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Scope and Status
These notes represent a work in progress – more accurately, they are a first-cut at providing
the student with as good a text for the second-half of the semester as is available for the
first-half. This excellent reference for the first half is primarily the “Supplemental Notes” by
R.A. Scholtz. I will often refer to these notes, and the other existing handouts written by
me (“Cholesky Factorization,” “Transform Theory,” and “MMSE Estimation”). Portions of
this text which are to be written or need substantial expansion will be marked by the symbol
♣. The notes are basically my “pad notes” for the second half of the course, or a least as
much as I could type in four days. My lecture notes, in turn, are also based largely on the
lecture notes and “Old Supplemental Notes” of Prof. Scholtz; so a lot of what you are about
to read I learned from him.

At this stage, I view these notes as a sort of hard-copy version of share-ware – use them,
and if you find them useful take the time to send me suggestions, comments and corrections.

1 Motivation
You have just completed a fairly intensive study of second moment descriptions of random
vectors. The central aspect of this study was the effects of linear systems. You all know
by heart that when a random vector x(u) is operated on by an arbitrary linear system,
represented by a matrix H, the output process has second moment description given by

my = Hmy Ky = HKxH
† K̃y = HK̃xH

t. (1)

This result is probably more powerful than you realize; notice that this covers the effects of
an arbitrary linear system defined on a finite index set.

Consider expanding the results you have learned about random vectors to other index
sets, specifically discrete or continuous time. It is most likely that you are not even com-
fortable characterizing the effects of arbitrary linear systems on deterministic signals, let
alone random signals. You are probably comfortable with a special class of linear systems,
namely Linear Time-Invariant (LTI) systems. These notes concentrate on LTI systems and
a specific class of second moment random processes, namely Wide-Sense Stationary (WSS)
random processes.

The reason that we concentrate on these special cases is simple and the significance is
difficult to overstate. This reason is summarized by the following example.1 Suppose that,
on a finite index set for simplicity, the linear system H and the input covariance operator,
represented by the matrix Kx, have the same orthonormal set of eigenvectors

Hef = H(f)ef Kxef = λx(f)ef f ∈ F = T = {0, 1, 2, . . . N − 1}. (2)

In matrix form this is equivalent to

H = EΛHE† Kx = EΛxE
†, (3)

1This is just the solution to Scholtz problem 11.
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where ΛH = diag(H(0), H(1), . . . H(N − 1)) and Λx = diag(λx(0),λx(1), . . .λx(N − 1)). In
this case the output covariance matrix is

Ky = HKxH
† = EΛHΛxΛ

†
HE†. (4)

In other words, Ky has the same set of orthonormal eigenvectors and eigenvalues given by

λy(f) = |H(f)|2λx(f) f ∈ F . (5)

Also consider the simplifications obtained when the mean vector mx is a scalar multiple
of one of these eigenfunctions

mx = mxef for some f ∈ F . (6)

For concreteness, consider the case mx = mxe0, with mx a known scalar. It is simple to
verify that the output mean is then my = H(0)mxe0. This implies that one may keep track
of the system effect on the mean by the relation my = mye0 with my = H(0)mx. Another
simplification which occurs when mx = mxe0 is that the correlation matrix has the same
eigenvectors as the covariance matrix

Rxef = Sx(f)ef f ∈ F , (7)

with corresponding eigenvalues Sx(f) related to those of the covariance operator by

Sx(f) =

{
λx(0) + |mx|2 f = 0

λx(f) f %= 0.
(8)

This example illustrates the following principle:

If we restrict our attention to a class of linear systems and covariance (correlation) operators
with the same known eigenfunctions and with mean-functions which are scalar multiples of
one of these eigenfunctions, then the effects of the system on the second moment description
can be fully characterized in the eigenvalue (spectral) domain.

The covariance operator of a WSS process has the same eigenfunctions as LTI systems,
namely complex exponentials. We will use the above principle to characterize the effects of
LTI systems on the second moment description of WSS processes in the eigenvalue domain,
via Fourier transforms. It follows that for the infinite index sets we cover only a special case
of the theory developed for a finite index set.

An additional aspect which should be considered for infinite index sets is the topic of
stochastic convergence. The fundamental question involved in this topic is “What is meant
by an infinite linear combination of random variables, or more generally, a limit of a sequence
of random variables?” While we motivate the “detour” into stochastic convergence theory
by the need to handle these linear systems, it is, in any event, a topic deserving of attention
in a class such as EE562a.

This motivates the three topics for the “second-half” – LTI systems, WSS random pro-
cesses, and stochastic convergence.
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T Description Addition Operator

ZN = {0, 1, . . . N − 1} Time-Limited (periodic) ⊕ = ⊕N Addition Modulo N
Discrete Time

Z = {0,±1,±2 . . .} Discrete Time ⊕ = + Standard Integer Addition
R = (−∞,∞) Continuous Time ⊕ = + Standard Real Addition
RT = [0, T ) Time-Limited (periodic) ⊕ = ⊕T Addition Modulo T

Continuous Time

Table 1: Index sets considered and the corresponding addition operator.

2 ♣ LTI System Theory
This material is covered in the Supplemental Notes (Sections 5.1–5.2) and the Transform
Theory Notes (Section 2).2 There are basically two approaches: the abstract space approach
and the concrete signal approach. The desired result is the same; to consider several index
sets, and in each case show that the eigenfunctions of LTI systems are complex exponentials.

In the abstract space approach, taken in the Supplemental Notes, this is shown in one
elegant proof. In the abstract notation, a deterministic signal defined on the index set T is
represented as a point in an abstract space

x̃ ∈ ST ⇐⇒ x̃ = {x(t) : t ∈ T }. (9)

A system is represented as a transformation on this space H, so that the system output y(t)
is represented by ỹ ∈ ST where ỹ = Hx̃. The system is linear if it has the superposition
property

H(αx̃1 + βx̃2) = αHx̃1 + βHx̃2. (10)

Four index sets will be discussed, these are summarized in Table 1. For the general case
we will denote addition and subtraction by ⊕ and !, respectively. The specific form of the
addition operator for each choice of T is defined in order to ensure that the index set is
closed under addition. Since for the bounded index sets ZN and RT the addition is modulo,
it is often helpful to think of signals defined on these index sets as periodic.

The system is time invariant if it commutes with the shift operator

H is time invariant ⇐⇒ HTτ x̃ = TτHx̃ ∀ τ ∈ T , x̃ ∈ ST , (11)

where the shift operator is defined as

ỹ = Tτ x̃ ←→ y(t) = x(t ⊕ τ). (12)

The Supplemental Notes use this abstract notation to prove the following two points

2Be aware that everything in this section, and the related portions of the Supplemental Notes and Trans-
form Theory Notes, concern deterministic signal processing. It is a general statement of the material from a
standard “signals and systems” undergraduate level class.
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T Frequency Set F Eigenfunction Expansion

ZN F = {k/N : k = 0, 1, . . . N − 1} Discrete Fourier Transform
(or any N consecutive points) (periodic)

Z F = [−1/2, 1/2) Discrete Time Fourier Transform
(or any other interval of length 1) (periodic)

R F = R Fourier Transform
RT F = {k/T : k ∈ Z} Fourier Series

Table 2: Index sets considered and the corresponding frequency sets.

• The eigenfunctions of the shift operator are the complex exponentials ẽf ∈ ST , for
f ∈ F , defined as ẽf = {exp(j2πft) : t ∈ τ}.

• LTI systems and the shift operator have the same eigenfunctions, namely ẽf .

The second result is not surprising – recall from linear algebra that two matrices which
commute have the same eigenvectors. These two results imply that the frequency set F
associated with a given index set T can be found by determining the values which provide
true eigenfunctions for the shift operator.

The approach taken in the Transform Theory Notes is more concrete, but the results are
the same. For each of the four index sets considered, the eigenfunctions are shown to be
complex exponentials and F is described. The results obtained in the Supplemental Notes
and the Transform Theory Notes are summarized in Table 2.

3 Wide-Sense Stationary Random Processes
A WSS random process is one for which the second moment description does not change
with time. Specifically, a second moment random process x(u, t) is Wide-Sense Stationary
on the index set T if x(u, t) ws= x(u, t ⊕ τ) for all τ ∈ T .

Recall that two random processes x(u, t) and y(u, t) are wide-sense equivalent (denoted
x(u, t) ws= y(u, t)) when they have the same mean and covariance function. Therefore, the
conditions for x(u, t) to be WSS are

mx(t) = mx(t ⊕ τ) ∀ t, τ ∈ T (13a)

Kx(t1, t2) = Kx(t1 ⊕ τ, t2 ⊕ τ) ∀ t1, t2, τ ∈ T . (13b)

The condition in (13a) implies that mx(t) = mx ∀ t ∈ T – i.e., the mean function is a
constant for all values of t. The condition in (13b) means that the covariance function only
depends on the difference between t1 and t2. Consider T = R for concreteness; (13b) requires
that

Kx(3, 1) = Kx(5, 3) = Kx(12.2, 10.2) = Kx(2, 0). (14)
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Figure 1: An example WSS correlation function for T = R.

For a WSS process x(u, t) we have Kx(t1, t2) = Kx(t1!t2, 0). A natural convention is then to
drop the second argument “0,” and use the notation Kx(t1, t2) = Kx(t1!t2) = Kx(τ), where
τ = t1!t2. Notice that this is similar to the convention used for LTI systems. A general linear
system is characterized by its time-varying impulse response h(t1, t2). For an LTI system this
impulse response is only a function of the delta-application and output-observation times:
h(t1, t2) = h(t1!t2, 0) = h(t), where t = t1!t2.3

A necessary and sufficient condition for x(u, t) to be WSS is that mx(t) = mx and Kx(t1, t2) =
Kx(t1!t2).

A contour plot for a WSS covariance function is shown in Figure 1.
A few facts regarding WSS processes (which that you should verify) are listed below

• Rx(t1, t2) = Rx(t1!t2), in fact Rx(τ) = Kx(τ) + |mx|2.

• Rx(0) = E {|x(u, t)|2} ≥ 0 and Kx(0) = var [x(u, t)] ≥ 0 (i.e., real and non-negative).

• Hermitian Symmetry: Rx(τ) = R∗
x(−τ) (same for Kx(τ)).

• Non-Negative Definite: see properties of Power Spectral Density.

• Cauchy-Schwartz: |Rx(τ)| ≤ Rx(0) ∀ τ ∈ T .

3I know of no good reason why the convention in LTI theory is to use t for the time difference, while for
WSS theory τ is usually used.
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3.1 Concepts Related to WSS

Three concepts related to Wise-Sense Stationarity are explained in this section: (i) Fully-
WSS, (ii) jointly-WSS, and (iii) Strict Stationary.

A complex random process z(u, t) is said to be Fully-WSS if z(u, t) fws= z(u, t⊕τ) ∀ τ ∈ T .
A necessary and sufficient condition for z(u, t) to be Fully-WSS is that z(u, t) is WSS and
K̃z(t1, t2) = K̃z(t1!t2). In the common case of circular complex processes (i.e., K̃z(t1, t2) =
0), WSS and Fully-WSS is equivalent.

Two random processes x(u, t) and y(u, t) are Jointly-WSS if they are each WSS and
Kxy(t1, t2) = Kxy(t1!t2). If a complex process is denoted by z(u, t) = x(u, t) + jy(u, t),
where x(u, t) and y(u, t) are real random processes, then

z(u, t) is Fully-WSS ⇐⇒ x(u, t) and y(u, t) are Jointly-WSS. (15)

One may also encounter the term Jointly-Fully-WSS processes, which has the obvious mean-
ing.

Wide-Sense Stationarity is a weakened version of Strict-Sense Stationarity (also referred
to as simply “Stationarity”). A random process x(u, t) is said to be (strictly) stationary if its
complete statistical description does not change with time. Mathematically, for all integer
N > 0 and choices of t1, t2, . . . tN ∈ T we must have

Fx(u,t1),x(u,t2),...x(u,tN )(z1, z2, . . . zN) = Fx(u,t1⊕τ),x(u,t2⊕τ),...x(u,tN⊕τ)(z1, z2, . . . zN) ∀ τ ∈ T .
(16)

The following facts are simple results from this these definitions

• Stationarity in the strict sense ⇒ stationarity in the wide-sense and Fully-WSS (con-
verse is untrue in general!).

• For a real Gaussian process Strict-Stationarity and WS-Stationarity are equivalent.

• For a complex Gaussian process Strict-Stationarity and FWS-Stationarity are equiva-
lent.

4 WSS/LTI Connection – Abstract Version

It has already been claimed that WSS processes and LTI systems are related in a very special
manner. It is shown in this section that when a WSS process is input into an LTI system,
the output is also WSS. This development will be repeated in concrete notation for each of
the index sets in the following sections.

A random process defined on the index set T can be viewed as a random element of ST ,
and denoted by

x̃(u) ∈ ST ⇐⇒ x̃(u) = {x(u, t) : t ∈ T }. (17)
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Let y(u, t) be the output of an LTI system driven by x(u, t), then abstractly, ỹ(u) = Hx̃(u).
What happens when this output is operated on by the shift operator?

