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Probability - Self Test

1. Let x(u) be a random variable. Define the cumulative distribution function (cdf),
probability density function (pdf), characteristic function, mean and variance of x(u).

2. Independent vs. Uncorrelated Random Variables - Let x(u) and y(u) be
random variables.

(a) What is the condition for x(u) and y(u) to be uncorrelated? What is the condition
for x(u) and y(u) to be independent?

(b) Show that x(u) and y(u) are independent if and only if z(u) = g(x(u)) and
w(u) = h(y(u)) are uncorrelated random variables for every choice of the functions
g(·) and h(·).
Hint: For the “if” part consider the class of functions gω(x) = ejωx for all real ω.

(c) Part (b) implies that independent random variables are always uncorrelated, but
that uncorrelated random variables are not always independent. Give an example
where x(u) and y(u) are uncorrelated but not independent.

(d) What special joint distribution of x(u) and y(u) has the property that indepen-
dence is the same as being uncorrelated?

3. This problem develops bounds on tail probabilities. In the following a and ǫ are
arbitrary positive constants and you may assume that the probability density function
exists for all random variables.

(a) Let x(u) be a non-negative random variable (i.e. Pr {x(u) < 0} = 0.) Prove
Markov’s inequality:

Pr {x(u) ≥ a} ≤ E {x(u)}
a

Hint: Start by writing down the expression for E {x(u)} and bound this expression
from below.

(b) Now let y(u) be a random variable which may take negative values. Use Markov’s
inequality to develop the following three bounds:

Chebychev’s: Pr {|y(u) − E {y(u)}| ≥ ǫ} ≤ E {|y(u) − E {y(u)}|2}
ǫ2

“Non-central Chebychev’s:” Pr {|y(u)| ≥ ǫ} ≤ E {|y(u)|2}
ǫ2

Chernoff’s: Pr {y(u) ≥ a} ≤ min
λ>0

e−λa
E

{
eλy(u)

}

Hint: If g(·) is a strictly monotonically increasing function (i.e. x > y ⇐⇒
g(x) > g(y)), then Pr {x(u) ≥ a} = Pr {g(x(u) ≥ g(a)}.
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(c) What type of information about the random variable do you need to apply each
of these bounds? Intuitively, which bound do you think is the most powerful?
(i.e. which bound do you think is the tightest?)

4. If Pr {x(u) = a} = 1 for some constant a, then what is the cdf and pdf of x(u)?

Linear Algebra - Self Test

5. Define a linear space (vector space), an inner product and a norm.

6. What is the usual inner product and norm for the linear space Rn; the linear space of
n × 1 real vectors?

7. Let

K =

[
2 1
1 2

]
,

find the following:

(a) The determinant of K.

(b) The transpose of K, Kt.

(c) The trace of K, tr (K).

(d) The rank of K.

(e) The inverse of K, K−1.

(f) The eigenvaules and eigenvectors of K.

8. Let a and b be vectors in Rn.

(a) What is the rank of the (n × n) matrix bat?

(b) Show that
atb = tr (bat).

(c) Verify the results of (a) and (b) directly for

a =

[
1
2

]
b =

[
3
2

]
.

9. Let K be the (2 × 2) invertable matrix

K =

[
a b
c d

]
.

What is K−1?
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10. Let A be an (n× n) invertible matrix and D be an (m×m) invertible matrix. Let K
be the partitioned matrix

K =

[
A B
C D

]
.

(a) What are the dimensions of K, B and C?

(b) Assuming that K−1 exists, verify (you need not derive this!) that it is given by

K−1 =

[
E F
G H

]
,

where the partitioning is the same as that for K and

E = (A − BD−1C)−1 F = −EBD−1

G = D−1CE H = D−1 + D−1CEBD−1 = (D − CA−1B)−1.

(c) Does this reduce to your answer in problem 9 for n = m = 1?

Transform and LTI System Theory - Self Test

11. Define the Dirac delta function and the Kronecker delta function. What is the differ-
ence?

12. Define the following transforms and the the associated inverse

(a) Fourier Transform

(b) Laplace Transform (two-sided)

(c) Discrete Time Fourier Transform (DTFT)

(d) Z Transform (two-sided)

(e) Fourier Series

(f) Discrete Fourier Transform

13. Let h(t) be the impulse response of a (continuous time) stable linear time invariant
(LTI) system.

(a) What is the system output when the input is ej2πf0t?

(b) Describe the region of convergence for H(s), the Laplace transform of h(t), when
the system is stable and causal.

14. Let h(n) be the impulse response of a (discrete time) stable LTI system.
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(a) What is the system output when the input is ej2πν0n?

(b) Describe the region of convergence for H(z), the Z transform of h(n), when the
system is stable and causal.

15. Amplitude and Phase Modulation: In this problem you are asked to find the sec-
ond moment description of two random processes (models for communication signals).
You may assume that the message, x(u, t), is statistically independent of the carrier
phase, θ(u), for all values of t ∈ T = R. Also θ(u) is uniformly distributed on [0, 2π]
and x(u, t) is a real random process.

(a) An Amplitude Modulated (AM) signal has the following form

z(u, t) = x(u, t) cos(2πf0t + θ(u)).

Determine mz(t), Rz(t1, t2) and Kz(t1, t2) in terms of the second order description
of the message.

(b) A Phase Modulated (PM) signal has the form

z(u, t) = cos(2πf0t + θ(u) + x(u, t)).

Determine mz(t), Rz(t1, t2) and Kz(t1, t2).

Hint: Express your answer in terms of the joint characteristic function of x(u, t1)
and x(u, t2)

Φx(u,t1),x(u,t2)(ω1, ω2) = E

{
ej(ω1x(u,t1)+ω2x(u,t2)

}
.

(c) Describe the type of information you need about the message in order to specify
the second order description of the AM and PM signals. What is the fundamental
property of the modulation formats which caused this difference?

Hint: Consider what would happen if the message was x(u, t) + y(u, t).

(d) Would your solution to (a) have been different if you were only given that x(u, t)
and θ(u) were uncorrelated for all values of t? What if you were told only that
x(u, t) and w(u, t) = cos(2πf0t + θ(u)) were uncorrelated random processes?

16. Let the complex random process, z(u, t), be defined on T = R with

z(u, t) = x(u, t) + jy(u, t),

where x(u, t) and y(u, t) are real random processes. Suppose that

mz(t) = 0

Kz(t1, t2) = e
−(t1−t2)2

4

[
1 + e

−(t1−t2)2

4

]

K̃z(t1, t2) = e
−(t1−t2)2

4

[
1 − e

−(t1−t2)2

4

]
+ 2je

−(t1−t2)2

6 .

Find the second moment description of x(u, t) and y(u, t) (including Kxy(t1, t2)).
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17. Let the real random vector x(u) have the second moment description

mx =

[
5

−5

]
Kx =

[
2 1
1 2

]
.

In class we developed the “elliptical region bound” given by

Pr

{
(x(u) − mx)

tK−1
x

(x(u) − mx) ≥ 20
}
≤ 0.10,

which allows us to plot a “90% confidence region.”

(a) Sketch the corresponding 90% confidence region.

This is not the only possible 90% confidence region. Develop each of the bounds below,
identifying C in each case, then plot the corresponding 90% confidence region for each.

