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Figure 1: The general estimation problem.

1 Problem Statement

We are interested in estimating (or approximating) a desired random vector from another
observable random vector. Throughout these notes we will denote the observable by x(u)
and the desirable by z(u) (this is the same notation used the the supplemental notes by
Scholtz). We will assume that x(u) is an (m×1) complex random vector and that z(u) is an
(n×1) complex random vector. As an estimate of z(u), we use g(x(u)), where the estimator
g(·) is a deterministic mapping from Cm to Cn. The problem is diagramed in Figure 1.

Typically the desired vector is not available; only the observable. The job of a good
estimator is to extract information about the desirable (z(u)) from the observable (x(u)).
In order to quantify the performance of a given estimator (i.e. what does good mean?), we
must define a cost function. All of the estimation problems we will discuss in this class are
concerned with the Mean-Squared-Error (MSE) cost function. For a given estimator, the
MSE is defined by

MSE(g) = E
{
‖z(u) − g(x(u))‖2

}
= E

{
‖e(u)‖2

}
= tr (Re). (1)

Where the error vector, e(u), is the difference between the desired signal and the estimate.
We will denote the estimator which minimizes the MSE over some class of estimators by
ẑ(u).

We will consider several constraints on the form of the estimator, g(·), and solve for the
best estimator by using one theorem, the Hilbert Space Projection Theorem (HSPT). This
approach is rather abstract, yet fortunately we can easily check our results in each case to
verify that it is indeed the best estimator.
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2 The Hilbert Space Projection Theorem

In order to state the Hilbert Space Projection Theorem (HSPT), we need to define a Hilbert
space.

Definition: A Hilbert space is a linear space with an inner product which is complete (i.e.
a complete inner product space).

This is probably not too satisfying since we have not defined what “complete” means.
We will define this concept when we discuss stochastic convergence later in the course - for
now just consider it a property that makes taking limits easy. So a Hilbert space is just an
inner product space with nice convergence properties. With this we can state the theorem
which solves all the estimation problems in this course.

Theorem (HSPT): Let H be a Hilbert space, M be a closed subspace of H, and z ∈ H.
Then there is a unique ẑ ∈ M which is closest to z:

‖z − ẑ‖ < ‖z − y‖ ∀ y ∈ M, y '= ẑ.

Furthermore, a necessary and sufficient condition for ẑ to be the closest point is that it
satisfy the Orthogonality Principle:

〈z − ẑ, y〉 = 0 ∀ y ∈ M.

A direct result of this orthogonality condition is (see problem 4)

‖z − ẑ‖2 = ‖e‖2 = ‖z‖2 − ‖ẑ‖2.

Here 〈x, y〉 denotes the inner product defined on H and ‖x‖ =
√
〈x, x〉 is the associated

norm (see problem 1).

A proof of this theorem is beyond the scope of this class, however the result is rather
intuitive. To find the closest point from a given point to a closed subspace, we simply drop
a perpendicular. This concept is illustrated in Figure 2.

The most important result to remember from the HSPT is the Orthogonality Principle;
it allows use to solve for the closest point. This is demonstrated in the next subsection as
well as in the solution of the MSE estimation problems.

2.1 Examples from the Prerequisites

Initially the HSPT seems very abstract, but you’ve actually used it many times in your
previous studies. Three such applications are presented below.
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Figure 2: The HSPT - the error is orthogonal to the observation subspace.

2.1.1 Linear Estimation of a Deterministic Vector from Another

The space of all n-dimensional complex vectors, Cn, is a Hilbert space, with inner product
defined by the standard complex dot product

〈x,y〉 = y†x. (2)

Consider the problem of estimating one vector in Cn, z, by a scalar multiple of another, x.
This is the problem of minimizing ‖z − αx‖ over all α ∈ C. Thus we are trying to find the
closest point in M to z, where

M = {αx : α ∈ C}. (3)

The HSPT theorem says that there is a closest point in M, namely ẑ = αoptx. To find the
closest point (i.e. solve for αopt) we apply the Orthogonality Principle

(αx)†(z − αoptx) = 0 ∀ α ∈ C (4)

Therefore the optimal value of α satisfies

αoptx
†x = x†z. (5)

If x '= 0, then

αopt =
x†z

x†x
=

〈z,x〉
〈x,x〉 , (6)

so that the closest point is

ẑ =

(
x†z

x†x

)

x =

(
x†z

‖x‖

)
x

‖x‖ . (7)

