)labels:

ML CW Decoding = 
Minimum Hamming Distance Decoding

py(u)|c(u)(y|c) =
n�1Y

j=0

pyj(u)|cj(u)(yj |cj) = ✏dH(y,c)(1� ✏)n�dH(y,c)

� ln
⇥
py(u)|c(u)(y|c)

⇤
⌘ dH(y, c) ln


1� ✏

✏

�

ĉ = argmin
c2 C

dH(y, c)

dmin = min
c,c̃2 C

dH(c, c̃)

py(u)|c(u)(y|c) =
n�1Y

j=0

pyj(u)|cj(u)(yj |cj) = ✏dH(y,c)(1� ✏)n�dH(y,c)

� ln
⇥
py(u)|c(u)(y|c)

⇤
⌘ dH(y, c) ln


1� ✏

✏

�

ĉ = argmin
c2 C

dH(y, c)

dmin = min
c,c̃2 C

dH(c, c̃)



© Keith M. Chugg, 2017

Minimum Distance of Linear Code
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linear code: sum of codewords is a codeword

Minimum (Hamming) distance or minimum (Hamming) weight of the code

dmin = 3
dmin = 4

py(u)|c(u)(y|c) =
n�1Y

j=0

pyj(u)|cj(u)(yj |cj) = ✏dH(y,c)(1� ✏)n�dH(y,c)

� ln
⇥
py(u)|c(u)(y|c)

⇤
⌘ dH(y, c) ln


1� ✏

✏

�

ĉ = argmin
c2 C

dH(y, c)

dmin = arg min
c 6=c̃2 C

dH(c, c̃)

= arg min
c 6=c̃2 C

dH(0, c+ c̃)

= arg min
c 6=02 C

dH(0, c)

tc =

�
dmin � 1

2

⌫



© Keith M. Chugg, 2017

Error Correction Capability of Linear Code
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Can correct all errors 
of weight 0 or 1

dmin = 3 dmin = 4

Can correct all errors 
of weight 0 or 1

py(u)|c(u)(y|c) =
n�1Y

j=0

pyj(u)|cj(u)(yj |cj) = ✏dH(y,c)(1� ✏)n�dH(y,c)

� ln
⇥
py(u)|c(u)(y|c)

⇤
⌘ dH(y, c) ln


1� ✏

✏

�

ĉ = argmin
c2 C

dH(y, c)

dmin = arg min
c,c̃2 C

dH(c, c̃)

= arg min
c,c̃2 C

dH(0, c+ c̃)

= arg min
c 6=02 C

dH(0, c)

tc =

�
dmin � 1

2

⌫
Error correction capability of code

can correct all error patterns of weight t_c or smaller



© Keith M. Chugg, 2017

Decoding: Hard-in/Hard-out
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Sometimes we will be interested in ML message bit decoding, denoted more simply at
times as ML bit decoding. In this case, the receiver will decode each message bit separately.
The receiver will decode the ith message symbol mi to be zero or one depending upon whether
the likelihood ratio

P (mi = 0|r)
P (mi = 1|r) (20)

is greater or less than one, respectively.

Standard Array Decoding Given the transmitted codeword c
0

and error pattern e
0
, the

received vector r is given by
r = c

0
+ e

0
.

The goal of the receiver is to estimate the most likely codeword ĉ, the most likely error
pattern ê and the two are related by

r = ĉ + ê.

Let us associate with r, the syndrome s via

s = Hr

and note that r can be expressed as the sum

r = c + e, c 2 C,

of a codeword c and an error vector e if and only if

s = He. (21)

Thus the only possible error patterns are those that satisfy (21). From linear algebra, given
a particular solution e

1
to (21), the set S of all possible solutions to (21) is precisely the set

S = e
1
+ C := {e

1
+ c|c 2 C}. The maximum likelihood (ML) decoder seeks the codeword

ĉ closest to r, which is equivalent to finding the vector ê of smallest Hamming weight in S.
Sets of the form a + C, a 2 Fn

2
are called cosets. It follows again from linear algebra, that

there is a one-one correspondence between cosets and syndromes. The cosets of a code thus
partition the space Fn

2
.

Figure 4 shows the cosets and associated syndromes of a linear [6, 3, 3] block code having
generator matrix:

G =

2

4
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 1

3

5 .

Each row in the table corresponds to a distinct coset. The last column lists the syndrome
associated with the particular coset. The top row corresponds to the code C itself.

10

 
 
 
 

000000 100110 010011 001111 110101 101001 011100 111010 (000) T 

000001 100111 010010 001110 110100 101000 011101 111011 (001) T 

000010 100100 010001 001101 110111 101011 011110 111000 (010) T 

000100 100010 010111 001011 110001 101101 011000 111110 (100) T 

001000 101110 011011 000111 111101 100001 010100 110010 (111) T 

010000 110110 000011 011111 100101 111001 001100 101010 (011) T 

100000 000110 110011 101111 010101 001001 111100 011010 (110) T 

000101 100011 010110 001010 110000 101100 011001 111111 (101) T 

 

Codewords

Elements of 
a coset 

Coset 
leader Syndrome 

Figure 4: Standard array for [6,3,3] code.

The entries in the leftmost column correspond to the element within the respective coset
having the least Hamming weight. Such elements are called coset leaders. Where a given
coset has more than one possible vector of minimum weight, the coset leader is chosen
arbitrarily to be any one of these minimum weight vectors. This is the case with the last
row in the table for instance. The table is set up in such a way that the entry in the ith row
at jth column of the table is the sum of the coset leader associated with that row and the
codeword c at the head of the jth column.

Such a table is called the standard array. Given a received vector r, decoding is very
simply accomplished. One simply computes the syndrome s = Hr and then identifies the
coset leader ê of the coset associated to the syndrome s. Setting

ĉ = r + ê

results in a maximum likelihood decision.

Example 4. In our example code we can use

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

11

minimum Hamming distance decoding via the standard array 

 
 
 
 

000000 100110 010011 001111 110101 101001 011100 111010 (000) T 

000001 100111 010010 001110 110100 101000 011101 111011 (001) T 

000010 100100 010001 001101 110111 101011 011110 111000 (010) T 

000100 100010 010111 001011 110001 101101 011000 111110 (100) T 

001000 101110 011011 000111 111101 100001 010100 110010 (111) T 

010000 110110 000011 011111 100101 111001 001100 101010 (011) T 

100000 000110 110011 101111 010101 001001 111100 011010 (110) T 

000101 100011 010110 001010 110000 101100 011001 111111 (101) T 

 

Codewords

Elements of 
a coset 

Coset 
leader Syndrome 

Figure 4: Standard array for [6,3,3] code.

The entries in the leftmost column correspond to the element within the respective coset
having the least Hamming weight. Such elements are called coset leaders. Where a given
coset has more than one possible vector of minimum weight, the coset leader is chosen
arbitrarily to be any one of these minimum weight vectors. This is the case with the last
row in the table for instance. The table is set up in such a way that the entry in the ith row
at jth column of the table is the sum of the coset leader associated with that row and the
codeword c at the head of the jth column.

Such a table is called the standard array. Given a received vector r, decoding is very
simply accomplished. One simply computes the syndrome s = Hr and then identifies the
coset leader ê of the coset associated to the syndrome s. Setting

ĉ = r + ê

results in a maximum likelihood decision.

Example 4. In our example code we can use

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

11

(Kumars Notes)

coset leader = min 
weight element of 

coset

coset of code for 
each syndrome is 

code + coset leader



© Keith M. Chugg, 2017

Minimum Hamming Distance Decoding via Syndromes
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py(u)|c(u)(y|c) =
n�1Y

j=0

pyj(u)|cj(u)(yj |cj) = ✏dH(y,c)
(1� ✏)n�dH(y,c)

� ln
⇥
py(u)|c(u)(y|c)

⇤
⌘ dH(y, c) ln


1� ✏

✏

�

ĉ = argmin
c2 C

dH(y, c)

dmin = arg min
c 6=c̃2 C

dH(c, c̃)

= arg min
c 6=c̃2 C

dH(0, c+ c̃)

= arg min
c 6=02 C

dH(0, c)

tc =

�
dmin � 1

2

⌫

1. Priori to decoding, for each of the 2
n�k

cosets, store the minimum weight element. This is

the coset leader: l(s).

2. When y is received, compute the syndrome s = Hy.

3. The minimum Hamming distance decision is: ĉ = y + l(s).

The standard array also includes all possible 2^n binary vectors arranged in cosets so that 
when a given n-tuple is received, it decodes to the codeword above it in the zero-coset.

 
 
 
 

000000 100110 010011 001111 110101 101001 011100 111010 (000) T 

000001 100111 010010 001110 110100 101000 011101 111011 (001) T 

000010 100100 010001 001101 110111 101011 011110 111000 (010) T 

000100 100010 010111 001011 110001 101101 011000 111110 (100) T 

001000 101110 011011 000111 111101 100001 010100 110010 (111) T 

010000 110110 000011 011111 100101 111001 001100 101010 (011) T 

100000 000110 110011 101111 010101 001001 111100 011010 (110) T 

000101 100011 010110 001010 110000 101100 011001 111111 (101) T 

 

Codewords

Elements of 
a coset 

Coset 
leader Syndrome 

Figure 4: Standard array for [6,3,3] code.

The entries in the leftmost column correspond to the element within the respective coset
having the least Hamming weight. Such elements are called coset leaders. Where a given
coset has more than one possible vector of minimum weight, the coset leader is chosen
arbitrarily to be any one of these minimum weight vectors. This is the case with the last
row in the table for instance. The table is set up in such a way that the entry in the ith row
at jth column of the table is the sum of the coset leader associated with that row and the
codeword c at the head of the jth column.

Such a table is called the standard array. Given a received vector r, decoding is very
simply accomplished. One simply computes the syndrome s = Hr and then identifies the
coset leader ê of the coset associated to the syndrome s. Setting

ĉ = r + ê

results in a maximum likelihood decision.

Example 4. In our example code we can use

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

11

(Kumars Notes)

coset leader = min 
weight element of 

coset

y

s = Hy

codeword 
decision = 

y+coset leader
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Interpreting the Standard Array
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000000 100110 010011 001111 110101 101001 011100 111010 (000) T 

000001 100111 010010 001110 110100 101000 011101 111011 (001) T 

000010 100100 010001 001101 110111 101011 011110 111000 (010) T 

000100 100010 010111 001011 110001 101101 011000 111110 (100) T 

001000 101110 011011 000111 111101 100001 010100 110010 (111) T 

010000 110110 000011 011111 100101 111001 001100 101010 (011) T 

100000 000110 110011 101111 010101 001001 111100 011010 (110) T 

000101 100011 010110 001010 110000 101100 011001 111111 (101) T 

 

Codewords

Elements of 
a coset 

Coset 
leader Syndrome 

Figure 4: Standard array for [6,3,3] code.

The entries in the leftmost column correspond to the element within the respective coset
having the least Hamming weight. Such elements are called coset leaders. Where a given
coset has more than one possible vector of minimum weight, the coset leader is chosen
arbitrarily to be any one of these minimum weight vectors. This is the case with the last
row in the table for instance. The table is set up in such a way that the entry in the ith row
at jth column of the table is the sum of the coset leader associated with that row and the
codeword c at the head of the jth column.

Such a table is called the standard array. Given a received vector r, decoding is very
simply accomplished. One simply computes the syndrome s = Hr and then identifies the
coset leader ê of the coset associated to the syndrome s. Setting

ĉ = r + ê

results in a maximum likelihood decision.

Example 4. In our example code we can use

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

11

Note that the coset leaders are all of the correctable error patterns

(Kumars Notes)

coset leader = min 
weight element of 

coset

All weight t_c and below vectors must be coset leaders!