Tτ ỹ(u) = Tτ (Hx̃(u)) (18)

= H(Tτ x̃(u)) (H is TI) (19)

= H( ws= x̃(u)) (x̃(u) is WSS) (20)
ws= Hx̃(u) = ỹ(u). (H is LTI) (21)

This means that the output is WS equivalent to a shifted version of itself, or that y(u, t) is
WSS. There are two sticky points in declaring this a valid proof

1. As mentioned earlier, if H involves an infinite linear combination, the definition of the
output is not clear at this point – i.e., there are issues of stochastic convergence.

2. In the last step, it has been assumed that WS equivalence is preserved by an LTI
system. This implies that the second moment description of the output of a linear
system depends only on the second moment description of the input process. We omit
a proof of this property, but your intuition from the first-half of the course should
convince you that it is reasonable.

4.1 The Covariance Operator
It is useful to maintain a dual concept of the covariance function. Primarily, it defines the
covariance of the random variables drawn from the process – it is a measure of how much
x(u, t1) “looks like” x(u, t2), or how fast the process changes with time. The secondary
interpretation is to view the deterministic covariance function as a linear operator. This
second interpretation may not seem logical, but recall how much was learned about a random
vector and the effects of a linear system by studying the properties of the covariance matrix.
For example, finding the eigenvectors of the covariance matrix (operator) allows one to
determine directional preference.

The eigenfunctions and the corresponding eigenvalues (spectrum) of the covariance op-
erator play an important role in the following material. The deterministic, abstract linear
operator defined by the covariance function K(t1, t2) will be denoted by K – on some occa-
sions, we will work with the correlation operator R instead.

5 WSS/LTI Processing on T = ZN

There are three properties of the index set T = ZN which distinguish it from the other three

• ZN is finite, therefore convergence issues do not arise.

• We already know how to handle all linear systems and second moment random vectors.
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• All random variables in the process can be listed and used as a notation.

For these reasons, this will serve as our “bridge” from the first-half of the course to the
second-half. Three notations can be used, the abstract, and “signal” and “vector” concrete
notations. The first steps are to apply what is known about LTI systems and WSS processes
to this special case.

5.1 LTI System Theory
The input/output relation for a linear system defined on ZN can be written as4

ỹ = Hx̃ (22a)

y(n1) =
N−1∑

n2=0

h(n1, n2)x(n2) n1 ∈ ZN (22b)





y(0)
y(1)

...
y(N − 1)





︸ ︷︷ ︸
y

=





h(0, 0) h(0, 1) · · · h(0, N − 1)
h(1, 0) h(1, 1) · · · h(1, N − 1)

...
...

. . .
...

h(N − 1, 0) h(N − 1, 1) · · · h(N − 1, N − 1)





︸ ︷︷ ︸
H





x(0)
x(1)

...
x(N − 1)





︸ ︷︷ ︸
x

,(22c)

where each of the expressions (22) are equivalent. The abstract, signal and vector notations
are defined in (22a), (22b), and (22c) respectively.

What is the restriction on the matrix H if H is an LTI system? To answer this, consider
what the output is when a Kronecker delta function is applied at time n = 0

H





1
0
0
...
0





=





h(0, 0)
h(1, 0)
h(2, 0)

...
h(N − 1, 0)





. (23)

In other words, the system impulse response is the first column of H. Since H is LTI, if a
delta function is applied at time n = 1 the output must be a (circularly) shifted version of
the impulse response

H





0
1
0
...
0





=





h(0, 1)
h(1, 1)
h(2, 1)

...
h(N − 1, 1)





=





h(N − 1, 0)
h(0, 0)
h(1, 0)

...
h(N − 2, 0)





. (24)

4For discrete time n will be used for the “t” variable to emphasize that it must take only integer values.
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It follows that, for an LTI system, h(n1, n2) = h(n1!Nn2, 0). Analogous to the convention
for WSS theory, we will drop the “0” argument for simplicity. Carrying out this argument
on the other columns results in the following circulant matrix structure

H =





h(0) h(N − 1) h(N − 2) · · · h(1)
h(1) h(0) h(N − 1) · · · h(2)
h(2) h(1) h(0) · · · h(3)

...
...

...
. . .

...
h(N − 1) h(N − 2) h(N − 3) · · · h(0)





. (25)

The notation adopted in (25) takes into account the mod N addition; for example

h(1!NN) = h(N!N1) = h(N − 1). (26)

Circular matrices are a special class of Toeplitz matrices, which have an (i, j) element which
depends only on i − j (i.e., regular integer subtraction).

Thus, multiplication by a circulant matrix characterizes the effects of a linear system in
the vector notation. In the signal notation, the circulant matrix multiplication corresponds
to circular convolution

y(n) =
N−1∑

i=0

h(n!N i)x(i) = h(n)"Nx(n) n ∈ ZN (Circular Convolution) (27)

This can be considered a book-keeping technique, since the class of circulant matrices are
closed under multiplication (WHY?) and a circulant matrix are completely defined by its
first column.

The eigensignals for LTI systems are known to be complex exponentials — in the three
notations:

Hẽk = H(k)ẽk (Abstract Notation) (28)

h(n)"Nek(n) = H(k)ek(n) n ∈ ZN (Signal Notation) (29)

Hek = H(k)ek, (Vector Notation) (30)

which holds for k ∈ Zn, or all integers if the periodic interpretation is taken. The specific
form of the orthonormal eigen-signals/vectors are

ek(n) =
1√
N

ej2π k
N n n ∈ ZN (Signal Notation) (31)

ek =
1√
N





1

ej2π k
N

ej2π 2k
N

...

ej2π (N−1)k
N





(Vector Notation). (32)
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As shown in the Transform Theory Notes, the eigenvalues of the system {H(k)}N−1
k=0 are the

Discrete Fourier Transform of the system impulse response

H(k) = DFT {h(n)} =
N−1∑

n=0

h(n)e−j2π k
N n k ∈ ZN . (33)

It may seem surprising that we have written down an orthonormal set of eigenvectors for
any circulant matrix. However, this is equivalent to stating that complex exponentials are the
eigenfunctions of LTI systems. The importance of DFT theory in deterministic signal pro-
cessing is that when the input and output signals are expanded in terms of these eigensignals
(i.e., take the DFT), the effects of the LTI system are characterized by multiplication by
H(k) – see the Transform Theory Notes for the details.

5.2 WSS Processes

In this section the structure of the covariance matrix for WSS processes on T = ZN is
described. If x(u, n) is a WSS process on ZN , then by definition5

Kx(n1, n2) = Kx(m) m = n1!Nn2 ∈ ZN (34)

mx(n) = mx n ∈ ZN . (35)

In the vector notation, this implies

mx = mx1 = mx(
√

Ne0) (36)

Kx =





Kx(0) Kx(N − 1) Kx(N − 2) · · · Kx(1)
Kx(1) Kx(0) Kx(N − 1) · · · Kx(2)
Kx(2) Kx(1) Kx(0) · · · Kx(3)

...
...

...
. . .

...
Kx(N − 1) Kx(N − 2) Kx(N − 3) · · · Kx(0)





, (37)

where e0 is the k = 0 eigenvector of circulant matrices (i.e., all components are 1/
√

N).
It follows that a WSS process on ZN has a circulant covariance matrix and a mean vector
which is a multiple of an eigenvector of Kx. Also, since any covariance matrix is Hermitian
Symmetric (HS), Non-Negative Definite (NND), the covariance matrix of a WSS process
belongs to a special class of circulant matrices. For example, from (37) it is clear that
Kx(N − 1) = K∗

x(1).

5For discrete time we will use m = n1 0n2 and reserve τ = t1 0 t2 for general discussions and continuous
time.
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Example for N = 4: A WSS process on Z4 has the following covariance matrix form

Kx =





Kx(0) Kx(3) Kx(2) Kx(1)
Kx(1) Kx(0) Kx(3) Kx(2)
Kx(2) Kx(1) Kx(0) Kx(3)
Kx(3) Kx(2) Kx(1) Kx(0)



 (38)

=





Kx(0) K∗
x(1) Kx(2) Kx(1)

Kx(1) Kx(0) K∗
x(1) Kx(2)

Kx(2) Kx(1) Kx(0) K∗
x(1)

K∗
x(1) Kx(2) Kx(1) Kx(0)



 . (39)

Notice, in this case Kx(3) = K∗
x(1) and Kx(2) is real. It follows that the covariance function

of a WSS process on ZN is defined by less than N numbers (Exercise: How many?).

5.2.1 The Covariance Operator

When the covariance function is thought of as a linear operator, as suggested in Section 4.1,
its action is defined as follows

w̃ = Kxṽ (Abstract Notation) (40)

w(n2) =
N−1∑

n2=0

K(n2, n1)v(n1) n2 ∈ ZN (Signal Notation) (41)

w = Kxv. (Vector Notation) (42)

It follows that if the process x(u, n) is WSS, then Kx represents a LTI operator. Therefore,
its eigenvectors are known, and the eigenvalues may be found via the DFT. Specifically, the
eigenvalues of Kx are

λx(k) = DFT {Kx(m)} =
N−1∑

m=0

Kx(m)e−j2π k
N m k ∈ ZN . (43)

Since the mean of a WSS process is a multiple of the k = 0 eigenvector, we also have that
the eigenvalues of the correlation matrix are

Sx(k) = DFT {Rx(m)} =
N−1∑

m=0

Rx(m)e−j2π k
N m k ∈ ZN (44)

=

{
λx(0) + N |mx|2 k = 0

λx(k) k = 1, 2, . . . N − 1.
(45)

Example N = 2: Consider a real WSS process on Z2 with covariance matrix given by

Kx =

[
2 1
1 2

]

. (46)
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This matrix came up often in the first-half of the course (e.g., see the Chugg self-test), the
eigenvectors and eigenvalues are known to be

e1 =
1√
2

[
1
1

]

λ1 = 3 (47a)

e2 =
1√
2

[
1

−1

]

λ2 = 1. (47b)

With the additional knowledge about circulant matrices, this can be seen as a special case.
In fact, any WSS process on ZN has a covariance matrix of the form

Kx =

[
Kx(0) Kx(1)
Kx(1) Kx(0)

]

, (48)

with the same eigenvectors as in (47), and eigenvalues given by the 2-point DFT

λx(0) = Kx(0) + Kx(1) (49)

λx(1) = Kx(0) − Kx(1). (50)

An interesting fact can then be stated: since the eigenvalues of a HS-NND matrix are
non-negative, the DFT of Kx(m) must be real and non-negative! The converse is true as
well; if {λ(k)}N−1

k=0 is a real non-negative sequence, then K(m) = DFT−1 {λ(k)} is a valid
WSS covariance function on ZN .

5.3 WSS/LTI Spectral Relationship

We have now demonstrated a concrete example of the type discussed in Section 1, namely
a class of processes (WSS on ZN) and linear systems (LTI on ZN) for which the mean is a
system eigenvector and the covariance has the same eigenvectors as the system.

It follows from the principle outlined in Section 1, that if the input to an LTI system H
is a WSS process x(u, n), the output y(u, n) is also WSS and the following holds

my = H(0)mxy (51)

λy(k) = |H(k)|2λx(k) k ∈ ZN (52)

Sy(k) = |H(k)|2Sx(k) k ∈ ZN . (53)

The covariance function of the output process y(u, n) can then be obtained by taking the
inverse DFT

Ky(m) = DFT−1 {λy(k)} =
1

N

N−1∑

k=0

λy(k)ej2π k
N m m ∈ ZN . (54)
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Example N = 2: Consider what occurs when the N = 2 real WSS random process x(u, n)
with covariance matrix given in (46) and with mx = 4 is passed through the LTI system
represented by

H =

[
−3 6

6 −3

]

. (55)

The 2-point DFT of h(n) is

H(0) = −3 + 6 = 3 (56)

H(1) = −3 − 6 = −9. (57)

Note that since H is not NND, it has a negative eigenvalue. According to the theory, the
spectrum of the output covariance function is

λy(0) = |H(0)|2λx(0) = 27 (58)

λy(1) = |H(1)|2λx(1) = 81. (59)

Taking the inverse 2-point DFT yields the output covariance

Ky(0) = (27 + 81)/2 = 54 (60)

Ky(1) = (27 − 81)/2 = −27. (61)

The mean of the output process is my = H(0)mx = 3mx = 12. It follows that in vector
notation we have

Ky =

[
54 −27

−27 54

]

my =

[
12
12

]

. (62)

It is straightforward to check these results using the techniques of the first-half of the class
– i.e.,

Ky = HKxH
t =

[
−3 6

6 −3

] [
2 1
1 2

] [
−3 6

6 −3

]

(63)

my = Hmx =

[
−3 6

6 −3

] [
4
4

]

. (64)

The last example raises an interesting question: “Why should we use this fancy DFT-
based trick for computing HKxH

t, if we already know how the method for direct computa-
tion?” The answer is simple; consider a case where N = 1024. For large values of N using the
spectral technique, along with the computational Fast Fourier Transform (FFT) algorithm,
will be orders of magnitude less computationally intensive than the matrix multiplication
technique. Also, for the other index sets the matrix technique is not a practical option, so
this builds an intuitive bridge.
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5.3.1 An Example Application: Affine MMSE Estimation

Consider the effects of this WSS/LTI theory on the Affine estimation problem for T = ZN .
Recall that the estimate of the desirable z(u) from the observation x(u) is

ẑ(u) = Gopt(x(u) − mx) + mz = KzxK
−1
x (x(u) − mx) + mz. (65)

Now consider the result when x(u, n) and z(u, n) are Jointly-WSS; that is Kx, Kz, and Kzx

are all (N × N) circulant matrices and the means are mx = mx1 and mz = mz1. this
will be the case, for example, when x(u, n) and z(u, n) are both WSS and are related by
x(u) = Hz(u)+n(u), with H circulant and n(u) WSS. It follows that Gopt is circulant since

Gopt = KzxK
−1
x (66)

= KzxEΛ
−1
x E† (67)

= EΛzxΛ
−1
x E†, (68)

where E is the matrix of the circulant eigenvectors defined in (32), and Λzx is the diagonal
matrix of eigenvalues of Kzx(m)

λzx(k) = DFT {Kzx(m)}. (69)

The spectrum of the optimal G is then defined by ΛG = ΛzxΛ
−1
x , which has the diagonal

elements

Gopt(k) =
λzx(k)

λx(k)
k ∈ ZN . (70)

The above development, coupled with the structure of the mean vectors implies that the
estimator may be obtained by

ẑ(u, n) = gopt(n)"N(x(u, n) − mx) + mz, (71)

where the LTI filter impulse response is gopt(n) = DFT−1 {Gopt(k)}. Thus, the affine esti-
mation problem in the WSS/LTI environment reduces to an LTI filter design problem which
can be most easily solved in the spectral domain.