(b) “Non-central elliptical region bound”

Pr

{
xt(u)R−1

x
x(u) ≥ C

}
≤ 0.10

Hint: See the solution to Scholtz 16 (c) and (d).

(c) “Centered circular region bound”

Pr {‖x(u) − mx‖2 ≥ C} ≤ 0.10

(d) “First component bound”

Pr {|x(u, 1) − mx(1)| ≥ C} ≤ 0.10

(e) “Principle axis bound”

Pr

{
|bt(x(u) − mx)| ≥ C

}
≤ 0.10,

where the vector b is

b =
1√
2

[
1

−1

]

(f) What is the area of the 90% confidence region for each of the above bounds?
Which appears to be the best?

Hint: The ellipse defined by
x2

a2
+

y2

b2
= 1

has area πab.
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18. For this problem, let 〈a,b〉 denote any valid inner product on Rn, and ‖b‖ =
√
〈b,b〉

denote the associated norm (i.e. these are not necessarily the standard Euclidean inner
product and norm). Consider the standard real binary hypothesis testing problem

Hi : x(u) = si + n(u) i = 1, 2,

where mn = 0 and Kn is invertible.

Start with the generalized minimum distance criterion for the binary hypothesis testing
problem:

‖x(u) − s1‖
H2
>
<
H1

‖x(u) − s2‖.

(a) Show that an equivalent decision is

〈s1 − s2,x(u)〉
H1
>
<
H2

‖s1‖2 − ‖s2‖2

2
.

(b) Show that the following defines a valid inner product on Rn

〈a,b〉
n

∆
= btK−1

n
a.

(c) What is the decision rule corresponding to this choice of inner product? Do you
recognize this rule?

(d) Sketch the locus of points which are unit distance from the origin with the distance
function implied by the inner product in (18b). Consider the simple case of

Kn =

[
2 1
1 2

]
.

In other words sketch the curve

dn(b,0) = 1,

where
dn(b,0) = ‖b − 0‖n = (〈b,b〉

n
)1/2 .

19. Consider the following real binary hypothesis testing problem

Hi : x(u) = si + n(u) i = 1, 2,

where

mn = 0 Kn =

[
1 (1 − ǫ)

(1 − ǫ) 1

]
,



8 c© K.M. Chugg - November 19, 1995

with 0 < ǫ < 2. The signals are given by

s1 = −s2 =

[
4

−2

]
=

√
2

(
1√
2

[
1
1

])
+ 3

√
2

(
1√
2

[
1

−1

])
.

Hint: I’ve given you the eigenvector expansion.

(a) Determine a good decision rule.

(b) Describe the behavior of your decision rule as ǫ → 0. What happens as ǫ → 2?

20. In the binary hypothesis testing problem considered in class, the signals are given. This
problem considers the case in which we can design the signals to optimize performance.
Consider the standard (real) hypothesis testing problem:

Hi : x(u) = si + n(u) i = 1, 2,

where mn = 0 and Kn is invertible, but we are allowed to choose the signal vectors.
We impose an energy constraint on the signals; i.e. we require

‖si‖2 = st
isi = E, i = 1, 2.

(a) Determine the choice(s) of s1 and s2 which minimize the error probability bound
given in class.

Hint: Write s1 − s2 = Mb, where

M = ‖s1 − s2‖ b =
s1 − s2

M
,

then perform the minimization with respect to M and b separately.

(b) Does your solution to (a) insure that the probability of error is minimized? Ex-
plain.

(c) What is the resulting minimum value of the bound?

(d) Consider the minimum value of the bound found in the previous part under the
condition of a fixed signal to noise ratio (SNR):

SNR =
E

E {‖n(u)‖2} = constant.

Under this assumption, describe what appears to be the “worst case” Kn.

Hint: As a systems engineer, if you design the signals according to part (a), which
noise covariance matrix would you prefer:

Kn =

[
2 0
0 2

]
or Kn =

[
2 1
1 2

]
?
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21. Describe in words why the inner product and associated distance function defined in
problem 18 are appropriate for colored noise hypothesis testing.

22. Review Problem: There seems to be some confusion regarding the difference between
the simulation and representation problems; this simple problem is intended to clarify
the difference.

Let x(u) be a mean zero random vector, with covariance matrix Kx = HH† = EΛE†.
We can simulate (up to the second moment description) x(u) by

y(u) = Hw(u),

where w(u) is a white random vector, i.e. mw = 0 and Kw = I. Assume that x(u)
and w(u) are uncorrelated (i.e. Kxw = O).

We can represent x(u) by the following random vector (i.e. the K-L expansion)

z(u) =
n∑

k=1

ak(u)ek ak(u) = e†
kx(u) k = 1, 2 . . . n.

z(u) = Ea(u) a(u) =




a1(u)
a2(u)

...
an(u)




= E†x(u),

where we have written the n scalar equations in vector form.

(a) Determine E {‖x(u) − y(u)‖2} and E {‖x(u) − z(u)‖2} in terms of Kx.

(b) Answer the following:

• Are x(u) and y(u) equivalent in the wide sense? i.e. Is x(u)
ws
= y(u)?

• Are x(u) and y(u) equal with probability 1? i.e. Is x(u)
as
= y(u)?

• Are x(u) and z(u) equal with probability 1? i.e. Is x(u)
as
= z(u)?

• Are x(u) and z(u) equivalent in the wide sense? i.e. Is x(u)
ws
= z(u)?

(c) Does it make sense to simulate x(u) from z(u)? Explain.

(d) What is the LMMSE estimate of x(u) based on the observation y(u)? What is
the associated minimum MSE?

(e) What is the LMMSE estimate of x(u) based on the observation z(u)? What is
the associated minimum MSE?

23. Let w(u) be a real Gaussian random vector, with second moment description mw = 0
and Kw = I. Let x(u) be generated by

x(u) =




1 0 1
0 1 0
1 0 1


 w(u) +




1
2
3


 .
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(a) Independence

i. Are x(u, 1) and x(u, 2) independent?

ii. Are x(u, 1) and x(u, 3) independent?

iii. Are x(u, 2) and x(u, 3) independent?

iv. Are x(u, 1), x(u, 2) and x(u, 3) mutually independent?

(b) What is the pdf of x(u)?

(c) What is the pdf of x(u, k) as a function of k ∈ {1, 2, 3}?
(d) What is the E {x(u, 1)|x(u, 2)}?
(e) What is the E {x(u, 1)|x(u, 3)}?

24. Recursive Estimation - A Simple Kalman Filter
What if we have a sequence of observations, {x(u, i)}∞i=1, and we would like to estimate
an n-dimensional random vector, v(u)? Suppose that we know the best estimate of
v(u) based on the observations {x(u, i)}k

i=1 and we now observe x(u, k + 1): Do we
need start over and solve the new (larger dimensional) estimation problem, or can
we somehow update the estimate to account for the new information provided by
x(u, k + 1)? This is the subject of this problem.

