

Mobile Communication Systems	©Keith M. Chugg, USC – August 1999
	Summary of Course
• Overview of Wirele	ss/Mobile Communications
• Physical Layer	
• Multiple Access &	Cell-Planning
• Overview of Existin	ng/Developing Systems

OVERVIEW OF WIRELESS/MOBILE COMMUNICATIONS

Measuring Multiple Access Capacity/Efficiency

• Bandwidth Efficiency: η_W

- How many bits/sec in each Hz is achieved for each individual user?
- Spatial Efficiency: η_S
 - How often are the available resources (*i.e.*, bandwidth) re-used in a large area?

• Trunking (Traffic) Efficiency: η_T

- How well are the system resources allocated/matched to the user requirements?
- Overall Efficiency: $\eta = \eta_W \eta_S \eta_T$ in Erlangs/sq-m/Hz
 - For a given total system bandwidth W_{sys} and system area A_{sys} , then the total capacity is

$$C_{sys} = \eta W_{sys} A_{sys}$$

10

Mobile Communication Systems

©Keith M. Chugg, USC – August 1999

Capacity/Efficiency Improvement Methods

• Bandwidth Efficiency:

– Bandwidth efficient modulation, coding, and diversity techniques

• Spatial Efficiency:

- Smaller cells and tighter reuse
- Trunking (Traffic) Efficiency:
 - Dynamic channel allocation

• Related Issues:

- Coverage vs. capacity
- Infrastructure cost
- Overhead for processing (*i.e.*, mobility management, cell coordination, etc.)
- Power consumption

Mobile Communication Systems	©Keith M. Chugg, USC – August 1999
Classes of Wireless/	Mobile Services
• Mobile Radio Services	
- Cellular/PCS	
- Mobile Satellite (LEO/MEO)	
- Paging/text massaging services [*]	
– Typical characteristics	
* Mobility: Moderate to high	
* Sources: Low rate, low relia	bility, delay intolerant (except $*$)

©Keith M. Chugg, USC – August 1999

 $Mobile\ Communication\ Systems$

Trend Toward Digital

• Drivers

- Better spectral efficiency
- More flexible multiple accessing
- Store and forward capabilities
- Better security (*i.e.*, encryption)
- Compact, low-power digital processing
- Simpler integration of multimedia services

PHYSICAL LAYER

©Keith M. Chugg, USC – August 1999

Typical 3-Level Channel Models

• Path Loss

- Deterministic propagation loss model
- Large scale
- Empirically determined from field measurements

• Shadowing

- Statistical model for the deviation from the path loss model
- Long-term fading e.g., 10-100 wavelengths
- Empirically determined from field measurements
- Fading
 - Statistical model for short-term (sub-wavelength) power fluctuations
 - Also characterizes the distortion characteristics of the channel
 - Simple analytical models, verified via measurements

Shadowing Models

• Random deviation from path loss model:

$$\frac{P_{r,S}(d;u)}{P_r(d_0)} = \epsilon(u) \frac{P_r(d)}{P_r(d_0)}$$
$$\left[\frac{P_{r,S}(d;u)}{P_r(d_0)}\right]_{dB} = \left[\frac{P_r(d)}{P_r(d_0)}\right]_{dB} + 10\log_{10}\left[\epsilon(u)\right]$$
$$= -10\beta\log_{10}\left(\frac{d}{d_0}\right) + \epsilon_{dB}(u)$$

- Common Model: Log-Normal Shadowing $\epsilon_{dB}(u) \sim \mathcal{N}(\cdot; 0; \sigma_{\epsilon_{dB}}^2)$
 - The received power in dB may be thought of as Gaussian with mean given by the path loss model and variance $\sigma_{\epsilon_{dB}}^2$
- Shadowing deviation: $\sigma_{\epsilon_{dB}}$
 - Macrocellular systems have values in the range 5 to 12, with 8 being typical

22

Mobile Communication Systems

©Keith M. Chugg, USC – August 1999

Shadowing Models

- **Example:** What's the probability that the received power is less than half the value predicted by the path loss model if $\sigma_{\epsilon_{dB}} = 8$?
 - factor of 1/2 is -3 dB \Rightarrow

$$\Pr \left\{ \epsilon(u) < 1/2 \right\} = \Pr \left\{ \epsilon_{dB}(u) < -3 \right\}$$
$$= \operatorname{Q} \left(\frac{3}{8} \right) = 0.35$$

- 35% of the time, the received power is 3 dB down from the path loss model!