Before leaving the finite index set we should note that its most important practical
application may be as an approximation to the index sets T = Z and T = R. Specifically, a
process defined on T = Z, may be approximated as WSS T = ZN in order to take advantage
of the computational advantages of the FFT. Thus, a good understanding of this processing
yields a more complete understanding of the underlying approximation.

5.4 Some Related Problems/Questions
• Why are circulant matrices closed under multiplication – why is the product of two

circulant matrices circulant? Do circulant matrices commute?

• How many unique values define a WSS covariance function Kx(m) on T = ZN?
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• What type of symmetry properties does λx(k) have if the random process x(u, n) is
real?

• How would the whitening and/or simulation be done in the LTI/WSS setting.

• How are the KL–expansion and the DFT related for WSS processes on T = ZN .

• Can a WSS hypothesis testing problem be formulated in the spectrum? If so, what is
the form of the filter used for the correlation detector?

• What does a singular WSS correlation function look like in the spectral domain.

• Given the spectrum of Kx(m), what is the directional preference of the WSS process?

• If the covariance operator is singular, what does the pseudo inverse look like in the
spectral domain? How would this affect the solution in the Affine MMSE estimation
example?

• Express E {‖x(u)‖2} in terms of Sx(k) for a WSS process. How is this related to
E {|x(u, n)|2} = Rx(0)?

• If Sx(0) = 0, what can be said about mx? What if Sx(0) > 0, then what can be said
about the mean of x(u, n)?

• Will this list ever end? ;-)

6 Stochastic Convergence Theory
The objective of stochastic convergence theory is to define what is meant by

x(u) = lim
n→∞

xn(u). (72)

Specifically, this is a limit of functions of u, so do we require that the limit holds for all
u ∈ U?, or is an average measure more appropriate?

To give an appreciation of the problem, consider the Fourier Series which represents a
limit of functions of t

x(t) = lim
n→∞

n∑

k=−n

Xke
j2π k

T t. (73)

Do you know in what sense this limit holds? It certainly doesn’t hold for all values of t –
witness the “ringing” effects for a square wave expansion (i.e., the Gibbs phenomenon). It
actually represents convergence in the sense that, in the limit, the difference has no power. So
you have dealt with a problem involving convergence of functions and have a least accepted
the Fourier Series result as a reasonable criterion for convergence. The following represents
an extension along these lines.

Before describing stochastic convergence, it is helpful to quickly review what it means
for a sequence of real deterministic numbers to converge.
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Figure 2: The geometric interpretation of a convergent sequence.

Definition: A sequence of real numbers a1, a2, a3, . . . is said to converge to a limit a ∈ R =
(−∞,∞) if for every choice of ε > 0, there exists an integer Nε such that n > Nε ensures
that |a − an| < ε.

The shorthand for this statement (to be used henceforth) is: {an} converges if ∃ a ∈ R
4 ∀ ε > 0, ∃ Nε 4 n > Nε ⇒ |a − an| < ε. Another way of stating this is that if any ball
around a contains all but a finite number of the elements of {an} – this concept is illustrated
in Figure 2.

Finally, note that the limit must be a real number (∞ and −∞ don’t count!).

6.1 Modes of Stochastic Convergence
There are many “types” or “modes” of stochastic convergence which can, and have, been
defined. Below is a partial list, each using the definition of a deterministic limit as defined
above. In these definitions, for simplicity, the sequence of random variables is assumed to
be real – extensions to complex sequences are straightforward.

Sure Convergence This is point-wise convergence; xn(u) converges to x(u) surely if and
only if (iff)

lim
n→∞

xn(u0) = x(u0) ∀ u0 ∈ U . (74)

In other words, for fixed u0 ∈ U the question is one of whether a sequence of real numbers
converge, so sure convergence requires that the limit holds for every choice of u0. It should be
noted that sure convergence seems to be an idea cooked-up to help engineers to understand
the next concept, almost sure convergence – nobody uses sure convergence.

Almost Sure Convergence This is the next best thing to sure convergence. The defini-
tion of xn(u) converging to x(u) almost surely is

xn(u)
as→ x(u) ⇐⇒ lim

n→∞
xn(u0) = x(u0) ∀ u0 ∈ A ⊂ U with P (A) = 1. (75)

In English, we cannot assure that the limit is x(u) for all choices of u ∈ U , but if all the
values of u for which it is false are collected, they have probability zero. This is also written
as Pr {x(u) = limn→∞ xn(u)} = 1.
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An example of almost sure convergence is provided by the Strong Law of Large Numbers.

Convergence in Probability The definition of xn(u) converging to x(u) in probability is

xn(u)
p→ x(u) ⇐⇒ lim

n→∞
Pr {|x(u) − xn(u)| > ε} = 0 ∀ ε > 0. (76)

This means that if one is willing to wait, it can be assured that the probability that xn(u)
is close to x(u) (as close as one likes) is made arbitrarily close to 1.

An example of convergence in probability is provided by the Weak Law of Large Numbers.
Convergence in probability is sometimes call“p–convergence.”

Convergence in Distribution The definition of xn(u) converging to x(u) in distribution
is

xn(u)
d→ x(u) ⇐⇒ lim

n→∞
Fxn(u)(z) = Fx(u)(z) ∀ z ∈ R 4 Fx(u)(z) continuous at z.

(77)
Convergence in distribution deals only with the complete statistical description. For example,
if xn(u) converges in distribution to a mean-zero, unit-variance Gaussian random variable,
then it converges to every mean-zero, unit-variance Gaussian random variable. This means
that the limit random variable has nothing to do with the random variable xn(u), it could
be independent.

An example of convergence in distribution is the Central Limit Theorem. Convergence
in distribution is sometimes called “weak convergence.”

Convergence in the Mean-Square Sense This is the most important mode of conver-
gence for second moment theory. It is analogous to the Fourier Series convergence. The
definition of xn(u) converging to x(u) in the mean-square sense (mss) is

xn(u)
mss→ x(u) ⇐⇒ lim

n→∞
E
{
|x(u) − xn(u)|2

}
= 0. (78)

Intuitively, mss convergence corresponds to vanishing average power in the difference between
xn(u) and the limit random variable.

We’ll see many examples of mss convergence in the second-half of the class. For the
record, mss convergence is often referred to as the “limit in the mean” and denoted by

x(u) = l.i.m.n→∞xn(u) ←→ xn(u)
mss→ x(u). (79)

This notation will not be used in this text. Mean-square convergence is also referred to “L2

convergence.”

The obvious question is: Which of these modes is the best, or at least the strongest? The
answer is provided by the Venn diagram of Figure 3.6 The conclusion is that there is no
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Figure 3: The relation between various modes of convergence.

strongest mode of convergence, although either mss convergence or almost sure convergence
imply convergence in probability, which in turn implies convergence in distribution.

It seems strange that we can have almost sure or even sure convergence without mss
convergence. Examples of this sort are usually fairly artifical, with the trait that for large
n, some of the probability mass drifts off to infinity.

6.2 Convergence in an Arbitrary Metric Space

Recall that a metric space X is an abstract space where distances can be measured. The
distance between x̃ and ỹ ∈ X , denoted by d(x̃, ỹ), must satisfy four properties (see the
MMSE handout, problem 1, or the Supplemental Notes, Figure 1.5). Convergence in a metric
space is defined in a manner analogous to convergence on the real line.

Definition A sequence {x̃n} in a metric space X converges iff ∃ x̃ ∈ X 4 ∀ ε > 0, ∃ Nε

and 4 n > Nε ⇒ d(x̃n, x̃) < ε.
Put simply,

x̃n → x̃ ⇐⇒ lim
n→∞

d(x̃n, x̃) = 0. (80)

The interpretation of Figure 2 still holds, with the size of the ball now defined by the distance
function. Note that most EE students get confused because they forget that the limit x̃ must
be a point in X .

Some examples should help solidify the concept

6Believe it or not, the picture in Papoulis’ classic book (at least thru the 2nd Ed.) is wrong! – nobody’s
perfect.
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• X = R, with d(a, b) = |a − b|. In this case

an → a ⇐⇒ lim
n→∞

|a − an| = 0. (81)

Convergence in this space is the standard convergence of real sequences.

• X = Cm, with d(x,y) = ‖x − y‖ =
√

(x − y)†(x − y). In this example

xn → x ⇐⇒ lim
n→∞

‖xn − x‖ = 0, (82)

a reasonable notion of convergence for complex vectors.

• X = L2[0, T ], the space of square-integrable functions on [0, T ], with

d(f̃ , g̃) =

√∫ T

0
|f(t) − g(t)|2dt. (83)

Convergence of the Fourier Series is of this form.

• X = W , with dW(x̃, ỹ) =
√

E {|x(u) − y(u)|2}. Recall, this is the space of second
moment random variables defined on the sample space U . Convergence in this metric
space is defined by

x̃n → x̃ ⇐⇒ lim
n→∞

√
E {|xn(u) − x(u)|2} = 0 (84)

⇐⇒ lim
n→∞

E
{
|xn(u) − x(u)|2

}
= 0. (85)

It follows that convergence in this abstract space corresponds to mean-square sense
convergence of the concrete random sequence.

The last example provides a link between the abstract space of random variables W ,
with which we are familiar, and a particular mode of stochastic convergence, namely mss
convergence.

6.3 A MSS Law of Large Numbers
Time for an example; consider a sequence of uncorrelated complex random variables yk(u),
each with mean m, and variance σ2, both finite. Define the sequence of sample mean random
variables as

xn(u) =
1

n

n∑

k=1

yk(u) n = 1, 2, 3, . . . (86)

It is a simple exercise to show that

E {xn(u)} = m var [xn(u)] =
σ2

n
. (87)
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Since as n gets large, the variance of xn(u) goes to zero, while the mean remains m, we
might guess that the limit of xn(u) is x(u) = m ∀ u ∈ U . In fact this is true for convergence
in probability (i.e., the Weak Law of Large Numbers). If the random variables {yn(u)} are
independent (not just uncorrelated), then m is the limit in the almost sure sense as well (i.e.,
the Strong Law of Large Numbers7).

Is m the limit in the mss too? Let’s check the definition

E
{
|xn(u) − x(u)|2

}
= E

{
|xn(u) − m|2

}
= var [xn(u)] =

σ2

n
. (88)

Since this limit of this quantity is zero, we have the “MSS Law of Large Numbers:”

1

n

n∑

k=1

yk(u)
mss→ m. (89)

We may call this an “Equally Strong Law of Large Numbers” for the following reason: the
Strong Law implies the Weak Law since almost sure convergence implies convergence in
probability. However, neither the Strong nor Weak Laws imply this new law since mss
convergence is not implied by either of the other two modes. In fact, the mss result assumes
only uncorrelated random variables, while the Strong Law of Large Numbers requires an
independent sequence – in this sense our new law is even stronger than the strong law!

This example should help to convince you that mss convergence is reasonable, but it raises
a serious issue. How does one guess the limit random variable if it is not a trivial constant,
as was the case for the Law of Large Numbers? The answer is the Cauchy Criterion.

6.4 Cauchy Sequences and Complete Spaces
The term “complete space” has been mentioned before, but rather than explaining it in
depth, it was described as a “space with nice convergence properties.” This is clarified in
this section.

Definition A complete space is one in which all Cauchy sequences converge.

Definition A sequence {x̃k} in a metric space X is called a Cauchy8 sequence if

lim
n,m→∞

d(x̃n, x̃m) = 0. (90)

The formal definition of a limit on two arguments (i.e., n and m) is

lim
n,m→∞

d(x̃n, x̃m) = 0 ⇐⇒ ∀ ε > 0, ∃ Nε 4 n, m > Nε ⇒ d(x̃n, x̃m) < ε. (91)

7Since this is a sequence of complex random variables, the Strong Law should be modified to handle the
complex case. This can be done by requiring that the real and imaginary parts are independent

8By the way the answer to the question you’re afraid to ask is:“A Cauchy sequence and the Cauchy-
Schwartz are completely unrelated, except that Cauchy (apparently a very smart guy) is credited for both
concepts.
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Figure 4: The geometric interpretation of a Cauchy sequence.