Let v(u) be an n-dimensional mean zero, Gaussian random vector. Let the ith obser-
vation be the zero mean, Gaussian random variable x(u, i) and consider the estimation
problem described above. You may assume that v(u) and {x(u, i)}∞i=1 are jointly Gaus-
sian. Denote the (k × 1) vector of observations by

xk(u)
∆
=




x(u, k)
x(u, k − 1)

...
x(u, 1)




,

and denote the unconstrained MMSE estimate of v(u) based on the k observations by

v̂k(u)
∆
= E {v(u)|x(u, k), x(u, k − 1) . . . x(u, 1)} = E {v(u)|xk(u)}.

The following shorthand notation is also useful:

rxv(i)
∆
= E {x(u, i)v(u)} (n × 1)

Rvx(i)
∆
= E {v(u)xt

i(u)} (n × i)

σ2
x(i)

∆
= Rx(i, i) = E {x(u, i)2} (1 × 1)

rx(i + 1)
∆
= E {x(u, i + 1)xi(u)} (i × 1)

Rx(i)
∆
= E {xi(u)xt

i(u)} (i × i).

You may assume that Rx(i) is invertible for all i.
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(a) Show that we can update the estimate as follows:

v̂k+1(u) = v̂k(u) + g(k + 1)
[
x(u, k + 1) − rt

x
(k + 1)R−1

x
(k)xk(u)

]
,

and identify the (n × 1) Kalman Gain Vector, g(k + 1), in terms of the above
quantities.

Hint:

• What does the fact that the observations and v(u) are jointly Gaussian imply?

• Use partitioned matrices to express v̂k+1(u), then apply the results of Problem
10.

(b) The term [
x(u, k + 1) − rt

x
(k + 1)R−1

x
(k)xk(u)

]

is called the “innovation” provided by the (k+1)th observable; describe the mean-
ing of this term.

25. Let x(u, n) be a wide-sense-stationary random process defined on the index set Z4.
The covariance function of x(u, n) is Kx(m), which is sketched below:

The mean of x(u, n) is mx = 2. x(u, n) is passed through an LTI system (on Z4) with
impulse response h(n), defined by:



0 T/2 T
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Denote the output process by y(u, n).

(a) What are the eigenvalues of the covariance function of y(u, n), corresponding to
the standard e-vectors for circulant matrices.

(b) What is Ky(n1, n2) for n1, n2 ∈ Z4?

(c) What is my?

(d) Verify your solution to parts (b) and (c) directly by solving for Ky and my,
the second moment description of the corresponding random vector, using the
methods developed in the first half of the course (i.e. Ky = HKxH

t and my =
Hmx).

26. Prove that convergence in the mean-square sense implies convergence in probability.

Hint: Use the “Non-central Chebychev Bound.”

27. State each of the following results from your probability theory class as yn(u) → y(u) as
n → ∞; identifying in each case, {yn(u)}, y(u), and the mode of stochastic convergence
(i.e. the sense of the limit).

(a) The Weak Law of Large Numbers

(b) The Strong Law of Large Numbers

(c) The Central Limit Theorem

(d) In what sense is the Strong Law of Large Numbers “stronger” than the Weak Law
of Large Numbers?

28. Let g(t) be the deterministic, periodic square-wave, sketched below:

Define the random process y(u, t) = g(t + θ(u)), where θ(u) is uniformly distributed
over [0, T ]. Find the second moment description of y(u, t).

Hint: You should find that y(u, t) is wide-sense-stationary on the index set R.
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29. The Central Limit Theorem (CLT) deals with the sequence {xn(u)} defined by

xn(u) =
1√
n

n∑

i=1

(
wi(u) − m

σ

)
,

where {wi(u)} is a sequence of independent, identically distributed random variables,
each with mean m and variance σ2. The CLT states that this sequence converges
in distribution to a mean zero, unit variance Gaussian random variable. Does this
sequence converge in the mean square sense? Do you think that this sequence converges
in probability (use “non-mathematical” reasoning).

30. Suppose that x(u, t) is a Gaussian random process input into a linear system. Assume
that we know that the output of this system, y(u, t), exists in the mean-square-sense
for all values of t. Explain (prove) that y(u, t), the mss limit process, is also Gaussian.

Hint: y(u, t) is the mss limit of yn(u, t) as n →∞, where yn(u, t) is a linear combination
of a finite number of Gaussian random variables.

31. Hypothesis testing in discrete time: (Modified Final Exam Problem - Fall-92 -
Hinedi/Chugg).

Consider the task of deciding between two hypotheses regarding signals defined on
T = Z:

H0 : x(u, n) = s0(n) + w(u, n)

H1 : x(u, n) = s1(n) + w(u, n),

where the deterministic signals are defined by

si(n) =

{√
P cos(π(n + i)) n ∈ {0, 1}

0 n = . . . − 2,−1, 2, 3 . . .
i = 0, 1,

and the (real) Gaussian noise process, w(u, n), has PSD given by

Sw(ν) =
σ2(1 − ρ2)

1 − 2ρ cos(2πν) + ρ2
,

where |ρ| < 1.

(a) Based on observing only x(u, n) for n = 0, 1 design a good rule for deciding which
Hypothesis is true.

(b) What is the bound on the probability of error?

(c) Determine an exact expression for the probability of error. Your answer should
involve the Q function:

Q(z) =
∫ ∞

z
N 1(x; 0; 1)dx =

∫ ∞

z

exp
(
−x2

2

)

√
2π

dx.
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(d) Using the fact that Q(3) ≈ 0.001, and assuming that the noise is white (i.e.
ρ = 0), what is the minimum signal to noise ratio (SNR= P

σ2 ) required to ensure
that the error probability is at most 1/1000?

(e) Discuss the performance of this system as ρ varies. Do you see the relation to
Problem 20?

(f) What is the conditional pdf of w(u, 0), w(u, 1) given w(u, k), where k is an integer
other than 0 or 1? In other words, determine

fw(u,0),w(u,1)|w(u,k)(z0, z1|zk).

With this result, intuitively would you expect better performance if the observa-
tion interval was longer (i.e. observe x(u, n) for n = 0, 1, 2 . . . k)? Discuss this for
white and colored noise.

32. Let x(u, n) be a wide-sense-stationary (real) Gaussian random sequence with zero
mean. Determine which of the following functions are valid correlation functions for
x(u, n):

Ra(m)=
{

1 m = −1, 0, 1

0 otherwise.

Rb(m)=





|m| + 1 |m| ≤ 3

3 − ||m| − 3| |m| = 4, 5, 6, 7

0 |m| > 7.

Rc(m)=
(

1

2

)|m|
cos

(
π

4
m

)
.

Rd(m)=
(

1

3

)|m|
sin

(
π

8
m

)
.

For each function which is a valid correlation function, determine the pdf of x(u, n)
and the conditional pdf of x(u, n + 1) given x(u, n).

33. Gain Control! on T = Z: Your task is to obtain an estimate of s(u, n) from the
noisy observation x(u, n) given by

x(u, n) = s(u, n) + w(u, n),

where s(u, n) and w(u, n) are independent processes. Let the correlation function of

s(u, n) be Rs(m) = 4
3

(
1
2

)|m|
. Assume that the noise, w(u, n), is unit variance white

noise.

(a) Find the optimal LMMSE (Wiener) filter (possibly non-causal) - Gopt(ν).
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(b) Find the best Causal filter - Gopt,C(ν).

Hint: The following factorization is easy to obtain:

9

2
− (z + z−1) =

1

q
(1 − qz−1)(1 − qz),

where q = 1
4
(9 +

√
65).

