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Summary of Course

• Overview of Wireless/Mobile Communications

• Physical Layer

• Multiple Access & Cell-Planning

• Overview of Existing/Developing Systems
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Overview: Topics

• Characteristics to Specify a System

• Summary of Wireless Systems

• Special Challenges:

– Mobility

– Multiple Access

– Multimedia Sources

• Characterizing the Efficiency (capacity) of a system
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Characteristics

• Carrier Frequency:

– Cellular: ∼ 900 MHz

– Personal Communication Systems: ∼ 2 GHz

– Wireless LAN: ∼ 2.4 GHz, 5.2 GHz

– Fixed-Point Wireless (LMDS): ∼ 30-40 GHz

– Satellite: ∼ 15 GHz

• RF Channel Bandwidth

• Services Provided

– Paging

– High-rate video/data (delay tolerant)

– Interactive services (e.g., Voice)
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Characteristics

• Simplex vs. Duplex

– Time Division Duplexing (TDD)

– Frequency Division Duplexing (FDD)

5



         

Mobile Communication Systems c©Keith M. Chugg, USC – August 1999

Characteristics: Mobility vs. Fixed-Point

• Primary Challenges of Mobility

– Physical Layer: Channel impairments (i.e., the SNR, distortion
effects, interference characteristics, etc.) will all vary significantly
with time/location

∗ e.g., Dense multipath fading can yield fluctuations in received
power of 20-30 dB ( 100 to 1000) in several meters of motion for a
1 GHz carrier.

– Network Layer: Tracking user locations for incoming/outgoing
calls, spatial traffic loading is highly nonuniform and time-dependent

∗ e.g., Bulk of urban users are located on highways/railways during
commuting hours
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Effect of Mobility on SNR

• Two reasonable SNR variations of a GSM user (in symbol times)
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Characteristics: Multiple Access vs. Single-User

• General View of Multiple Access

– Dimensionality of a Signaling Format: d = 2WT

∗ W is the bandwidth used in Hz

∗ T is the time duration (e.g., symbol time) used

∗ Increasing d: improved performance against non-AGWN channel
impairments: multipath fading, like-signal interference, etc.

– Spatial Component: In most systems of interest, total system
resources can be re-used in space

• Challenge: Design signals, protocols, and spatial cell plans that
maximize the “capacity”
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Two Approaches to using T-F Dimensions in Space

• Left is comparable to CDMA, right is comparable to TDMA/FDMA
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Measuring Multiple Access Capacity/Efficiency

• Bandwidth Efficiency: ηW

– How many bits/sec in each Hz is achieved for each individual user?

• Spatial Efficiency: ηS

– How often are the available resources (i.e., bandwidth) re-used in a
large area?

• Trunking (Traffic) Efficiency: ηT

– How well are the system resources allocated/matched to the user
requirements?

• Overall Efficiency: η = ηWηSηT in Erlangs/sq-m/Hz

– For a given total system bandwidth Wsys and system area Asys,
then the total capacity is

Csys = ηWsysAsys
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Capacity/Efficiency Improvement Methods

• Bandwidth Efficiency:

– Bandwidth efficient modulation, coding, and diversity techniques

• Spatial Efficiency:

– Smaller cells and tighter reuse

• Trunking (Traffic) Efficiency:

– Dynamic channel allocation

• Related Issues:

– Coverage vs. capacity

– Infrastructure cost

– Overhead for processing (i.e., mobility management, cell
coordination, etc.)

– Power consumption
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Classes of Wireless/Mobile Services

• Fixed Point Wireless Systems:

– Wireless Local Loop (WLL)

– Broadband services (last mile solution) (e.g., LMDS)

– HDTV

– Geosynchronous satellite services

– Typical characteristics

∗Mobility: Low or none

∗ Sources: High rate, high reliability, delay tolerant
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Classes of Wireless/Mobile Services

•Mobile Radio Services

– Cellular/PCS

– Mobile Satellite (LEO/MEO)

– Paging/text massaging services*

– Typical characteristics

∗Mobility: Moderate to high

∗ Sources: Low rate, low reliability, delay intolerant (except *)
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Trend Toward Digital

• Drivers

– Better spectral efficiency

– More flexible multiple accessing

– Store and forward capabilities

– Better security (i.e., encryption)