You should recall this result from your linear algebra class.
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2.1.2 Linear Estimation of a Deterministic Vector from Several Others

Again we will consider the application of the HSPT to the Hilbert Space of Cn. This time we
will try to approximate a given n-dimensional vector b by a linear combination of m other
vectors in Cn, a1, a2 . . . am. So in this case our subspace is

M =

{

y =
m∑

i=1

xiai : xi ∈ C i = 1, 2, . . . m

}

(8)

= {y = Ax : x ∈ Cm}, (9)

where the (n × m) matrix A is defined by

A =
[

a1 a2 . . . am

]
. (10)

You should recognize this as the standard problem of finding x so that ‖Ax−b‖ is minimized
(i.e. the linear least-squares problem). Applying the Orthogonality Principle yields

(Ax)†(b − Axopt) = 0 ∀ x ∈ Cm. (11)

This simplifies to
x†[A†(b − Axopt)] = 0 ∀ x ∈ Cm, (12)

which is true if and only if (see problem 5)

A†Axopt = A†b. (13)

The relation in (13) is known as the “normal equations.”
If the matrix A†A is invertible, then we have

xopt = (A†A)−1A†b (14)

ẑ = A(A†A)−1A†b. (15)

You should recognize this as the standard least-squares solution.

2.1.3 Fourier Series Expansion

The most powerful aspect of the Hilbert space approach is its generality. This allows us
to solve problems in abstract spaces as well as concrete spaces like Cn. In this example
we consider the Hilbert space L2[0, T ], the space of all square integrable functions on the
interval [0, T ]. A point, x, in L2[0, T ] actually represents an entire function

x = {x(t) : t ∈ [0, T ]}. (16)

L2[0, T ] is the space of all functions which have finite energy, (i.e. they are square integrable)

x ∈ L2[0, T ]⇒
∫ T

0
|x(t)|2dt < ∞. (17)
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The inner product for this Hilbert space is

〈x, y〉 =
∫ T

0
x(t)y∗(t)dt. (18)

Given a point z ∈ L2[0, T ], what is the closest function in the span of {ek}n
k=−n, where

ek = {ej2π k
T t : t ∈ [0, T ]}? Again, the HSPT solves this problem. The subspace in this case

is

M =




y =
n∑

k=−n

ckek : ck ∈ C k = −n, . . . n − 1, n




 . (19)

Denoting the optimal values of the coefficients by Zk (i.e. ẑ =
∑n

k=−n Zkek), we can apply
the Orthogonality Principle

〈
z − ∑n

k=−n Zkek,
∑n

k=−n ckek

〉
= 0 ∀ ck ∈ C, k = −n, . . . n − 1, n. (20)

Simplifying,
n∑

k=−n

c∗k〈z, ek〉 =
n∑

k=−n

n∑

l=−n

c∗kZl〈el, ek〉, (21)

which holds for all choices of the ck’s. This simplifies because the the complex exponentials
are orthogonal

〈el, ek〉 =
∫ T

0
ej2π (l−k)

T tdt (22)

= T δK(l − k) =

{
0 l '= k
T l = k

(23)

Using this, the Orthogonality Principle reduces to

Zk =
〈z, ek〉
〈ek, ek〉

=
1

T

∫ T

0
z(t)e−j2π k

T tdt. (24)

So the best approximation is

ẑ(t) =
n∑

k=−n

Zke
j2π k

T t, (25)

which are the first 2n + 1 terms of the Fourier Series. Thus we can view the Fourier Series
as a result based on the HSPT.

3 Minimum MSE Estimation Using the HSPT
The first step in applying the HSPT to the estimation problem stated in Section 1 is to
identify random vectors with a Hilbert space. We do this by first defining the Hilbert space
of finite variance random variables and then extending the notion to random vectors.
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The collection of all random variables defined on a given sample space, U , forms a Hilbert
space. We will denote this space by WU , or just W for simplicity. A point in this space, x,
actually represents an entire random variable (a function)

x ∈ W ⇒ x = {x(u) : u ∈ U}. (26)

The inner product for this Hilbert space and the implied norm are (see problem 1)

〈x, y〉W = E {x(u)y∗(u)} (27a)