(c) Suppose that due to cost and complexity considerations, you decided to try a
simple estimator with a fixed gain structure. In other words you constrain your
estimate to be of the form ax(u, n), where a is a real constant. What is the best
choice of a? What is the corresponding estimation filter impulse response?

(d) Without performing any calculations, rank the performance of these three esti-
mators.

34. A hard-limiter is a system (operating on continuous time signals) with the following
input/output characteristic

ỹ = Hx̃ ⇐⇒ y(t) = sgn(x(t)) =





+1 if x(t) > 0

0 if x(t) = 0

−1 if x(t) < 0.

(a) Is this system

• Linear?

• Time-Invariant?

• Causal?

(b) Define the wss random process x(u, t) = A sin(2πf0t+φ(u)), where φ(u) is uniform
on [−π, π) and A is a positive real constant. Determine the PSD of x(u, t).

(c) Let y(u, t) be the output of the hard-limiter when x(u, t) is the input. Find the
PSD of y(u, t).

Hint: Determine how Problem 28 is related to this problem.

(d) Describe how your answers to (b) and (c) are related to (a) - i.e., can you tell if
this system is LTI based on the input/output PSD’s?

35. PSD of AM Signal Recall the definitions of Amplitude (AM) and Phase Modulated
Signals from problem 3 of HW # 1:

AM: z(u, t) = x(u, t) cos(2πf0t + θ(u))

PM: z(u, t) = cos(2πf0t + x(u, t) + θ(u)),

where θ(u) is uniform on [0, 2π) and independent of the message process x(u, t). As-
sume that the message is wide-sense stationary with correlation function

Rx(τ) = trian

(
f0τ

1000

)
.
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(a) What is the mean of x(u, t)?

(b) The AM signal is wide-sense-stationary, is the PM signal?

(c) Find and sketch the PSD of the AM signal.

36. PSD of a Digital (PAM) Signal: Let x(u, t) be the continuous time random process
defined by

x(u, t) =
∞∑

k=−∞
ak(u)p(t − kT − θ(u)),

where the limit is in the mss and the following conditions hold

{ak(u)}∞k=−∞ is a sequence of iid random variables with mean 0, and variance σ2
a,

θ(u) is a uniformly distributed on [0, T ) and is independent of ak(u) for all k,

p(t) is a deterministic pulse shape.

(a) Determine the mean and correlation function of x(u, t) in terms of the given
parameters.

Hint: Your answer should involve the “auto-correlation of the pulse” defined as

Ep(τ)
∆
= p(τ) ∗ p∗(−τ) =

∫ ∞

−∞
p(τ − w)p∗(−w)dw =

∫ ∞

−∞
p(w)p∗(w − τ)dw.

(b) Determine the PSD of x(u, t) in term of the given parameters and P (f) =
FT {p(t)}.

Hint: Use the “autocorrelation” property of the Fourier Transform.

(c) Find and sketch the PSD of x(u, t) for the three pulses shown below:



0 T/2

A

p (t)

t

-A

-T/2 0 T

A

p (t)

t

0 2T

B

p (t)

t

(iii)

(ii)(i)
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Here A = 1√
T

and B = 1√
2T

.

37. Consider an LTI system, M, characterized by the following differential equation:

ỹ = Mx̃ ⇐⇒ ÿ(t) + 3ẏ(t) + 2y(t) = 3x(t) − ẋ(t). (1)

A continuous time, wss random process, x(u, t), with correlation function

Rx(τ) =
1

8
e−4|τ |

is passed through the above LTI system, with the output denoted by y(u, t).

(a) What is the frequency response of the system - i.e. M(f)?

(b) Determine Sy(f) and Sxy(f).

(c) Determine the optimal (Wiener) causal filter for estimating x(u, t) from y(u, t);
specify the frequency response of this filter.

(d) What is the PSD of the best estimate, x̂(u, t), in terms of Sx(f)?

Hint: Determine the frequency response of the cascade of M(f) and the Wiener
filter found in the previous part.
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(e) What is the associated MMSE of this estimator?

(f) Explain how your solution would change if the right-hand side of (1) were 3x(t)+
ẋ(t). What is the system characteristic which is changed by this sign change.

38. A “randumb” Simulation (Midterm, Summer 1993). Mr. Plug N. Chugg has designed
a new signal processing algorithm which operates on the real Gaussian random vector,
x(u); defined on the index set T = {1, 2, 3}. He has analyzed his algorithm, but must
verify his results through computer simulation. From the analysis, Plug knows that

Kx =




0 1 0
1√
10

0 −3√
10

3√
10

0 1√
10







30 0 0
0 16 0
0 0 10







0 1√
10

3√
10

1 0 0
0 −3√

10
1√
10


 =




16 0 0
0 12 6
0 6 28




mx =




0
1
3


 .

Plug doesn’t remember much from EE562a, but he does have a copy of the “Supple-
mental Notes.” From the notes he figures that he can simulate the second moment
statistics of x(u) by producing

y(u) = Hw(u) + c,

from any real random vector w(u) with

Kw = I mw = 0.

He decides that, if he can generate w(u) on the computer, he can design H and c so
that x(u)

ws
= y(u).

Plug’s computer has a subroutine, randumb(a,b), which returns a random variable
which is uniformly distributed on [a, b]. Successive calls to randumb(a,b) produce
uncorrelated random variables.

(a) To review his EE562a material, Plug first decides to obtain the second moment
description of

z(u) =

[
2x(u, 1)
x(u, 3)

]
.

Determine the second moment description of z(u); i.e., mz and Kz.

Since Kx is non-singular, Plug decides to produce the components of w(u) by 3
successive calls to random(a,b). Determine numerical values for the determinant
of Kx and the values of a and b which should be used so that mw = 0 and Kw = I.

(b) Since it is possible to design H to be causal, Plug decides to do so. Give numerical
values for c and lower triangular H, so that my = mx and Ky = Kx.
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(c) Plug reasons that he can also express x(u) exactly using

x(u) = a1(u)




0
1√
10
3√
10


 + a2(u)




1
0
0


 + a3(u)




0
−3√
10
1√
10


 +




0
1
3




Determine the following:

• E {(a2(u))2}
• E {a1(u)a3(u)}
• fa1(u)|a2(u)(z1|z2)

(d) Give a set of orthonormal eigenvectors and the corresponding eigenvalues of Rx,
the correlation matrix of x(u).

(e) Answer the following questions:

• Is y(u) Gaussian? – YES NO MAYBE

• Are y(u) and x(u) equal almost surely? – YES NO MAYBE

• Are the components of w(u) independent? – YES NO MAYBE

• Are a1(u) and a3(u) independent? – YES NO MAYBE

(f) After performing the computer simulation described above, Plug finds that the
results do not agree with his analysis. He asks you for help; explain why his
results disagree and suggest a method for improving his simulation.

39. Unexpected Results? (Midterm, Summer 1993) A certain (real valued) communi-
cation channel is represented by

x(u) = s(u) + n(u),

where the desired signal, s(u), takes on only two possible values

Pr {s(u) = a} = Pr {s(u) = −a} =
1

2
.

Numerical values for this system model are

mn = 0 Kn =




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 a =




1
1
1
1


 .