– Compact, low-power digital processing

– Simpler integration of multimedia services
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Physical Layer Topics

• Channel Modeling

– Path Loss, Shadowing, and Fading

– Parameters of channel models

– Effects of signaling scheme: relative parameters

• Signaling and Diversity

– Modulation

– Effects of fading & diversity

– Coding/Interleaving

– Spreading

• Receiver Processing

– The optimal receiver

– Multipath combining
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Typical 3-Level Channel Models

• Path Loss

– Deterministic propagation loss model

– Large scale

– Empirically determined from field measurements

• Shadowing

– Statistical model for the deviation from the path loss model

– Long-term fading – e.g., 10-100 wavelengths

– Empirically determined from field measurements

• Fading

– Statistical model for short-term (sub-wavelength) power fluctuations

– Also characterizes the distortion characteristics of the channel

– Simple analytical models, verified via measurements
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Relation Between Three Levels of Channel Models
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Path Loss Models

• Free Space:
Pr(d)

Pr(d0)
=



d

d0




−2

– Power spread evenly over sphere of radius d

• Single Ground Reflection:

Pr(d)

Pr(d0)
=



d

d0




−4
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Path Loss Models

•Multipath Reflection Environments:

Pr(d)

Pr(d0)
=



d

d0




−β



Pr(d)

Pr(d0)



dB

= −10β log10



d

d0




– β is the path loss exponent

∗ Typical macrocellular: β ∼ 3 to 4

∗ Typical microcellular: β ∼ 2 to 8
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Path Loss Models

•Models are Roughly Frequency Independent

– Weak dependency described in more detailed model

– More difficult to predict in smaller regions (e.g., indoor)

– Environment specific models: ray-tracing, Manhattan pico cells, etc.

• Power decays linearly (in dB) with delay

– Free space ⇒ 20 dB per decade

– β ⇒ 10β dB per decade

• Utility of path loss models:

– rough cell planning (e.g., cell size, reuse factors)
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Shadowing Models

• Random deviation from path loss model:

Pr,S(d; u)

Pr(d0)
= ε(u)

Pr(d)

Pr(d0)


Pr,S(d; u)

Pr(d0)



dB

=



Pr(d)

Pr(d0)



dB

+ 10 log10 [ε(u)]

= −10β log10



d

d0


 + εdB(u)

• Common Model: Log-Normal Shadowing

εdB(u) ∼ N (·; 0; σ2
εdB

)

– The received power in dB may be thought of as Gaussian with mean
given by the path loss model and variance σ2

εdB

• Shadowing deviation: σεdB

– Macrocellular systems have values in the range 5 to 12, with 8 being
typical
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Shadowing Models

• Example: What’s the probability that the received power is less than
half the value predicted by the path loss model if σεdB = 8?

– factor of 1/2 is -3 dB ⇒
Pr {ε(u) < 1/2} = Pr {εdB(u) < −3}

= Q


3

8


 = 0.35

– 35% of the time, the received power is 3 dB down from the path loss
model!

• Spatial correlation:

– Fade level is highly correlated in space

– Simple first-order Markov models are often used to characterize this
correlation
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Short-term (multipath) Fading Models

• Common Model: random, time-varying linear system

– Impulse response from a delta applied at time t is h(u; t; τ )

y(u, τ ) = h(u; t; τ ) ∗ x(τ ) z(u, τ ) = h(u; t + δ; τ ) ∗ x(τ )

z(u, τ ) 6= y(u, τ )
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Short-term (multipath) Fading Models

• Characterizing Distortion: What is the shape of the impulse
response h(u; t; τ ) wrt τ?

– τd: Delay Spread – how long does the channel ring from a time
impulse?

– Bc: Coherence Bandwidth – over what range of frequencies is the
gain of the channel flat?

• Characterizing Time-variation: How does h(u; t; τ ) change with
t?

– tc: Coherence time – for what value of ∆ are the responses at t and
t + ∆ uncorrelated?