‖x‖W =
√
〈x, x〉W =

√
E {|x(u)|2}. (27b)

This is the reason that x(u) and y(u) are referred to as orthogonal if E {x(u)y∗(u)} = 0; in
this case x and y are orthogonal in W . This definition for the norm means that equality of
two elements in W is almost sure equality of the random variables

x = y ⇐⇒ x(u) as= y(u) ⇐⇒ Pr {x(u) = y(u)} = 1. (28)

Since the space of all finite variance random variables is a Hilbert space, it is not surprising
that the space of all n-dimensional second order random vectors is also a Hilbert space. We
will denote this space as Wn

U or just Wn. A point in this space represents n random variables,
each with finite second moments

x ∈ Wn ⇒ x = {x(u) : u ∈ U}, (29)

where

x(u) =





x(u, 1)
x(u, 2)

...
x(u, n)




, (30)

with E {|x(u, i)|2} < ∞ for i = 1, 2 . . . n. The inner product for this Hilbert space and the
implied norm are (see problem 2)

〈x, y〉Wn = E
{
y†(u)x(u)

}
= tr (Rxy) (31)

‖x‖Wn =
√
〈x, x〉Wn =

√
E {‖x(u)‖2} =

√
tr (Rx). (32)

Note that we use the notation ‖x(u)‖2 = x†(u)x(u), which is a random variable, to denote
the standard Euclidean norm of the random vector x(u). This should not be confused with
‖x‖Wn , for x ∈ Wn, which is a deterministic scalar.1 Once again equivalence of two points
in Wn implies that the random vectors are equal almost surely.

Now that we can view second order random vectors as points in a Hilbert space, we can
easily solve several MSE estimation problems. In each problem we will have the following
framework:

1Scholtz uses the notation |x(u)|2 = x†(u)x(u) in an attempt to avoid confusion. I prefer my notation
because it emphasize the fact that for a fixed u, x(u) is a point in Cn.
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Figure 3: The linear estimation problem.

• We wish to estimate z(u) by some mapping of x(u), g(x(u)). We will view z(u) and
x(u) as two points, z and x, in the Hilbert space Wn.

• The best estimator is the one that minimizes the MSE, namely E {‖e(u)‖2} = ‖e‖2
Wn .

• We will solve this problem by noting that the solution is the point in

M = {y ∈ Wn : y(u) = g(x(u))}

which is closest to z. In other words we want to choose g(·) such that ‖z − y‖Wn

is minimized over all y ∈ M. The solution is then obtained by applying the HSPT,
specifically the Orthogonality Principle. The form of the solution depends on the
constraints placed of the form of g(·), and thus M.

In the following subsections we solve several constrained MSE estimation problem fol-
lowing the above recipe.

3.1 Linear Minimum MSE (LMMSE) Estimation
The first constraint that we consider is that g(·) must be linear. In this case we can represent
g(·) by matrix multiplication

y(u) = g(x(u)) linear ⇒ y(u) = Gx(u), (33)

where G is an (m × n) matrix (remember z(u) is (n × 1) and x(u) is (m × 1). The block
diagram for the LMMSE estimation problem is shown in Figure 3.

In the abstract Hilbert space model the subspace of all linear estimators based on the
observation x is

ML = {y ∈ Wn : y(u) = Gx(u)}. (34)
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The HSPT says the point in ML which is closest to z is the unique ẑ which satisfies the
Orthogonality Principle

〈z − ẑ, y〉Wn = 0 ∀ y ∈ Wn. (35)

Equivalently, this means that there is an optimal choice for G, Gopt, so that ẑ(u) = Goptx(u)
is the LMMSE estimate of z(u) based on the observation x(u). The Orthogonality Principle
can thus be rewritten as

E
{
(Gx(u))†(z(u) − Goptx(u))

}
= tr

(
E

{
(z(u) − Goptx(u))(Gx(u))†

})
(36)

= tr
(
(Rzx − GoptRx)G

†
)

= 0, (37)

which must hold for any choice of G. Since this holds for arbitrary G, it follows that a
necessary and sufficient condition for Gopt to be the LMMSE estimator is (see problem 5)

Rzx = GoptRx. (38)

This equation is known as the Wiener-Hopf equation. If Rx is nonsingular, then the choice
of Gopt is unique

Gopt = RzxR
−1
x , (39)

so that the LMMSE estimate is

ẑ(u) = RzxR
−1
x x(u). (40)

