MEAN-SQUARE CALCULUS SUMMARY

For a continuous time process z(u, t), we may consider limiting operations such as differentiation,
integration, and continuity tests. As stochastic limits, these concepts must be tied to a particular
mode of stochastic convergence (i.e., a process may be continuous in the mean square sense (mss),
but not almost surely). This handout contains a brief summary of the results of “mean-square
calculus” without the development. The book by Stark and Woods is a good engineering-level
reference for this topic. Assume throughout that the process is real valued.

1 Mean-Square Continuity

Definition: Let a,, be any sequence such that lim,_,~ a, = 0, then z(u,t) is ms-continuous at
t =1y <
lim E {[z(u,to) — z(u, to + a,)]*} = 0. (1)

n—oo

An equivalent statement is that y,(u,ty) = z(u,to + a,) converges in the mss. Since a, is an
arbitrary sequence going to zero, this is equivalent to the limit as a continuous parameter (i.e., A)
goes to zero

lim E {[z(u, o) —x(ut0+A)]}:0. (2)
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Necessary and Sufficient Condition: Checking for convergence of y, (u,ty) yields
x(u,t) is ms-cont. at t =ty <= Ry(t,t) is cont. at t = 1. (3)

Note that a deterministic function g(¢) is continuous at ¢ = ¢q if lim, 0 g(to + ay) = g(to) for all
choices of a, going to zero.

Wide-Sense Stationary Simplification: If z(u,t) is WSS, then the condition for ms-continuity
is
x(u,t) is ms-cont. at Vt € R <= R,(7) is cont. at 7 = 0. (4)

Note that a WSS process is either continuous at all times or discontinuous at all times.

2 Mean-Square Differentiability

Definition: Let a,, be any sequence such that lim,_, ., a, = 0 and define

un(to) = x(u,tg) — x(u, to + an)7 5)
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then x(u,t) is ms-differentiable at ¢ = t¢ <= yn(to) converges in the mss. The mss-limit of
this sequence, when it exists, will be referred to as the mss-derivative of x(u,t) and denoted by

Z(u, tp) = mss — limy, 00 Yn(u, to).
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Necessary and Sufficient Condition: Checking for convergence of y, (u,ty) yields
2

x(u,t) is ms-diff’able at t =ty <~ 500,

Rx(tl,tg) exists at tl = tQ = to. (6)
If z(u,t) is ms-differentiable at two times ¢; and ¢2, then the correlation between the two random
variables & (u,t1) and &(u,t2) is
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Ri(tl,tQ) — me<t1,t2) (7)

Wide-Sense Stationary Simplification: If z(u,t) is WSS, then the condition for ms-differentiability

1S
2

x(u,t) is mss-diff’able V¢t € R <= ﬁRx(T) exists at 7 = 0. (8)
T
If x(u,t) is differentiable in the mss and WSS, then
—d?

Note that this may be thought of as putting x(u, t) through an LTT filter with H(f) = j2nf, so that
Si(f) = —(j27£)%S.(f), which is equivalent to the above expression for the correlation function.

3 Mean-Square Integrability

A Riemann sum can be defined for which ms-convergence can be tested. Thus, the integral

b
z(u)—/ x(u,t)dt (mss-limit) (10)

exists if the Riemann sum converges in the mss. A necessary and sufficient condition for this
convergence is

b b
x(u,t) is ms-integrable on [a,b] <= / / R, (t1,ta) dtrdty < o0. (11)
a a
It is clear that any finite power process is ms-integrable over a finite interval.

4 Example

A WSS process with R, (7) = e~ is ms-continuous and integrable over any finite length interval.
However, since this correlation function is not differentiable at 7 = 0, the process is not ms-
differentiable at any t.
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