You may assume that the signal and noise vectors are statistically independent.

The goal is to design a good estimator of s(u) based on x(u). There are two approaches:
(1) design a minimum mean-squared error estimator or (2) frame this as a binary
hypothesis testing problem.
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(a) Give numerical answer for ms, Ks, Ksx, and Kx.

(b) Determine the best Linear Minimum Mean Squared Error (LMMSE) Estimator
of s(u) based on x(u) and the associated value of the MSE – denote this estimate
by ŝ(u)

(c) Since s(u) takes on only two vector values, the problem can be formulated as
binary hypothesis testing problem. Design a good rule for deciding between the
following two hypotheses

H1 : s(u) = a

H2 : s(u) = −a.

This decision rule yields an estimate of s(u) (denote this by ŝHT (u)) in the fol-
lowing sense

ŝHT (u) =

{
a if we decide H1 is true,

−a if we decide H2 is true.

What is the associated mean square error of this estimator? – i.e., E {‖s(u) − ŝHT (u)‖2}
(d) Answer the following and provide a brief explanation (or work) for each.

• Are ŝ(u) and ŝHT (u) the same? – YES NO MAYBE

• E {s(u)|x(u)} =

• Are x(u) and s(u) jointly Gaussian? – YES NO MAYBE

40. Gain Control! (Midterm, Summer 1993) You are faced with the following design
task: Design an estimator of s(u) from the observation x(u), given by:

x(u) = Hs(u) + n(u),

where s(u) and n(u) are uncorrelated real Gaussian random vectors defined on the
index set T = {1, 2}. The numerical values associated with this model are

mn =

[
1
0

]
Kn =

[
2 1
1 2

]
,

ms =

[
0
0

]
Ks =

[
1 1
1 4

]
,

H =

[
2 1
0 1

]
.

Due to cost and complexity constraints, you must design your estimator to have the
following fixed gain structure:



x(u) ax(u) 

a

Estimator
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where a is a real number.

(a) Determine the second moment description of x(u) and s(u); i.e., mx, Rs, Rx, and
Rsx.

(b) Determine aopt, the value of a which optimizes the estimator illustrated above
(i.e. the value of a which minimizes the mean squared error).

• What is the associated minimum MSE estimate with this constrained struc-
ture?

• What is the associated minimum value of the MSE for this constrained struc-
ture?

• What is the probability density function of the associated error vector, e(u) =
s(u) − ŝ(u)?

(c) Answer the following questions regarding the estimator derived in part (b).

• Is this a causal estimator of s(u)? – YES NO MAYBE

• Is this a linear estimator of s(u)? – YES NO MAYBE

• Is ŝ(u) a biased estimate of s(u)? – YES NO MAYBE

Rank this estimator by filling each blank below with “=”, “≥”, or “≤”.

MSE(Estimator in (b))

( )
MSE(Linear MMSE Estimator)

MSE(Estimator in (b))

( )
MSE(Linear, Causal MMSE Estimator)

MSE(Estimator in (b))

( )
MSE(Affine MMSE Estimator)

MSE(Estimator in (b))

( )
MSE(Affine, Causal MMSE Estimator)

MSE(Estimator in (b))

( )
MSE(Unconstrained MMSE Estimator)



x(u) H

y(u) G

v(u)

n(u)

r(u)
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41. Multi-User Communication (Midterm, Fall 1994) The “mobile-to-hub” link of a
two-user communication system is modeled as shown below:

All signals are modeled as real random processes defined on index set T = {1, 2},
which represents real time. The random vectors x(u) and y(u) represent the signals
of two different users. Since the users are mobile, the channels to the hub are different
(i.e., H 6= G and n(u) 6= v(u)). It is also known that mx = my = mv = mn = 0,
and that the random vectors x(u), y(u), n(u), and v(u) are all mutually independent.
It may also be assumed that the two noise vectors are white, that is Kn = σ2

nI and
Kv = σ2

vI (with σ2
v 6= 0 and σ2

n 6= 0).

(a) Determine the following second moment quantities: mr, Kr, Kxr, and Kyr as a
function of Kx,Ky,G,H, σ2

n, σ
2
v .

(b) Two possible tasks at the hub are estimation of x(u) or y(u). Determine the Linear
Minimum Mean-Square Error Estimator of these signal based on observing r(u)
- denote these by x̂(u), and ŷ(u).

(c) Another task which may be of interest at the hub is the joint estimation of both
users. In other words, an estimate of the partitioned vector

z(u) =

[
x(u)
y(u)

]

is desired. Determine the “Joint” Linear Minimum Mean-Square Error Estimator
of this signal based on observing r(u) - denoted by ẑ(u)

Is this joint estimation approach the same as combining the results of the single-
user estimates obtained in part (b)? – i.e., Is the following true? –

ẑ(u) =

[
x̂(u)
ŷ(u)

]
,
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where x̂(u) and ŷ(u) are the single user estimates from part (a).

(d) Consider the specific case where σ2
v = 1, σ2

v = 4, G = Kx = I, and

Ky =

[
3 2
2 3

]
H =

[
1 0
1 1

]

For this case, find the best Joint Causal LMMSE Estimate of z(u).

42. The Waiting Game (Midterm, Fall 1994) Despite the fact that you’ve only finished
half of EE562a, you land a lucrative job as a RADAR system engineer. You are given
the following design problem on your first day: Decide if a target is present (H1) or
absent (H2). Your new boss tells you that the problem may be modeled as a real-
valued, binary hypothesis test

H1 : x(u, t) = A + n(u, t) t = 1, 2, 3 . . .

H2 : x(u, t) = n(u, t) t = 1, 2, 3 . . .

where A > 0 is known constant, and the noise process n(u, t) is a sequence of indepen-
dent mean-zero random variables, each with variance σ2.

Since you haven’t seen a problem like this before, you decide to use only the first N
observations; that is you decide to design a decision rule based on the observation
vector

xN(u) = x(u) =
[

x(u, 1) x(u, 2) · · · x(u, N)
]t

.

(a) Conditioned on which hypothesis is true, give the second-moment description of
this observation vector - i.e., find mx and Kx under the assumption that H1 is
true, then repeat assuming that H2 is true.

(b) Based on {x(u, i)}N
i=1, design a good decision rule of the form

d(u, N)
H1
>
<
H2

T (N).

Specify the decision statistic d(u, N) and the threshold T (N).

Along with this decision rule, you decide to tell your boss what the minimum
value of N is to ensure that your rule is correct at least 99% of the time. What
is this minimum choice for N (denoted by Nmin) in terms of the signal-to-noise
ratio: γ = A2/σ2?

(c) Feeling great about your quick results, you report them to your boss. Your boss
is not impressed; she tells you that the noise n(u, t) is a Gaussian random process
and asks you to reconsider your results.

You’re pretty sure that your rule is still acceptable, but decide to rework the
performance calculations based on the Gaussian noise assumption. To do so, you
first compute the complete statistical description of d(u, N) conditioned on the
hypothesis. Find the following:



x(u,n-M+2) x(u,n-M+1)
delay 

1

delay 
1
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1
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g
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• E {d(u, N)|H1}
• E {d(u, N)|H2}
• var [d(u, N)|H1]

• var [d(u, N)|H2]

• fd(u,N)|H1(z)

• fd(u,N)|H2(z)

(d) Sketch the the pdf’s fd(u,N)|H1(z) and fd(u,N)|H2(z) vs. z. Label the axis with
T (N) and shade the region under these curves corresponding to a decision error.