• Spatial correlation:

- Fade level is highly correlated in space
- Simple first-order Markov models are often used to characterize this correlation

Time Variations

• Time correlation:

 $R_c(\Delta) = \mathbb{E}\left\{h(u;\tau;t)h^*(u;\tau;t+\Delta)\right\}$

 $-\Delta = t_c$ implies this is zero

• Doppler Spectrum: frequency domain version:

$$S_c(f) = \mathbb{E}\left\{H(u;\tau;\nu)H^*(u;\tau;\nu+f)\right\}$$

 $-f > f_d$ implies this is zero

• Maximum Doppler Spread:

$$f_d = \frac{v}{c} f_c$$

- *Example:* at $f_c = 900$ MHz, and 100 Kph, $f_d = 83$ Hz

Clarke's Doppler Model: Meaning (flat fading)

• I/Q carrier modulated inputs:

$$\begin{aligned} x(t) &= x_I(t)\sqrt{2}\cos(2\pi f_c t) - x_Q(t)\sqrt{2}\sin(2\pi f_c t) \\ &= \Re\left\{\bar{x}(t)\sqrt{2}e^{j2\pi f_c t}\right\} \\ &= |\bar{x}(t)|\cos(2\pi f_c t + \angle \bar{x}(t)) \\ \bar{x}(t) &= x_I(t) + jx_Q(t) \end{aligned}$$

• Output:

$$\begin{split} y(u;t) &= [h_I(t)x_I(t) - h_Q(t)x_Q(t)]\sqrt{2}\cos(2\pi f_c t) \\ &- [h_I(t)x_Q(t) + h_Q(t)x_I(t)]\sqrt{2}\sin(2\pi f_c t) \\ &= \Re\left\{\bar{y}(t)\sqrt{2}e^{j2\pi f_c t}\right\} \\ &= |\bar{y}(t)|\cos(2\pi f_c t + \angle \bar{y}(t)) \\ &\bar{y}(t) &= y_I(t) + jy_Q(t) = \bar{x}(t)\bar{h}(t) \end{split}$$

$$s_m(t) = \sqrt{\frac{2E}{T}}\cos(2\pi(f_c + m\Delta)t) \quad t \in [0, T]$$

* Minimum tone spacing for orthogonality $\Delta = 1/(2T)$

- Consider the performance as a function of average E_b/N_0
- Performance decays only inverse linearly with Rayleigh (flat) fading

$$P_b \cong K \left[\frac{E_b}{N_0}\right]^{-1}$$

How to Obtain Diversity

• Spatial Diversity:

-e.g., Space two antennas farther than $\lambda/2$ in dense scattering

• Time Diversity:

 $-\ e.g.,$ Repeat the transmission after waiting longer than the coherence time

• Frequency Diversity:

- e.g., Transmit the signal on two carriers spaced further than the coherence BW
- Which type if best?
 - Performance gains are the same regardless (nominally)
 - Effort required to combine the diversity effectively may differ greatly with the type and the exact signal format

©Keith M. Chugg, USC – August 1999

Suboptimal Diversity Combining Techniques

• Selection Combining:

- Use only the branch with maximum energy

• Equal Gain Combining:

- Combine with equal gain and only account for phase
- These result in an SNR loss (lost energy), but not diversity

- BER vs. E_b/N_0 decays at roughly same rate as MRC

• Nocoherent and hybrid techniques...