Typically, will have some coset leaders with weight t_c+1 which means that the 
code can correct some patterns of weight t_c+1
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Performance of HIHO Decoding on BSC
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Since all weight t_c and lower error patterns are correctable:

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1) small epsilon
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If you have the coset leaders:

For example (6,3,3) code:

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

 
 
 
 

000000 100110 010011 001111 110101 101001 011100 111010 (000) T 

000001 100111 010010 001110 110100 101000 011101 111011 (001) T 

000010 100100 010001 001101 110111 101011 011110 111000 (010) T 

000100 100010 010111 001011 110001 101101 011000 111110 (100) T 

001000 101110 011011 000111 111101 100001 010100 110010 (111) T 

010000 110110 000011 011111 100101 111001 001100 101010 (011) T 

100000 000110 110011 101111 010101 001001 111100 011010 (110) T 

000101 100011 010110 001010 110000 101100 011001 111111 (101) T 

 

Codewords

Elements of 
a coset 

Coset 
leader Syndrome 

Figure 4: Standard array for [6,3,3] code.

The entries in the leftmost column correspond to the element within the respective coset
having the least Hamming weight. Such elements are called coset leaders. Where a given
coset has more than one possible vector of minimum weight, the coset leader is chosen
arbitrarily to be any one of these minimum weight vectors. This is the case with the last
row in the table for instance. The table is set up in such a way that the entry in the ith row
at jth column of the table is the sum of the coset leader associated with that row and the
codeword c at the head of the jth column.

Such a table is called the standard array. Given a received vector r, decoding is very
simply accomplished. One simply computes the syndrome s = Hr and then identifies the
coset leader ê of the coset associated to the syndrome s. Setting

ĉ = r + ê

results in a maximum likelihood decision.

Example 4. In our example code we can use

H =

2

4
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

3

5

11

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

PCW  1�
⇥
(1� ✏)6 + 6✏(1� ✏)5

⇤
Note that the bound yields:
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The number of coset leaders: 

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

PCW  1�
⇥
(1� ✏)6 + 6✏(1� ✏)5

⇤

2n�k

Coset leaders with weight <= t_c: 

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

PCW  1�
⇥
(1� ✏)6 + 6✏(1� ✏)5

⇤

2n�k

tcX

w=0

✓
n

w

◆

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

PCW  1�
⇥
(1� ✏)6 + 6✏(1� ✏)5

⇤

2n�k

tcX

w=0

✓
n

w

◆
= 2n�k

Possible?

1� PCW = 1� Pr {ĉ(u) 6= c(u)}

� Pr {wH(e(u))  tc}

=
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

PCW  1�
tcX

w=0

� n
w

�
✏w(1� ✏)n�w

=
nX

w=tc+1

� n
w

�
✏w(1� ✏)n�w

⇡
⇣

n
tc + 1

⌘
✏(tc+1)(1� ✏)n�(tc+1)

PCW = Pr {e(u) 6= a coset leader}

= 1� Pr {e(u)is a coset leader}

PCW = 1�
⇥
(1� ✏)6 + 6✏(1� ✏)5 + ✏2(1� ✏)4

⇤

PCW  1�
⇥
(1� ✏)6 + 6✏(1� ✏)5

⇤

2n�k

tcX

w=0

✓
n

w

◆
 2n�k

This is a bound on d_min — 
Sphere packing or Hamming 

bound

Yes: called a “perfect code” (rare)

Hamming code is perfect
(see page 470 of Benedetto for the standard Array for the (7,4,3) Hamming code)

(n,1,n) repetition code is perfect for n odd

(23,12,7) Golay code is perfect

only 3 known perfect 
binary codes

Interpreting the Standard Array
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cj
Antipodal
modulation

xj =
p

Ec(�1)cj

wj

wj(u) ⇠ N (·; 0;N0/2)

zj
fzj(u)|cj(u)(z|c) = N

⇣
z;
p
Ec(�1)c;N0/2

⌘

fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

ML CW Decoding = 
Minimum Euclidean Distance Decoding
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cj
Antipodal
modulation

xj =
p

Ec(�1)cj

wj

wj(u) ⇠ N (·; 0;N0/2)

zj
fzj(u)|cj(u)(z|c) = N

⇣
z;
p
Ec(�1)c;N0/2

⌘

For a linear code, the CW error probability 
the same conditioned on any codeword — 

i.e., can condition on zero CW

fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

P (E|c) 
X

c̃ 6=c2C
PPW (c, c̃)

PPW (c, c̃) = Q

0

@
s

kx(c)� x(c̃)k2
2N0

1

A

= Q

0

@
s

dH(c, c̃)4Ec

2N0

1

A

= Q

 r
dH(c, c̃)r

2Eb

N0

!

fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

P (E|c) 
X

c̃ 6=c2C
PPW (c, c̃)

PPW (c, c̃) = Q

0

@
s

kx(c)� x(c̃)k2
2N0

1

A

= Q

0

@
s

dH(c, c̃)4Ec

2N0

1

A

= Q

 r
dH(c, c̃)r

2Eb

N0

!
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fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

P (E|c) 
X

c̃ 6=c2C
PPW (c, c̃)

PPW (c, c̃) = Q

0

@
s

kx(c)� x(c̃)k2
2N0

1

A

= Q

0

@
s

dH(c, c̃)4Ec

2N0

1

A

= Q

 r
dH(c, c̃)r

2Eb

N0

!

Q

 r
dminr

2Eb

N0

!
 PCW 

X

d�dmin

AdQ

 r
dr

2Eb

N0

!

fz(u)|c(u)(z|c) =
n�1Y

j=0

fzj(u)|cj(u)(yj |cj)

� ln
⇥
fz(u)|c(u)(z|c)

⇤
⌘ 1

N0
kz� x(c)k2

ĉ = argmin
c2 C

kz� x(c)k2

P (E|c) 
X

c̃ 6=c2C
PPW (c, c̃)

PPW (c, c̃) = Q

0

@
s

kx(c)� x(c̃)k2
2N0

1

A

= Q

0

@
s

dH(c, c̃)4Ec

2N0

1

A

= Q

 r
dH(c, c̃)r

2Eb

N0

!

Q

 r
dminr

2Eb

N0

!
 PCW 

X

d�dmin

AdQ

 r
dr

2Eb

N0

!

Ad = number of codewords with weight d

weight distribution of the code
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Input/output weight distribution of the code

Pb = Pb|0

=
X

b 6=0

wH(b)

k
Pr
�
ĉ(u) = Gtb|c(u) = 0

 


X

b 6=0

wH(b)

k
PPW (Gtb,0)

=
X

b 6=0

wH(b)

k
Q

 r
dH(Gtb,0)r

2Eb

N0

!

Pb = Pb|0

=
X

b 6=0

wH(b)

k
Pr
�
ĉ(u) = Gtb|c(u) = 0

 


X

b 6=0

wH(b)

k
PPW (Gtb,0)

=
X

b 6=0

wH(b)

k
Q

 r
dH(Gtb,0)r

2Eb

N0

!

1

k
Q

 r
dminr

2Eb

N0

!
 Pb 

X

d�dmin

KdQ

 r
dr

2Eb

N0

!

Pb = Pb|0

=
X

b 6=0

wH(b)

k
Pr
�
ĉ(u) = Gtb|c(u) = 0

 


X

b 6=0

wH(b)

k
PPW (Gtb,0)

=
X

b 6=0

wH(b)

k
Q

 r
dH(Gtb,0)r

2Eb

N0

!

1

k
Q

 r
dminr

2Eb

N0

!
 Pb 

X

d�dmin

KdQ

 r
dr

2Eb

N0

!

Kd =
kX

w=1

w

k
Bw,d

Bw,d = number of configurations with input weight w and output weight d
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this is for the (7,4,3) Hamming Code

0 2 4 6 8 10 12
Eb/No (dB)
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Soft-in Approx
Uncoded
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Singleton Bound:

Other Bounds on Minimum Distance

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

CAWGN

W
= log2

✓
1 +

P

N0W

◆
bps/Hz

= log2

✓
1 +

EbRb

N0W

◆

CAWGN

W
= log2

✓
1 +


Eb

N0

�

min

CAWGN

W

◆
bps/Hz


Eb

N0

�

min

=
2
⌘bps/Hz � 1

⌘bps/Hz

Mostly useful for non-binary codes — (non-binary) codes that achieve this 
bound are calls Maximum Distance Separable (MDS).

Reed-Solomon codes are (non-binary) MDS codes.  If you receive any k 
symbols of an MDS code, you can decode on erasure channel

Plotkin Bound: dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

CAWGN

W
= log2

✓
1 +

P

N0W

◆
bps/Hz

= log2

✓
1 +

EbRb

N0W

◆

CAWGN

W
= log2

✓
1 +


Eb

N0

�

min

CAWGN

W

◆
bps/Hz


Eb

N0

�

min

=
2
⌘bps/Hz � 1

⌘bps/Hz

dmin < n/2 : 2(dmin � 1)� log2(dmin)  (n� k)

dmin � n/2 : dmin  n2k�1

2k � 1

dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

CAWGN

W
= log2

✓
1 +

P

N0W

◆
bps/Hz

= log2

✓
1 +

EbRb

N0W

◆

For binary codes, the Hamming bound is usually tightest.  Plotkin is 
tightest for very low rate codes



© Keith M. Chugg, 2017 65

“Existence” Bounds on Minimum Distance

Suppose we build a code by randomly selecting a points, making sure that 
no two points are closer than d in Hamming distance?

x

x

x

Zn
2

radius d� 1 balls

2
k
d�1X

i=0

⇣
n
i

⌘
< 2

n

dmin < n/2 : 2(dmin � 1)� log2(dmin)  (n� k)

dmin � n/2 : dmin  n2k�1

2k � 1

dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

CAWGN

W
= log2

✓
1 +

P

N0W

◆
bps/Hz

= log2

✓
1 +

EbRb

N0W

◆

Gilbert-
Varshamov 

Bound

GV-1:

GV-2:

2
k
d�1X

i=0

⇣
n
i

⌘
< 2

n

2
k
d�2X

i=0

⇣
n� 1
i

⌘
< 2

n

dmin < n/2 : 2(dmin � 1)� log2(dmin)  (n� k)

dmin � n/2 : dmin  n2k�1

2k � 1

dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

If (n,k,d) satisfy the G-V bound, then 
there exists a code with these 

parameters 
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Bounds on Minimum Distance

d_min = 7 codes exist with rate between the solid green and red curves
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Bounds on Minimum Distance
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Bounds on Minimum Distance
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Hamming Family of Codes

This is a family of perfect, single error correcting block codes

m = n� k

n = 2
m � 1

k = 2
m � 1�m

dmin = 3

2
k
d�1X

i=0

⇣
n
i

⌘
< 2

n

2
k
d�2X

i=0

⇣
n� 1
i

⌘
< 2

n

dmin < n/2 : 2(dmin � 1)� log2(dmin)  (n� k)

dmin � n/2 : dmin  n2k�1

2k � 1

dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

m = 2: (3,1,3) — aka repetition code

m = 3: (7,4,3)

m = 4: (15,11,3)

H =

2

4
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

3

5

Construction: the parity check matrix has all non-zero (m x 1) binary vector

Note: the rate increases with block size
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Reed-Mueller Family of Codes

Forney’s notes, 6.4

RM(r,m) =) (n = 2
m, kr,m, dmin = 2

m�r
) 0  r  m

kr,m =

rX

j=0

⇣
m
j

⌘

m = n� k

n = 2
m � 1

k = 2
m � 1�m

dmin = 3

2
k
d�1X

i=0

⇣
n
i

⌘
< 2

n

2
k
d�2X

i=0

⇣
n� 1
i

⌘
< 2

n

dmin < n/2 : 2(dmin � 1)� log2(dmin)  (n� k)

dmin � n/2 : dmin  n2k�1

2k � 1

dmin  dave

dmin  (n� k) + 1

C = max
p

I(z(u);x(u))

