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1 Problem Statement
The causal simulation and whitening problems require that we factor an (n × n) positive
definite matrix, K, as

K = HH†, (1)

where H represents a causal transformation (i.e. H is an (n × n) lower triangular matrix).
This factorization is known as the Cholesky Factorization and is guaranteed to exist for K
as described above.

This handout discusses three methods for performing the Cholesky factorization. The
“direct method” is the most straightforward, but is only useful for small matrices. The “Eigen
method” is useful for theoretical justification of the existence of the Cholesky factorization.
The LDL† method is the preferred method for programing the procedure and for calculation
by hand for larger matrices.

We describe each method in the following sections.

2 The Direct Method
This is the method presented in the supplemental notes by Scholtz. The direct method
consists of simply equating the two sides of (1) and then solving for the elements of H. For
example, if n = 3 (1) expands out to




k11 k12 k13

k∗
12 k22 k23

k∗
13 k∗

23 k33



 =




h11 0 0
h21 h22 0
h31 h32 h33








h∗

11 h∗
21 h∗

31

0 h∗
22 h∗

32

0 0 h∗
33


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Expanding this we get

|h11|2 = k11 (3a)

h11h
∗
21 = k12 (3b)

h11h
∗
31 = k13 (3c)

|h21|2 + |h22|2 = k22 (3d)

h21h
∗
31 + h22h

∗
32 = k23 (3e)

|h31|2 + |h32|2 + |h33|2 = k33. (3f)
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Figure 1: The order for solving the n = 3 case with the direct method.

Figure 2: The order for solving for the elements of H using the direct method.

The system of equations in (3) should be solved in the order shown in the flow diagram of
Figure 1. In general you should solve for the elements of H in the order shown in Figure 2.
Solving these equations is simpler if K is real, in which case H can be assumed real. Even
for real matrices, the direct method is limited to only small n - imagine solving this for a
(10 × 10) matrix; just obtaining the equivalent of (3) would be quite a task!

It seems that we should try to automate the procedure - the LDL† method does so.

3 The LDL† Method

The equations in (3) imply that we can always choose H so that hii > 0 for i = 1, 2 . . . n (see
problem 1). This means that H can be written in the following form

H = LD1/2, (4)



Cholesky Factorization Methods 3

where L is lower triangular with 1’s down the diagonal (we will refer to this as “unit lower
triangular”) and D is a (real) diagonal matrix with positive entries down the diagonal. For
n = 3 these matrices have the form

L =




1 0 0
l21 1 0
l31 l32 1



 D =




d1 0 0
0 d2 0
0 0 d3



 , (5)

where di > 0 for i = 1, 2, 3. In this case the Cholesky factorization in (1) becomes

K = LDL†, (6)

hence the name of this method.
The idea behind this method is to multiply K by L−1 on the left so that we are left with

L−1K = DL†. (7)

Once we know DL†, it is simply to obtain H† = D1/2L†.
Of course, we don’t know what L−1 is; so how do we multiply by it? The answer is the

result of two facts:

1. The inverse of L has the same form as L; it is unit lower triangular (see problem 2).

2. Multiplication on the left by a unit lower triangular matrix correspond to replacing
the ith row by itself plus some linear combinations of rows above it.

The second fact is illustrated by denoting L−1 by M, so that by the first fact

L−1 = M =




1 0 0

m21 1 0
m31 m32 1



 . (8)

If we let the ki be the ith column of K, then for n = 3

MK =




1 0 0

m21 1 0
m31 m32 1









k†
1

k†
2

k†
3



 (9a)

=





k†
1

m21k
†
1 + k†

2

m31k
†
1 + m32k

†
2 + k†

3



 . (9b)

So we can multiply by L−1 without explicitly knowing it by performing “unit Gaussian
elimination” (i.e. replacing the ith row by itself plus some linear combinations of rows above
it). We can “zero” all of the subdiagonal elements of each column in one step; working from
left to right as illustrated in Figure 3

The steps of the LDL† method are:
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Figure 3: The subdiagonal entries of K are zeroed one column at a time, from left to right,
in the LDL† method.