A Cauchy sequence is illustrated in Figure 4. For large values of n, all the points of a
Cauchy sequence are close together. If you think practically (i.e., an engineer as opposed to
a mathematician) and understand the Cauchy sequence definition, you should have the fol-
lowing question in mind: “How can a Cauchy sequence not converge? – its going somewhere,
so that must be the limit.” The answer is the Cauchy sequence leaves the space. Remember
the limit must be a point in X , so if the sequence is leaving the space it has no limit. A
complete space is one in which a Cauchy sequence cannot leave the space.9

It is a simple exercise to show that any sequence which converges is a Cauchy sequence,
thus in a complete space a sequence converges if and only if it is a Cauchy sequence. In a
complete space, convergence (or lack thereof) can be checked by applying the “Cauchy Test”
– i.e., if the sequence is Cauchy it converges, otherwise it does not converge.

Here are some examples to illustrate the concept of completeness:

• X = (0, 1], with d(a, b) = |a − b|. This space is incomplete. For example the sequence
xn = 1/n is a Cauchy sequence, but it has no limit in X . It is tempting to claim that
the limit is 0, but this is not in the space – the Cauchy sequence left the space.

• X = Q, the space of rational numbers with d(p, q) = |p − q|. It is possible to show
that the sequence defined by

qn =
n∑

k=0

1

k!
, (92)

is a Cauchy sequence. This sequence has no limit in the rational numbers. Once again,
the sequence leaves the space – this sequence has a limit in the real numbers, namely
e, the natural log base.

• X = R, with d(a, b) = |a − b| is a complete space. It follows that

an → a ⇐⇒ lim
n,m→∞

|an − am| = 0. (93)

This is a fact that is learned (and shortly forgotten) in freshman Calculus.

9In fact, an incomplete space can be “completed” by grouping all sequences which seem to leave the space
at the same point together into an equivalence class.
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• X = W , with dW(x̃, ỹ) =
√

E {|x(u) − y(u)|2}. This is a complete space,10 so that

x̃n → x̃ ∈ W ⇐⇒ lim
n,m→∞

√
E {|xn(u) − xm(u)|2} = 0 (94)

⇐⇒ lim
n,m→∞

E
{
|xn(u) − xm(u)|2

}
= 0. (95)

It follows that the Cauchy test can be used to check for mss convergence.

In a complete space, a sequence converges if and only if it is a Cauchy sequence. The space
of second moment random variables W is a complete space, and convergence in this space
corresponds to mss convergence. Therefore,

xn(u)
mss→ x(u) ⇐⇒ lim

n,m→∞
E
{
|xn(u) − xm(u)|2

}
= 0. (96)

6.5 What Good is MSS Convergence?
The Cauchy Criterion provides a method for determining whether a sequence converges in
the mss. If a sequence of random variables is shown to converge by the Cauchy test, the
obvious question is: “What good is it to know that the sequence converges if the limit
random variable is unknown?” In other words, if {xn(u)} is Cauchy then it has a limit,
say x(u), but x(u) is still unknown. The answer to this question is that the second moment
description of a mss limit can be found by taking the limit of the second moment description.
This is stated formally in the following theorem.

Theorem If xn(u)
mss→ x(u) and yn(u)

mss→ y(u) then

E {x(u)} = lim
n→∞

E {xn(u)} (97a)

var [x(u)] = lim
n→∞

var [xn(u)] (97b)

E
{
|x(u)|2

}
= lim

n→∞
E
{
|xn(u)|2

}
(97c)

E {x(u)y∗(u)} = lim
n→∞

E {xn(u)y∗
n(u)} (97d)

Proof First, we present proofs for (97a) and (97c), which together imply (97b). We use
the shorthand notation

mn = E {xn(u)} m = E {x(u)} (98)

β2
n = E

{
|xn(u)|2

}
β2 = E

{
|x(u)|2

}
(99)

rn = E {xn(u)x(u)} en(u) = x(u) − xn(u). (100)

10This is an important fact, but it is stated without proof. A proof is beyond the scope of this text.
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To prove (97a), we note that

var [en(u)] = E
{
|en(u)|2

}
− |E {en(u)}|2 ≥ 0 (101)

E {en(u)} = E {x(u) − xn(u)} = m − mn, (102)

(103)

so that

0 ≤ |E {en(u)}|2 = |m − mn|2 ≤ E
{
|en(u)|2

}
= E

{
|x(u) − xn(u)|2

}
→ 0. (104)

The last equality in (104) follows from the definition of xn(u)
mss→ x(u). As a result of (104)

we know that |m − mn|2 converges to 0, thus mn → m. This proves (97a).
The proof of (97c) follows in a similar manner. First note that

0 ≤ |β − βn|2 = β2 − 2ββn + β2
n. (105)

By the Cauchy-Schwartz inequality, 6 {rn} ≤ |rn| ≤ ββn, so that

0 ≤ |β − βn|2 ≤ β2 − 26 {rn} + β2
n = E

{
|x(u) − xn(u)|2

}
→ 0. (106)

It follows that |β − βn|2 → 0, or that β is the limit of βn.
The proof of (97d) is as follows:

|E {x(u)y∗(u)}− E {xn(u)y∗
n(u)}| = |E {x(u)y∗(u) − xn(u)y∗

n(u)}| (107a)

= |E {(x(u) − xn(u))y∗(u) + xn(u)(y(u) − yn(u))∗}|(107b)

≤ |E {(x(u) − xn(u))y∗(u)}| + |E {xn(u)(y(u) − yn(u))∗}|(107c)

≤
√

E {|x(u) − xn(u)|2}E {|y∗(u)|2}

+
√

E {|xn(u)|2}E {|y(u) − yn(u)|2}, (107d)

which goes to zero as n → ∞. Note that (107c) follows from teh triangle inequality and
(107d) follows from the Cauchy-Schwartz inequality.

Mean-Square convergence allows us to exchange limits and expectations up to second mo-
ments.

6.5.1 A Hitchhiker’s Guide to the Cauchy Test

Many EE students can read about Cauchy Tests and mss convergence, but have difficulty
applying the results. In this section, a simple “recipe” for checking for mss convergence is
described.

An important fact to realize is that the limit theorem of Section 6.5 provides a quick and
simple method for demonstrating that a sequence does not converge in the mss. Specifically,
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if {xn(u)} converges in the mss, then the mean and variance of the limit random variable
must be finite (i.e., it must be a point in W). Therefore, if the limits of the mean and
variance of xn(u) do not exist, then the xn(u) does not converge in the mss. The converse
is not true; if the limit of the mean and variance of xn(u) exist and are finite, this does not
imply that xn(u) converges in the mss.11 An example where the limit of the second moments
exist and are finite, but mss convergence does not occur is provided by the Central Limit
Theorem (i.e., the CLT does not hold in the mss – see Chugg problem 29).

It is usually much easier to check for the limit of the second moments, then to check the
Cauchy Test. Thus, the following is an easy procedure for checking for mss:

1. First compute mn = E {xn(u)} and σ2
n = var [xn(u)]. If one or each of these does not

converge as n → ∞, then conclude that xn(u) does not converge in the mss. If mn and
σ2

n both have a finite limit as n → ∞, conclude nothing and go to step 2.

2. Now you must check to see if xn(u) is Cauchy. Compute En,m = E {|xn(u) − xm(u)|2}
and check to see if En,m converges to zero as n and m go to infinity. You must be
careful in performing this step, specifically:

(a) If you are trying to show that En,m → 0 (i.e., mss convergence of xn(u)), you
cannot assume a relationship between n and m other than n ≥ m, or n ≤ m.

(b) If you are trying to show that En,m does not converge to zero (i.e, no mss conver-
gence of xn(u)), you may assume a relationship between n and m. For example
it is sufficient to show that En,n does not converge to 0 as n → ∞.

To illustrate step 2(a), consider the case where En,m = 1
m + 1

n . Assuming only that n ≥ m
implies

En,m =
1

m
+

1

n
≤ 2

m
. n ≥ m (108)

Since this goes to zero as m → ∞ (with n ≥ m), you may conclude that En,m → 0 as
n, m → ∞.

To illustrate step 2(b), consider the case where En,m =
∣∣∣1 − m

n

∣∣∣. It is sufficient to demon-
strate only one way in which n, m → ∞ so that En,m doesn’t converge to 0. Simply take
n = 2m, so that

En,m = 1 − m

n
=

1

2
. n = 2m (109)

It follows that for ε = 1/4, there is no integer N1/4 such that n, m > N1/4 implies En,m < 1/4
– i.e., En,m does not converge to 0 and therefore xn(u) does not converge in the mss.

11Interestingly, if it is known that xn(u) converges to x(u) almost surely, then this condition does imply
mss convergence.
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6.6 Relation to Linear Systems on T = Z.

In this section, we will end our temporary detour into stochastic convergence theory by
applying mss convergence results to discrete time linear systems. We will present the results
for arbitrary linear systems and second moment random processes, then specialize the results
to the LTI/WSS special case.

Consider an arbitrary discrete time linear system defined by

ỹ = Hx̃ ←→ y(t) =
∞∑

i=−∞
h(t, i)x(i) t ∈ Z. (110)

If the input to this system is a random sequence x(u, t), then the output at time t is the
limit of

yn(u, t) =
n∑

i=−n

h(t, i)x(u, i) t ∈ Z, (111)

as n → ∞. This is a stochastic limit, and must be investigated for each fixed value of t (i.e.,
fix t and think of this as a random sequence in n).

The objective is to eventually obtain the second moment description of the output from
the input’s second moments and the system impulse response. Since in the presence of mss
convergence we can obtain this by computing the limit of the second moment description of
yn(u, t), the mean-square sense mode of convergence is a logical choice to investigate.

For a fixed t ∈ T = Z, yn(u, t) converges in the mss iff it is Cauchy. Explicitly, the
output exists in the mss iff the following quantity goes to zero as n, m → ∞

En,m(t) = E
{
|ym(u, t) − yn(u, t)|2

}
. (112)

Assuming only that m ≥ n, this may be expressed as

En,m(t) = E






∣∣∣∣∣∣

∑

i∈A(n,m)

h(t, i)x(u, i)

∣∣∣∣∣∣

2




, (113)

where the region of summation is defined as

A(n, m) = {i : n < |i| ≤ m}. (114)

This region is illustrated in Figure 5.
An upper bound to En,m(t) will yield a sufficient condition for the output to exist in the

mss at time t. A series of upper bounds follows from the definition

0 ≤ En,m(t) =
∑

i∈A(n,m)

∑

j∈A(n,m)

h(t, i)h∗(t, j)Rx(i, j) (115a)

≤
∑

i∈A(n,m)

∑

j∈A(n,m)

|h(t, i)||h(t, j)||Rx(i, j)| (115b)



(n+1) m-(n+1)-m

A(n,m)

26 K.M. Chugg: WSS/LTI Spectral Theory Notes c© – November 19, 1995

Figure 5: The region of sumation A(n, m).

≤
∑

i∈A(n,m)

∑

j∈A(n,m)

|h(t, i)||h(t, j)|
√

Rx(i, i)
√

Rx(j, j) (115c)

=




∑

i∈A(n,m)

|h(t, i)|
√

Rx(i, i)




2

(115d)

≤



∑

|i|>n

|h(t, i)|
√

Rx(i, i)




2

(115e)

The reasoning behind each step is:

• (115a) follows from expanding (113) and taking expectation.

• (115b) follows from the fact that absolute value of a sum is less than sum of absolute
values of the individual terms (i.e., |a + b| ≤ |a| + |b|).

• (115c) follows from the Cauchy-Schwartz inequality; specifically |Rx(i, j)| ≤√
Rx(i, i)

√
Rx(j, j). The double sum may then be expressed as a square of a single

sum as given in (115d).

• (115e) holds since A(n, m) ⊂ {i : |i| > n} and the terms of the sum are non-negative.

The series of upper bounds given in (115) yields a series of sufficient conditions for mss
convergence of yn(u, t). The last is the easiest to check and leads to the following theorem

Theorem (The Stability Theorem) If the following two conditions are met

∞∑

i=−∞
|h(t, i)| = Mt < ∞ (stable system at time t) (116a)

Rx(i, i) < Rmax < ∞ ∀ i ∈ Z, (uniformly bounded input power) (116b)

then the output exists in the mss at time t.
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Proof By (115e),

En,m(t) ≤ Rmax



Mt −
n∑

i=−n

|h(t, i)|



2

, (117)

which converges to zero as n → ∞ by the stable system condition.

Notice what this theorem does not say – i.e., the converse is not true. If the two conditions
of the above theorem are not met, this does not imply that the sequence does not converge
in the mss. If the two conditions are not met, one should go back to (115) and test the
other conditions. If each successive condition does not hold, the Cauchy Criterion should be
tested directly before any conclusions are drawn.

The Stability Theorem has a particularly simple form when the process is WSS and the
system is LTI.

The output of an LTI system defined on Z exists in the mss for all values of time when

∞∑

n=−∞
|h(n)| = M < ∞ (stable system) (118a)

Rx(0) < ∞. (finite power) (118b)

In other words, the output of a stable LTI system exists in the mss when the input is a finite
power WSS process.

6.7 ♣ Mean-Square Calculus

See Stark and Woods for a good description of this subject. It will be covered near the end
of the semester.