- Adaptive channel tracking
- Soft decision decoding is more difficult due to memory in FS channel

MULTIPLE ACCESS & CELL-PLANNING

Mobile Communication Systems

©Keith M. Chugg, USC – August 1999

Methods of Sharing the Channel

- Channelized systems vs. Random access
 - Most interactive systems are dedicated channel systems
 - Orderwire/set-up channels may be random access

• Channelized Methods

- Code Division Multiple Access (CDMA)
- Time Division Multiple Access (TDMA)
- Frequency Division Multiple Access (FDMA)
- Most practical systems use a combination of these approaches

Sectoring

- Partitioning of channels within a cell
- Requires directional antennas
- Reduces the number of first tier interferers
 - 120 degree sectoring \Rightarrow at most 2 interferers

$$\frac{C}{I} = \left[(\sqrt{3N} + 0.7)^{-\beta} + (\sqrt{3N})^{-\beta} \right]^{-1}$$

-60 degree sectoring \Rightarrow at most 1 interferers

$$\frac{C}{I} = (\sqrt{3N})^{\beta}$$

• Example: N = 7 and $\beta = 4$

Sectoring	worst case C/I in dB
none	17
120 degree	24.5
60 degree	26.6

<text><text><list-item><equation-block><equation-block><equation-block>

e Communication Systems ©KEITH M. CHUGG, USC – A			Chugg, USC – Aug	
	System	n Compai	risons	
System	MA	Freq. band	Modulation	RF Channel BW
- J		1 1		
AMPS	FDMA	824-894 MHz	\mathbf{FM}	30 KHz
AMPS DAMPS	FDMA FDMA/TDMA	824-894 MHz 824-894 MHz	FM $\pi/4$ -DQPSK	30 KHz 30 KHz
AMPS DAMPS (USDC, IS-54)	FDMA FDMA/TDMA	824-894 MHz 824-894 MHz 1.8-2.0 GHz	$\frac{\text{FM}}{\pi/4\text{-}\text{DQPSK}}$	30 KHz 30 KHz
AMPS DAMPS (USDC, IS-54) IS-95	FDMA FDMA/TDMA CDMA	824-894 MHz 824-894 MHz 1.8-2.0 GHz 824-894 MHz	$\frac{\text{FM}}{\pi/4\text{-}\text{DQPSK}}$ $\frac{\text{QPSK}}{\text{BPSK}}$	30 KHz 30 KHz 1.25 MHz
AMPS DAMPS (USDC, IS-54) IS-95	FDMA FDMA/TDMA CDMA	824-894 MHz 824-894 MHz 1.8-2.0 GHz 824-894 MHz 1.8-2.0 GHz	$\frac{\text{FM}}{\pi/4\text{-}\text{DQPSK}}$ $\frac{\text{QPSK}/\text{BPSK}}{64\text{-}\text{Orthogonal}}$	30 KHz 30 KHz 1.25 MHz
AMPS DAMPS (USDC, IS-54) IS-95 GSM	FDMA FDMA/TDMA CDMA FDMA/TDMA	824-894 MHz 824-894 MHz 1.8-2.0 GHz 824-894 MHz 1.8-2.0 GHz 824-894 MHz	$\frac{\text{FM}}{\pi/4\text{-}\text{DQPSK}}$ $\frac{\text{QPSK}/\text{BPSK}}{64\text{-}\text{Orthogonal}}$ $\frac{\text{GMSK}}{4}$	30 KHz 30 KHz 1.25 MHz 200 KHz

©Keith M. Chugg, USC – August 1999

System Comparisons

Parameter	AMPS	GSM	USDC	PDC
Bandwidth (MHz)	25	25	25	25
Voice Channels	833	1000	2500	3000
Frequency Reuse (Cluster sizes)	7	4 or 3	7 or 4	7 or 4
Channels/Site	119	250 or 333	357 or 625	429 or 750
Traffic (Erlangs/sq.km)	11.9	27.7 or 40	41 or 74.8	50 or 90.8
Capacity Gain	1.0	2.3 or 3.4	3.5 or 6.3	4.2 or 7.6