⌘bps/Hz =
⌘b/2d
1 + �

(RRC)

q =
n

log2(M)

r is called the order of the RM code
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Reed-Mueller Family of Codes

Construction: many constructions.  Here is on based on Hadamard matrices

Um ⇠ 2m ⇥ 2m

RM(r,m) has generator comprising all rows of Um with weight 2m�r or greater

c�K.M. Chugg - April 25, 2017– TITLE 2

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

U0 = 1

U1 =

2

4 U0 U0

U0 0

3

5 =

2

4 1 1

1 0

3

5

U2 =

2

4 U2 U2

U2 0

3

5 =

2

6666664

1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

3

7777775

Ui =

2

4 Ui�1 Ui�1

Ui�1 0

3

5

RM(r,m) =) (n = 2
m, kr,m, dmin = 2

m�r
) 0  r  m

kr,m =

rX

j=0

⇣
m
j

⌘

m = n� k

n = 2
m � 1

k = 2
m � 1�m

dmin = 3
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Reed-Mueller Family of Codes

Construction: example RM(1,3) code which is (8,4,4) code

RM(r,m) has generator comprising all rows of Um with weight 2m�r or greater

r = 1,m = 3 2m�r = 4

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

U0 = 1

U1 =

2

4 U0 U0

U0 0

3

5 =

2

4 1 1

1 0

3

5

U2 =

2

4 U2 U2

U2 0

3

5 =

2

6666664

1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1

3

7777775

Ui =

2

4 Ui�1 Ui�1

Ui�1 0

3

5

RM(r,m) =) (n = 2
m, kr,m, dmin = 2

m�r
) 0  r  m

kr,m =

rX

j=0

⇣
m
j

⌘

m = n� k

n = 2
m � 1

k = 2
m � 1�m

dmin = 3

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

U0 = 1

U1 =

2

4 U0 U0

U0 0

3

5 =

2

4 1 1

1 0

3

5

U2 =

2

4 U2 U2

U2 0

3

5 =

2

6666664

1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1

3

7777775

Ui =

2

4 Ui�1 Ui�1

Ui�1 0

3

5

RM(r,m) =) (n = 2
m, kr,m, dmin = 2

m�r
) 0  r  m

kr,m =

rX

j=0

⇣
m
j

⌘
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Dual Codes

Original Code: C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

C?
: (n, k? = n� k, d?)

Generator : G
?
= H, (k? ⇥ n)

Parity Check : H
?
= G, (n� k? ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

Dual Code:

It is possible to be self-dual — i.e., the the generator G is a valid parity check matrix H!

Example: (8,4,4) RM code on previous slide
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Weight Enumerating Function

Example: (7,4,3) Hamming Code:

The WEF of the dual code is determined from the original code

Ad = number of codewords with weight d

A(D) =

nX

d=0

AdD
d

(weight enumerating function)

C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

C?
: (n, k? = n� k, d?)

Generator : G
?
= H, (k? ⇥ n)

Parity Check : H
?
= G, (n� k? ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

U3 =

2

66666666666666666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3

77777777777777777775

A(D) = 1 + 7D3
+ 7D4

+D7

Ad = number of codewords with weight d

A(D) =

nX

d=0

AdD
d

(weight enumerating function)

C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

C?
: (n, k? = n� k, d?)

Generator : G
?
= H, (k? ⇥ n)

Parity Check : H
?
= G, (n� k? ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

MacWilliams Identity:

For various values of Ec/N0, plot the mutual information between yi and bi vs. the mutual

information xi and bi

Adual(D) = 2
�k

(1 +D)
nA

✓
1�D

1 +D

◆

A(D) = 1 + 7D3
+ 7D4

+D7

Ad = number of codewords with weight d

A(D) =

nX

d=0

AdD
d

(weight enumerating function)

C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

C?
: (n, k? = n� k, d?)

Generator : G
?
= H, (k? ⇥ n)

Parity Check : H
?
= G, (n� k? ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775
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Decoding: Soft-in/Soft-out

75

d0 d1

constraint (code)

dq�1

...

MI[d0] MI[d1] MI[dq�1]MO[dq�1]MO[d1]MO[d0]

SISO

...

1. Combine incoming marginal metrics to get configuration metrics for all valid configurations 

M[config = m] =

X

j

MI[dj(m)]

MO[dj ] =

✓
min

m:dj=1
M[config = m]� min

m:dj=0
M[config = m]

◆
�MI[dj ]

2. Marginalize configuration metrics to get outgoing marginal metricsM[config = m] =

X

j

MI[dj(m)]

MO[dj ] =

✓
min

m:dj=1
M[config = m]� min

m:dj=0
M[config = m]

◆
�MI[dj ]
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Decoding: Soft-in/Soft-out

76

see SISO summary handout and 
633_SISO.xlsx

d0 d1

constraint (code)

dq�1

...

MI[d0] MI[d1] MI[dq�1]MO[dq�1]MO[d1]MO[d0]

SISO

...
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Example: Repetition Code SISO

77

Special case of degree 4

0000

1111

= c1

c2

c3

c0
w

x

y

z

x+y+z

w+x+y

w+x+z

w+y+z

0

w+x+y+z

m=0:

m=1:

config 
metricconfig

Note that there is no marginalizing in this case
 min-sum and min*-sum are same
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Example: SPC SISO

78

Consider degree 4:

0011

1100

1010

0101

1001
0110

1111

+ c1

c2

c3

c0

w

x

y

z

min(w,x,y,w+x+y) - 
min(0,x+w,y+w,y+x)

0000 0

x+w

m=0:

m=1:

config 
metric

config
(3,2,1,0)

y+w

y+x
z+w

z+x

z+y
z+y+x+w

for min*-sum, change 
min to min*
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Example: min-sum SPC SISO

79

+ c1

c2

c3

c0

w

x

y

z

min(w,x,y,w+x+y) - 
min(0,x+w,y+w,y+x)

min(w, x, y, w + x+ y)�min(0, x+ w, y + w, y + x) = [min(|w|, |x|, |y|)] sgn(w)sgn(x)sgn(y)

M[config = m] =

X

j

MI[dj(m)]

MO[dj ] =

✓
min

m:dj=1
M[config = m]� min

m:dj=0
M[config = m]

◆
�MI[dj ]

This is valid for min-sum only (cannot change mins to min*)

(example of a non-semi-ring property/algorithm)

“min-mag/sign-product” shortcut for SPC min-sum SISO
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Example: Accumulator SISO

80

Special case of the Forward-Backward Algorithm

c0 c1 c2 c3 c4 c5 c6

+ +

b0 b1 b2 b3 b4 b5 b6

= = + = + = + = + = +

+

=

+
Fi[si+1]

Fi�1[si]

MI[ci]

g(Fi�1[si],MI[bi])

Bi[si]

Bi+1[si+1]
Bi+1[si+1] + MI[ci]

MI[bi] MI[bi+1]MO[bi]

Fi[si+1] = MI[ci] + g(Fi�1[si],MI[bi])

Bi[si] = g(Bi+1[si+1] + MI[ci],MI[bi])

MO[bi] = g(Bi+1[si+1] + MI[ci],Fi�1[si])

Forward Recursion:

Backward Recursion:

Completion on input:

1/(1+D)
SISO

MI[bi]

MO[bi] MI[ci]

MO[bi+1]

g(x, y) = min(x, y)�min(0, x+ y)

= min(|x|, |y|)sgn(x)sgn(y)

g⇤(x, y) = min
⇤
(x, y)�min

⇤
(0, x+ y)

min(w, x, y, w + x+ y)�min(0, x+ w, y + w, y + x) = [min(|w|, |x|, |y|)] sgn(w)sgn(x)sgn(y)

M[config = m] =

X

j

MI[dj(m)]

MO[dj ] =

✓
min

m:dj=1
M[config = m]� min

m:dj=0
M[config = m]

◆
�MI[dj ]
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min-sum vs min*-sum

81

This is a non-semi-ring property that holds for 
min-sum

min-sum
SISO

MI[bi]

MO[bi]

cMO[bi]

cMI[bi]

min-sum
SISO

min(cx, cy) = cmin(x, y) (c > 0)

cMO[cj ]

MO[cj ]

MI[cj ]

cMI[cj ]

MI[bi]

MO[bi]

cMI[bi]

�= cMO[bi]

�= cMO[cj ]

MO[cj ]

cMI[cj ]

min�-sum
SISO

min�-sum
SISO

min�(cx, cy) �= cmin�(x, y)

MI[cj ]
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min-sum vs min*-sum

82

min-sum processing does not require knowledge 
of Es or No when the inputs are iid uniform

min-sum
SISO

MO[bi]

cMO[bi] min-sum
SISO

cMO[cj ]

MO[cj ]0

4
�

Es

N0
zj

0

zj
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Viterbi Algorithm & FBA

83

Model: FSM in memoryless noise (e.g., AWGN)

f(zI�1
0 |bI�1

0 , s0) = f(zI�1|zI�2
0 ,bI�1

0 , s0)f(z
I�2
0 |bI�1

0 , s0)

= f(zI�1|bI�1
0 , s0)f(z

I�2
0 |bI�2

0 , s0)

= f(zI�1|bi, si)f(zI�2
0 |bI�2

0 , s0)

=
I�1Y

i=0

f(zi|bi, si)

p(bI�1
0 , s0) = p(bI�1|bI�2

0 , s0)p(b
I�2
0 , s0)

= p(bI�1)p(b
I�2
0 , s0)

= p(s0)
I�1Y

i=0

p(bi)

f(zI�1
0 |bI�1

0 , s0)p(b
I�1
0 , s0) = p(s0)

I�1Y

i=0

f(zi|bi, si)p(bi)

zi(u) = xi(bi, si) + wi(u)

In the tail this becomes:p(bi|si)

f(zI�1
0 |bI�1

0 , s0) = f(zI�1|zI�2
0 ,bI�1

0 , s0)f(z
I�2
0 |bI�1

0 , s0)

= f(zI�1|bI�1
0 , s0)f(z

I�2
0 |bI�2

0 , s0)

= f(zI�1|bi, si)f(zI�2
0 |bI�2

0 , s0)

=
I�1Y

i=0

f(zi|bi, si)

p(bI�1
0 , s0) = p(bI�1|bI�2

0 , s0)p(b
I�2
0 , s0)

= p(bI�1)p(b
I�2
0 , s0)

= p(s0)
I�1Y

i=0

p(bi)

f(zI�1
0 |bI�1

0 , s0)p(b
I�1
0 , s0) = p(s0)

I�1Y

i=0

f(zi|bi, si)p(bi)

zi(u) = xi(bi, si) + wi(u)

In the tail this becomes:p(bi|si)

Sequence/Configuration APP — recursive computation

f(zI�1
0 |bI�1

0 , s0) = f(zI�1|zI�2
0 ,bI�1

0 , s0)f(z
I�2
0 |bI�1

0 , s0)

= f(zI�1|bI�1
0 , s0)f(z

I�2
0 |bI�2

0 , s0)

= f(zI�1|bi, si)f(zI�2
0 |bI�2

0 , s0)

=
I�1Y

i=0

f(zi|bi, si)

p(bI�1
0 , s0) = p(bI�1|bI�2

0 , s0)p(b
I�2
0 , s0)

= p(bI�1)p(b
I�2
0 , s0)

= p(s0)
I�1Y

i=0

p(bi)

f(zI�1
0 |bI�1

0 , s0)p(b
I�1
0 , s0) = p(s0)

I�1Y

i=0

f(zi|bi, si)p(bi)

zi(u) = xi(bi, si) + wi(u)

In the tail this becomes:p(bi|si)

M[tI�1
0 ] = � ln

⇣
f(zI�1

0 |bI�1
0 , s0)p(b

I�1
0 , s0)