– fd: Doppler Spread – how much will the spectrum of an input tone
(i.e., frequency impulse) be spread in frequency?
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Short-term (multipath) Fading Models

• Distortion Properties: Bc ∝ 1
τd

• Time-variation Properties: fd ∝ 1
tc
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Delay Spread

• Rule of Thumb: 1 nanosecond per foot

• Typical RMS values:

– outdoors: 1 to 5 µsec; up to 20 µsec in areas with mountains

– indoors: < 100 nanosec
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WSSUS Assumption

•Wide Sense Stationary (WSS):

– Statistics of h(u; τ ; t) are independent of t

• Uncorrelated Scatter (US):

– Paths with different delays are uncorrelated

• Gaussian assumptions also typically follow from dense multipath
environments
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Delay Spread: Details

• Power Delay (aka Multipath Intensity) Profile:

Rd(∆) = E {h(u; τ + ∆; t)h∗(u; τ ; t)}
– RMS value of the delay spread often used

– Bc is the BW of the spectrum of this process
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Time Variations

• Time correlation:

Rc(∆) = E {h(u; τ ; t)h∗(u; τ ; t + ∆)}
– ∆ = tc implies this is zero

• Doppler Spectrum: frequency domain version:

Sc(f ) = E {H(u; τ ; ν)H∗(u; τ ; ν + f )}
– f > fd implies this is zero

•Maximum Doppler Spread:

fd =
v

c
fc

– Example: at fc = 900 MHz, and 100 Kph, fd = 83 Hz
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Measures Relative to Signals

• Does the channel distort the signal?

– W ¿ Bc ⇒ NO ⇒ Flat Fading

– W ≥ Bc ⇒ YES ⇒ Frequency-Selective Fading

∗ Note: If W ∼= 1
T , then frequency selective fading implies that

T ≤ τd ⇒ time dispersion or intersymbol interference (ISI)

∗ Not so for wideband systems – W À 1
T

∗ Flat Fading ⇐⇒ amplitude and phase distortion only!

• Does the channel remain constant over many channel
uses?

– T ¿ tc ⇒ YES ⇒ Slow Fading

– T ≥ tc ⇒ NO ⇒ Fast Fading

∗ Slow fading may still require frequent training and/or adaptive
tracking
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Measures Relative to Signals

• Two important relative measures:

– L = bτd/T + 0.75c relative delay spread

∗ L = 0 implies no ISI

∗ 0.75 bias depends on sensitivity of modulation format to delay
spread!

– νd = fdT Normalized Doppler spread

∗ νd ¿ 1 implies slow fading

• Example: GSM has T = 3.7 µsec and IS-54 has T = 42 µsec

– τd = 5 µsec in GSM yields ISI in GSM but no ISI in IS-54

– a velocity of 100 kph yields νd = 3× 10−4 for GSM and
νd = 3.3× 10−3
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Clarke’s Doppler Model: Isotropic (flat) Rayleigh

• Spatial correlation:

Rh(x) = E {h(u; x)h∗(u; 0)} = J0



2πx

λ
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Clarke’s Doppler Model: Isotropic Rayleigh

• First zero at x = 0.38λ

• Rule of Thumb: x > λ/2 is roughly uncorrelated

• λ = c
fc
⇒ λ = 0.15 meters at fc = 2 GHz
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Clarke’s Doppler Model: Isotropic (flat) Rayleigh

• Translation to Time Variation: x = v ∗ τ ⇒
Rh(τ ) = E {h(u; vτ )h∗(u; 0)} = J0



2πvτ

λ


 = J0(2πfdτ )

– Note: the λ/2 decorrelation spacing translates into a coherence
time of tc = 1/(2fd)

• Doppler Spectrum:

S(f ) =
1

2π
√
1− (f/fd)2

|f | ≤ fd
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Clarke’s Doppler Model: Meaning (flat fading)

• I/Q carrier modulated inputs:

x(t) = xI(t)
√

2 cos(2πfct)− xQ(t)
√

2 sin(2πfct)

= <
{

x̄(t)
√

2ej2πfct
}

= |x̄(t)| cos(2πfct + 6 x̄(t))

x̄(t) = xI(t) + jxQ(t)

• Output:

y(u; t) = [hI(t)xI(t)− hQ(t)xQ(t)]
√

2 cos(2πfct)

−[hI(t)xQ(t) + hQ(t)xI(t)]
√

2 sin(2πfct)

= <
{

ȳ(t)
√

2ej2πfct
}

= |ȳ(t)| cos(2πfct + 6 ȳ(t))

ȳ(t) = yI(t) + jyQ(t) = x̄(t)h̄(t)
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Clarke’s Doppler Model: Meaning