The minimum MSE is also given by the HSPT

MSE(Gopt) = ‖z‖2
Wn − ‖ẑ‖2

Wn (41)

= tr (Rz) − tr
(
GoptRxG

†
opt

)
(42)

= tr (Rz) − tr
(
RzxR

−1
x Rx(RzxR

−1
x )†

)
(43)

= tr
(
Rz − RzxR

−1
x Rxz

)
. (44)

3.1.1 Direct Verification of the LMMSE Estimate

Since we haven’t presented a proof of the HSPT, you may be weary of trusting the results.
One nice aspect of the HSPT is that the results are simple to check once the answer is known.

Let G be any (n × m) matrix, then

MSE(G) = E
{
‖z(u) − Gx(u)‖2

}
(45)

= E
{
‖(z(u) − Goptx(u)) + (Gopt − G)x(u)‖2

}
(46)

= E
{
‖(z(u) − Goptx(u))‖2

}
+ tr

(
(Gopt − G)Rx(Gopt − G)†

)
(47)

+2-
{
tr

(
(Rzx − GoptRx)(Gopt − G)†

)}
. (48)



10 c© K.M. Chugg - November 19, 1995

By design the cross term is zero (i.e. we choose Gopt according to (38)). Thus

MSE(G) = MSE(Gopt) + tr
(
(Gopt − G)Rx(Gopt − G)†

)
(49)

≥ MSE(Gopt), (50)

since tr
(
(Gopt − G)Rx(Gopt − G)†

)
≥ 0 follows from the fact that Rx is non-negative def-

inite (see problem 5). If Rx is positive definite, then the choice of Gopt is unique and the
inequality in (50) is strict for G '= Gopt.

The value of MSE(Gopt) is also easily calculated directly

MSE(Gopt) = E
{
‖z(u) − Goptx(u)‖2

}
(51)

= E
{
(z(u) − Goptx(u))†z(u)

}
− E

{
(z(u) − Goptx(u))†Goptx(u)

}

︸ ︷︷ ︸
=0

(52)

= tr
(
Rz − RzxG

†
opt

)
(53)

= tr
(
Rz − RzxR

−1
x Rxz

)
. (54)

The cross term is zero in the above as a result of the orthogonality principle (check it!).

3.2 Affine Minimum MSE (AMMSE) Estimation

In general, the LMMSE estimate is biased; that is E {ẑ(u)} '= mz (see problem 6). If the
estimator, g(·) is constrained only to be affine, then this bias can be eliminated. An affine
mapping has the representation

y(u) = g(x(u)) affine ⇒ y(u) = Gx(u) + c, (55)

where G is an (m×n) matrix and c is (n×1). The block diagram for the AMMSE estimation
problem is shown in Figure 4.

In the abstract Hilbert space model, the subspace of all affine estimators based on the
observation x is

MA = {y ∈ Wn : y(u) = Gx(u) + c}. (56)

Application of the HSPT implies that there is an optimal choice for G and c, namely Gopt

and copt, so that ẑ(u) = Goptx(u) + copt is the AMMSE estimate of z(u) based on the
observation z(u). The Orthogonality Principle implies

E
{
(Gx(u) + c)†(z(u) − Goptx(u) − copt)

}
= 0 ∀ G, c. (57)

In particular, we can take G = O, so that

c†(mz − Goptmx − copt) = 0 ∀ c. (58)
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Figure 4: The affine estimation problem.

Since c is arbitrary, it follows that mz − Goptmx − copt = 0, or

copt = mz − Goptmx. (59)

Substituting this back into (57) yields

E
{
(Gx(u) + c)†(z0(u) − Goptx0(u))

}
= 0 ∀ G, c. (60)

Taking c = −Gmx yields

E
{
(Gx0(u))†(z0(u) − Goptx0(u))

}
= 0 ∀ G, (61)

which is can be viewed as a linear estimation problem (i.e. the LMMSE estimate of z0(u)
based on x0(u)). It follows that Gopt satisfies the Wiener-Hopf equation for affine estimators

Kzx = GoptKx. (62)

If Kx is invertible, then the AMMSE estimate is

ẑ(u) = KzxK
−1
x (x(u) − mx) + mz, (63)

and the corresponding minimum MSE is

MSE(Gopt; copt) = tr
(
Kz − KzxK

−1
x Kxz

)
. (64)
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3.3 Causal LMMSE Estimation

The class linear of linear estimators can be further constrained so that the estimator rep-
resents a causal linear operator; that is we can require G to be lower triangular. This
restriction only makes most sense when the observation and the desired vector are the same
dimension and both correspond to the same physical time set; therefore we will assume that
m = n for the causal constraint.