⌘

= � ln[p(s0)] +
I�1X

i=0

Mi[ti]

Mi[ti] = MI[xi(ti)] + MI[bi(ti)]

MI[xi(ti)] = � ln(f(zi|xi(ti))

MI[bi(ti)] = � ln[p(bi)]

M[tI�1
0 ] = � ln[p(s0)] +

I�1X

i=0

Mi[ti]

ti = (bi, si)

(State) Transition Metrics 
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Viterbi Algorithm & FBA

84

f(zI�1
0 |bI�1

0 , s0) = f(zI�1|zI�2
0 ,bI�1

0 , s0)f(z
I�2
0 |bI�1

0 , s0)

= f(zI�1|bI�1
0 , s0)f(z

I�2
0 |bI�2

0 , s0)

= f(zI�1|bi, si)f(zI�2
0 |bI�2

0 , s0)

=
I�1Y

i=0

f(zi|bi, si)

p(bI�1
0 , s0) = p(bI�1|bI�2

0 , s0)p(b
I�2
0 , s0)

= p(bI�1)p(b
I�2
0 , s0)

= p(s0)
I�1Y

i=0

p(bi)

f(zI�1
0 |bI�1

0 , s0)p(b
I�1
0 , s0) = p(s0)

I�1Y

i=0

f(zi|bi, si)p(bi)

zi(u) = xi(bi, si) + wi(u)

In the tail this becomes:p(bi|si)

M[tI�1
0 ] = � ln

⇣
f(zI�1

0 |bI�1
0 , s0)p(b

I�1
0 , s0)

⌘

= � ln[p(s0)] +
I�1X

i=0

Mi[ti]

Mi[ti] = MI[xi(ti)] + MI[bi(ti)]

MI[xi(ti)] = � ln(f(zi|xi(ti))

MI[bi(ti)] = � ln[p(bi)]

M[tI�1
0 ] = � ln[p(s0)] +

I�1X

i=0

Mi[ti]

ti = (bi, si)

f(zI�1
0 |bI�1

0 , s0) = f(zI�1|zI�2
0 ,bI�1

0 , s0)f(z
I�2
0 |bI�1

0 , s0)

= f(zI�1|bI�1
0 , s0)f(z

I�2
0 |bI�2

0 , s0)

= f(zI�1|bi, si)f(zI�2
0 |bI�2

0 , s0)

=
I�1Y

i=0

f(zi|bi, si)

p(bI�1
0 , s0) = p(bI�1|bI�2

0 , s0)p(b
I�2
0 , s0)

= p(bI�1)p(b
I�2
0 , s0)

= p(s0)
I�1Y

i=0

p(bi)

f(zI�1
0 |bI�1

0 , s0)p(b
I�1
0 , s0) = p(s0)

I�1Y

i=0

f(zi|bi, si)p(bi)

zi(u) = xi(bi, si) + wi(u)

In the tail this becomes:p(bi|si)

M[tI�1
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Forward State Metric Recursion
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Forward State Metric Recursion

+
Survivor Path Storage (non-semi-ring)

+ 
Survivor Traceback and Decode
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left edge is reached the backward “traceback” (trace-left) operation can
be performed. Note that, as it must, this yields the same final decision
as the forward version.

End Example

1.3.2.2 The Forward Backward Algorithm
The total MSM of a transition tk (i.e., the metric based on all obser-

vations) can be obtained by marginalizing out over all other transitions
ti consistent with tk. However, this consistency can be enforced by
marginalizing over all tk−1

0 consistent with sk(tk) and tK−1
k+1 consistent

with sk+1(tk). In other words, one can decouple the shortest path (MSM)
problem into two such problems conditioned on the states: (i) from the
initial time to each conditional value of sk, yielding MSMk−1

0 [sk], and
(ii) from the final time (backwards) to each conditional value of sk+1,
yielding MSMK−1

k+1 [sk+1]. Together with the transition metric Mk[tk],
this yields the MSM of tk based on the entire observation record

MSMK−1
0 [tk] = MSMk−1

0 [sk(tk)] + Mk[tk] + MSMK−1
k+1 [sk+1(tk)] (1.65)

This concept is illustrated in Fig-1.13. More formally we have

0

1

2

3

0

1
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3

s0 sK

1

2

3

1

2

3

0 0

sk+1sk

Mk[tk]
MSMK−1

k+1 [sk+1]MSMk−1
0 [sk]

Figure 1.13. The MSM for a given transition may be computed by summing the
transition metric and the forward and backward state metrics.

MSMK−1
0 [tk] = min

tK−1
0 :tk

K−1∑

i=0

Mi[ti] (1.66a)

= min
tK−1
0 :tk

[
k−1∑

i=0

Mi[ti] + Mk[tk] +
K−1∑

i=k+1

Mi[ti]

]
(1.66b)

Forward-Backward Algorithm
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veloped a version of this APP algorithm. This is also a component of
the Baum-Welch algorithm (e.g., [Ra89]).

Based on the duality principle, the completion operation in the sum-
product algorithm must compute APPK−1

0 [uk] ≡ p(zK−1
0 , uk) by sum-

ming APPK−1
0 [tk] ≡ p(zK−1

0 , tk) over all transitions consistent with uk.
While a good deal of effort has been spent to convince the reader that
derivation of the sum-product version is not required with the min-sum
semi-ring version in place, we provide a direct derivation for this case
because this is a very important example. Using basic conditional prob-
ability relations, we obtain

p(zK−1
0 , tk) = p(zK−1

k+1 |tk)p(zk
0 , tk) (1.69a)

= p(zK−1
k+1 |tk)p(zk, ak|sk)p(zk−1

0 , sk) (1.69b)

= [p(zk−1
0 , sk)][p(zk|xk(tk))p(ak)][p(zK−1

k+1 |sk+1)] (1.69c)

The three terms in (1.69c) correspond to APPk−1
0 [sk], Pk[tk], and

APPK−1
k+1 [sk+1], respectively. For any quantity uk derived from tk, the

APP can be obtained by summing over all tk consistent with uk (i.e., the
completion operation). According to the duality principle, the forward
and backward state APPs should satisfy the sum-product dual of the
ACS operations in (1.59b) and (1.64b), respectively. This fact is simple
to verify directly yielding

p(zk
0 , sk+1) =

∑

tk :sk+1

[
p(zk−1

0 , sk)p(zk|xk(tk))p(ak)
]

(1.70a)

p(zK−1
k |sk) =

∑

tk :sk

[
p(zK−1

k+1 |sk+1)p(zk|xk(tk))p(ak)
]

(1.70b)

Many authors use the notation α(sk), β(sk+1), and γ(tk) to denote the
forward state APP, the backward state APP, and the transition proba-
bility. It may seem somewhat strange to refer to p(zK−1

k+1 |sk) as an APP
– more precisely, it is a likelihood. This is actually the case in the MSM
version as well (i.e., MSMK−1

k+1 [sk+1] is the generalized likelihood of sk+1

based on zK−1
k+1 ). Furthermore, sk is a “hidden variable,” meaning that

it is not an input or output of the FSM. It will become clear in Chap-
ter 2 that one can always assume uniform a-priori information on such
hidden variables. Furthermore, the backward recursion is initialized by
the relation

p(zK−1
K−1|sK−1) = p(zK−1|sK−1) (1.71a)

=
∑

tK−1:sK−1

p(zK−1|tK−1)p(tK−1|sK−1) (1.71b)
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Sum-product version via probability manipulations
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Use Viterbi Algorithm to find minimum weight simple error pattern

Mn = table of MSMs for that edge variable

= metric of best configuration of tree n, 
given that conditional value of the edge 

variable

sub-graph (tree) 1

sub-graph (tree) 2

sub-graph (tree) 3

sub-graph (tree) 4

sub-graph (tree) 5

M1

M2
M3

M5

M4

MI

Not possible since 
entire graph is a tree
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Mv = table of MSMs for best configuration of tree v, 
given conditional edge variable value

sub-graph (tree) 1

sub-graph (tree) 2

sub-graph (tree) 3

sub-graph (tree) 4

sub-graph (tree) 5

M1

M2
M3

M5

MI

Not possible since 
entire graph is a tree

Mv

MO

sub-graph (tree) v

MO = globally optimal extrinsic soft information

apply this reasoning to “grow” 
trees that have all of the 

required information for global 
optimality

direct generalization of the 
argument used for Viterbi 

Algorithm — e.g., partition 
problem into two problems 

(east and west)
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Why Good Heuristic for Cyclic Graphs?
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For an expansion by looking out r steps from a given node

permutation

permutation

radius 1 expansion

radius 2 expansion
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Why Good Heuristic for Cyclic Graphs?

93

Note: if radius r expansion is cycle 
free, then after r flooding activations, 
the central node can perform optimal 

decision based on all incoming 
messages within radius r

11

1

22

22

2 33

33

3

2 33

3

3

33

3

2 33

3

33 r = 3 expansion

Conclusion: If the minimal cycle length is longer than the “survivor merging” radius 
of the graph, then standard message-passing should approximate optimal inference

In practice: Long cycles and random cycle structure is sought for near-optimal 
performance — intuition, do not want all (weak) echoes coming back to source at once
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Input block size 24, 4 state PCCC 
(Turbo Code)

10-5
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10-3
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10-1

100

0 1 2 3 4 5 6

Random Coding Bound
MLSD (optimal)
min-sum Iterative

B
LE

R

EbNo(dB)

k= 24

Iterative Detection & TLCs c©K. M. Chugg – March 2002

How Well Does the Iterative Decoding Approach Work?

• ML decoder implemented using a suitably modified version of the branch-and-bound
algorithm in [GaChPiScBe01]. (Will write a small paper sometime...).

25

Iterative Detection & TLCs c©K. M. Chugg – March 2002
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MLSD (optimal) decoder adopted 
from d_min paper:
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Figure 5.19. Performance of various iterative concatenated detectors on Channel A.
Each curve is labeled by: algorithm used (iteration number used). S(C)-FI(SW) is
the “single” (composite) concatenated 2D SISO using FI(SW)-SISO modules. The
number following “SW” is the parameter D used with SW-SISO. The M-S-SW is the
algorithm in Fig-5.12, with parameters β1 = 0.7 and β2 = 0.15 and SW-SISOs.
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Figure 5.20. Performance of various iterative distributed detectors on Channel A.
Each curve is labeled by: algorithm used (number of iterations). The number follow-
ing FPA1 (or FPA2) is the value of the soft information filter parameter β which was
optimized empirically.