1. Perform unit Gaussian eliminations on K to zero all of the elements below the diagonal.
The result is DL†.

2. Obtain H† = D1/2L† by dividing each ith row of DL† by
√

di for i = 1, 2 . . . n.

3. Take the Hermitian transpose to get H.

4. Check your result by multiplying HH†.

The second step can be easily seen for the case of n = 3

DL† =




d1 0 0
0 d2 0
0 0 d3








1 l∗21 l∗31
0 1 l∗32
0 0 1



 =





d1

(
1 l∗21 l∗31

)

d2

(
0 1 l∗32

)

d3

(
0 0 1

)



 , (10)

so dividing each row by
√

di is equivalent to factoring out a D1/2 on the left.

3.1 LDL† Example
The LDL† method is much easier to understand by looking at a specific example. Let’s
consider a real-valued example

K =




4 6 10
6 25 39
10 39 110



 . (11)
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The steps of the unit Gaussian elimination are

So

DLt =




4 6 10
0 16 24
0 0 49



 . (12)

Factoring out D1/2 on the left (i.e. dividing each row by the square root of the diagonal
entry) implies

Ht = D1/2Lt =




2 3 5
0 4 6
0 0 7



 , (13)

which can easily be verified by multiplying HHt.

3.2 Programming the LDL† Factorization

The LDL† method is easily programmed on a computer - in fact many math packages will
perform it for you. Here’s the pseudo code for the LDLt (real-valued case)

• for(j = 1, 2, . . . n)

– for(m = 1, 2, . . . j − 1) rm := ljmdm

– dj := kjj −
∑j−1

m=1 ljmrm

– for(i = j + 1, . . . n) lij := (kij −
∑j−1

m=1 limrm)/dj

Here rm is just a temporary array introduced to save computation.

4 The Eigen Method

Since K is assumed to be positive definite symmetric, we know that the (non-causal) factor-
ization given by

K = (EΛ1/2)(EΛ1/2)†, (14)
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exist, where E and L are invertible matrices of eigenvectors and eigenvalues respectively. For
any unitary matrix U, (i.e. UU† = I) we have

K = (EΛ1/2U)(EΛ1/2U)†. (15)

The idea behind the Eigen method is to design U so that H = (EΛ1/2U) is lower triangular.
The method consists of multiplying EΛ1/2 on the left by a sequence of unitary matrices,

each of which “zeros” an element above the diagonal. This uses the fact that the product of
unitary matrices is a unitary matrix (see problem 4).

One way to zero elements is to use Given’s Rotaions - matrices which zero one element
at a time. Consider the (2 × 2) case

EΛ1/2 =

[
a b
c d

]

, (16)

where we want to zero the 1,2 element, b. To do so we multiply on the right by

U1,2 =
1

√
|a|2 + |b|2

[
a∗ −b
b∗ a∗

]

. (17)

It is straightforward to check that U1,2 is unitary and that

EΛ1/2U1,2 =

[
! 0
! !

]

, (18)

where ! represents a non-zero (in general) entry. The important thing is that the 1,2 element
has been zeroed.

For larger matrices, we must zero more than one element. This is done by designing Ui,j

to zero the i, j element for j > i and for i = 1, 2 . . . n. This is most easily seen by considering
n = 3. Let’s use a, b, c and d as place-holders for the non-zero elements that we use in the
rotation (i.e. a, c, d play the same role as in the above example and b is the element that we
wish to zero). At each step, the actual values which a, b, c and d represent change, but their
role remains the same. Also for given values of a, b, c and d, define the following

α =
a∗

√
|a|2 + |b|2

β =
b∗

√
|a|2 + |b|2

. (19)

Initially, all of the elements of EΛ1/2 are non-zero. We zero the 1,2 element first

EΛ1/2U1,2 =




a b !
c d !
! ! !








α −β 0
β α 0
0 0 1



 =




! 0 !
! ! !
! ! !