• h(u; t) is a complex circular Gaussian process – I/Q channel gains are
iid Gaussian

• Amplitude distribution |h(u; t)| at any time t is a Rayleigh random
variable – Diffuse Multipath

• If there is an additional direct path, then the amplitude is a Ricean
random variable
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Power in Sample Realizations
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Simulation Methods

• Filtered Gaussian Noise:

• Jakes’ Method: Summing cosine and sin waves

• Relative Advantages:

– Jakes’: very simple and accurate; difficult to generate several
independent processes

– FGN: simple to generate independent processes, complicated filter
design
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Simulation: Frequency-Selective WSSUS

• Valid for an input signal with frequency content |f | < W/2

• Number of taps determined by normalized delay spread

• Power in each tap A2
i determined by power delay profile

• Taps generated independently (US)
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Digital Modulation Formats

• Definitions:

– Mapping from a sequence of digital symbols {ak} drawn from an
alphabet of size M = 2k to a waveform

– Bit time: Tb = Ts/ log2(M)

– Bit rate: Rb = T−1
b , Symbol rate: Rs = T−1

– Memoryless Modulation: for t ∈ [kT, (k + 1)T ), s(t; a) = s(t; ak)
depends only on current symbol

– Linear Modulation: mapping is linear
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I-AWGN

sI(t;a)

Q-AWGN

sQ(t; a)

plus 2fc terms

I and Q noise processes are 

independent

sI(t;a) + nI(u, t)

sI(t; a) + nI(u, t)

sQ(t;a) + nQ(u, t)
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s̄(t;a) = sI (t;a) + jsQ(t;a)
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plus 2fc terms
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I/Q Modulation Formats
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Modulation Formats

• Amplitude Phase Representation:

A(t; a) =
√

s2
I(t; a) + s2

Q(t; a)

θ(t; a) = tan−1



sQ(t; a)

sI(t; a)




s̄(t; a) = A(t; a) exp[jθ(t; a)]

s(t; a) =
√

2A(t; a) cos(2πfc + θ(t; a))

– pure AM: θ(t; a) = θ(t)

– pure PM: A(t; a) = A(t)
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Modulation Formats: General QASK

s̄(t; a) =
∑

i
akp(t− iT )

• Pulse shape: typically selected to satisfy the Nyquist criterion for no
ISI on a memoryless channel

p(t) ∗ p∗(−t)|kT = EpδK(k)

• Constellation: M -ary alphabet for ak
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Modulation Formats: General QASK

• Example Pulse shapes

• Example Constellations
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Modulation Formats: General QASK

• Better performance than PSK

M Advantage of QAM over PSK in dB of Eb/N0

8 1.7
16 4.2
32 7.0
64 10.0

• Non-constant envelope – i.e., PSK is pure phase modulation

46

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 5 10 15 20 25 30 35

M=2
M=8
M=16
M=32
M=64

B
it
 E

rr
or

 R
at

e

Eb/No (dB)

           

Mobile Communication Systems c©Keith M. Chugg, USC – August 1999

Modulation Formats: PSK Performance (AWGN)

Pb ∼=
1

log2(M)
Q




√√√√√√√
2Eb log2(M)

N0
sin2(π/M)
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QASK Trade-offs

• Spectrum (BW):

– Determined by p(t) and T only – i.e., independent of M and
constellation

• Basic Trade-off:

– Holding the BW fixed, one can increase throughput by increasing
the transmit power

– Costly as M increases
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Higher Dimensional (Memoryless) Modulations

• Basic Idea:

– Increase the BW with increasing M

• Primary Example: M -ary orthogonal

s(t; a) =
∑

i
sai(t− iT )

sm(t) = message waveforms t ∈ [0, T ] m = 0, 1 . . .M − 1

ai = sequence in {0, 1, . . .M − 1}
∫ T
0 si(t)sj(t)dt = <

{∫ T
0 s̄i(t)s̄

∗
j(t)dt

}

= 0 (i 6= j)

– Example: Orthogonal Frequency Shift Keying (FSK)

sm(t) =

√√√√√√
2E

T
cos(2π(fc + m∆)t) t ∈ [0, T ]

∗ Minimum tone spacing for orthogonality ∆ = 1/(2T )
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Coherent Orthogonal Receiver

• Optimal for AWGN channel
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Orthogonal Performance (AWGN)