6.8 ♣ Advanced Topics

6.8.1 The Loève Criterion for MSS Convergence

The Loève test for mss convergence is equivalent to the Cauchy Criterion. In some cases, the
Loève test is simpler to check. This test deals with the correlation function of the sequence

Rx(n1, n2) = E
{
xn1(u)x∗

n2
(u)

}
. (119)

Theorem (Loève Criterion) A second moment sequence of random variables xn(u) con-
verges in the mss iff limn,m→∞ Rx(n, m) = r, where r is a fixed (finite, real, non-negative)
constant.
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Proof First note that

En,m = E
{
|xn(u) − xm(u)|2

}
= Rx(n, n) + Rx(m, m) − 26 {Rx(n, m)}. (120)

It follows that if Rx(n, m) goes to r, then xn(u) converges in the mss. To prove the other di-
rection, if xn(u) converges in the mss, then by the theorem of Section 6.5, Rx(n, n) converges
to r = E {|x(u)|2}. It follows that, for any ε > 0, there exists an Nε, so that n, m > Nε

ensures

|En,m| < ε (121)

|r − Rx(n, n)| < ε (122)

|r − Rx(m, m)| < ε. (123)

For such values of n and m, we have

|r −6 {Rx(n, m)}| <
3ε

2
, (124)

so that r − 6 {Rx(n, m)} is a real Cauchy sequence, and thus 6 {Rx(n, m)} converges to
r. Using this with the Cauchy-Schwartz inequality implies that Rx(n, m) converges to r.
Specifically,

6 {Rx(n, m)} ≤ |Rx(n, m)| ≤
√

Rx(n, n)
√

Rx(m, m), (125)

and since both the LHS and RHS converge to r, so does |Rx(n, m)|. Since |Rx(n, m)| and
6 {Rx(n, m)} both converge to the same value, so does Rx(n, m).

6.8.2 ♣ Non-562a Topics from an Engineering Perspective

It would be nice to say more about the relationship between different types of convergence.
Specifically:

• Conditions under which a.s. convergence implies mss convergence (counter examples).

• L1 convergence: implied by mss convergence (via Jensen’s inequality), and the relation
to a.s. convergence via Uniform Integrability

• Borel-Cantelli Lemmas and SLLN proof

7 LTI/WSS Processing on T = Z
With the mss convergence theory in place (i.e., the LTI/WSS stability theorem), we are
prepared to obtain results for T = Z which are analogous to those obtained for ZN in
Section 5.
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7.1 LTI Systems
Because Z is infinite, the matrix notation is not practical, so we will rely on the signal
notation exclusively. Any linear system on SZ , H may be represented by the superposition
sum

ỹ = Hx̃ ←→ y(n1) =
∞∑

n2=−∞
h(n1, n2)x(n2). (126)

If the system is LTI, it can be shown that h(n1, n2) = h(n1−n2, 0). Again, the “0” argument
is dropped for compactness and the superposition sum becomes a convolution sum

ỹ = Hx̃ ←→ y(n1) =
∞∑

n2=−∞
h(n1 − n2)x(n2). (127)

The frequency set for these LTI systems is F = [1/2, 1/2), F = [0, 1), or any other
interval of length one. This is why the periodic frequency domain interpretation is useful. It
follows that

Hẽν = H(ν)ẽν ←→
∞∑

n2=−∞
h(n1 − n2)eν(n2) = H(ν)eν(n1), (128)

where12

eν(n) = ej2πνn, (129)

and the system eigenvalues are the DTFT of the system impulse response

H(ν) = DTFT {h(n)} =
∞∑

n=−∞
h(n)e−j2πνn. (130)

7.2 WSS Processes
A WSS process on Z has mean mx(n) = mx and correlation function Rx(n1, n2) = Rx(m),
with m = n1 − n2. The correlation function for a WSS sequence defines an LTI operator by

w̃ = Rxṽ ←→ w(n1) =
∞∑

n2=−∞
Rx(n1, n2)v(n2) =

∞∑

n2=−∞
Rx(n1 − n2)v(n2). (131)

So the correlation operator defines an LTI system with eigenvalues Sx(ν) defined by

Rx(m)∗eν(m) = Sx(ν)eν(m) (132)

Sx(ν) = DTFT {Rx(m)} =
∞∑

m=−∞
Rx(m)e−j2πmν . (133)

Because the mean function is a multiple of an eigenfunction (i.e., mx(n) = mxe0(n) = mx)
the correlation and covariance operators have the same eigenfunctions. The eigenvalues of
Kx(m) are

λx(ν) = Sx0(ν) = DTFT {Kx(m)}. (134)

Due to this relation, the convention is to drop the λx(ν) notation and use Sx0(ν).

12The notation ν ∈ F will be used for the discrete time case to emphasize the normalized frequency of the
DTFT.
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7.3 LTI/WSS Spectral Relationship

Consider a WSS process x(u, n) passed through a stable LTI system with impulse response
h(n). The output process y(u, n) exists in the mss by the WSS Stability Theorem. This mss
limit is

y(u, n) = h(n)∗x(u, n) =
∞∑

k=−∞
h(k)x(u, n − k). (135)

Since the convergence is mss, the second moment description of y(u, n) can be found by
exchanging limits and expectations.

The mean of y(u, n) is

E {y(u, n)} = E





∞∑

k=−∞
h(k)x(u, n − k)




 (136)

=
∞∑

k=−∞
h(k)mx(n − k) (137)

= mx




∞∑

k=−∞
h(k)



 . (138)

Notice that the output mean is not a function of time.
The correlation function of y(u, n) is

Ry(n2 + m, n2) = E {y(u, n2 + m)y∗(u, n2)} (139)

=
∞∑

k=−∞

∞∑

l=−∞
h(k)h∗(l)Rx(n2 + m − k, n2 − l) (140)

=
∞∑

k=−∞

∞∑

l=−∞
h(k)h∗(l)Rx(m + l − k) (141)

=
∞∑

l=−∞
h∗(l)




∞∑

k=−∞
h(k)Rx(m + l − k)



 (142)

=
∞∑

l=−∞
h∗(l)f(m + l), (143)

where f(m) = Rx(m)∗h(m). Note that Ry(n2 +m, n2) depends only on m. Continuing, with
j = −l

Ry(m) =
∞∑

j=−∞
h∗(−j)f(m − j) (144)

= f(m)∗h∗(−m) (145)

= h(m)∗Rx(m)∗h∗(−m). (146)
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As expected from the general discussion in Section 4, the output process is also WSS.
The standard spectral relation also holds, namely

my = H(0)mx (147)

Sy(ν) = DTFT {Ry(m)} = |H(ν)|2Sx(ν), (148)

which can be found directly by transforming (146) (see the Transform Theory Notes, espe-
cially the “spectral conjugation property”) and noting that the coefficient of mx in (138) is
H(0).

These results are reasonably intuitive. The mean is a constant, deterministic signal, so
it gets scaled by the DC-response of the system. The relation in (146) is directly analogous
to (1), and the spectral relation is the special case of (5).13

7.4 Power Spectral Density: Properties and Examples
The set of eigenvalues of Rx(m), namely its DTFT Sx(ν), is referred to as the Power Spectral
Density (PSD) of x(u, n). The PSD has the same properties as the eigenvalues of the
correlation operator on finite index sets, namely it is real and non-negative. These properties
follow directly form the Hermitian Symmetry and NND properties directly.

The PSD is Real: For a WSS process the Hermitian Symmetry property is Rx(m) =
R∗

x(−m). Therefore,

[Sx(ν)]∗ =

[ ∞∑

m=−∞
Rx(m)e−j2πνm

]∗
(149)

=
∞∑

l=−∞
R∗

x(−l)e−j2πνl (l = −m) (150)

=
∞∑

l=−∞
Rx(l)e

−j2πνl (Rx(m) = R∗
x(−m)) (151)

= Sx(ν), (152)

so that the PSD is real. This is just a proof of the “HS ∼ Real” property of the DTFT (see
Transform Theory Notes).

The PSD is Non-Negative: The NND property can be used to show that the PSD is
non-negative:

0 ≤ QN =
1

2N + 1

N∑

n1=−N

N∑

n2=−N

e−j2πνn1Rx(n1, n2)e
j2πνn2 (153)

13In fact, it may be thought of as this exact relation for the first column of an infinite dimensional circulant
matrix.
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=
1

2N + 1

N∑

n1=−N

N∑

n2=−N

e−j2πν(n1−n2)Rx(n1 − n2). (154)

Changing variables to m = n1 − n2 and l = n1 + n2 yields

QN =
1

2N + 1

2N∑

m=−2N

e−j2πνmRx(m)
∑

l∈A(m)

1 (155)

=
1

2N + 1

2N∑

m=−2N

e−j2πνmRx(m)[2N + 1 − |m|], (156)

where the region A(m) is illustrated in Figure 6. Adopting the notation from the Transform
Theory Notes for a triangular function, we have

QN =
1

2N + 1

∞∑

m=−∞
DtrianN(m)Rx(m)e−j2πνm (157)

=
1

2N + 1
DTFT {DtrianN(m)Rx(m)} (158)

= (2N + 1)[dincN(ν)]2"1Sx(ν), (159)

where the “Modulation” property of the DTFT has been used. The non-negative property
of the PSD follows since

lim
N→∞

(2N + 1)[dincN(ν)]2 = δD(ν) ν ∈ [−1/2, 1/2). (160)

which is easily seen in the time domain since 1
2N+1DtrianN(m) becomes 1 for all M as

N → ∞. The result is that
lim

N→∞
QN = Sx(ν), (161)

which is non-negative because QN is non-negative. A proof of this property which adds more
engineering insight is outlined in Scholtz problem 52.

These are the two fundamental properties of the PSD. Other properties follow from the
properties of the DTFT (e.g., Sx(ν + 1) = Sx(ν)). One notable property is that if Rx(m) is
real (which can hold even for complex x(u, n)), then the PSD is even (i.e., Sx(ν) = Sx(−ν)).

The Wiener-Khintchine Theorem for Random Sequences: If one were to try to
compute the average power in x(u, n) at frequency ν, the following expression would be a
logical choice

1

2N + 1
E






∣∣∣∣∣∣

N∑

n=−N

x(u, n)e−j2πνn

∣∣∣∣∣∣

2




. (162)

Note that this is precisely the quantity QN defined in (153). The result that limN→∞ QN =
S(ν) is known as the Wiener-Khintchine Theorem.
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Figure 6: The change of variables from (n1, n2) to (m, l).

The Wiener-Khintchine Theorem says that the PSD can be obtained in two equivalent ways:

Sx(ν) = lim
N→∞

1

2N + 1
E






∣∣∣∣∣∣

N∑

n=−N

x(u, n)e−j2πνn

∣∣∣∣∣∣

2




= DTFT {Rx(m)}. (163)

Often times, the PSD is defined by the limit expression and the DTFT relation is obtained
by this theorem.

The Wiener-Khintchine Theorem also provides the physical interpretation of the PSD.

The PSD Sx(ν) is the (ensemble) average power in the the process x(u, n) contained at
frequency ν.

This fact is reminiscent of the “directional preference” of a random vector. In this case
if Sx(ν) takes on a maximum value at ν = ν0, then the preferred direction is eν0(n), and the
mean-square projection coefficient in this direction is Sx(ν0). Below are several examples to
develop your intuition. The PSD for each case is sketched in Figures 7
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Figure 7: The PSD for the example processes.
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1. The total average power of a WSS process is14

Total Average Power in x(u, n) = E
{
|x(u, n)|2

}
= Rx(0) =

∫

1
Sx(ν)dν. (164)

This follows by evaluating the inverse DTFT expression at m = 0. This makes sense:
the total power is the integral of the PSD over all frequencies.

2. Let x(u, n) = a(u), a random variable, with E {a(u)} = 0 and E {|a(u)|2} = σ2
a. Since

x(u, n) does not change with time, its power should be concentrated at ν = 0. To see
this, note that Rx(m) = σ2

a and mx = 0, so

Sx(ν) = σ2
aδD(ν) ν ∈ [−1/2, 1/2). (165)

So, as expected, all the power is concentrated at DC. One comment on notation is that
this may also be written as

Sx(ν) = σ2
a

∞∑

k=−∞
δD(ν − k), (166)

with the periodic DTFT convention. In some cases it is easier to specify the PSD on
one period, such as done in (165).

3. Since Kx(m) is a correlation function (i.e., Kx(m) = Rx0(m)), its DTFT has the same
properties. The relation is

Sx(ν) = DTFT {RX(m)} (167)

= DTFT {Kx(m) + |mx|2} (168)

= Sx0(ν) + |mx|2δD(ν) ν ∈ [−1/2, 1/2). (169)

It follows that if Sx(ν) does not have a Dirac delta at ν = 0, then mx = 0. The
previous example illustrates that the converse is not true: if Sx(ν) does have a delta
at ν = 0, the mean may or may not be zero.

4. Consider z(u, n) = ej(2πν0n+θ(u)), with θ(u) uniform over [0, 2π) and ν0 ∈ [0, 1/2). It is
simple to show that

mz = 0 (170)

Rz(m) = E
{
ej(2πν0(m+n)+θ(u))e−j(2πν0n+θ(u))

}
= ej2πν0m (171)

R̃z(n1, n2) = 0. (172)

It follows that the PSD is

Sz(ν) = δD(ν − ν0) ν ∈ [−1/2, 1/2). (173)

As is expected, all the energy is concentrated at frequency ν0.