Now find the probability of error P (E ; N) in terms of the Q-function, and the
corresponding value of Nmin to insure that the correct decision is made with
probability at least 0.99.

43. What’s Next? (Midterm, Fall 1994). The one-step linear prediction problem is to
estimate a real discrete time random process one time sample into the future from the
current and past values. The order of a linear predictor is the number of these current
and past samples used to form the estimate. A linear prediction filter of order M is
diagrammed below.

The optimal choices for the real M -th order linear prediction coefficients are denoted
by {g(M)

opt,i(n)}M−1
i=0 , so that the predicted value is

x̂(M)(u, n + 1) =
M−1∑

i=0

g
(M)
opt,i(n)x(u, n − i) =

[
g

(M)
opt (n)

]t
x(M)

n (u),
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with

g
(M)
opt (n) =




g
(M)
opt,0(n)

g
(M)
opt,1(n)

...

g
(M)
opt,M−1(n)




x(M)
n (u) =




x(u, n)
x(u, n − 1)

· · ·
x(u, n − M + 1)


 .

The value of the minimum mean-square error is denoted by

MSE(M)(n + 1) = E

{
[e(M)(u, n + 1)]2

}
= E

{
[x(u, n + 1) − x̂(M)(u, n + 1)]2

}
.

This problem concerns the design of linear predictors for a random process which has
the following second moment description:

mx(n) = 0 Kx(n1, n2) = ρ|n1−n2| n, n1, n2 ∈ {. . . − 2,−1, 0, 1, 2, . . .}.

(a) Set-up the M -th order linear prediction problem for estimation of x(u, n+1) from
x(M)

n (u); indicate the dimension of each quantity:

• m(M)
x

(n) = E

{
x(M)

n (u)
}

• K(M)
x

(n) = E

{
x(M)

n (u)[x(M)
n (u)]t

}

• E {x(u, n + 1)}
• k(M)

x
(n) = E

{
x(u, n + 1)x(M)

n (u)
}

Give an expression for g
(M)
opt (n) (throughout this problem you may assume that

the inverse of a square matrix exists).

Is this linear prediction filter time-variant (i.e., g
(M)
opt (n) is a function of n) or

time-invariant (i.e., g
(M)
opt (n) is not a function of n)?

(b) Find the best order-one (M = 1), one-step linear predictor, and the associated
mean-square error – i.e., x̂(1)(u, n + 1) and MSE(1)(n + 1).

(c) Find the best order-two (M = 2), one-step linear predictor, and the associated
mean-square error – i.e., x̂(2)(u, n + 1) and MSE(2)(n + 1)

(d) An equivalent method for finding the best order-two (M = 2), one-step linear
predictor is based on the following:



x(u,n)
delay 

1

x(u,n-1)

      c0(n) c1(n)

M=1 Linear 

Predictor

-
+

M=2 Linear Prediction of x(u,n+1)

      e
(1)

(u,n)
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In other words, the observation x(2)
n (u) is replaced by

yn(u) =

[
e(1)(u, n)

x(u, n − 1)

]
=

[
x(u, n) − x̂(1)(u, n)

x(u, n − 1)

]
,

where x̂(1)(u, n) is the M = 1 first-order prediction based on x(u, n − 1) and
e(1)(u, n) is the corresponding prediction error. Before making any computations,
explain why this method is equivalent to the prediction method in part (c).

Demonstrate the equivalence by finding the following:

• my(n) = E {yn(u)}
• Ky(n) = E {yn(u)[yn(u)]t}
• E {x(u, n + 1)yn(u)}
• copt,0(n)

• copt,1(n)

(e) Find the best order-thirty (M = 30), one-step predictor linear predictor, and the
associated mean-square error – i.e., x̂(30)(u, n + 1) and MSE(30)(n). Give a full
explanation.

Now assume that, in addition, x(u, n) is a Gaussian random process. Determine
fx(u,n+1)|x(u,n),x(u,n−1)···,x(u,n−29)(z|v0, v1, . . . v29).

44. (Final, Summer 1993) Let x(u, t) be a continuous time wide-sense stationary process
with mx = 0 and periodic covariance function: Kx(τ) = Kx(τ + kT ) for all integers k.
Show that x(u, t) is periodic with probability 1; i.e. prove that

x(u, t)
as
= x(u, t + kT ) ∀ k ∈ {0,±1,±2, . . .}.

45. (Final, Summer 1993) Let x(u, t) be a wide-sense stationary random process defined
on T = R, with Rx(τ) = 1√

π
e−τ2

.
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(a) Determine mx and Sx(f)

(b) Answer the following:

• Is x(u, t) a real (i.e. ℑ{x(u, t)} = 0)? – YES NO MAYBE

• Is x(u, t) continuous in the mean square sense? – YES NO MAYBE

• Is x(u, t) differentiable in the mean square sense? – YES NO MAYBE

• Does d2

dt2
x(u, t) exist in the mean square sense? – YES NO MAYBE

• Is it possible to design a causal, stable filter with impulse response h(t) so
that Rx(τ) = h(τ) ∗ h∗(−τ)?

46. (Final, Summer 1993) Consider the following relation regarding the second moment
description of two jointly-wss continuous time processes:

Rxy(τ)Ryx(−τ) ≤ Rx(0)Ry(0).

Explain why this both sides of this expression are real numbers. Is this relation true?
–Always Sometimes Never.

47. (Final, Summer 1993) Let {xn(u)}∞n=1 be a sequence of finite variance real random
variables with second moment description:

E {xn(u)} = mn var [xn(u)] = σ2
n.

Show that

mss- lim
n→∞xn(u) = 0 if and only if lim

n→∞mn = lim
n→∞σ2

n = 0.

48. (Final, Summer 1993) A certain gambling game has the following mathematical model:

Wn(u) =
n∑

k=1

bkxk(u),

where Wn(u) represents the total winnings (losses) after the nth bet, bk denotes the
amount of the kth bet and xk(u) is the outcome the kth trial:

xk(u) =

{
+1 with probability p (a win)

−1 with probability 1 − p (a loss).

Each trial is independent: xk(u) and xl(u) are independent for all k 6= l.

For each of the following betting strategies determine the values of p (the win proba-
bility) for which the limit of Wn(u) exists in the mean square sense. When the mss limit
exists, find its expected value. (You must show your work and explain your reasoning).

(a) bk = 1
k



0 T

1

p (t)

t
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(b) bk = 1010

k2 Hint:
∑∞

k=1
1
k2 = π2

6
.

49. (Final, Summer 1993) Let x(u, t) be a wide sense stationary Gaussian random process
with

Sx(f) = rect

(
f

2B

)
=

{
1 |f | ≤ B

0 |f | > B.

(a) Determine the following:

• Is x(u, t) strictly stationary? –YES NO MAYBE

• fx(u,t)(z)

• fx(u,t),x(u,t+τ)(z1, z2)

• fx(u,t+τ)|x(u,t)(w|v)

• Pr {x(u, 0) > x(u, 10/B)}
(b) Determine the probability density function of the random vector

y(u) =
[

x(u, 0) x(u, 1/(2B)) x(u, 1/B) x(u, 200/B)
]t

.