Fully Parallel Algorithms The distributed algorithms developed in
Section 5.3.2 were applied to Channel A with the performance is shown
in Fig-5.20. One iteration of these distributed algorithms corresponds
to a parallel activation of the T−s

(i,j) nodes and the SOBC nodes (when
appropriate). Note that the 2D4 algorithm performs almost as well as
the FPA1 despite a substantial complexity reduction and the severity

2-dimensional ISI problem - MLPD 
bounds are similar to our error 

probability bounds
(Ch. 5 of my book)
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Coding Topics

• Coding channel models

• Basics of code constructions

• Decoding rules — HIHO, SIHO, SISO

• Classical coding

• Modern Coding

• Performance limits 

• Capacity and finite block-size bounds)

• Bounds for specific codes
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• Performance limits (information theory based bounds)

• Infinite block length, zero error probability 

• Channel capacity

• Modulation-unconstrained AWGN Channel

• Symmetric Information Rate (SIR)

• Modulation-constrained AWGN Channel

• Finite block size, finite error probability

• Sphere packing bound (SPB)

• Random Coding Bound (RCB)

• Pragmatic guideline

Performance Limits
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Channel Capacity

Channel Capacity for Memoryless Channel

Mutual Information

max
px(u)(·)

I(x(u); y(u))

P (y|x) =
Y

n

P (yn|xn)
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Channel
xn yn

c�K.M. Chugg - August 24, 2020– TITLE 3
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AWGN Channel Capacity
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measuring bandwidth:

f

W

Bandwidth W Hz (real baseband)

f

Bandwidth W Hz (passband)

2W

W

0

fc�fc

f

Bandwidth W Hz (complex baseband)

0

W

With this, we can get ~ 2WT dimensions in W Hz of bandwidth and T secs
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wi(u) ⇠ ND(·; 0;N0/2I)

E
�
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Achieved when x is Gaussian!
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Eb/No = -1.6 dB is the smallest value of Eb/No for reliable 
communications on the AWGN channel
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general case can be thought of 
at having two stages

Error Correction 
Encoder

(binary in, M-ary out)

k bits q symbols

Error Correction 
Encoder

M-ary 
Modulator

S/P

k bits q symbols

n coded bitsr = k/n (binary rate)
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log2(M)

zi(u) = xi(u) +wi(u) (D ⇥ 1)

D = 2WT

wi(u) ⇠ ND(·; 0;N0/2I)

E
�
kx(u)k2

 
 PT

CAWGN = (2WT )
1

2
log2

✓
1 +

P

N0W

◆
bits per D ⇥ 1 channel use

= W log2

✓
1 +

P

N0W

◆
bits per second

CAWGN

W
= log2

✓
1 +

P

N0W

◆
bps/Hz

= log2

✓
1 +

EbRb

N0W

◆

CAWGN

W
= log2

✓
1 +


Eb

N0

�

min

CAWGN

W

◆
bps/Hz


Eb

N0

�

min

=
2
⌘bps/Hz � 1

⌘bps/Hz

c�K.M. Chugg - December 3, 2015– EE 564 – Performance Limits 2

where D is the number of dimensions for each channel use. The information-bearing signal
x(u) is distributed over a finite set S = {sm}M�1

m=0
with distribution pm = Pr {x(u) = sm}.

The noise w(u) is a zero-mean Gaussian vector, mutually independent over all channel uses.
To simplify the later numerical analysis, the observation is assumed to be normalized so that
the noise variance in each dimension is 1/2, specifically

E
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kx(u)k2

 
=
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m=0

pmksmk2 = 1 (2)

E {w(u)wt(u)} =
1

2
I (3)

This is equivalent to a model where the expected value of squared magnitude of the signal
is Es and the noise has variance N0/2 in each dimension, but this format is preferable for the
method of numerical integration used in the following. With this convention, the channel
likelihood is

p(z|sm) =
1

⇡D/2
exp

0

@�

�����z�
r

Es

N0

sm

�����

2
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A (4)

The throughput or rate of the signaling format in (1) can be characterized in several
ways. Assume that the channel in (1) is used q times in an attempt to send k information
bits. The rate of this system is then ⌘b/sym = k/q information bits per M -ary symbol. One
way to achieve this is to use an (n, k) binary code with rate r = k/n and then map the n
coded bits onto q = n

log
2
(M)

symbols. It follows that

⌘b/sym = k/q = r log
2
(M) (5)

Whether the mapping from k input bits to q M -ary symbols is achieved by a binary code
with a modulation mapper or directly through a coded modulation design, the following is
maintained for the same information bit rate and transmit power

Es = ⌘b/symEb (6)

Since the number of dimensions D in (1) is tied to the bandwidth used on the channel, it
is also useful to consider a rate normalized to the number of dimensions per channel symbol.
Normalizing to two dimensions is particularly useful, so we introduce the rate ⌘b/2d measured
in information bits per two dimensions

⌘b/2d =
2

D
⌘b/sym =

2k

Dq
(7)

Finally, under ideal conditions one can convey two dimensions per second per Hz of band-
width. Thus we consider the maximum throughput in bits per second per Hz of bandwidth
(bps/Hz) as

⌘bps/Hz = ⌘b/2d (ideal) (8)
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usually assumed in papers/textbooks
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Signal Model:
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Summary of Performance Limits

EE564: Keith M. Chugg – version 0.3

There is a basic trade-o↵ between throughput and fidelity in a communications channel
– i.e., the faster one would like to send data, the less reliable it can be communicated. There
are a number of ways to quantify this trade-o↵. The most well known measure is Shannon’s
channel capacity, which defines the maximum information transfer rate that can be achieved
with arbitrarily low error probability. The proof of this capacity result is based on averaging
over random codes and taking the limit as the encoding block size approaches infinity.

In practice, one can only communicate with finite block sizes and must tolerate some
non-zero probability of error. Determining this precise trade-o↵ between block size, error
probability, and achievable throughput is quite di�cult, especially if one places realistic con-
straints on the channel. For many years, the coding community used the so-called Channel
Cut-o↵ Rate [1, 2] as a measure of this finite-block size trade-o↵. The cut-o↵ rate is deter-
mined by upper-bounding the performance of random coding with the union bound. The
cut-o↵ rate was a good tool for gauging the achievable performance of classical codes and to
a great extent, the coding community considered it the practical limit for error correction
coding. However, after the development of modern turbo-like codes (TLCs), it became clear
that the cut-o↵ rate was an artificial measure and that practical codes could perform much
better than predicted by the cut-o↵ rate.

Other finite block size performance bounds existed in the literature [3, 4], but were not
widely used as a comparison criterion for practical codes because they are di�cult to evaluate
and, as mentioned above, classical codes were far from these limits. In particular, the sphere-
packing bound and the random coding bound are two useful finite block size bounds that
approach the channel capacity as the block size increases asymptotically.

In this document, we briefly describe measures of achievable performance for finite block
size coding schemes. We suggest numerical methods for evaluating and/or approximating
these measures. Finally, we demonstrate a fairly simple measure for gauging the performance
limits of finite block size codes. There exist simple TLC constructions that approach these
limits over a wide range of operating scenarios (rate, block size, and target error rate) within
approximately 1 dB in Eb/N0. Furthermore, for a particular operating scenario, point designs
typically can be found which are within 0.5 dB in Eb/N0 of these perform limits. Thus, the
suggested measure can be used as a guideline for the achievable performance of a link using
modern FEC and also as a benchmark for modern codecs.

1 Channel Model and Rate Measures

For the remainder of this document, we will consider the modulation constrained additive
white Gaussian noise (AWGN) channel, where each channel use is modeled by

z(u) =

r
Es

N0

x(u) +w(u) (D ⇥ 1) (1)
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where D is the number of dimensions for each channel use. The information-bearing signal
x(u) is distributed over a finite set S = {sm}M�1

m=0
with distribution pm = Pr {x(u) = sm}.

The noise w(u) is a zero-mean Gaussian vector, mutually independent over all channel uses.
To simplify the later numerical analysis, the observation is assumed to be normalized so that
the noise variance in each dimension is 1/2, specifically
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This is equivalent to a model where the expected value of squared magnitude of the signal
is Es and the noise has variance N0/2 in each dimension, but this format is preferable for the
method of numerical integration used in the following. With this convention, the channel
likelihood is
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The throughput or rate of the signaling format in (1) can be characterized in several
ways. Assume that the channel in (1) is used q times in an attempt to send k information
bits. The rate of this system is then ⌘b/sym = k/q information bits per M -ary symbol. One
way to achieve this is to use an (n, k) binary code with rate r = k/n and then map the n
coded bits onto q = n

log
2
(M)

symbols. It follows that

⌘b/sym = k/q = r log
2
(M) (5)

Whether the mapping from k input bits to q M -ary symbols is achieved by a binary code
with a modulation mapper or directly through a coded modulation design, the following is
maintained for the same information bit rate and transmit power

Es = ⌘b/symEb (6)

Since the number of dimensions D in (1) is tied to the bandwidth used on the channel, it
is also useful to consider a rate normalized to the number of dimensions per channel symbol.
Normalizing to two dimensions is particularly useful, so we introduce the rate ⌘b/2d measured
in information bits per two dimensions

⌘b/2d =
2

D
⌘b/sym =

2k

Dq
(7)

Finally, under ideal conditions one can convey two dimensions per second per Hz of band-
width. Thus we consider the maximum throughput in bits per second per Hz of bandwidth
(bps/Hz) as

⌘bps/Hz = ⌘b/2d (ideal) (8)
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Whether the mapping from k input bits to q M -ary symbols is achieved by a binary code
with a modulation mapper or directly through a coded modulation design, the following is
maintained for the same information bit rate and transmit power

Es = ⌘b/symEb (6)

Since the number of dimensions D in (1) is tied to the bandwidth used on the channel, it
is also useful to consider a rate normalized to the number of dimensions per channel symbol.
Normalizing to two dimensions is particularly useful, so we introduce the rate ⌘b/2d measured
in information bits per two dimensions

⌘b/2d =
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Finally, under ideal conditions one can convey two dimensions per second per Hz of band-
width. Thus we consider the maximum throughput in bits per second per Hz of bandwidth
(bps/Hz) as

⌘bps/Hz = ⌘b/2d (ideal) (8)

Normalized so noise variance is 1 per real dimension
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Symmetric 
Information 
Rate (SIR)
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In practice, the value of ⌘bps/Hz will be less than ⌘b/2d. For example, if root raised cosine
(rrc) pulse shaping is used, ⌘bps/Hz = ⌘b/2d/(1 + �), where � is the excess bandwidth of the
rrc pulse.

2 Capacity and Symmetric Information Rate

The mutual information rate of the channel in (1) is [3, 5]

I(z(u);x(u)) =
M�1X

m=0

pm

Z

RD

p(z|sm) log2
✓
p(z|sm)
p(z)

◆
dz (9a)
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RD

p(z|sm) log2

 
p(z|sm)PM�1

n=0
p(z|sn)pn

!
dz (9b)

=
M�1X

m=0

pmJm (9c)

The units for I(z(u);x(u)) are bits of information per (D-dimensional) channel use.
The constrained capacity is the maximum of I(z(u);x(u)) over all distributions on x(u).

For some signal sets this maximum can be shown to occur at the uniform distribution pm =
1/M (e.g., 2m-PSK constellations). However, for other signal formats (e.g., 64-QAM) the
maximizing distribution is not uniform. Given an e�cient method for evaluating the integral
in (9), it is possible to find the distribution on S that maximizes the mutual information.
This is tedious, however, and it is common to work with the symmetric information rate
(SIR) which is the mutual information under the uniform distribution pm = 1/M . Note
that the SIR is a lower bound on the capacity. The di↵erence between the capacity and
the SIR, known as the shaping gain, is expected to increase as M increases and for many
modulations used in practice is negligible. In fact, the SIR is often erroneously referred to
as the constrained capacity in the literature.

2.1 Form for Numerical Evaluation

Let us manipulate the expression in (9) to a form suitable for numerical evaluation as de-
scribed in Section 4. Substituting for the conditional density in the expression for Im, we

Capacity: C = max
p
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SIR <= Capacity

SIR is often used in place of Capacity for simplicity (not always clearly stated)

For PSKs, SIR=C, for QAMS, SIR is strictly less than capacity

(difference is called “shaping gain”)
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SIR is computed via numerical integration

0

2

4

6

8

10

0 5 10 15 20

AWGN
QPSK/AWGN
8PSK/AWGN
16QAM/AWGN

B
W

 e
ff

ic
ie

n
cy

 (
b

p
s/

H
z)

Eb/No(dB)



© Keith M. Chugg, 2017

Modulation Constrained AWGN Capacity/SIR - example

105

Use information theory to predict soft-in vs hard-in coding gain
(Problem 4.2)

EE 568 Homework Solution 3
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relative to the BSC (hard−input).   

Figure 1: Comparison of capacity for the BPSK-AWGN channel with real observations and the
BSC.