14The subscript 1 on the integral means integration over an interval of length 1. This emphasizes the
periodic interpretation of the DTFT.
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5. Let x(u, n) = cos(2πν0n + θ(u)) = 6 {z(u, n)}, where z(u, n) is the tone process from
the last example. Therefore,

mx = 6 {mz} = 0 (174)

Rx(n1, n2) =
1

2
6
{
Rz(n1, n2) + R̃z(n1, n2)

}
(175)

=
1

2
cos(2πν0(n1 − n2)). (176)

The PSD of x(u, n) is then

Sx(ν) =
1

4
[δD(ν − ν0) + δD(ν + ν0)] ν ∈ [−1/2, 1/2). (177)

This process has all its power concentrated at ν = ±ν0.

6. Discrete Time White Noise: Consider w(u, n) which is a sequence of uncorrelated,
mean zero random variables, each with variance σ2. Mathematically, mw = 0 and

Rw(m) = σ2δK(m). (178)

This process has PSD Sw(ν) = σ2. In other words, white noise has equal power at all
frequencies (i.e., no directional preference).

7.4.1 An Example of LTI/WSS Processing

Consider a simple real first-order feedback system driven by white noise, as shown in Figure 8.
This system is governed by the following difference equation

s̃ = Hṽ ←→ s(n) − as(n − 1) = v(n). (179)

Let v(n) be an eigenfunction, and it is clear that the system eigenvalue is

H(ν) =
1

1 − ae−j2πν
. (180)

This system is stable iff |a| < 1. The impulse response is

h(n) = anu(n) =
{

an n ≥ 0

0 n < 0.
(181)

It follows that the output process has PSD

Sy(ν) = |H(ν)|2Sw(ν) = |H(ν)|2 (182)

=
(

1

1 − ae−j2πν

)(
1

1 − ae+j2πν

)
(183)

=
1

1 − 2a cos(2πν) + a2
. (184)
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Figure 8: A first-order feed-back (autoregressive (AR)) discrete time system.

Note that since a is real the PSD is even. The corresponding correlation function is

Ry(m) =
1

1 − a2
a|m|. (185)

This could be obtained directly as Ry(m) = h(m)∗h(−m) with some effort. The correlation
and PSD are plotted in Figures 10 and 9, respectively. These plots illustrate, that for this
process, the faster Ry(m) decays, the more power x(u, n) contains at high frequency.

7.5 Simulation and Whitening

The simulation and whitening problems are analogous to those considered in the random
vector case. In the discrete time WSS simulation problem we begin with a white sequence
w(u, n), (i.e., Sw(ν) = 1) and design an LTI system with impulse response h(n) so that
y(u, n) = h(n)∗w(u, n)+ c. The objective is to choose h(n) and c such that y(u, n) ws= x(u, n)
(i.e., my = mx and Ky(m) = Kx(m)), where x(u, n) is the WSS process to be simulated.
This problem is illustrated in Figure 11.

The solution to this problem is provided by determining the mean and covariance of
y(u, n)

my = E {h(n)∗x(u, n) + c} = H(0)mw + c (186)

= c (187)

Ky(m) = h(m)∗h∗(−m)∗Kw(m) (188)

= h(m)∗h∗(−m). (189)
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Figure 9: Correlation function of output of first order AR system with white noise input.
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Figure 10: PSD of output of first order AR system with white noise input.

Figure 11: The LTI/WSS simulation problem.
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The appropriate choice for is c = mx. The problem of finding h(m) so that Kx(m) =
h(m)∗h∗(−m) is analogous to the Kx = HH† problem for random vectors. Solving for h(m)
is more easily accomplished in the frequency domain

Sy(ν) = |H(ν)|2Sw(ν) = |H(ν)|2 = Sx(ν). (190)

Thus, the simulation problem is solved by designing an LTI filter with frequency response
H(ν) with squared magnitude equally to Sx(ν).

The whitening problem is the inverse of the simulation problem. Specifically, given a
WSS sequence x(u, n), design an LTI system g(n) so that w(u, n) = g(n)∗(x(u, n) − mx) is
a white sequence. From the above development, it is clear that the spectrum of g(n) should
satisfy

1 = |G(ν)|2Sx0(ν) ⇐⇒ |G(ν)|2 =
1

Sx0(ν)
. (191)

Notice that the whitening problem is ill-defined if the covariance operator is singular (i.e.,
one of the eigenvalues is zero – Sx0(ν) = 0).

7.6 Spectral Factorization
Both the simulation and whitening problems require factorization of a PSD; in this section
we consider techniques for performing this spectral factorization.

7.6.1 Desired Properties of a Spectral Factor

Consider a specific example for the simulation problem:

Sx(ν) =
1

1 − 2a cos(2πν) + a2
, (192)

where a is a real number with magnitude less than unity. Because there is no delta function
at ν = 0, this process has mean zero, so that c = 0. An obvious choice for H(ν) is provided
by the example in Section 7.4.1 – in fact, the solution is obvious because we have seen that
this is the PSD of the output of the filter in Figure 8 when the input is white noise. However,
this solution is clearly not unique. Consider the following valid choices for the spectral factor
of Sx(ν)

H(ν) =
1

1 − ae−j2πν
h(n) = anu(n) (193a)

H(ν) =
1

1 − aej2πν
h(n) = a|n|u(−n) (193b)

H(ν) =
1

√
1 − 2a cos(2πν) + a2

h(n) = ? (193c)

H(ν) =
ej2πν(3)

1 − ae−j2πν
h(n) = an+3u(n + 3) (193d)
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H(ν) =
e−j2πν(3)

1 − ae−j2πν
h(n) = an−3u(n − 3). (193e)

In fact there are infinitely many choices for H(ν) so that Sx(ν) = |H(ν)|2.
The obvious question arises: “Is there a best choice for a spectral factor?” There is in

fact a best choice and in the present example, your intuition should suggest that the choice
in (193a) is the best. What are the qualities that we would like H(ν) to have? Below is a
list of desirable features.

1. It should be easy to find h(n) = DTFT−1 {H(ν)} and/or to build a filter with frequency
response H(ν).

2. H(ν) should be the spectrum of a causal system.

3. In addition to causality, the filter should have no unnecessary delays – i.e., the impulse
should start at n = 0.

4. Whenever possible, H(ν) should be selected so that G(ν) = 1/H(ν) also has the above
three properties.

The first feature eliminates the spectral factor in (193c) (I don’t know how to invert this –
do you?). The causality constraint eliminates the H(ν) in (193b) and (193d), while the third
criterion eliminates the spectral factor in (193e). So we have have quantified our intuition –
the choice of H(ν) in (193a) satisfies these reasonable criteria.

Now consider the problem of whitening the process x(u, n). Again the solution is not
unique, in fact, taking G(ν) = 1/H(ν) for each choice of H(ν) in (193) provides a solution.
However, the only choice for which G(ν) is a causal, stable filter with no unnecessary internal
delay is (193a). Thus, selecting the spectral factor in (193a) has the additional advantage
that the inverse filter has these same desirable properties.

The above example has one additional aspect which makes the spectral factorization
practical and simple: it is a rational function of z = ej2πν (i.e., the ratio of two polynomials
in z). We concentrate on factorization of rational PSD’s for the following two practical
reasons:

• When Sx(ν) is rational, a rational spectral factor H(ν) can be found and easily imple-
mented using delays and adders.

• An arbitrary spectrum may be approximated by a rational function.

In fact, it is possible that you may never encounter a case where a non-rational spectral
factorization is necessary. A technique for the general (non-rational) spectral factorization
problem is described in Section 7.6.3.
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7.6.2 A Recipe for Minimum-Phase Causal Spectral Factorization of Rational
PSD

A spectral factor of a rational Sx(ν) which has the desired properties described in Sec-
tion 7.6.1 is referred to as a minimum-phase causal (spectral) factor of Sx(ν). In this section,
a specific procedure for performing minimum-phase factorization of rational PSD functions
is described.

To begin the development, answer the following question:

Is F (ν) =
1 − qe−j2πν

1 − pe−j2πν
a valid PSD? (194)

the answer is NO, since this function is not real. In fact, since Sx(ν) is real, if it contains a
term like F (ν), then it must also contain the term F ∗(ν). It follows, that any rational PSD
has the following form

Sx(ν) = C2

∏Q
i=1(1 − qie−j2πν)(1 − q∗i e

j2πν)
∏P

i=1(1 − pie−j2πν)(1 − p∗i ej2πν)
, (195)

where C is a real constant and {pi} and {qi} are known (possibly complex, and non-distinct)
parameters. In words, if Sx(z) has a pole at z = p, then it also has a pole at 1/p∗, with
a similar symmetry required for zero locations.15 This structure, which is illustrated in
Figure 12, makes it simple to identify the minimum phase causal factor in the frequency
domain.16

The general procedure is most easily developed by starting with an example. Consider
the specific case of

Sx(ν) =
10 + 6 cos(2πν)

[17
16 −

1
2 cos(2πν)][54 + cos(2πν)]

. (196)

The first step is to express this in the pole-zero form of (195). This is accomplished via the
identity

(1 − pe−j2πν)(1 − p∗ej2πν) = 1 + a2 − 2a cos(2πν − θ), (197)

with p = aejθ and a > 0 a real number. Applying this identity to the example at hand (not
both poles are real here) yields

Sx(ν) =
(1 + 3ej2πν)(1 + 3e−j2πν)

[(1 − 1
4e

j2πν)(1 − 1
4e

−j2πν)][(1 + 1
2e

j2πν)(1 + 1
2e

−j2πν)]
(198)

Since the poles pairs in (195) are of the form z = aejθ and z = 1
aejθ, one may be associated

with H(ν) and the other with H∗(ν). The task is then to split up these pole (and zero) pairs
in such a way that H(ν) corresponds to a stable, causal, minimum-phase system. This step
is most easily performed by converting to a Z-transform.

15The notation Sx(z) is used to denote Sx(ν) expressed as a function of z = exp(j2πν).
16In the method presented, poles and/or zeros at z = 0, or z = ∞ are not considered until the last step of

the factorization.
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Figure 12: The pole/zero symmetry for Sx(z).

The Z-transform may be seen as an extension of the DTFT; alternately, the DTFT may
be viewed as the Z-transform evaluated on the unit circle (i.e., z = ej2πν). It follows that the
Z-transform of Rx(m), denoted Sx(z), has a region of convergence (ROC) which includes the
unit circle in the z-plane. It is also useful to characterize an LTI system by its Z-transform,
and the corresponding ROC. Specifically, the ROC of the Z-transform corresponding to a
minimum-phase, stable, causal system has unique properties.

The following facts may be used to recognize a stable, causal, minimum-phase system in
the z domain:

1. A stable system has a DTFT which exists, so the ROC of the corresponding Z-transform
includes the unit circle.

2. A “right-handed sequence” is one in which h(n) = 0 for all n < n0 for some n0. The
Z-transform of a right-handed sequence has an ROC which is the outside of a circle.

3. For a causal system,
lim
z→∞

H(z) = h(0). (199)

This property is sometimes summarized as “the ROC of of a causal system includes
the point z = ∞.” This is easily seen from the definition; for a causal system (h(n) = 0
for n < 0)

H(z) =
∞∑

n=−∞
h(n)z−n = h(0) +

h(1)

z
+

h(2)

z2
+ . . . (200)
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Figure 13: The ROC of H(z), when H is a stable, causal, minimum-phase system.

If the system is non-causal, H(z) will include positive powers of z and thus, as z → ∞,
H(z) diverges.

These facts determine the ROC of the causal, minimum-phase, stable factor.

If H(z) is the Z-transform of a stable, causal, minimum-phase system, then the ROC has
the form {a < z ≤ ∞}, where 0 ≤ a < 1, and

lim
z→∞

H(z) = h(0) %= 0. (201)

In other words, all of the poles are inside the unit circle, and limz→∞ H(z) is finite and
non-zero

The ROC of a minimum phase system is illustrated in Figure 13.

With this fact, the next step in the example is to convert to Sx(z), so that

Sx(z) =
(1 + 3z)(1 + 3z−1)

[(1 − 1
4z)(1 − 1

4z
−1)][(1 + 1

2z)(1 + 1
2z

−1)]
. (202)

The pole/zero plot for this function is illustrated in Figure 14. Next, split the Z-transform
into

Sx(z) = Hr(z) H∗
r (·)|z−1 (203)

so that all of the poles and zeroes of Hr(z) are inside the unit circle. The notation H∗
r (·)|z−1

is used to represent the function H∗(ν) evaluated at z = ej2πν – i.e., conjugate all parameters
in Hr(·) and then evaluate at z−1. If all of the poles and zeros of Hr(z) are real, then this is
simply Hr(z−1).
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Figure 14: The pole/zero plot for the example Sx(z).