In this case the g(·) has the following constraint

y(u) = g(x(u)) linear, causal ⇒ y(u) = Gx(u), (65)

where G is an (n × n) lower triangular matrix.
In the abstract Hilbert space model the subspace of all linear causal estimators based on

the observation x is

MLC = {y ∈ Wn : y(u) = Gx(u) G lower triangular}. (66)

The Orthogonality Principle implies

E
{
(Gx(u))†(z(u) − Goptx(u))

}
= 0 ∀ causal G, (67)

which simplifies to
tr

(
(Rzx − GoptRx)G

†
)

= 0 ∀ causal G. (68)

Since G is an arbitrary lower triangular matrix, it follows that (see problem 5)

C {Rzx − GoptRx} = O, (69)

or
C {GoptRx} = C {Rzx} (70)

where C {·} is the “causal part operator”

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33



 ⇒ C {A} =




a11 0 0
a21 a22 0
a31 a32 a33



 . (71)

If Rx is invertible, then the Cholesky factorization can be performed, so that

Rx = HH†, (72)

where H is an invertible, lower triangular matrix. Since G is an arbitrary lower triangular
matrix, it can be replaced in (68) by FH−1, where F is any lower triangular matrix, resulting
in

tr
(
(RzxH

−† − GoptH)F†
)

= 0 ∀ causal F. (73)
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Since F is an arbitrary causal matrix, we arrive at

C
{
RzxH

−† − GoptH
}

= O, (74)

or
Gopt = C

{
RzxH

−†
}
H−1. (75)

The corresponding minimum MSE is

MSE(Gopt) = tr
(
Rz − GoptRxG

†
opt

)
. (76)

The best causal affine estimator follows in a similar manner, the details are left to the
student.

3.4 Unconstrained MMSE Estimation
Up to this point we have considered only constrained MMSE estimation problems. The ques-
tion considered in this section is: Can we find the optimal estimator g(·) with no constraints
imposed? The answer is yes, but the cost of the optimal MMSE estimator is a complete
statistical description of the observation and desirable.

Before stating the result, it is useful to review conditional expectation. The conditional
expectation mapping of z(u) given x(u) is defined by

gz(u)|x(u)(x) = E {z(u)|x} =
∫

Cn zfz(u)|x(u)(z|x)dz. (77)

Notice that the conditional expectation mapping is a deterministic mapping from Cm to Cn

(or Rm to Rn if x(u) and z(u)are real random vectors). When we apply the this function to
the m-dimensional random vector, x(u), we obtain an n-dimensional random vector denoted
by

E {z(u)|x(u)} = gz(u)|x(u)(x(u)). (78)

We will refer to this random vector as the conditional expectation of z(u) given x(u). The
distinction between the conditional expectation mapping and the conditional expectation is
often not emphasized, since it should be clear from the context which is intended. In order
to avoid confusion we will clearly distinguish between the two.

The unconstrained MMSE estimation problem is the problem stated in Figure 1, the
subspace of unconstrained estimators is

MU = {y ∈ Wn : y(u) = g(x(u))}. (79)

The Orthogonality Principle requires that gopt(·) satisfies

E
{
(g(x(u)))†(z(u) − gopt(x(u)))

}
= 0. (80)

Conditioning on x(u) implies

Ex(u)

{
E

{[
g(x(u)))†

] [
E {z(u)|x(u)}− gopt(x(u))

]∣∣∣x(u)
}}

= 0, (81)
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since Ex(u){E {z(u)|x(u)}} = E {z(u)} and Ex(u){g(x(u))|x(u)} = E {g(x(u))} for any de-
terministic function g(·). This must hold for all choices of g(·); in particular it holds for
g(x) = E {z(u)|x}− gopt(x). Substituting yields

Ex(u)

{
‖E {z(u)|x(u)}− gopt(x(u))‖2

}
= 0, (82)

which implies that gopt(x) = E {z(u)|x}. So the optimal estimator is the conditional expec-
tation mapping and the MMSE estimate is the conditional expectation

