EE364 - Prof. Chugg: Combinatorics Summary

1 Summary of Sampling Techniques

Many combinatorics problems are conceptually equivalent to pulling balls from an urn. Assume that there are n balls in the urn and that k draws will be made. There are four cases (2^2) to consider, each defined by whether the balls are replaced after being drawn and whether the order in which the balls are drawn is important. A summary of the results given in class is contained in Table 1

Ordering	Replacement	Restrictions on k	Number of possible draws
yes	yes	none	n^k
yes	no	$k \le n$	$(n)_k = \frac{n!}{(n-k)!}$
no	no	$k \le n$	$\binom{n}{k} = \frac{(n)_k}{k!} = \frac{n!}{k!(n-k)!}$
no	yes	none	$\left(\begin{array}{c}n+k-1\\k\end{array}\right)$

Table 1: Summary of sampling cases.

It is helpful to draw out these four cases for an example with relatively small n and k. Consider n = 5 and k = 2 (i.e. make two draws from an urn containing 5 labeled balls). The result of this experiment can be recorded by a 2-tuple - e.g. (4, 2) represents the result that ball 4 was drawn first and ball 2 was drawn next. Tables 2-5 list the possible draws with each of the ordering/replacement possibilities.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)
(4,1)	(4,2)	(4,3)	(4, 4)	(4,5)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

Table 2: Sampling w/ ordering and w/ replacement $\implies 5^2 = 25$ possibilities.

•	(1,2)	(1,3)	(1,4)	(1,5)
(2,1)	•	(2,3)	(2,4)	(2,5)
(3,1)	(3,2)	•	(3,4)	(3,5)
(4,1)	(4,2)	(4,3)	•	(4,5)
(5,1)	(5,2)	(5,3)	(5,4)	•

Table 3: Sampling w/ ordering and w/o replacement $\implies (5)_2 = (5)(4) = 20$ possibilities.

•	(1,2)	(1,3)	(1,4)	(1,5)
•	•	(2,3)	(2,4)	(2,5)
•	•	•	$(3,\!4)$	(3,5)
•	•	•	•	(4,5)
•	•	•	•	•

Table 4: Sampling w/o ordering and w/o replacement $\implies 5$ pick 2, or 10 possibilities.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
•	(2,2)	(2,3)	(2,4)	(2,5)
•	•	(3,3)	(3,4)	$(3,\!5)$
•	•	•	(4, 4)	(4,5)
•	•	•	•	(5,5)

Table 5: Sampling w/o ordering and w/ replacement $\implies 5+2-1=6$ pick 2, or 15 possibilities.

2 Typical Examples

The difficult part of applying this theory is determining which of the above models is proper, or if a combination or modification of these methods is necessary. We have discussed several examples of each sampling technique; here's a brief summary:

• w/ order w/ replacement

- k-digit counting in base n.
- Labeling each of k persons in a room with a number between 1 and n.
- Place one of n types of balls into each of k bins.
- w/ order w/o replacement (k-permutations of n objects)
 - Picking order of first k finishes in a race with n competitors.
 - Permutations: How many different lists containing n different names (k = n).
 - Place one of n types of balls into each of k bins, so that no two bins contain the same type of ball.
- w/o order w/o replacement (combinations or subpopulations)
 - Partitioning a group of n people into 2 groups.
 - Extended Case: Partitioning a group of n people into m groups, so that group i has k_i members (multinomial coefficient).
 - Choosing k types of items from n possible.
 - Place one of 2 types of balls (e.g. k black and (n-k) white) into each of n bins.
- w/o order w/ replacement(combinations or subpopulations w/ replacement)
 - Choose k toppings from n possible for a pizza with double, triple etc. toppings allowed.
 - Place k identical balls into n bins.