In our example, Sx(z) has poles at z = 1
4 , 4,

−1
2 , and −2, and zeros at z = −3 and −1

3 .
We therefore choose Hr(z) to be

Hr(z) =
(1 + 3z)

(1 − 1
4z

−1)(1 + 1
2z

−1)
. (204)

We have selected Hr(z) so that it satisfies all the properties of the desired spectral factor
except possibly the causality/minimum-phase criterion. The final step is to choose the
spectral factor as

H(z) = zmHr(z), (205)

with the integer m selected so that limz→∞ H(z) is finite and non-zero. This can be accom-
plished by selecting m so that the numerator and denominator polynomials have the same
order. Thus, in this example, the proper choice is m = −1, so that

H(z) =
z−1(1 + 3z)

(1 − 1
4z

−1)(1 + 1
2z

−1)
=

z(1 + 3z)

(z − 1
4)(z + 1

2)
. (206)

The result of our example is that H(ν) represents a causal, stable, minimum-phase filter,
which has squared magnitude equal to Sx(ν). In fact, it is simple to show that

h(n) =
4

3

[
7

4

(
1

4

)n

+
1

2

(−1

2

)n]
u(n). (207)

Notice that if we would have selected m > −1, the system would have been non-causal (i.e.,
h(−1) %= 0), and if we selected m < −1, the system would not be minimum-phase (i.e.,
h(0) = 0).
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Also notice that for this spectral factor, G(ν) = 1/H(ν) is also a causal stable system.
The procedure given provides this nice result whenever there are no zeros on the unit circle.

Let’s summarize the procedure:

Below are the steps to factor a rational PSD Sx(ν) into |H(ν)|2, where H(ν) is the frequency
response of a stable, causal, minimum-phase system:

1. Convert Sx(ν) into pole/zero form (i.e., see (195)).

2. Convert to Sx(z) using z = ej2πν .

3. Split Sx(z) = Hr(z) H∗
r (·)|z−1 so that all of the poles and zeroes of Hr(z) are inside the

unit circle.

4. Set H(z) = zmHr(z) and select m so that limz→∞ H(z) is finite and non-zero – i.e.,
select m so that the numerator and denominator of H(z) have the same degree.

With this procedure the choice of H(z) is unique up to a unit magnitude scale factor. If
you like, you may add the last step of multiplying by a constant α, with |α| = 1, so that
h(0) is real and positive.

7.6.3 ♣ General Spectral Factorization Considerations

There are a few more general cases which we should mention before leaving spectral factor-
ization.

Non-Rational PSD The first generalization is factorization of a general PSD – i.e., in-
cluding non-rational functions. There is a general procedure for this, which begins by noting
that

Sx(ν) = |H(ν)|2 ⇒ log(Sx(ν)) = log(H(ν)) + log(H∗(ν)). (208)

The next step involves forming the Fourier Series of log(Sx(ν)) in ν – i.e., computing the in-
verse DTFT of log(Sx(ν)). From this expansion the contribution of log(H(ν)) and log(H∗(ν))
can be identified and separated. The result is that one can identify the causal, stable factor
of Sx(ν) even for non-ration PSD. However, the resulting filter is not simple to build, as is
the case for a rational spectra.
♣ Eventually, I want to include the details for this factorization.

The main result is that if and only if the Fourier Series of log(Sx(ν)) exists. A necessary
and sufficient condition for this is given below.

The Discrete Time Paley-Wiener Criterion The PSD Sx(ν) may be factored into
Sx(ν) = |H(ν)|2, where H(ν) is the DTFT of a causal stable system if and only if

∫

1
| log(Sx(ν))|dν < ∞. (209)
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For example, the following spectrum has no causal, stable spectral factor:

Sx(ν) =

{
1 |ν| < 1

4

0 1
4 ≤ |ν| < 1

2 .
(210)

In general, any PSD which is zero over some interval does not have a causal, stable factor.

Non-WSS Simulation The second point is that we have solved only a special case of
the factorization of Rx(n1, n2). Specifically, we developed a technique for WSS process
only. Consider the direct generalization of the Cholesky factorization for random vectors.
In this general setting, one would attempt to design a time-varying, causal linear system
with impulse response h(n1, n2), so that the covariance of the output process is Kx(n1, n2)
when the input is white noise. This is a general operator factorization problem, and is not
considered here.
♣ How can the Cholesky factorization technique be adopted to obtain a finite-memory
system which closely approximates the desired solution?

7.7 Cross-PSD and the Two-Filter Formula
The cross-PSD of two jointly-WSS processes is defined by

Sxy(ν) = DTFT {Rxy(m)}. (211)

The symmetry of the cross-correlation function (i.e., Rxy(m) = R∗
yx(−m), implies

Sxy(ν) = (Syx(ν))∗ . (212)

A useful result may be stated regarding the system in Figure 15, where two jointly-
WSS processes v(u, n) and w(u, n) drive LTI systems so that x(u, n) = h(n)∗v(u, n) and
y(u, n) = g(n)∗w(u, n). Using the techniques applied in Section 7.3, the following results are
obtained

Rxy(m) = h(m)∗Rvw(m)∗g∗(−m) (213)

Sxy(ν) = H(ν)G∗(ν)Sxy(ν). (214)

The single-input/single-output result of Section 7.3 is a special case of this “two-filter
formula.” This result is extremely useful and should be committed to memory.

A special case of the two filter formula yields the cross-PSD of the input and output
of a linear system. Specifically, let w(u, n) = v(u, n) and G(ν) = 1; in this case Sxw(ν) =
H(ν)Sw(ν).

Similar results may be obtained for the pseudo-correlation and its DTFT when the signals
are fully-WSS complex processes.
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Figure 15: The set-up for the two-filter formula.

7.8 ♣ MMSE Estimation on T = Z
This will be covered in class; only the results are listed here. In the results listed, it is
assumed the the observed sequence x(u, n) and the desired sequence z(u, n) are jointly-WSS
processes.

7.8.1 The Affine Constraint

Based on observing {x(u, i)}∞i=−∞, the best affine estimator of z(u, n) is

ẑ(u, n) = gopt(n)∗(x(u, n) − mx) + mz, (215)

where the Wiener filter is defined by

Gopt(ν) =
Sz0x0(ν)

Sx0(ν)
. (216)

The corresponding minimum MSE is

MMSE = E
{
|z(u, n)|2

}
− E

{
|ẑ(u, n)|2

}
(217)

=
∫

1
Sz0(ν) − |Sz0x0(ν)|2

Sx0(ν)
dν. (218)

7.8.2 The Causal Affine Constraint

Based on observing {x(u, i)}n
i=−∞, the best affine estimator of z(u, n) is

ẑ(u, n) = gopt(n)∗(x(u, n) − mx) + mz, (219)

where the Causal Wiener filter is defined by

Gopt(ν) = C
{

Sz0x0 (ν)
H∗

x0
(ν)

}
1

Hx0(ν)
, (220)
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where Hx(ν) is the causal, minimum phase factor of Sx0(ν). The causal part operator is
defined by

C {P (ν)} = DTFT
{
u(m)DTFT−1 {P (ν)}

}
, (221)

The corresponding minimum MSE is

MMSE = E
{
|z(u, n)|2

}
− E

{
|ẑ(u, n)|2

}
(222)

=
∫

1
Sz0(ν) −

∣∣∣∣C
{

Sz0x0 (ν)
H∗

x0
(ν)

}∣∣∣∣
2

dν. (223)

7.9 ♣ Inverting Transforms the Easy Way

8 LTI/WSS Processing on T = R
In this section results for the index set T = R which are analogous to those obtained
for T = Z in Section 7 are developed. Due to the strong similarity of these results, the
derivations and discussions are more terse.

8.1 LTI Systems

Any linear system on SR, H may be represented by the superposition integral

ỹ = Hx̃ ←→ y(t1) =
∫ ∞

−∞
h(t1, t2)x(t2)dt2. (224)

If the system is LTI, it can be shown that h(t1, t2) = h(t1 − t2, 0) = h(t1 − t2), so that

ỹ = Hx̃ ←→ y(t1) =
∫ ∞

−∞
h(t1 − t2)x(t2)dt2. (225)

The frequency set for these LTI systems is R, so that

Hẽf = H(f)ẽf ←→
∫ ∞

−∞
h(t1 − t2)ef (t2) = H(f)ef (t1), (226)

where

ef (t) = ej2πft, (227)

and the system eigenvalues are the Fourier Transform (FT) of the system impulse response

H(f) = FT {h(t)} =
∫ ∞

−∞
h(t)e−j2πftdt. (228)
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8.2 WSS Processes
A WSS process on R has mean mx(t) = mx and correlation function Rx(t1, t2) = Rx(τ),
with τ = t1 − t2. The correlation function for a WSS sequence defines an LTI operator by

w̃ = Rxṽ ←→ w(t1) =
∫ ∞

−∞
Rx(t1, t2)v(t2)dt2 =

∫ ∞

−∞
Rx(t1 − t2)v(t2)dt2. (229)

So the correlation operator defines an LTI system with eigenvalues Sx(f) defined by

Rx(τ)∗ef (τ) = Sx(f)ef (τ) (230)

Sx(f) = FT {Rx(τ)} =
∫ ∞

−∞
Rx(τ)e−j2πftdt. (231)

Again, Sx(f) is referred to as the PSD of x(u, t) and it has the same interpretation as the
PSD of a random sequence – i.e., the power in x(u, t) at frequency f .

8.3 LTI/WSS Spectral Relationship
Consider a WSS process x(u, t) passed through a stable LTI system with impulse response
h(t). The output process is

y(u, t) = h(t)∗x(u, t) =
∫ ∞

−∞
h(α)x(u, t − α)dα. (232)

The mean of y(u, t) is

E {y(u, t)} = E
{∫ ∞

−∞
h(α)x(u, t − α)dα

}
(233)

=
∫ ∞

−∞
h(α)mx(t − α)dα (234)

= mx

[∫ ∞

−∞
h(α)dα

]
. (235)

The correlation function of y(u, t) is

Ry(t2 + τ, t2) = E {y(u, t2 + τ)y∗(u, t2)} (236)

=
∫ ∞

−∞

∫ ∞

−∞
h(α)h∗(β)Rx(τ − α + β)dαdβ (237)

= h(τ)∗Rx(τ)∗h∗(−τ). (238)

After transforming, we obtain the familiar result

my = H(0)mx (239)

Sy(f) = FT {Ry(τ)} = |H(f)|2Sx(f). (240)

This result should be sinking by now; when the system is LTI, and the input is WSS, the
output will also be WSS with PSD as stated above.
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8.4 Power Spectral Density: Properties and Examples

Once again, we have that the PSD is real and non-negative. Some properties are summarized
below

• Rx(τ) = R∗
x(−τ) ⇒ Sx(f) is real. Shown using the “HS ∼ Real” property of FT.

• Sx(f) ≥ 0 for all f ∈ R. Again, this is a direct consequence of the NND property, but
the proof is a little tedious. The outline is:

– Start with the fact that the NND property implies

QT =
1

2T

∫ T

−T

∫ T

−T
e−j2πf(t1−t2)Rx(t1 − t2)dt1dt2 ≥ 0. (241)

– Change variables to τ = t1 − t2 and β = t1 + t2 to show that

QT =
∫ 2T

−2T
e−j2πfτRx(τ)

[

1 − |τ |
2T

]

dτ (242)

= FT {Rx(τ)trian(τ/(2T ))} (243)

= Sx(f)∗[(2T )sinc2(2Tf)]. (244)

– The final step is to note that

lim
T→∞

(2T )sinc2(2Tf) = δD(f), (245)

so that QT → Sx(f) as T → ∞. Since QT ≥ 0 for all values of T , the limit must
also be non-negative.

• The above development also provides the Wiener-Khintchine Theorem for continuous
time processes:

Sx(f) = lim
T→∞

1

2T
E





∣∣∣∣∣

∫ T

−T
Nx(u, t)e−j2πft

∣∣∣∣∣

2



 = FT {Rx(τ)}. (246)

• If Rx(τ) is real, then Sx(f) = Sx(−f).

• If Sx(f) does not have a Dirac delta at f = 0, then mx = 0. The converse is false –
i.e., a delta at zero implies nothing about the mean.

• Total Average Power:

E
{
|x(u, t)|2

}
= Rx(0) =

∫ ∞

−∞
Sx(f)df. (247)
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8.5 Continuous Time White Noise – An Engineering View
Describing a white noise process on T = R is more difficult than one might imagine. We have
characterized white noise in the other index sets by either of the following two properties

• White noise decorrelates as fast as possible. In discrete time this means the white noise
is a sequence of uncorrelated random variables.

• White noise has no directional preference; it has equal power in each eigen-direction.

The first characterization is difficult to extend to continuous time. Specifically, if we try

Rw(τ) =

{
1 τ = 0

0 otherwise,
(248)

we run into the ambiguity that Sw(f) = 0 for all f , or equivalently,
∫ ∞

−∞
|Rw(τ)|2dτ = 0. (249)

If we attempt to extend the second characterization to the continuous time case, we have

Continuous Time White Noise: Sw(f) =
N0

2
←→ Rw(τ) =

N0

2
δD(τ). (250)

While this is the working definition that we will use, it is not without its own conceptual
flaws. Most significantly, continuous time white noise is not a second moment process:

Ave. Power in w(u, t): E
{
|w(u, t)|2

}
= Rw(0) =

∫ ∞

−∞

N0

2
df → ∞. (251)

For this reason N0/2 is not the “variance,” but is often referred to as the intensity of the
white noise. We will use the descriptive term (two-sided) spectral level when referring to
N0/2.

This is a a disturbing concept, but not unlike others you have accepted in the past. For
example, a Dirac delta function does not exist, but it is useful to consider the response of
an LTI system to such a non-existent signal (i.e, you cannot produce one in the lab.). In
fact, if the system is stable, the output signal (i.e., the impulse response) is well-defined. To
measure the system impulse response of an LTI system, one would use a very narrow pulse
with unit energy in place of the delta. In practice, “very narrow” means narrow relative to
the time constant of the system. In the frequency domain, the pulse spectrum should be flat
across the bandwidth of the system being probed. White noise plays a similar modeling role
in random signal processing.

