
Mean-Square Calculus Summary

For a continuous time process x(u, t), we may consider limiting operations such as differentiation,
integration, and continuity tests. As stochastic limits, these concepts must be tied to a particular
mode of stochastic convergence (i.e., a process may be continuous in the mean square sense (mss),
but not almost surely). This handout contains a brief summary of the results of “mean-square
calculus” without the development. The book by Stark and Woods is a good engineering-level
reference for this topic. Assume throughout that the process is real valued.

1 Mean-Square Continuity

Definition: Let an be any sequence such that limn→∞ an = 0, then x(u, t) is ms-continuous at
t = t0 ⇐⇒

lim
n→∞

E
{

[x(u, t0)− x(u, t0 + an)]2
}

= 0. (1)

An equivalent statement is that yn(u, t0) = x(u, t0 + an) converges in the mss. Since an is an
arbitrary sequence going to zero, this is equivalent to the limit as a continuous parameter (i.e., ∆)
goes to zero

lim
∆→∞

E
{

[x(u, t0)− x(u, t0 + ∆)]2
}

= 0. (2)

Necessary and Sufficient Condition: Checking for convergence of yn(u, t0) yields

x(u, t) is ms-cont. at t = t0 ⇐⇒ Rx(t, t) is cont. at t = t0. (3)

Note that a deterministic function g(t) is continuous at t = t0 if limn→∞ g(t0 + an) = g(t0) for all
choices of an going to zero.

Wide-Sense Stationary Simplification: If x(u, t) is WSS, then the condition for ms-continuity
is

x(u, t) is ms-cont. at ∀ t ∈ R ⇐⇒ Rx(τ) is cont. at τ = 0. (4)

Note that a WSS process is either continuous at all times or discontinuous at all times.

2 Mean-Square Differentiability

Definition: Let an be any sequence such that limn→∞ an = 0 and define

yn(t0) =
x(u, t0)− x(u, t0 + an)

an
, (5)

then x(u, t) is ms-differentiable at t = t0 ⇐⇒ yn(t0) converges in the mss. The mss-limit of
this sequence, when it exists, will be referred to as the mss-derivative of x(u, t) and denoted by
ẋ(u, t0) = mss− limn→∞ yn(u, t0).
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Necessary and Sufficient Condition: Checking for convergence of yn(u, t0) yields

x(u, t) is ms-diff’able at t = t0 ⇐⇒ ∂2

∂t1∂t2
Rx(t1, t2) exists at t1 = t2 = t0. (6)

If x(u, t) is ms-differentiable at two times t1 and t2, then the correlation between the two random
variables ẋ(u, t1) and ẋ(u, t2) is

Rẋ(t1, t2) =
∂2

∂t1∂t2
Rx(t1, t2). (7)

Wide-Sense Stationary Simplification: If x(u, t) is WSS, then the condition for ms-differentiability
is

x(u, t) is mss-diff’able ∀ t ∈ R ⇐⇒ −d2

dτ2
Rx(τ) exists at τ = 0. (8)

If x(u, t) is differentiable in the mss and WSS, then

Rẋ(τ) =
−d2

dτ2
Rx(τ). (9)

Note that this may be thought of as putting x(u, t) through an LTI filter with H(f) = j2πf , so that
Sẋ(f) = −(j2πf)2Sx(f), which is equivalent to the above expression for the correlation function.

3 Mean-Square Integrability

A Riemann sum can be defined for which ms-convergence can be tested. Thus, the integral

z(u) =

∫ b

a
x(u, t) dt (mss-limit) (10)

exists if the Riemann sum converges in the mss. A necessary and sufficient condition for this
convergence is

x(u, t) is ms-integrable on [a, b] ⇐⇒
∫ b

a

∫ b

a
Rx(t1, t2) dt1dt2 <∞. (11)

It is clear that any finite power process is ms-integrable over a finite interval.

4 Example

A WSS process with Rx(τ) = e−a|τ | is ms-continuous and integrable over any finite length interval.
However, since this correlation function is not differentiable at τ = 0, the process is not ms-
differentiable at any t.
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