Pb ∼=
M/2

M − 1



1−


1− Q




√√√√√√√
Eb log2(M)

N0







M−1
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]
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[
+H2 +H2

+H2 −H2

]
=




+1 +1 +1 +1
+1 −1 +1 −1

+1 +1 −1 −1
+1 −1 −1 +1




Hadamard-ordered Walsh 

functions can be used to generate 
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Another Orthogonal Format

sm(t) =
M−1∑

j=0
hm(j)p(t− jTh) Th = T/M
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Practical Properties of Modulation Formats

• Bandwidth Efficiency:

– Bits/sec/Hz – largest M possible for a given TW product

– BW measures and sidelobe roll-off

• Robustness:

– Nonlinearities

∗ Ideal Constant Envelope: A(t; a) = A

∗ Sidelobe re-growth: sidelobes after filter-NL

– Like-signal interference: low cross correlation
∫
s̄1(t)s̄∗2(t)dt

– Channel mismatch: poor estimates of channel impulse response
(i.e., phase jitter, imperfect AGC, symbol synchronization, etc.)

– Unexpected delay spread: fractional of a symbol time
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MPSK Sensitivity to Phase Error (AWGN)
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MPSK Sensitivity to Delay Spread (AWGN)
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• BPSK, square pulse, equal power tap at ∆
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Combating Phase Sensitivity

• Noncoherent Detection: average over unknown phase possibilities

– QASK cannot be detected noncoherently w/o modification

– Orthogonality condition for noncoherent detection is
∫ T
0 s̄i(t)s̄

∗
j(t)dt = 0 (i 6= j)

– e.g., for noncoherent FSK, minimum spacing is ∆ = 1/T
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∫ (k+1)T

kT

(k + 1)T

(2)1/2Am(t) cos(2πfct + θm(t))

(2)1/2Am(t) sin(2πfct + θm(t))

∫ (k+1)T

kT

(k + 1)T

( )2

( )2

( )1/2

Envelope Detector

∫ (k+1)T

kT

(k + 1)T

(2)1/2e−j2πfct s̄∗m(t)
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Noncoherent Detection
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Noncoherent Receiver – Orthogonal M -ary

• Equal energy signals in AWGN (optimal)

58

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10 15

Coherent Orthogonal
Noncoherent Orthogonal
BPSK (coherent)
DBPSK (noncoherent)

B
it
 E

rr
or

 R
at

e

Eb/No (dB)

     

Mobile Communication Systems c©Keith M. Chugg, USC – August 1999

Performance Comparison (AWGN)
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Differential PSK

• Information phase sequence: θk ∈ {0, 2π
M , . . .

2π(M−1)
M }

• Transmitted phase sequence:

φk = φk−1 + θk

– Note: φk is in the same MPSK constellation
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π/4-Shifted, DQPSK

• Combine differential encoding with π/4 rotation

φk = φk−1 + θk + π/4

• Good robustness to filtered/nonlinearities and symbol synchronization
properties
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Continuous Phase Modulation

• Constant envelope:

s(t; a) =

√√√√√√
2E

T
cos(2πfcT + θ(t; a))

• Continuous Phase:

θ(t; a) = 2πhf
∫ t
−∞

∑

i
aig(τ − iT )dτ

= 2πhf
∑

i
aiq(t− iT )

= 2πhfakq(t− kT ) + 2πhf
∑

i<k
aiq(t− iT )

= 2πhfakq(t− kT ) + φ(sk)

– Frequency Pulse: g(t) – full response if supported on [0, T ]
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Continuous Phase Modulation

• Advantage:

– Good spectral efficiency

• Drawbacks:

– In general, has memory, which implies complicated receiver

– Optimal receiver is based on the Viterbi algorithm (dynamic
programming)

63



∑
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Gaussian (Filtered) MSK

• The filter h(t) (bell-shaped) adds memory

– Bn = BT controls the degree of frequency pulse spreading

– BN →∞ ⇒ MSK

– BN ¿ 1 ⇒ Significant memory

• Increasing memory improves spectral properties, but complicates the
receiver
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Effects of Fading

• Recall: for the AWGN channel, for all modulations considered, the
error performance decays exponentially in SNR

Pb ∼= K1e
−K2

Eb
N0

• Fading:

– Random variations in received power

– Average the AWGN performance over the statistics Eb/N0

– Consider the performance as a function of average Eb/N0

– Performance decays only inverse linearly with Rayleigh (flat) fading

Pb ∼= K


Eb

N0




−1
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Effects of Fading – PSK

• Intuition: worst case dominates!