 . (20)

The next element to be zeroed is the 1,3 element

EΛ1/2U1,2U1,3 =




a 0 b
! ! !
c ! d








α 0 −β
0 1 0
β 0 α



 =




! 0 0
! ! !
! ! !



 . (21)
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Figure 4: The order for zeroing the above-diagonal elements of the EΛ1/2 matrix using
rotation matrices.

The last element to zero is the 2,3 element

EΛ1/2U1,2U1,3U2,3 =




! 0 0
! a b
! c d








1 0 0
0 α −β
0 β α



 =




! 0 0
! ! 0
! ! !



 . (22)

So we take U = U1,2U1,3U2,3 and H = EΛ1/2U.
For an n dimensional K matrix, we choose U as

U = (U1,2) (U1,3U2,3) (U1,4U2,4U3,4) · · · (U1,nU2,n · · ·Un−1,n) , (23)

and take H = EΛ1/2U. The order in which we zero elements is important - if the elements
are zeroed in another order, we may destroy a zero that we created! The order for performing
the zeroing is shown in Figure 4.

This method may be useful if we already have the eigenvectors and eigenvalues of K, but
if they are unknown, the additional work to find them makes the Eigen method undesirable.

5 Remarks
Throughout this handout we have assumed that K was positive definite. If K is singular,
then the methods described may not provide the Cholesky Factor, H. The manifestation
of this in the direct method is that when solving for the elements of H, the choices are
non-unique. If you choose a value arbitrarily and continue on, it usually works.



8 c© K.M. Chugg - November 19, 1995

In the LDL† method, a singular K means that one of the diagonal elements zero. If this
occurs at the last step, then the last row of DL† is all zeros. This is not a problem; just
divide all of rows by the square-root of the diagonal elements an leave the last row alone (in
this case the last column of H is all zeros). Worse yet, one of the “pivots” (i.e. the diagonal
element that you divide by to compute the Gaussian eliminations) is zero. In this case, you
have to consider using row permutations. Similar problems arise with the Eigen method.

An approach which can be used when K is singular is dimension reduction. This is
developed in problem 6.

For more on the Cholesky factorization and its numerical implementation, see “Linear
Algebra and Its Applications,” by G. Strang and “Matrix Computations,” by G. Golub and
C. Van Loan.

6 Problems
1. Why can we choose hii real and positive in (3)?

2. Show that when L is unit lower triangular so is L−1.

3. In the whitening problem we are interested in finding H−1. Describe a method to find
H−1 when performing the LDL† decomposition. Demonstrate your method on the K
matrix used for the example in Section 3.1.

4. Show that U = U1U2 · · ·Uk is unitary when Ui for i = 1, 2 . . . k are each unitary.

5. Show that U1,2 is unitary for the two dimensional case. Generalize to n-dimensions
and Ui,j for j > i and i = 1, 2 . . . n.

6. This problem deals with what to do when K is singular. Consider the mean zero (real)
random vector

x(u) =




x(u, 1)
x(u, 2)
x(u, 3)



 ,

with covariance matrix

Kx =




2 −1 −1

−1 2 −1
−1 −1 2



 .

(a) Show that x(u, 1)+x(u, 2)+x(u, 3) as= 0. Therefore x(u, 3) as= −x(u, 1)−x(u, 2).

(b) Define the random vector y(u) by

y(u) =

[
x(u, 1)
x(u, 2)

]

. (24)

What is my and Ky?
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(c) Perform the Cholesky decomposition on Ky.

(d) Describe how you would causally simulate x(u) using w(u, 1) and w(u, 2), two
uncorrelated, mean zero, unit variance random variables.

(e) Use your results from the previous part to write down the Cholesky factorization
of Kx.

(f) Describe how you would causally whiten x(u).

(g) Would the method developed in this problem work if we eliminated x(u, 2) instead
of x(u, 3) in part (6a)?

(h) Try finding the Cholesky factorization of Kx directly using the LDL† method.
How is the result related to the solution of part (6d)?