50. (Final, Summer 1993) Consider the random process y(u, t) = p(t − θ(u)), where θ(u)
is an exponential random variable with parameter λ > 0 ⇒

fθ(u)(z) = λe−λzu(z) =

{
λe−λz z ≥ 0

0 z < 0,

and p(t) is as sketched below:

Determine the mean of y(u, t) (be sure to consider all values of t ∈ R) and answer the
following questions:

• Is y(u, t) wide-sense stationary? – YES NO MAYBE

• Is y(u, t) strictly stationary? – YES NO MAYBE

• Is y(u, t) ergodic in the mean? – YES NO MAYBE
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51. (Final, Summer 1993) Consider the following continuous time random process:

y(u, t) = sgn (A sin(2πt + θ(u))) =





+1 if A sin(2πt + θ(u)) > 0

0 if A sin(2πt + θ(u)) = 0

−1 if A sin(2πt + θ(u)) < 0,

where θ(u) is uniformly distributed on [0, 2π]. Then y(u, t) has the following represen-
tation:

y(u, t) =
∞∑

k=−∞
Yk(u)ej2πkt t ∈ [0, 1].

Determine the following:

• Yk(u)

• E {Yk(u)}
• E {Yk(u)Y ∗

l (u)}
• var [Yk(u)]

52. Circular Reasoning (Final, Summer 1993) Consider the standard (real) binary hy-
pothesis testing problem defined on the index set T = {0, 1, 2, 3, 4, 5}:

Hi : x(u) = si + v(u) i = 0, 1,

where

s0 =
1√
6




1
1
1
1
1
1




s1 =
1√
6




+1
−1
+1
−1
+1
−1




mv =




0
0
0
0
0
0




Kv =
1

6




12 1 −3 −2 −3 1
1 12 1 −3 −2 −3

−3 1 12 1 −3 −2
−2 −3 1 12 1 −3
−3 −2 −3 1 12 1

1 −3 −2 −3 1 12




(a) Determine the minimum distance decision rule.

(b) Assuming that the noise is Gaussian, compute the probability of error given that
H1 is true. (I am not asking for an upper bound!).

53. The Great (?) Equalizer (Final, Summer 1993). Consider the problem of estimating
a discrete time random signal from a filtered, noisy observation:

x(u, n) = r(u, n) + w(u, n) = f(n) ∗ s(u, n) + w(u, n).

This model is illustrated below:



s (u,n)
r (u,n)

f (n) x (u,n)

w (u,n)
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In addition to this model we know that the signal, s(u, n), and the noise, w(u, n), are
independent processes and both are wide sense stationary. The relevant information is

F (ν) = DTFT {f(n)} =
1
2
− e−j2πν

1 − 1
2
e−j2πν

Rs(m) =
9

8

(
1

3

)|m|

Sw(ν) =
3

10
9
− 2

3
cos(2πν)

.

(a) Determine the rest of the second moment description of x(u, n) and s(u, n) – i.e.,
Sx(ν) and Ssx(ν).

(b) Find the frequency response of the best causal LTI (Wiener) filter for estimating
s(u, n) from x(u, n): Gopt,C(ν).

54. (Final, Summer 1993) You have access to a noisy version of the desired continuous
time random signal, s(u, t):

x(u, t) = s(u, t) + n(u, t).

The signal and noise are orthogonal random processes and both are stationary in the
wide sense. The second moment descriptions are

Rs(τ) = 2e−|τ | Sn(f) =
2

4 + (2πf)2
.

(a) Find the rest of the second moment description of s(u, t) and x(u, t) – i.e., mx,
ms, Rx(τ), Sx(f), Rsx(τ) and Ssx(f).

(b) Find the optimal (Wiener) filter for estimating s(u, t) from x(u, t) – Gopt(f).

Indicate how to modify this estimator provide the Wiener filtered estimate of the
noise, n̂(u, t), in addition to the Wiener filtered estimate of the signal, ŝ(u, t). Your

modification cannot be the addition of another filter. Indicate the modification on
the figure below:



x (u,t)

s (u,t)ˆG   ( f)
opt

x (u,t-(L-1)T)
Delay

T
Delay

T
Delay

T

x (u,t) x (u,t-T) x (u,t-2T) x (u,t-(L-2)T)

g ( 0) g ( 1) g ( 2) g ( L-2) g ( L-1)

Σ

Estimate of s (u,t)
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(c) Find the optimal causal LTI (Wiener) filter for estimating s(u, t) from x(u, t) –
Gopt,C(f).

(d) Consider the estimator with the following Tapped Delay Line (TDL) structure:

Where the estimate of s(u, t) is of the form

L−1∑

k=0

g(k)x(u, t − kT ),

where the tap coefficients, {g(k)}L−1
k=0 are complex numbers.

Give an equation which the optimal (MMSE) choice of the tap coefficients, {gopt,TDL(k)}L−1
k=0 ,

must solve. Carefully define all new terms needed in terms of the known quantities
of the previous parts of this problem.

Hint: One method of solution is to think of t as fixed and try to formulate this
as a random vector problem.

For the special case of L = 2 and T = ln 2 (i.e e−T = 1/2), solve for the optimal
TDL coefficients

55. (Final, Summer 1994) Let x(u, t) be a continuous-time wide-sense stationary process
with

Sx(f) =
2

1 + (2πf)2
+ 9δD(f) Kx(τ) = e−|τ |.

What can be said about the mean mx?



M1 M2 ML
x(u) y(u)...
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56. (Final, Fall 1994). A (2 × 1) random vector x(u) is the input to the following system:

The (2 × 2) matrices are defined by:

Mi =

[
i −2i

−2i i

]
.

Suppose that x(u) has second moment description:

Kx =

[
4 1
1 4

]
mx =

[
2
2

]

Determine my and Ky.

57. (Final, Summer 1994) Let y(u) be uniformly distributed on [0, 1]:

fy(u)(z) =
{

1 0 ≤ z ≤ 1

0 otherwise.

Define a sequence of random variables {xn(u)} as follows:

xn(u) =
{

n y(u) < 1/n

0 otherwise.

Describe the convergence properties of {xn(u)} – provide an explaination:

• Does xn(u) converge in the mean-square sense?

• Does xn(u) converge almost surely?

• Does xn(u) converge in probability?

• Does xn(u) converge in distribution?

58. (Final, Summer 1994) Consider a real Gaussian random process x(u, n) which is wide-
sense stationary on ZN , with mean mx = 0, and spectrum λx(k) = DFT {Kx(m)}. A
new random process X(u, k), k ∈ ZN is defined by taking the DFT of x(u, n)

X(u, k) = DFT {x(u, n)} =
N−1∑

n=0

x(u, n)e−j2π k

N
n k ∈ ZN .

Determine the following regarding X(u, k) and its vector representation

X(u) = [X(u, 0) X(u, 1) · · · X(u, N − 1)]t.



nT

w(u,t) h(t) z(u,n)

x(u,n)

Discrete-Time 
Whitening-Filter

(Causal and Stable)

G(òν)
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(a) mX(k) = E {X(u, k)}
(b) KX(k1, k2) = E {X(u, k1)X

∗(u, k2)}
(c) fX(u)(z)

(d) Is X(u, k) WSS on ZN?