α10−1 + (1− α)10−6 ∼= α10−1 À 10−6
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Combating Fading: Diversity

• Intuition: combining multiple independent copies of the received
signal will reduce the variance of the SNR

r̄(d)(t) = h̄(d)s(t; a) + n̄(d)(t) d = 1, 2 . . . D

– Diversity Order: D – number of effectively independent replicas

– Impact on Performance: Increases BER decay

Pb ∼= K


Eb

N0




−D

– As D increases, the performance approaches that of no-fading!
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How to Obtain Diversity

• Spatial Diversity:

– e.g., Space two antennas farther than λ/2 in dense scattering

• Time Diversity:

– e.g., Repeat the transmission after waiting longer than the
coherence time

• Frequency Diversity:

– e.g., Transmit the signal on two carriers spaced further than the
coherence BW

•Which type if best?

– Performance gains are the same regardless (nominally)

– Effort required to combine the diversity effectively may differ greatly
with the type and the exact signal format
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Intuitive View of Diversity
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Optimal Diversity Combining

• Optimal Digital Communication Receiver:

– Consider all possible versions of the received signal (including
distortion, interference, etc.) that arise from possible a

– Correlate with each of these possibilities

– Adjust correlation for energy difference

– Maximize over possibilities

• This yields Maximum (Signal-to-Noise) Ratio Combining:

zd(ã) =
∫
r̄(d)(t)s(t; ã)dt

Z(ã) =
D∑

d=1

(

h̄(d)
)∗
zd(ã)

– If each signal s(t; ã) has equal energy, then

max
ã

Z(ã)
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Suboptimal Diversity Combining Techniques

• Selection Combining:

– Use only the branch with maximum energy

• Equal Gain Combining:

– Combine with equal gain and only account for phase

• These result in an SNR loss (lost energy), but not diversity

– BER vs. Eb/N0 decays at roughly same rate as MRC

• Nocoherent and hybrid techniques...
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Practical Time Diversity: Interleaving and Coding

• Forward Error Correction Coding:

– Provides an SNR gain (i.e., coding gain) on AWGN channel

– Also provides (small) diversity gain on a time-varying fading channel

• Interleaving:

– Greatly improves the diversity gain associated with coding

– Useless without coding
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Interleaving and Coding

• Note both SNR and diversity gain
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Block Interleaver Design

• Decoding depth of the code:

– Delay in decoding a given bit

– e.g., for a convolutional code with constraint length ν

Dcode
∼= 7ν

• Desired Design:

– Each coded symbol suffers uncorrelated fading

Readout size: K >
1

2νd
symbols

– All Dc deinterleaved code symbols experience uncorrelated fading

Write-in size: J > Dc symbols
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Block Interleaver Design
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Block Interleaver Design

• Introduces Delay: 2KJT seconds

• Interactive applications require a delay of less than 50 msec for good
quality

• This typically limits the interleaver size for voice systems

• If the mobile unit does not move – no time diversity!!

• Example: ideal interleaver sizes for 65 mph

System νD Ts K J Delay
GSM 900 MHz 3.2 · 10−4 3.7 µs 1563 35 0.4 s

1800 MHz 6.4 · 10−4 3.7 µs 782 35 0.2 s
IS-54 850 MHz 3.4 · 10−3 41 µs 145 42 0.5 s

1800 MHz 7.1 · 10−3 41 µs 71 42 0.25 s
IS-95 850 MHz 4.3 · 10−3 52 µs 117 63 0.77 s

1800 MHz 9.1 · 10−3 52 µs 55 63 0.36 s
Satellite system 1.1 · 10−2 3.9 µs 46 49 17.6 ms
Paging system 2.1 · 10−2 1 ms 24 49 2.35 s

76

Original signal spectrumSpread spectrum

Channel Coherence BW

Noise floor

           

Mobile Communication Systems c©Keith M. Chugg, USC – August 1999

Practical Frequency Diversity: Spreading

• Use more bandwidth than required:

– provides frequency diversity ⇐⇒ frequency-selectivity

– spectrally inefficient (single-user)