Consider the output PSD of a stable LTI system with frequency response H(f), when
the input is our (non-existent) white noise (let N0/2 = 1):

Sy(f) = |H(f)|2Sw(f) = |H(f)|2. (252)

Since this system is stable the output process has finite power. Also, if the actual input
process has PSD which is approximately flat across the bandwidth of H(f), the output
process would have the same PSD. This is the value of the white noise model.
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Figure 16: A first-order feed-back (autoregressive) continuous time system.

8.5.1 An LTI/WSS Example and White Noise

As a concrete example, consider a simple real first-order feedback system as shown in Fig-
ure 16. This system is governed by the following differential equation

s̃ = Hṽ ←→ as(t) + ṡ(t) = v(t), (253)

where the derivative has been denoted by a dot, and a is a real constant. The frequency
response of this system is

H(f) =
1

a + j2πf
. (254)

This system is stable iff a > 0. The impulse response is

h(t) = e−atu(t) =

{
e−at t ≥ 0

0 t < 0.
(255)

If the input is white noise with spectral level 1, the output process has PSD

Sy(f) = |H(f)|2 (256)

=

(
1

a + j2πf

)(
1

a − j2πf

)

(257)

=
1

a2 + (2πf)2
. (258)

Note that since a is real the PSD is even. The corresponding correlation function is

Ry(τ) = FT−1 {Sy(f)} =
1

2a
e−a|τ |, (259)
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Figure 17: Correlation function of output of first-order AR system with white noise input.



10-9

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

0.01 0.1 1 10 100 1000 104

a = (2 pi)
a = 10*(2 pi)
a = 100*(2 pi)

P
SD

 (
lo

g 
sc

al
e)

f (log scale)

Normalized to Unit Power

K.M. Chugg: WSS/LTI Spectral Theory Notes c© – November 19, 1995 55

Figure 18: PSD of output of first-order AR system with white noise input.
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which could have also been found by Ry(τ) = h(τ)∗h(−τ). The correlation and PSD are
plotted in Figures 17 and 18, respectively. These plots illustrate, that for this process, the
faster Ry(τ) decays, the more power x(u, t) contains at high frequency.

Consider what would happen if the input was a relatively broad-band process x(u, t),
with PSD

Sx(f) =
1

1 + (f/Nf0)2
, (260)

where
f0 =

a

2π
. (261)

The PSD of x(u, t) is fairly flat for |f | < Nf0, then it falls off toward zero as f → ∞. The
“half-power” bandwidth of H(f) is f0, so as the factor N becomes large, we expect the the
output process PSD to look similar to that in (258). This can be seen by the relation

Sy(f) = |H(f)|2Sx(f) =
1

a2 + (2πf)2

[
1

1 + (f/Nf0)2

]

, (262)

Which holds when x(u, t) is the input. The corresponding correlation function is

Ry(τ) =
N2

2a(N + 1)(N − 1)

[
e−a|τ | +

1

N
e−aN |τ |

]
. (263)

The correlation function and PSD for various values of N are plotted in Figures 19 and 20.
Notice that as the bandwidth of the input PSD becomes flat across the bandwidth of the
system, the white noise approximation becomes very accurate. Also note how much more
simple it is to obtain the result when the white noise assumption is made.

White Noise Assumption: If the input PSD is much broader than the system bandwidth,
and is flat over this bandwidth, then the white noise assumption is valid – the input process
may be modeled as white noise.

An equivalent, but more rigorous approach to white noise is defined by the so-called
Wiener process. This process, and its relation to the white noise process is described in
Section 8.11.

8.6 Simulation and Whitening

The simulation and whitening problems are identical to those considered in Section 7. The
notation is also carried over for this discussion. The solution to the simulation problem is
obtained by producing y(u, t) = h(t)∗w(u, t) + my, so that y(u, t) ws= x(u, t). The simulation
filter must solve

Kx(τ) = h(τ)∗h∗(−τ) Sx0(f) = |H(f)|2. (264)
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Figure 19: The output process correlation for the first-order AR system when the input is
broad-band.
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Figure 20: The output process PSD for the first-order AR system when the input is broad-
band.
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The whitening problem requires the design of a filter g(t) with frequency response

|G(f)|2 =
1

Sx0(f)
. (265)

In most applications the whitening filter is cascaded (combined) with other system filters,
so that all signals are finite power.

8.7 Spectral Factorization

8.7.1 Desired Properties of a Spectral Factor

Consider a specific example for the simulation problem:

Sx(f) =
1

a2 + (2πf)2
, (266)

where a < 0 is a real number. Again, the obvious choice for H(f) is provided by the example
in Section 8.5.1, but the solution is not unique.

Consider the following valid choices for the spectral factor of Sx(f)

H(f) =
1

a + j2πf
h(t) = e−atu(t) (267a)

H(f) =
1

a − j2πf
h(t) = eatu(−t) (267b)

H(f) =
1

√
a2 + (2πf)2

h(t) = ? (267c)

H(f) =
e+j2π3f

a + j2πf
h(t) = e−a(t+3)u(t + 3) (267d)

H(f) =
e−j2π3f

a + j2πf
h(t) = e−a(t−3)u(t − 3) (267e)

The desirable properties are the same as those for the discrete time case. Namely, we should
select a causal, stable, minimum-phase filter. In this case we have only on choice, the filter
in (267a). This choice also has an a causal inverse (Is it stable?).

The above example is a rational function of s = j2πf . We concentrate on factorization
of these rational PSD’s because they are simple to factor, the filters are easy to construct
using adders and integrators, and a non-rational PSD can be approximated using a rational
PSD. A technique for the general (non-rational) spectral factorization problem is described
in Section 8.7.3.
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Figure 21: The pole zero symmetry of the PSD.

8.7.2 A Recipe for Minimum-Phase Causal Spectral Factorization of Rational
PSD

The procedure for finding the causal, minimum-phase factor for the continuous time case is
actually simpler than the one given for discrete time. This is because a delay does not enter
the frequency response as a polynomial in s (e.g., see (267d) and (267e)).

To begin the development, answer the following question:

Is M(f) =
q − j2πf

p − j2πf
a valid PSD? (268)

Again, since the PSD must be real, the answer is NO – if Sx(f) contains a term like M(f),
then it must also contain the term M∗(f). It follows, that any rational PSD has the following
form

Sx(f) = C2

∏Q
i=1(qi − j2πf)(q∗i + j2πf)

∏P
i=1(pi − j2πf)(p∗i + j2πf)

, (269)

where C is a real constant and {pi} and {qi} are known (possibly complex, and non-distinct)
parameters. In words, if Sx(s) has a pole at s = p, then it also has a pole at −p∗, with a
similar symmetry required for zero locations.17 This structure is illustrated in Figure 21.

Again, its easiest to start with an example:

Sx(f) =
9 + (2πf)2

[25 + (2πf)2][4 + (2πf)2]
. (270)

17The notation Sx(s) is used to denote Sx(f) expressed as a function of s = j2πf .
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The first step is to express this in the pole-zero form of (269). This is accomplished via the
identity

(p − j2πf)(p∗ + j2πf) = a2 + (2πf − b)2, (271)

with p = a + jb and a, b real numbers. Applying this identity to the example at hand (note
both poles are real here) yields

Sx(f) =
(3 + (2πf))(3 − (2πf))

[(5 + (2πf))(5 − (2πf))(2 + (2πf))(2 − (2πf))
. (272)

The Laplace Transform may be seen as an extension of the FT; alternately, the FT may
be viewed as the Laplace Transform evaluated on the imaginary axis (i.e., s = j2πf). It
follows that the Laplace Transform of Rx(τ), denoted Sx(s), has a region of convergence
(ROC) which includes the imaginary axis in the s-plane. It is also useful to characterize an
LTI system by its Laplace Transform, and the corresponding ROC. Specifically, the ROC of
the Laplace Transform corresponding to a minimum-phase, stable, causal system has unique
properties.

The following facts may be used to recognize a stable, causal, minimum-phase system in
the s-domain:

1. A stable system has a FT which exists, so the ROC of the corresponding Laplace
Transform includes the imaginary axis.

2. A “right-handed signal” is one in which h(t) = 0 for all t < t0 for some t0. The Laplace
Transform of a right-handed sequence has an ROC which is a right-half plane.

These facts determine the ROC of the causal, minimum-phase, stable factor.

If H(s) is the Laplace Transform of a stable, causal, minimum-phase system, then the ROC
has the form {s : 6 {s} > a}, where a < 0. In other words, all of the poles and zeros are in
the left half plane (LHP).

The ROC of typical stablem, causal, minimum-phase system is illustated in Figure 22.
With this fact, the next step in the example is to convert to Sx(s), so that

Sx(s) =
(3 + s)(3 − s)

(5 + s)(5 − s)(2 + s)(2 − s)
. (273)

The pole/zero plot for this function is illustrated in Figure 23.
Next, split the Laplace Transform into

Sx(s) = H(s) H∗(·)|−s (274)

so that all of the poles and zeroes of H(s) are in the LHP. The notation H∗(·)|−s is used to
represent the function H∗(f) evaluated at s = j2πf – if all of the poles and zeros of H(s)
are real, then this is simply H(−s).
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Figure 22: The ROC for the Z-Transform corresponding to a minimum phase system.

Figure 23: The pole zero locations for the example PSD.
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In our example, Sx(s) has poles at s = ±2,±5 and zeros at s = ±3. Thus, the desired
spectral factor is

H(s) =
(3 + s)

(5 + s)(2 + s)
. (275)

Below are the steps to factor a rational PSD Sx(f) into |H(f)|2, where H(f) is the frequency
response of a stable, causal, minimum-phase system:

1. Convert Sx(f) into pole/zero form (i.e., see (269)).

2. Convert to Sx(s) using s = j2πf .

3. Split Sx(s) = H(s) H∗(·)|−s so that all of the poles and zeroes of H(s) are in the LHP.

Again, this produces a rational spectral factor unique up to a unit magnitude scalar.

8.7.3 ♣ General Spectral Factorization Considerations

The Paley-Wiener Criterion The PSD Sx(f) may be factored into Sx(f) = |H(f)|2,
where H(f) is the frequency response of a causal stable system if and only if

∫ ∞

−∞

| log(Sx(f))|
1 + (2πf)2

df < ∞. (276)

♣ Eventually, include an engineering level proof and general factorization algorithm.

8.8 Cross-PSD and the Two-Filter Formula
The cross-PSD of two jointly-WSS processes is defined by

Sxy(f) = FT {Rxy(τ)}. (277)

The symmetry of the cross-correlation function (i.e., Rxy(τ) = R∗
yx(−τ)), implies

Sxy(f) = (Syx(f))∗ . (278)

A useful result may be stated regarding the system in Figure 24, where two jointly-WSS
processes v(u, t) and w(u, t) drive LTI systems so that x(u, t) = h(t)∗v(u, t) and y(u, t) =
g(t)∗w(u, t). Using the techniques applied in Section 8.3, the following results are obtained

Rxy(τ) = h(τ)∗Rvw(τ)∗g∗(−τ) (279)

Sxy(f) = H(f)G∗(f)Sxy(f). (280)

Again, an example special case is Sxw(f) = H(f)Sw(f).
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Figure 24: The set-up for the two-filter formula.

8.9 ♣ MMSE Estimation on T = R
This will be covered in class; only the results are listed here. In the results listed, it is
assumed the the observed sequence x(u, t) and the desired sequence z(u, t) are jointly-WSS
processes.

8.9.1 The Affine Constraint

Based on observing {x(u, τ) : −∞ < τ < ∞}, the best affine estimator of z(u, t) is

ẑ(u, t) = gopt(t)∗(x(u, t) − mx) + mz, (281)

where the Wiener filter is defined by

Gopt(f) =
Sz0x0(f)

Sx0(f)
. (282)

The corresponding minimum MSE is

MMSE = E
{
|z(u, t)|2

}
− E

{
|ẑ(u, t)|2

}
(283)

=
∫ ∞

−∞
Sz0(f) − |Sz0x0(f)|2

Sx0(f)
df. (284)

8.9.2 The Causal Affine Constraint

Based on observing {x(u, τ) : 0 < τ < ∞}, the best affine estimator of z(u, t) is

ẑ(u, t) = gopt(t)∗(x(u, t) − mx) + mz, (285)

where the Causal Wiener filter is defined by

Gopt(f) = C
{

Sz0x0 (f)
H∗

x0
(f)

}
1

Hx0(f)
, (286)
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where Hx0(f) is the causal, minimum phase factor of Sx0(f). The causal part operator is
defined by

C {P (f)} = FT
{
u(τ)FT−1 {P (f)}

}
, (287)

The corresponding minimum MSE is

MMSE = E
{
|z(u, t)|2

}
− E

{
|ẑ(u, t)|2

}
(288)

=
∫ ∞

−∞
Sz0(f) −

∣∣∣∣C
{

Sz0x0 (f)
H∗

x0
(f)

}∣∣∣∣
2

df. (289)

8.10 ♣ Inverting Transforms the Easy Way

8.11 ♣ The Wiener Process

9 ♣ LTI/WSS Processing on T = RT

Usually not covered in EE562a, but by now you could figure it out yourself!