Fig. 2 shows the plot of the SIR for the three channels (note that this is actually capacity
for the BPSK-AWGN channel and the BSC channel, but not the 3-bit quantized channel). Thus,
information theory predicts that 3-bit quantization provides little loss of information for the BPSK-
channel; i.e., most of this additional 2 dB of coding gain should be realized with a 3-bit quantizer.
As we will see later, these predictions are consistent with what is observed with practical codes and
decoders.

Problem 5.7

As seen in problem 2.5, soft decision decoding of the repetition code yields the same performance
as no coding.

Problem 5.50

Recalling that each variable node correspnds to a column, each check node to a row, and each 1 to
an edge we obtain the parity check graph, or Tanner graph, in Fig. 3
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• Sphere packing bound (SPB)

• Lower bound on P_cw for any code of a given rate and block size

• Random Coding Bound (RCB)

• Upper bound on P_cw, averaged over all random codes

• Common Features

• Both converge to capacity as block length goes to infinity

• So they “sandwich” capacity

• Both are challenging to evaluate numerically (SPB more so)

• Both have optimizations over a-priori like capacity, so both have 
“symmetric” versions
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3 (Symmetric) Random Coding Bound

The random coding bound (RCB) is an upper bound on the average probability of codeword
error under maximum likelihood (ML) decoding, P̄cw. The probability law for selecting codewords
is assumed to be separable so that each coordinate is selected independently. In other words,
for the transmitted codeword, the value of x(u) for each channel use of the form (1) is selected
independently with signal sm sent with probability pm. With this assumption, the RCB is

P̄cw  exp
�
�qEr(⌘b/sym)

�
(17)

where Er(⌘b/sym) is the random coding exponent and is given by

Er(⌘b/sym) = max
0⇢1

max
p

⇥
E0(⇢,p, ⌘b/sym)� ⇢ ln(2)⌘b/sym

⇤
(18)

and the Gallager function is

E0(⇢,p, ⌘b/sym) =

Z

RD

"
M�1X

m=0

pm {p(z|sm)}
1

1+⇢

#1+⇢

dz (19)

where p is the (M⇥1) vector with mth component pm and the maximum is over all valid probability
mass functions.

The importance of the RCB derives from the fact that for ⌘b/sym less than the capacity, the
random coding exponent is positive, implying that the average probability of error using random
coding decays exponentially with block length given that the attempted transmission rate is below
the capacity. This also implies the channel coding theorem since as we let q ! 1, the error
probability will tend to zero for rates below the capacity.

Once again, maximization over all input distribution functions is tedious. For the same reasons
discussed with regard to the capacity and SIR discussed in Section 1, it is reasonable to consider the
symmetric random coding bound (SRCB), which is the bound obtained with (17) when instead of
maximizing over p in (18), we use pm = 1/M . Note that this still provides a valid upper-bound on
P̄cw, although it will be slightly looser if the uniform distribution does not maximize the quantity
in (18).

3.1 Form for Numerical Evaluation

The most di�cult part of evaluating the RCB is the integral in (19), so we focus on computing the
Gallager function. Also, since the Gallager function is positive, we may work in the log-domain for
additional e�ciency and numerical stability. Using the density in (4), the expression in (19) we
have

� ln
�
E0(⇢,p, ⌘b/sym)

�
=

D

2
ln(⇡)� ln J (20)

J =

Z

RD
e�kzk2

"
M�1X

m=0

e�↵m(z)

#1+⇢

dz (21)

↵m(z) = ln(pm)�

q
Es
N0

stm

⇣
2z�

q
Es
N0

sm
⌘

1 + ⇢
(22)
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Symmetric version uses p_m = 1/M
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6 Comparisons and Conclusions

The main conclusion of this document is that the SIR-SPBA can be used as a relatively simple
gauge for finite block size performance. It is considerably more simple to evaluate than the RCB
and for most operational scenarios of practical interest, it is very to close to the RCB.

The following is to be added to this document

• Discussion of the floor in the RCB

• Plots showing the similar Eb/N0 requirements for the SIR-SPBA and the SRCB

• Discussion of the critical rate and implications for when the RCB and SPB will di↵er most

• Additional references and reading.
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(b) Demonstrate your understanding of this rule by decoding the (5,3) code from the toy-
SISO spreadsheet for this channel with the observation y

t = (1 0 0 0 0) and ↵ = 0.25.
For reference, the codewords in this code are:

c
(0) = (0 0 0 0 0)t

c
(1) = (0 0 1 0 1)t

c
(2) = (0 1 0 1 1)t

c
(3) = (0 1 1 1 0)t

c
(4) = (1 0 0 1 0)t

c
(5) = (1 0 1 1 1)t

c
(6) = (1 1 0 0 1)t

c
(7) = (1 1 1 0 0)t

Is this decision unique?

4.19. Show that for the BPSK-AWGN channel with equal a-priori probabilities, the random coding
bound can be written as

P̄word  e�k(Eb/N0)

8
<

: min
0⇢1

2⇢r+1
Z 1

0

e
�y2

2

p
2⇡

cosh1+⇢

 
y
p

2r(Eb/N0)

1 + ⇢

!
dy

9
=

;

n

Note that this is equation (16) in Dolinar, Divsalar and Pollara with a slight correction (i.e.,
the exponent has a factor of 1/2).

4.20. Consider two potential solutions for a signal design to achieve 2 bps/Hz. System one uses
a rate 2/3 binary code with 8PSK modulation. System two uses a rate 1/2 binary code
with 16-QAM modulation. For each system the input block length of the code is limited to
k = 2048 bits. Estimate the minimum value of Eb/N0 (in dB) required to achieve a block
error rate (BLER) of 10�4 for each system using any possible code. Which system is preferred
from this viewpoint? What is the advantage, in dBs of Eb/N0, for the preferred system?

4.21. For a given block size and rate, the symmetric sphere-packing bound approximation and the
symmetric random coding bound both predict a value of minimum Eb/N0 for a given BLER.
For BPSK modulation and a target BLER of 10�4, plot the di↵erence between these two
values of Eb/N0 in dB vs. block size. Do this for various code rates. What can you conclude
from these plots?

4.22. You have just been hired as a communication systems engineer by FliTunes, a company selling
digital music via satellite download. Your first task is to review the current design. The senior
engineers have selected a rate r = 2/3 binary convolutional code along with a proprietary
QASK-type modulation. The constellation for this modulation is shown below:
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This report generates an approximation to the S-SPB for binary codes and BPSK. 
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z, we can use the log-domain expression of the form in (31) so that, for D = 1, we have

� ln J ⇡
I�1X

i=0

wie
�(1+⇢)A(z) (33)

= min
i

⇤ [� ln(wi) + (1 + ⇢)A(z)] (34)

This result can then be substituted into (20) to evaluate the Gallager function. This can then be
used in (18) and maximized over all ⇢ using standard numerical methods.

Pseudo-code for evaluating the quantity in (18) for a fixed value of ⇢ is given in Table 2.

Algorithm 2: Symmetric Random Coding Exponent with D = 2, and fixed ⇢

input :
p
Es/N0, ⌘b/sym, the neg-log of Gauss-Hermite coe�cents v[i] = � ln(w[i]) and

points z[i], indexed from i = 0 . . . (I � 1), the signals sm[d], for d = 0, 1, normalized
to unit norm, and a value of ⇢ 2 (0, 1)

output: The random coding exponent: Er(⌘b/sym; ⇢)

E0  1
for i0  0 to (I � 1)

for i1  0 to (I � 1)
A 1
for m 0 to (M � 1)

t0  
p
Es/N0sm[0] // temp variable

t1  
p
Es/N0sm[1] // temp variable

↵m  ln(M)� [t0(2z[i0]� t0) + t1(2z[i1]� t1)] /(1 + ⇢)
// above line uses pm = 1/M
A min⇤(A,�m,n)

end
E0  min⇤(E0, (1 + ⇢)A+ v[i0] + v[i1]) // computing � ln J

end

end
E0  E0 + ln(⇡)
Er  E0 � ⇢ ln(2)⌘b/sym
return Er

5 An Approximate Symmetric Sphere Packing Bound

Finite block size performance bounds were considered in [8]. In particular, the sphere packing bound
(SPB) is considered for the modulation unconstrained AWGN channel. The SPB is a lower bound
on the codeword error probability of any code. In [8] they consider a version of the SPB that is
normalized to the minimum value of Eb/N0 required by the capacity of the average power limited,
bandwidth-limited AWGN channel

✓
Eb

No

◆

min

=
2⌘bps/Hz � 1

⌘bps/Hz

(35)
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For a given operational scenario – i.e., a given choice for ⌘bps/Hz, input block size k, and required
codeword error probability PCW – the SPB also will provide a minimum value of Eb/N0. In other
words, the lower bound on PCW can be made equal to the desired codeword error probability if the
value of Eb/N0 is greater than this specific value. This minimum value of Eb/N0 will be greater
than that given by the capacity expression in (35). In [8], a normalized version of the SPB is
suggested by considering the di↵erence between the required Eb/N0 value provided by the SPB and
the minimum value of Eb/N0 according to (35). With the assumption that one can achieve two
dimensions per second per Hz (i.e., ⌘bps/Hz = ⌘b/2d), this di↵erence in dB is

�dB =

s
20⌘b/2d (2

⌘b/2d + 1) [10 log10(1/PCW)]

k ln(10) (2⌘b/2d � 1)
(36)

Thus, this sphere packing bound approximation (SPBA) is
✓
Eb

N0

◆

min,SPB, (dB)

⇡ 10 log10


2⌘b/2d � 1

⌘b/2d

�
+�dB (37)

The SPBA in (37) is compared to accurate evaluation of the SPB in [8] for relatively low rates
– i.e., for ⌘b/2d < 1 corresponding to less than one half a bit per dimension. For these cases it
was found to be an accurate approximation for block lengths of k & 512. As the block size get
smaller, the approximation is observed to be conservative – i.e., over-estimating the required value
of Eb/N0. Although it is not pointed out, the approximation is also also a reasonably accurate
predictor of the values presented in Fig. 5 of [8] which considers larger information rates. For
example, at k = 1024 and a codeword error probability of 10�4, the approximation in (37) predicts
that the Eb/N0 should be at least 8.6+ 1.4 = 10 dB for ⌘b/2d = 2 ⇤ 2.65 = 5.3. By comparison, the
accurate evaluation of the SPB in Fig. 5 of [8] yields a required Eb/N0 of 9.8 dB. So, again, the
approximation is slightly conservative.

5.1 Application to Modulation Constrained AWGN Channels

We consider applying the finite block size penalty in (36) to modulation constrained AWGN chan-
nels. This is done by replacing the reference minimum value of Eb/N0 predicted by the modulation
unconstrained capacity in (35) by the corresponding value predicted by the modulation constrained
AWGN channel capacity, or the SIR approximation thereof. More precisely, there is a minimum
value of Es/N0 for which the SIR is greater than a desired ⌘b/sym. If we take this minimum value
of Es/N0 and consider a system operating at this point, then we have via (6)

✓
Eb

No

◆

min,SIR

=
1

SIR

✓
Es

No

◆

min,SIR

(38)

We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding �dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-o↵ for finite block sizes as the SIR-SPBA (symmetric
information rate, SPB approximation). Specifically, we have

✓
Eb

N0

◆

min,SIR-SPBA, (dB)

⇡
✓
Eb

N0

◆

min,SIR, (dB)

+�dB (39)

where �dB is as in (36).
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We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding �dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-o↵ for finite block sizes as the SIR-SPBA (symmetric
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where �dB is as in (36).