ẑ(u) = E {z(u)|x(u)} . (83)

The associated MMSE is

MSE
(
gopt

)
= tr (Rz) − E

{
‖E {z(u)|x(u)} ‖2

}
. (84)

4 Summary of MMSE Estimation Results
Since the subspace of unconstrained estimators includes linear and affine estimator, one can
never do worse with the conditional expectation than with a linear or affine estimator. A
Venn diagram of the estimator subspaces is shown in Figure 5. From this diagram it follows
that a linear estimator is never better than an affine estimator, which in turn is never better
than the conditional expectation. The linear estimator is never worse than the causal linear
estimator, with a similar result holding for affine estimators.

The results of the estimation problems considered are listed below

Constraint Estimate Min. MSE

Linear ẑ(u) = RzxR
−1
x x(u) tr

(
Rz − RzxR

−1
x Rxz

)

Linear Causal ẑ(u) = C
{
RzxH

−†
}
H−1x(u) tr

(
Rz − GoptRxG

†
opt

)

Affine ẑ(u) = KzxK
−1
x x0(u) + mz tr

(
Kz − KzxK

−1
x Kxz

)

Affine Causal ẑ(u) = C
{
KzxH

−†
}
H−1x0(u) + mz tr

(
Kz − GoptKxG

†
opt

)

Unconstrained ẑ(u) = E {z(u)|x(u)} tr (Rz) − E {‖E {z(u)|x(u)} ‖2}
In the table H is the Cholesky factor for Rx in the linear causal estimator and the

Cholesky factor for Kx in the affine causal estimator. Also the results in the table assume
that all the required inverses exist; if this is not so, the Wiener-Hopf equations must be
solved directly (see problem 13)

5 Problems
1. This problem develops concepts related to inner product spaces. An inner product

maps two elements of a linear space into a scalar, denoted by 〈x, y〉. An inner product
allows us to measure “angles” between elements of the space. An inner product must
satisfy the following properties (x, y and z are arbitrary elements of the linear space
and α is a complex scalar)
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Figure 5: Venn diagram of estimator subspaces for various constraints

(IP1) 〈x, y〉 = (〈y, x〉)∗ (Hermitian Symmetry)

(IP2) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 (Additivity)

(IP3) 〈αx, y〉 = α〈x, y〉 (Homogeneity in first argument)

(IP4) if x '= 0, 〈x, x〉 > 0 (Positivity).

(a) Prove the Cauchy-Schwartz inequality

|〈z, x〉|2 ≤ 〈x, x〉〈z, z〉.

Hint: For any α, 〈z − αx, z − αx〉 ≥ 0. Minimize this quantity with respect to α
and show that the minimum value is still non-negative.

(b) A norm allows the measurement of “length” in the linear space. A norm maps
an element of the linear space into a non-negative scalar (it’s length), denoted by
‖x‖. A norm must satisfy the following four properties

(N1) ‖x‖ ≥ 0 (Positivity)

(N2) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (Subadditivity)

(N3) ‖αx‖ = |α|‖x‖ (Positive Homogeneity)

(N4) ‖x‖ = 0 implies x = 0 (Positive Definite).

Show that any inner product defines a norm by ‖x‖ =
√
〈x, x〉.

Hint: For (N2), start with ‖x + y‖2, and use the fact that - {α} ≤ |α| for any α
along with Cauchy-Schwartz.
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(c) A distance function (also referred to as a metric) measures the distance between
points of a (not necessarily Linear) space. The distance between two points is
denoted d(x, y); it must satisfy the following properties

(D1) d(x, y) ≥ 0 (Positivity)

(D2) d(x, y) = d(y, x) (Symmetry)

(D3) d(x, y) ≤ d(x, z) + d(z, y) (Triangle Inequality)

(D4) d(x, y) = 0 implies x = y (Strict Positivity).

Show that any norm induces a distance defined by d(x, y) = ‖x − y‖.
(d) Show that 〈x, y〉W = E {x(u)y∗(u)} defines an inner product on the linear space

W , the space of all finite variance random variables.

• Why does equality in this space correspond to almost sure equality of the
random variables?

• What is the Cauchy-Schwartz inequality in this case?

• What is the induced norm and distance for this space?