59. (Final, Summer 1994) It is desired to convert a broad-band continuous-time process
into discrete-time white noise. Let w(u, t) be modeled as continuous-time white noise:
Sw(f) = 1. Consider the following system:

Here x(u, n) = w(u, t) ∗ h(t)|t=nT and z(u, n) = g(n) ∗ x(u, n). It is desired to design
the discrete-time whitening-filter G(ν) so that Sz(ν) = 1. The whitening filter must
be causal and stable.

(a) What is the condition on h(t) for x(u, n) to be white?

(b) Assume that the above condition is not meet (i.e., x(u, n) is colored); what is the
condition which must hold for the whitening procedure to be possible? State this
condition in terms of H(f) = FT {h(t)}.

60. Multiple Access (Final, Fall 1994). A communication system with K > 1 users is
modeled as

x(u, t) =
K∑

k=1

sk(u, t) + n(u, t),

where n(u, t) is continuous-time white Gaussian noise with PSD level N0/2. The K
user signals {sk(u, t)} are mutually independent random processes, each with power
σ2, and PSD σ2S(f). All user signals are zero mean and independent of n(u, t).

This system is diagrammed below:



s1(u,t)

s2(u,t)

sK(u,t)

...

n(u,t)

x(u,t)

s(u,n)

y(u,n)x(u,n)

z(u,n)

34 c© K.M. Chugg - November 19, 1995

Based on the observation x(u, t), it is desired to estimate user 1.

(a) Determine Ss1x(f) and Sx(f).

(b) Find the optimal (Wiener) filter for estimating s1(u, t) from x(u, t); i.e., ŝ1(u, t) =

g
(1)
opt(t) ∗ x(u, t) – denote this by G

(1)
opt(f).

Give an expression for the Minimum Mean-Square Error (MMSE) obtained by
the above estimator. Express your answer in terms of γ = 2σ2

N0
(a measure of

signal-to-noise ratio) – denote this by MMSE(1)(γ) = E {|s1(u, t) − ŝ1(u, t)|2}.
Determine the effects of the multiple access interference by finding the limit of
the MMSE as the noise vanishes (express your answer as a function of only K
and σ2).

(c) What is the best estimator of sk(u, t) for k 6= 1? Again specify this estimate by

giving the optimal filter frequency response – denoted by G
(k)
opt(f)

Answer the following questions (circle the best answer):

• Is ŝ1(u, t) = ŝk(u, t) for k 6= 1? – YES NO MAYBE

• Is s1(u, t) = sk(u, t) for k 6= 1? – YES NO

• Is the estimator defined by G
(k)
opt(f) causal? – YES NO MAYBE

• Would you say that this Wiener filter provides“good” estimates of the user
signals? – explain.

61. Mixed-Up (Final, Fall 1994). This problem deals with the discrete time random
process y(u, n) = s(u, n)x(u, n), where

s(u, n) = sgn(z(u, n)) =

{
+1 if z(u, n) ≥ 0

−1 if z(u, n) < 0.

This system is illustrated below:
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You may assume that x(u, n) and z(u, n) are uncorrelated jointly-Gaussian random
processes with

Sz(ν) = 1 Sx(ν) =
3/4

5/4 − cos(2πν)
.

(a) Determine the following second moment quantities:

• Ry(m), Sy(ν), and my

• Rs(m), Ss(ν) and ms

• Ryx(m) and Ryz(m).

(b) Determine the following probability density functions:

• fx(u,n),x(u,n+m)(v1, v2)

• fz(u,0),z(u,3)z(u,10)(v1, v2, v3)

• fs(u,n)(v)

• fy(u,n)(v)

• fy(u,n),y(u,n+m)(v1, v2)

(c) Answer the following (YES or NO):

• Are x(u, 2) and y(u, 2) both Gaussian random variables?

• Are x(u, 2) and y(u, 2) jointly-Gaussian random variables?

• Is y(u, n) a Gaussian random process?

• Are z(u, n) and s(u, n) equivalent in the wide-sense?

• Are z(u, n) and s(u, n) statistically equivalent? (i.e., Do they have the same
complete statistical description?)

• Are x(u, n) and y(u, n) uncorrelated random processes?

• Are x(u, n) and y(u, n) independent random processes?

• Are y(u, n) and y(u, n + m) (m 6= 0) uncorrelated random variables?

• Are y(u, n) and y(u, n + m) (m 6= 0) independent random variables?

62. Whitened-Matched Filter (Rejected Final Exam Problem, Fall 1994). A communi-
cation signal which exhibits finite-length intersymbol interference (ISI) may be modeled
as

s(u, t) =
∞∑

k=−∞
a(u, k)h(t − kT )

︸ ︷︷ ︸
y(u,t)

+w(u, t),

where a(u, k) is the data symbol sequence and w(u, t) is modeled as continuous time
white Gaussian noise (i.e., Sw(f) = N0/2).

The ISI is modeled by the channel impulse response, which is nonzero only for t ∈
[0, LT ), with L an integer (i.e., the channel response to each symbol interferes with
the next L − 1 symbols).

The following receiver is suggested:



nT

        h
*(-t)

 Whitened Matched Filter (WMF)

Matched
Filter

G(òν)

Whitening
Filter

z(u,n)

r(u,n)
s(u,t)
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The sampled matched-filter output signal is r(u, n) = [h∗(−t) ∗ s(u, t)]|t=nT :

r(u, n) = x(u, n) + v(u, n),

where x(u, n) is the contribution due only to the signal y(u, t) and v(u, n) is the con-
tribution from the noise.

In general, v(u, n) is not white, and it is convenient to pass this signal through a
discrete-time whitening filter. This problem deals with the signal at the output of this
matched-filter, whitening-filter cascade (i.e., the Whitened-Matched Filter (WMF)).

(a) Determine the parameters of the model for r(u, n). The notation Eh(τ) = h(τ) ∗
h∗(−τ) is useful.

• x(u, n) as a function of a(u, k), Eh(τ)

• mv as a function of Eh(τ), N0/2

• Kv(m) = E {v(u, n + m)v∗(u, n)} as a function of Eh(τ), N0/2, n, m

(b) After whitening the noise v(u, n), it is possible to model the signal as

z(u, n) =
L−1∑

m=0

a(u, n − m)f(m)

︸ ︷︷ ︸
p(u,n)

+q(u, n),

where q(u, n) is discrete time white noise with power N0/2 – representing the
contribution of v(u, n). The signal p(u, n) is the net result of the WMF on the
signal.

Determine the relation between this equivalent ISI channel f(m) and the param-
eters used to achieve this model

• G(ν) as a function of F (ν)

• Eh(mT ) as a function of f(m)

(c) Define F (z) = f(0)+f(1)z−1 + · · ·+f(L−1)zL−1, where z is a complex variable.
Describe the poles/zeros of F (z) if the whitening filter G(ν) is assumed to be
minimum phase (i.e., causal, stable and causally invertible).

When is the whitening filter unnecessary – i.e., when is v(u, n) white? State the
condition on h(t) for G(ν) = 1.