SPB approximation AWGN no modulation constraint
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example, at k = 1024 and a codeword error probability of 10�4, the approximation in (37) predicts
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accurate evaluation of the SPB in Fig. 5 of [8] yields a required Eb/N0 of 9.8 dB. So, again, the
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We consider applying the finite block size penalty in (36) to modulation constrained AWGN chan-
nels. This is done by replacing the reference minimum value of Eb/N0 predicted by the modulation
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We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding �dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-o↵ for finite block sizes as the SIR-SPBA (symmetric
information rate, SPB approximation). Specifically, we have
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predictor of the values presented in Fig. 5 of [8] which considers larger information rates. For
example, at k = 1024 and a codeword error probability of 10�4, the approximation in (37) predicts
that the Eb/N0 should be at least 8.6+ 1.4 = 10 dB for ⌘b/2d = 2 ⇤ 2.65 = 5.3. By comparison, the
accurate evaluation of the SPB in Fig. 5 of [8] yields a required Eb/N0 of 9.8 dB. So, again, the
approximation is slightly conservative.

5.1 Application to Modulation Constrained AWGN Channels

We consider applying the finite block size penalty in (36) to modulation constrained AWGN chan-
nels. This is done by replacing the reference minimum value of Eb/N0 predicted by the modulation
unconstrained capacity in (35) by the corresponding value predicted by the modulation constrained
AWGN channel capacity, or the SIR approximation thereof. More precisely, there is a minimum
value of Es/N0 for which the SIR is greater than a desired ⌘b/sym. If we take this minimum value
of Es/N0 and consider a system operating at this point, then we have via (6)

✓
Eb

No

◆

min,SIR

=
1

SIR

✓
Es

No

◆

min,SIR

(38)

We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding �dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-o↵ for finite block sizes as the SIR-SPBA (symmetric
information rate, SPB approximation). Specifically, we have

✓
Eb

N0

◆

min,SIR-SPBA, (dB)

⇡
✓
Eb

N0

◆

min,SIR, (dB)

+�dB (39)

where �dB is as in (36).

c�K.M. Chugg - April 12, 2017– EE 564 – Performance Limits 9

For a given operational scenario – i.e., a given choice for ⌘bps/Hz, input block size k, and required
codeword error probability PCW – the SPB also will provide a minimum value of Eb/N0. In other
words, the lower bound on PCW can be made equal to the desired codeword error probability if the
value of Eb/N0 is greater than this specific value. This minimum value of Eb/N0 will be greater
than that given by the capacity expression in (35). In [8], a normalized version of the SPB is
suggested by considering the di↵erence between the required Eb/N0 value provided by the SPB and
the minimum value of Eb/N0 according to (35). With the assumption that one can achieve two
dimensions per second per Hz (i.e., ⌘bps/Hz = ⌘b/2d), this di↵erence in dB is

�dB =

s
20⌘b/2d (2

⌘b/2d + 1) [10 log10(1/PCW)]

k ln(10) (2⌘b/2d � 1)
(36)

Thus, this sphere packing bound approximation (SPBA) is
✓
Eb

N0

◆

min,SPB, (dB)

⇡ 10 log10


2⌘b/2d � 1

⌘b/2d

�
+�dB (37)

The SPBA in (37) is compared to accurate evaluation of the SPB in [8] for relatively low rates
– i.e., for ⌘b/2d < 1 corresponding to less than one half a bit per dimension. For these cases it
was found to be an accurate approximation for block lengths of k & 512. As the block size get
smaller, the approximation is observed to be conservative – i.e., over-estimating the required value
of Eb/N0. Although it is not pointed out, the approximation is also also a reasonably accurate
predictor of the values presented in Fig. 5 of [8] which considers larger information rates. For
example, at k = 1024 and a codeword error probability of 10�4, the approximation in (37) predicts
that the Eb/N0 should be at least 8.6+ 1.4 = 10 dB for ⌘b/2d = 2 ⇤ 2.65 = 5.3. By comparison, the
accurate evaluation of the SPB in Fig. 5 of [8] yields a required Eb/N0 of 9.8 dB. So, again, the
approximation is slightly conservative.

5.1 Application to Modulation Constrained AWGN Channels

We consider applying the finite block size penalty in (36) to modulation constrained AWGN chan-
nels. This is done by replacing the reference minimum value of Eb/N0 predicted by the modulation
unconstrained capacity in (35) by the corresponding value predicted by the modulation constrained
AWGN channel capacity, or the SIR approximation thereof. More precisely, there is a minimum
value of Es/N0 for which the SIR is greater than a desired ⌘b/sym. If we take this minimum value
of Es/N0 and consider a system operating at this point, then we have via (6)

✓
Eb

No

◆

min,SIR

=
1

SIR

✓
Es

No

◆

min,SIR

(38)

We then obtain an estimate of the minimum value of Eb/N0 to achieve a given finite block size
operational scenario by adding �dB in (36) to the expression in (38) expressed in dB. We refer to
the resulting predicted performance trade-o↵ for finite block sizes as the SIR-SPBA (symmetric
information rate, SPB approximation). Specifically, we have

✓
Eb

N0

◆

min,SIR-SPBA, (dB)

⇡
✓
Eb

N0

◆

min,SIR, (dB)

+�dB (39)

where �dB is as in (36).

compute once via 
numerical integration

trivial computation
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Note: Delta-dB is a weak 
function of eta
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• S-SPB Approximation and S-RCB are very close to each other

• User k >~ 512, r <~ 8/9

• Only need simple to compute S-SPB Approximation

• Pragmatic Guideline

• Best modern code designs are about 0.5 dB from S-SPB Approximation

• Hardware codecs should be within 1 dB of S-SPB Approximation

performance_limits_chugg.xls
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S-RCB vs. S-SPB-Approximation
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(add plot from limits.c)

These are very close (<~ 0.1 dB of Eb/No) for:
input block sizes 
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Performance Bounds for Convolutional Codes
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covered on the PAD notes
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Use Viterbi Algorithm to find minimum weight simple error pattern
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D D
bi

toy 4-state code trellis metrics = 
distance from 

zero path

2
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4

4

6

5

4

5

7

5

5

5

Can terminate search because all survivors have weight at least 5 and a 
path that remerges with all 0 path with weight 5 has been found earlier

Start in 0 state, 
kill first 0 to 0 
state transition

d_free = 5: 
input sequence (...00)100(00..), 

output (...0000)11,01,11,(0000...)
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Pb̃
X

d�dmin

KdQ

 r
rdEb

2N0

!

Kd ⇠ Cd

0

@
X

↵(d)

N↵(d)

1

A

Pb ⇠ N↵max

Pcw ⇠ N↵max+1

↵max = max
d

↵(d)

• Analyze union bound as block size tends toward infinity 
- Average over all possible interleaves (N!) 
- Determine trends in BER, BLER 
- Determine design rules

maximum exponent of N:
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Uniform Interleaver Analysis (summary)
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• PCCCs (w/ recursive encoders): 
- BER interleaver gain 
- No BLER interleaver gain 

• SCCCs (w/ recursive inner code): 
- BER & BLER interleaver gain 

for do,min>=3

↵max = �1

↵max = �
�

do,min + 1

2

⌫

Some 
constructions naturally have 

better floor properties - eg, SCCCs 
have lower floors than PCCCs
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Idea: treat each SISO node as an amplifier of soft-information quality

encoder
bi ci

SISO

MI[ci] =
4
p
Ec

N0
zi

zi

xi = MI[bi]

yi = MO[bi]

For various values of Ec/N0, plot the mutual information between yi and bi vs. the mutual

information xi and bi

Adual(D) = 2
k
(1 +D)

nA

✓
1�D

1 +D

◆

A(D) = 1 + 7D3
+ 7D4

+D7

Ad = number of codewords with weight d

A(D) =

nX

d=0

AdD
d

(weight enumerating function)

C : (n, k, d)

Generator : G, (k ⇥ n)

Parity Check : H, (n� k ⇥ n)

C?
: (n, k? = n� k, d?)

Generator : G
?
= H, (k? ⇥ n)

Parity Check : H
?
= G, (n� k? ⇥ n)

G =

2

6666664

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

3

7777775

Generate negative log-likelihoods x_i using the symmetry condition & Gaussian model:

�2
xi

= 2E
�
xi(�1)bi
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TEN BRINK: ITERATIVELY DECODED PARALLEL CONCATENATED CODES 1729

With (11), (12) becomes

(14)

For abbreviation we define
(15)

with
(16)

With (4)–(7) we realize that the capacity of the binary input/con-
tinuous output AWGN channel of (1) is given by

(17)
The capacity [the function respectively] cannot be ex-
pressed in closed form. It is monotonically increasing [18] in

and thus reversible.
(18)

Mutual information is also used to quantify the extrinsic
output .

(19)

(20)

Viewing as a function of and the -value, the
extrinsic information transfer characteristics are defined as

(21)
or, for fixed , just

(22)
To compute for the desired -input
combination, the distributions of (19) are most conveniently
determined by Monte Carlo simulation (histogram measure-
ments). For this, the independent Gaussian random variable
of (9) is applied as a priori input to the constituent decoder
of interest; a certain value of is obtained by appropriately
choosing the parameter according to (18). Sequence lengths
of systematic bits were found to sufficiently suppress tail
effects. Note that no Gaussian assumption is imposed on the
extrinsic output distributions .
Transfer characteristics are given in

Fig. 2. The a priori input is on the abscissa, the extrinsic
output on the ordinate. The -value serves as a param-
eter to the curves. The BCJR-algorithm is applied to a rate 1/2
recursive systematic convolutional code of memory 4; the parity
bits are punctured to obtain a rate 2/3 constituent code. This
will lead to a rate 1/2 PCC in Section III. The code polynomials
are . stands for the (recursive) feed-
back polynomial; the values are given in octal, with the most
significant bit (MSB) corresponding to the generator connec-
tion on the very left (input) side of the shift register. Note that
the -values are given with respect to the rate 1/2 parallel
concatenated code.

Fig. 2. Extrinsic information transfer characteristics of soft in/soft out
decoder for rate 2/3 convolutional code; of channel observations serves
as parameter to curves.

Fig. 3. Extrinsic information transfer characteristics of soft in/soft out decoder
for rate 2/3 convolutional code, dB, different code memory.

Transfer characteristics for different code memory at fixed
dB are depicted in Fig. 3. The code polynomials

are taken from [20].
Fig. 4 shows the influence of different code polynomials for

the prominent case of a memory 4 code. The (023, 011)-code
provides good extrinsic output at the beginning, but returns
diminishing output for higher a priori input. For the (023,
035)-code it is the other way round. The constituent code of the
classic rate 1/2 PCC of [21] with polynomials (037, 021) has
good extrinsic output for low to medium a priori input.
From Figs. 2–4 it can be seen that the characteristics

are monotonically increasing in , and
thus the inverse function

(23)
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Transactions Papers

Convergence Behavior of Iteratively Decoded
Parallel Concatenated Codes

Stephan ten Brink, Member, IEEE

Abstract—Mutual information transfer characteristics of soft
in/soft out decoders are proposed as a tool to better understand the
convergence behavior of iterative decoding schemes. The exchange
of extrinsic information is visualized as a decoding trajectory in
the extrinsic information transfer chart (EXIT chart). This allows
the prediction of turbo cliff position and bit error rate after an ar-
bitrary number of iterations. The influence of code memory, code
polynomials as well as different constituent codes on the conver-
gence behavior is studied for parallel concatenated codes. A code
search based on the EXIT chart technique has been performed
yielding new recursive systematic convolutional constituent codes
exhibiting turbo cliffs at lower signal-to-noise ratios than attain-
able by previously known constituent codes.
Index Terms—Convergence, iterative decoding, mutual informa-

tion, turbo codes.