2. Show that 〈x, y〉Wn = E
{
y†(u)x(u)

}
defines an inner product on the linear space Wn,

the space of all second order random vectors of dimension n.

• Why does equality in this space correspond to almost sure equality of the random
vectors?

• What is the Cauchy-Schwartz inequality in this case?

• What is the induced norm and distance for this space?

• Why is 〈x, y〉Wn = tr (Rxy)?

3. Show that 〈x, y〉 =
∫ T
0 x(t)y∗(t)dt defines an inner product on the linear space L2[0, T ],

the space of all square integrable functions on [0, T ] discussed in Section 2.1.3.

• What is the Cauchy-Schwartz inequality in this case?

• What is the induced norm and distance for this space?

• What does equality mean in this space? Is there a physical interpretation?

4. Show that
‖z − ẑ‖2 = ‖e‖2 = ‖z‖2 − ‖ẑ‖2,

in the HSPT.

5. This problem fills in some facts used in the derivations of the MMSE estimators

(a) Let a ∈ Cn such that
b†a = 0 ∀ b ∈ Cn.

Show that a = 0.
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(b) Let G be an arbitrary (n × m) matrix and Rx be the correlation matrix of a an
(m × 1) random vector. Show that

tr
(
GRxG

†
)
≥ 0 ∀ G '= O.

Show that the inequality is strict if Rx is invertible.

(c) Let A be an (n × m) matrix such that tr (AB) = 0 for any (m × n) matrix B.
Show that this implies A = O.

(d) Let A be an (n×n) matrix such that tr (AB) = 0 for any lower triangular (n×n)
matrix B. Show that this implies C {A} = O.

6. An estimate is called unbiased if E {ẑ(u)} = E {z(u)}; otherwise the estimate biased.
Show that the LMMSE estimator is biased in general and that the AMMSE estimator
is unbiased. Under what condition is the LMMSE estimator unbiased?

7. Consider estimating z(u) from of x(u), where both are finite second moment random
variables.

(a) Show that the unconstrained minimum MSE estimate is unbiased; that is
E {ẑ(u)} = E {z(u)}.

(b) Show that E {z(u)ẑ(u)} = E {(ẑ(u))2}, where ẑ(u) is the unconstrained MMSE
estimate.

8. Verify directly that the conditional expectation mapping is the unconstrained MMSE
estimator.

9. Which estimator performs better: the LMMSE estimator or the Causal AMMSE esti-
mator?

10. The observation, x(u), and desirable, z(u), are given by

x(u) = w(u)x1 + v(u)x2

z(u) = v(u)z1,

where

x1 =

[
4
0

]

x2 =

[
0
8

]

z1 =

[
16
8

]

and the joint probability of w(u) and v(u) is given by
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.

Find the minimum MSE estimator of z(u) based on x(u) and the corresponding mini-
mum MSE for the following constraints:

(a) Linear

(b) Linear and Causal

(c) Affine

(d) Affine and Causal

(e) Unconstrained

(f) Rank the performance of these estimators.

11. Let z(u) and x(u) be jointly Gaussian real random variables. Denote the variance of
z(u) and x(u) by σ2

z and σ2
x, respectively and denote their means by mz and mx. Let

the normalized covariance coefficient, κzx, be defined as2

κzx =
E {(z(u) − mz)(x(u) − mx)}

σzσx
.

What is the unconstrained MMSE estimate of z(u) based on the observation x(u)
(in terms of the given parameters)? What is the best affine estimator? What is the
associated value of the minimum MSE for both of these estimators?

12. If z(u) and x(u) are statistically independent random variables, what is the best un-
constained MMSE estimator of z(u) based on the observation x(u)? Explain.

13. Consider finding the LMMSE estimate of z(u) based on x(u) when both are zero mean
and Kx is singular.

(a) Show that Gopt = KzxK
I
x (the pseudo-inverse) satisfies the Wiener-Hopf equation

(and thus provides the LMMSE solution).

2Usually this is referred to as the normalized correlation coefficient and denoted by ρ, but the notation
used here is more consistent with the definitions used in EE562a.
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(b) The pseudo-inverse provides only one possible solution to the Wiener-Hopf equa-
tion. Describe some other solutions.

(c) The HSPT states that ẑ(u) should be unique, but for singular Kx Gopt is not
unique. Explain this apparent contradiction.