98

 $Mobile\ Communication\ Systems$ ©KEITH M. CHUGG, USC – AUGUST 1999 IS-54 System Parameters Parameter USDC IS-54 Specification TDMA/FDD Multiple Access Modulation $\pi/4$ DQPSK Channel Bandwidth $30 \mathrm{kHz}$ Reverse Channel Frequency Band 824-849 MHz 869-894 MHz Forward Channel Frequency Band Forward and Reverse Channel Data Rate 48.6 kbps Spectrum Efficiency 1.62 bps/HzEqualizer Unspecified 7 bit CRC and rate 1/2 convolutional coding of Channel Coding constraint length 6 2 slot interleaver Interleaving 3 (full-rate speech coder of 7.95 kbps/user) Users per Channel 6 (with half-rate speech coder of 3.975 kbps/user)

©KEITH M. CHUGG, USC – AUGUST 1999

GSM System Parameters

Parameter	Specifications
Reverse Channel Frequency	890-915 MHz
Forward Channel Frequency	935-960 MHz
ARFCN Number	$0 \mbox{ to } 124 \mbox{ and } 975 \mbox{ to } 1023$
Tx/Rx Frequency Spacing	45 MHz
Tx/Rx Time Slot Spacing	3 Time slots
Modulation Data Rate	270.833333 kbps
Frame Period	4.615 ms
Users per Frame (Full Rate)	8
Time slot Period	576.9 $\mu {\rm s}$
Bit Period	$3.692 \ \mu s$
Modulation	0.3 GMSK
ARFCN Channel Spacing	200 kHz
Interleaving (max. delay)	40 ms
Voice Coder Bit Rate	13.4 kbps

100

Mobile Communication Systems

©Keith M. Chugg, USC – August 1999

IS-95 System Parameters

Parameter		Data Ra	te (bps)	
User data rate	9600	4800	2400	1200
Coding Rate	1/2	1/2	1/2	1/2
User Data Repetition Period	1	2	4	8
Baseband Coded Data Rate	19,200	19,200	19,200	19,200
PN Chips/Coded Data Bit	64	64	64	64
PN Chip Rate (Mcps)	1.2288	1.2288	1.2288	1.2288
PN Chips/Bit	128	256	512	1024

©Keith M. Chugg, USC – August 1999

Reference Mobile Radio Systems

Standard	Service Type	Speech Coder Type Use	
			Bit Rate (kbps)
GSM	Cellular	RPE-LTP	13
CD-900	Cellular	SBC	16
USDC $(IS-54)$	Cellular	VSELP	8
IS-95	Cellular	CELP	1.2, 2.4, 4.8, 9.6
IS-95 PCS	PCS	CELP	14.4
PDC	Cellular	VSELP	4.5, 6.7, 11.2
CT2	Cordless	ADPCM	32
DECT	Cordless	ADPCM	32
PHS	Cordless	ADPCM	32
DCS-1800	PCS	RPE-LTP	13
PACS	PCS	ADPCM	32

102

 $Mobile\ Communication\ Systems$

©Keith M. Chugg, USC – August 1999

Reference Mobile Radio Systems

Quality Scale	Score	Listening Effort Scale
Excellent	5	No effort required
Good	4	No appreciable effort required
Fair	3	Moderate effort required
Poor	2	Considerable effort required
Bad	1	No meaning understood with reasonable effort

Coder	MOS
64 kbps PCM	4.3
14.4 kbps QCELP13	4.2
32 kbps ADPCM	4.1
8 kbps ITU-CELP	3.9
8 kbps CELP	3.7
13 kbps GSM Codec	3.54
9.6 kbps QCELP	3.45
4.8 kbps CELP	3.0
2.4 kbps LPC	2.5

©Keith M. Chugg, USC – August 1999

Wideband CDMA Proposal

Bandwidth	1.25/5/10/20 MHz
Chip Rate	1.024/4.096/8.192/16.384 Mcps
Modulation	QPSK Spreading; QPSK/BPSK (coherent)
Channel Coding	Voice: convolutional $(R = 1/3, K = 9)$
	Data:concatenated RS-CC
Diversity	Rake/Antenna