I. INTRODUCTION

TYPICALLY, bit-error rate (BER) charts of iterative de-
coding schemes can be divided into three regions: 1) the

region of low with negligible iterative BER reduction, 2)
the turbo cliff region (also referred to as “waterfall”-region) with
persistent iterative BER reduction over many iterations, and 3)
the BER floor region for moderate to high in which a
rather low BER can be reached after just a few number of it-
erations. While good analytical bounding techniques have been
found for moderate to high , e.g., [1]–[3], the turbo cliff
has not yet attracted a comparable amount of interest, owing to
the limitations of the commonly used bounding techniques in
that region.
Recently, people have started to investigate the convergence

behavior of iterative decoding. In [4] the authors propose a den-
sity evolution algorithm to calculate convergence thresholds for
low-density parity-check (LDPC) codes on the additive white
Gaussian noise (AWGN) channel; in [5], [6] density evolution is
applied to construct LDPC codes with very low thresholds. The
authors of [7], [8] study the convergence of iterative decoders
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based on signal to noise ratio (SNR) measures. A combination
of SNR measures and mutual information for the description of
inner rate one codes is used in [9].
This paper proposes extrinsic information transfer character-

istics based on mutual information to describe the flow of ex-
trinsic information through the soft in/soft out constituent de-
coders. This proves to be particularly useful in the region of low

. A decoding trajectory visualizes the exchange of ex-
trinsic information between the constituent decoders in the ex-
trinsic information transfer chart (EXIT chart).
In [10], [11] the EXIT chart was introduced as a novel tool

to provide design guidelines for mappings and signal constella-
tions of an iterative demapping and decoding scheme (IDEM).
IDEM can be regarded as a serial concatenation of two codes
(SCC). In this paper, the method of [10], [11] is applied to iter-
ative decoding of parallel concatenated codes (PCC), extending
the ideas of [12]. We do not claim to present a rigorous proof of
stability and convergence of iterative decoding; however, sim-
ulation results suggest that the EXIT chart accurately predicts
the convergence behavior of the iterative decoder for large in-
terleaving depth.
The paper is organized as follows: Section II introduces ex-

trinsic information transfer characteristics for the constituent
decoders. Section III explains the EXIT chart as a novel descrip-
tion of the iterative decoder, complementary to BER charts. In
Section IV we study transfer characteristics and decoding tra-
jectories based on signal to noise ratio measures and compare
them to those based on mutual information. The applicability
of the EXIT chart to other than Gaussian channels is shown in
Section V for the case of a Rayleigh channel. Code search re-
sults based on the EXIT chart technique are presented in Sec-
tionVI yielding new constituent codes which are optimizedwith
respect to the turbo cliff position. Finally, Section VII renders
some conclusions.

II. EXTRINSIC TRANSFER CHARACTERISTICS

A. Iterative Decoder for Parallel Concatenated Codes
The iterative decoder for PCC is shown in Fig. 1. For each

iteration, the first constituent decoder (BCJR-algorithm [13],
[14]) takes intrinsic information (channel observations) on
the systematic (information) bits and respective parity bits
and outputs soft values . The extrinsic information on the
systematic bits is passed through the bit

0090–6778/01$10.00 © 2001 IEEE

characterizing a 
single constituent 

convolutional code
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for rate 2/3 convolutional code, dB, different code memory.

Transfer characteristics for different code memory at fixed
dB are depicted in Fig. 3. The code polynomials

are taken from [20].
Fig. 4 shows the influence of different code polynomials for

the prominent case of a memory 4 code. The (023, 011)-code
provides good extrinsic output at the beginning, but returns
diminishing output for higher a priori input. For the (023,
035)-code it is the other way round. The constituent code of the
classic rate 1/2 PCC of [21] with polynomials (037, 021) has
good extrinsic output for low to medium a priori input.
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EXIT chart for two fixed codes, above and below the threshold
1730 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 10, OCTOBER 2001

Fig. 4. Extrinsic information transfer characteristics of soft in/soft out decoder
for rate 2/3 convolutional code, dB, memory 4, different code
polynomials.

exists on

(24)

Increasing means that more and more bits become known
at the decoder with high confidence, which relates to a growing
conditioning of the mutual information on the
a priori knowledge. As conditioning increases mutual informa-
tion [18] it is plausible that bigger a priori input provides bigger
extrinsic output.

III. EXTRINSIC INFORMATION TRANSFER CHART

A. Trajectories of Iterative Decoding
To account for the iterative nature of the suboptimal decoding

algorithm, both decoder characteristics are plotted into a single
diagram. However, for the transfer characteristics of the second
decoder the axes are swapped.
This diagram is referred to as EXIT chart since the exchange

of extrinsic information can be visualized as a decoding trajec-
tory.
Let be the iteration index, fixed. For the itera-

tion starts at the origin with zero a priori knowledge .
At iteration , the extrinsic output of the first decoder is

. is forwarded to the second decoder to become
(ordinate). The extrinsic output of the second

decoder is , which is fed back to the first
decoder to become the a priori knowledge
(abscissa) of the next iteration. Note that interleaving does not
change mutual information.
The iteration proceeds as long as .

With this can be formu-
lated as . The iteration stops if

, or equivalently, ,
which corresponds to an intersection of both characteristics in
the EXIT chart.

Fig. 5. Simulated trajectories of iterative decoding at dB and
0.8 dB (symmetric PCC rate 1/2, interleaver size 60 000 systematic bits).

Fig. 6. EXIT chart with transfer characteristics for a set of -values; two
decoding trajectories at 0.7 dB and 1.5 dB (code parameters as in Fig. 5, PCC
rate 1/2); interleaver size bits.

Fig. 5 shows trajectories of iterative decoding at
dB and 0.8 dB (code parameters are those of Fig. 2). The

trajectory is a simulation result taken from the “free-running”
iterative decoder. For dB the trajectory (lower
left corner) gets stuck after two iterations since both decoder
characteristics do intersect. For dB the trajectory
has just managed to “sneak through the bottleneck.” After six
passes through the decoder, increasing correlations of extrinsic
information start to show up and let the trajectory deviate from
its expected zigzag-path. As it turns out, for larger interleavers
the trajectory stays on the characteristics for some more passes
through the decoder.
Fig. 6 depicts the EXIT chart with transfer characteristics

over a set of -values. The curves in between 0 dB and
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iterative decoder. For dB the trajectory (lower
left corner) gets stuck after two iterations since both decoder
characteristics do intersect. For dB the trajectory
has just managed to “sneak through the bottleneck.” After six
passes through the decoder, increasing correlations of extrinsic
information start to show up and let the trajectory deviate from
its expected zigzag-path. As it turns out, for larger interleavers
the trajectory stays on the characteristics for some more passes
through the decoder.
Fig. 6 depicts the EXIT chart with transfer characteristics

over a set of -values. The curves in between 0 dB and
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SNR Threshold Optimization

Uniform Interleaver Analysis

the SPC being s when the input weight is l yields

ACC
w,h =

N↵

l=0

l↵

s=0

pspc(s|l)
ACo

w,l ⇥ACi
s,h�N/J

s

⇥ (17)

where ACo
w,l and ACi

s,h are the IOWCs for the outer and inner

CCs, respectively.

The unique step in this uniform interleaver analysis for

the TW codes is the consideration of the impact of the SPC

(i.e., the rest is similar to the analysis of HCCCs in [11]).

Define the reduction in weight caused by the SPC as ⇥ = l�s,

and note that, since the output weight is reduced when pairs

of input ones fall into a parity check for the same output bit,

⇥ can only take even values. The number of SPC blocks into

which one or more the l input ones can fall is at most s + �
2 ,

this count coming from the case where s parity checks contain

a single one and
�
2 contain two ones. The probability that all l

inputs fall within a set of s + �
2 SPC blocks of the N/J SPC

blocks times the number of ways to choose those s+ �
2 parity

checks from the N/J total parity checks is then an upper

bound on pspc(s|l), as it also includes all output weights that

are smaller than s. This provides the upper bound

pspc(s|l) ⇤
 

s + �
2

N/J

⌦l ⇤
N/J

s + �
2

⌅
(18)

=

 
s + l�s

2

N/J

⌦l ⇤
N/J

s + l�s
2

⌅

⇤̃ (N/J)�
l�s
2

(s + l�s
2 )l

(s + l�s
2 )!

⇧ (N/J)�
l�s
2

⇧ N� l�s
2

which can be used in (16) to obtain a looser upper bound. Note

that a large N approximation for the binomial coefficient has

been used.

Computation of the asymptotic IOWCs for the inner and

outer convolutional code in (16) follows the standard develop-

ment in [17], [18], [10], [11] and is omitted for brevity. Sub-

stituting these asymptotic approximations for the CC IOWCs

and the bound in (18) into (16) yields

Pb⇤̃
Nro↵

h=hi
min

N/J↵

w=wmin

N↵

l=0

l↵

s=0

no
max↵

no=1

ni
max↵

ni=1

Nno+ni� l+s
2 �1

(19)

Bw,l,no,ni,h,sQ

 �
2r(w + h)

Eb

N0

⌦

where Bw,l,no,ni,h,s is not a function of the interleaver size N .

The number of simple error events (which depart and rejoin

the all zero trellis path exactly once) for the inner and outer

CCs are ni
and no

, respectively. For a given input weight w
and parity branch output weight h, the maximum exponent of

N in (19) is

�(w, h) = max
l,s

⌥
no + ni � l + s

2
� 1
�

(20)

In particular, we are interested in the maximum exponent of

N for any possible (w, h) which we denote as �max.

We are interested in comparing recursive and non-recursive

(feed-forward) CCs as the constituent codes. The main prop-

erty of interest in this context is the minimum input weight to

the CC that will yield a simple non-propagating error pattern.

For a non-recursive CC, this minimum value is 1 while it

is 2 for a recursive CC. This is important for determining the

maximum values of no
and ni

, which in turn determine �max.

First consider the case when the inner CC is non-recursive.

The maximum number of simple error patterns for the inner

code is ni
max = s, the number of non-zero inputs to the inner

CC, since each can cause a simple error pattern. Also, no
max

is at least ⌃w
2 ⌥ so that

�(w, h) = max
l,s

⌥
no � l � s

2
� 1
�

(21)

⌅ 0

so there is no guaranteed interleaver gain when the inner CC

is non-recursive.

When the inner code is recursive, no
max = ⌃ s

2⌥, yielding

�(w, h) = max
l

⌥
no +

�s

2

�
� l + s

2
� 1
�

(22)

Because the difference between s and l is always even, we

can break
l+s
2 into ⌃ l+1

2 ⌥+ ⌃ s
2⌥. Simplifying gives

�(w, l) = max
l

⌥
no �

⇧
l + 1

2

⌃
� 1
�

(23)

Since no
max ⇤ l

do
free

, where do
free is the free distance of the

outer code, we obtain

�max ⇤ max
l

⌥⇧
l

do
free

⌃
�
⇧

l + 1
2

⌃
� 1
�

(24)

which for do
free ⌅ 2, yields

�max ⇤ �
⇧

do
free + 1

2

⌃
(25)

For large block size do
free = do

min and this is the result given

in (3).
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with QASK Modulation

zk = fk ⇤ xk + wk =
LX

m=0

fmxk�m + wka post-matched filter model:

FIR ISI in AWGN

Optimal processing is Viterbi Algorithm (hard-out) or FBA (soft-out)

Number of states is M^L — bad complexity scaling
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OFDM (discrete multitone)
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IFFT

X[0]

X[1]

X[2]

X[N-2]

X[N-1]

.

.

.

.

.

.

x[0]

x[1]

x[2]

x[N-2]

x[N-1]

Cyclic Prefix

Insertion

x[n]

P/S

FIR (LTI) ISI

h[n]

Equivalent circular convolution with h[n]

AWGN

FFT

Z[0]=H[0]X[0]+W[0]

.

.

.

.

.

.

z[0]

z[1]

z[2]

z[N-2]

z[N-1]

z[n]

P/S

Cyclic Prefix

Removal

Z[1]=H[1]X[1]+W[1]

Z[2]=H[2]X[2]+W[2]

Z[N-2]=H[N-2]X[N-2]+W[N-2]

Z[N-1]=H[N-1]X[N-1]+W[N-1]