• Techniques:

– Direct Sequence: mix with a pseudorandom squarewave carrier

– Frequency Hopping: change fc according to a pseudorandom
pattern

– Time Hopping: change signal epoch of narrow pulse in
pseudorandom manner
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DS Spread Spectrum
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DS Spread Spectrum

• Spreading Ratio: η = Tb/Tc; Tc = chip time

– Also called processing gain since an interferer’s in-band power is
reduce by η−1 after despreading

• Frequency Diversity Combining: RAKE receiver

¯
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Frequency Diversity in “Unspread” Systems

• Frequency-selectivity yields diversity:

– For a spread spectrum system D ∼= τd/Tc

– For a narrowband system D ∼= τd/T

• Diversity Combining

– Spread spectrum ⇒ RAKE with memoryless post-processor

∗ Signal and delayed version are very weakly correlated!

– Narrowband systems ⇒ matched filter (RAKE) with complex
post-processor

∗ Equalization
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Time/Frequency Diversity in Narrowband Systems

• Viterbi-based Equalization is typically required

• Adaptive channel tracking

• Soft decision decoding is more difficult due to memory in FS channel
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Methods of Sharing the Channel

• Channelized systems vs. Random access

– Most interactive systems are dedicated channel systems

– Orderwire/set-up channels may be random access

• Channelized Methods

– Code Division Multiple Access (CDMA)

– Time Division Multiple Access (TDMA)

– Frequency Division Multiple Access (FDMA)

• Most practical systems use a combination of these approaches
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CDMA

• Requires signals with low cross-correlation: spread spectrum
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TDMA

• Orthogonality in time: synchronization and time-guard bands
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FDMA

• Orthogonality in frequency: frequency-guard bands
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Channel Reuse

• Users can be on same channels if they are separated by enough distance

• Sufficient distance is determined by: path loss, and signal correlation

• Capacity is increased by “tighter” reuse patterns

• Hexagonal cell models:

– Reuse Factor: N = i2 + ij + j2 = 1, 3, 4, 7, 9, 12, . . .

– Reuse Distance: D = distance between cells using same channels

– Cell Radius: R

– Reuse Ratio: D/R =
√

3N
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Channel Reuse (N = 4)

• A,B,C, and D are sets of channels
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Worst Case Forward Channel CCI

• Based only on path loss model:

C

I
=

1

2

R−β

(D −R)−β + D−β + (D + R)−β

=
1

2

[

(
√

3N − 1)−β + (
√

3N)−β + (
√

3N + 1)−β
]−1
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Sectoring

• Partitioning of channels within a cell

• Requires directional antennas

• Reduces the number of first tier interferers

– 120 degree sectoring ⇒ at most 2 interferers
C

I
=

[

(
√

3N + 0.7)−β + (
√

3N)−β
]−1

– 60 degree sectoring ⇒ at most 1 interferers
C

I
= (
√

3N)β

• Example: N = 7 and β = 4

Sectoring worst case C/I in dB

none 17
120 degree 24.5
60 degree 26.6
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Channel Reuse and Sectoring
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Channel Reuse
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Capacity and Reuse

• Area Efficiency:

– Proportional to (NA)−1

• Tolerating more CCI yields capacity gains
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Capacity for Reuse 1 Systems

• CDMA Systems: N = 1 is commonly used

– Systems are purely interference limited


E

N0




eff

=
E

N0 + η−1ζ(K − 1)E

∼= ηζ−1 1

K − 1

Kmax =


E

N0




−1

reqd

ηζ−1 + 1

– Sectoring increases capacity proportionally since it reduces the
number of interferers

– Traffic Activity Factor: ζ ∼ [0.3, 0.5]

– All of the above assumes perfect power control – i.e., all users are
received at equal power
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Capacity for Reuse 1 Systems

• Near-Far Problem: signal of interest is at lower power than other
CDMA users

– Power differentials: 80 to 100 dB

– Good power control is ±1− 2 dB with lock times less than 1 sec

– Even with this power control, ideal capacity is reduced 30-70 %
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System Comparisons

System MA Freq. band Modulation RF Channel BW

AMPS FDMA 824-894 MHz FM 30 KHz

DAMPS FDMA/TDMA 824-894 MHz π/4-DQPSK 30 KHz
( USDC, IS-54 ) 1.8-2.0 GHz

IS-95 CDMA 824-894 MHz QPSK/BPSK 1.25 MHz
1.8-2.0 GHz 64-Orthogonal

GSM FDMA/TDMA 824-894 MHz GMSK 200 KHz
1.8-2.0 GHz
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System Comparisons

Parameter AMPS GSM USDC PDC

Bandwidth (MHz) 25 25 25 25

Voice Channels 833 1000 2500 3000

Frequency Reuse (Cluster sizes) 7 4 or 3 7 or 4 7 or 4

Channels/Site 119 250 or 333 357 or 625 429 or 750

Traffic (Erlangs/sq.km) 11.9 27.7 or 40 41 or 74.8 50 or 90.8

Capacity Gain 1.0 2.3 or 3.4 3.5 or 6.3 4.2 or 7.6
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IS-54 System Parameters

Parameter USDC IS-54 Specification

Multiple Access TDMA/FDD

Modulation π/4 DQPSK

Channel Bandwidth 30 kHz

Reverse Channel Frequency Band 824-849 MHz

Forward Channel Frequency Band 869-894 MHz

Forward and Reverse Channel Data Rate 48.6 kbps

Spectrum Efficiency 1.62 bps/Hz

Equalizer Unspecified

Channel Coding 7 bit CRC and rate 1/2 convolutional coding of
constraint length 6

Interleaving 2 slot interleaver

Users per Channel 3 (full-rate speech coder of 7.95 kbps/user)
6 (with half-rate speech coder of 3.975 kbps/user)
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GSM System Parameters

Parameter Specifications

Reverse Channel Frequency 890-915 MHz

Forward Channel Frequency 935-960 MHz

ARFCN Number 0 to 124 and 975 to 1023

Tx/Rx Frequency Spacing 45 MHz
Tx/Rx Time Slot Spacing 3 Time slots

Modulation Data Rate 270.833333 kbps

Frame Period 4.615 ms

Users per Frame (Full Rate) 8

Time slot Period 576.9 µs

Bit Period 3.692 µs

Modulation 0.3 GMSK

ARFCN Channel Spacing 200 kHz

Interleaving (max. delay) 40 ms

Voice Coder Bit Rate 13.4 kbps
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IS-95 System Parameters

Parameter Data Rate (bps)

User data rate 9600 4800 2400 1200

Coding Rate 1/2 1/2 1/2 1/2

User Data Repetition Period 1 2 4 8

Baseband Coded Data Rate 19,200 19,200 19,200 19,200

PN Chips/Coded Data Bit 64 64 64 64

PN Chip Rate (Mcps) 1.2288 1.2288 1.2288 1.2288

PN Chips/Bit 128 256 512 1024
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Reference Mobile Radio Systems

Standard Service Type Speech Coder Type Used
Bit Rate (kbps)

GSM Cellular RPE-LTP 13

CD-900 Cellular SBC 16

USDC (IS-54) Cellular VSELP 8

IS-95 Cellular CELP 1.2, 2.4, 4.8, 9.6

IS-95 PCS PCS CELP 14.4

PDC Cellular VSELP 4.5, 6.7, 11.2

CT2 Cordless ADPCM 32

DECT Cordless ADPCM 32

PHS Cordless ADPCM 32

DCS-1800 PCS RPE-LTP 13

PACS PCS ADPCM 32
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Reference Mobile Radio Systems

Quality Scale Score Listening Effort Scale

Excellent 5 No effort required

Good 4 No appreciable effort required

Fair 3 Moderate effort required

Poor 2 Considerable effort required

Bad 1 No meaning understood with reasonable effort

Coder MOS

64 kbps PCM 4.3

14.4 kbps QCELP13 4.2

32 kbps ADPCM 4.1

8 kbps ITU-CELP 3.9

8 kbps CELP 3.7

13 kbps GSM Codec 3.54

9.6 kbps QCELP 3.45

4.8 kbps CELP 3.0

2.4 kbps LPC 2.5
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Wideband CDMA Proposal

Bandwidth 1.25/5/10/20 MHz

Chip Rate 1.024/4.096/8.192/16.384 Mcps

Modulation QPSK Spreading; QPSK/BPSK (coherent)

Channel Coding Voice: convolutional (R = 1/3, K = 9)
Data:concatenated RS-CC

Diversity Rake/Antenna
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