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1 Computer Problem/Lab: Getting Familiar with Python by Repli-
cating signal.scipy.lfilter

Write a subroutine for a general ARMA filter with:

• inputs:

– b: an array of MA coefficients

– a: an array of AR coefficients

– x: an array of inputs

• outputs:

– y: array of outputs for the filter.

This should replicate the functionality of scipy.signal.freqz. Some useful Python routines for this
implementation may be np.roll and np.dot. Check your results using the following code snippet (i.e.,
your implementation vs scipy.signal.freqz – you should check other cases, but everybody should submit
results for this special case.

1 #######################################################
2 ### toy f i l t e r i n g example
3 ######################################################
4 ### some toy s yn t h e t i c data ( noisy s ine wave )
5 nu0 = 0.025
6 n = np . arange (0 , int (3/ nu0 ) )
7 x = np . s i n (2 ∗ np . p i ∗ nu0 ∗ n) + np . random . normal (0 , 0 . 5 , len (n) )
8 b , a = s i g n a l . but te r (3 , 2 ∗ ( 1 . 5 ∗ nu0 ) )
9 y = f i l t e r a n d p l o t (b , a , x )

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz
https://numpy.org/doc/stable/reference/generated/numpy.roll.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz
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2 Computer Problem/Lab: Exploring the Frequency Response
via a Two-Tap DT Filter

Consider a moving average filter with a single delay element

y[n] = b0x[n] + b1x[n− 1] (1)

where b0 and b1 are real numbers.

1. For the MA filter in (1), show that if x[n] = exp(j2πν0n), then y[n] = H(ν0) exp(j2πν0n) where H(ν0)
is a complex gain that depends on the input frequency ν0. Find H(ν0) and determine |H(ν)| and
∠H(ν). This notation is to get you to begin to consider H(ν) as a complex function of ν – i.e., it is
the complex gain of this system to input exp(j2πνn) as a function of ν.

2. Is H(ν) a Hermitian Symmetric function of ν?

3. Plot magnitude and phase of H(ν) for the following two cases (you may wish to plot the magnitude
on a dB scale and also look at it on a linear scale):

(a) b0 = b1 = 0.5

(b) b0 = 0.5, b1 = −0.5

(c) How would you characterize these two filters – i.e., what frequencies do they pass?

4. Show that for the MA filter in (1) that when the input is x[n] = cos(2πν0n) the output is

y[n] = |H(ν0)| cos(2πν0n+ ∠H(ν0)) (2)

5. Write a script to pass the following input signals through the two MA filters in part 3:

x[n] = cos(2πν0n)

x[n] = sin(2πν0n)

for each consider ν0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9}.
Using the reasoning from part 4 above, the output for the above cases should be a sinusoid at the
same frequency as the input with an amplitude gain and phase shift: measure these from your script
by comparing x[n] and y[n] and compare against what you expect from the analysis above.

Note: you may consider how to automate the measurement of the amplitude and phase differences
between two sinusoids of the same frequency. This will be discussed in the Lab section with the TA.
Similarly, initial transient effects from starting the filter at rest will be discussed in Lab.

6. Consider an ARMA filter with

[a0, a1, a2] = [1.0,−1.1429805, 0.4128016] (3)

[b0, b1, b2] = [0.06745527, 0.13491055, 0.06745527] (4)

Repeat the numerical experiments in part 5 above for this ARMA filter. Compare the measured
magnitude and phase associated with sinusoidal inputs to the “frequency response” as computed by
scipy.signal.freqz. Does the “frequency response” value at the frequency ν0 correspond to the
observed gain and phase shifts?

Note: Check the webpage for scipy.signal.freqz, but also see the notebook examples distributed
in lecture for example usage.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz
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3 Computer Problem/Lab: Image Filtering

In this problem you will learn how to read and write grayscale images in Python and about two-dimensional
convolution and MA filters.

For a one-dimensional, discrete time (index) signals, convolution is defined as

y[n] = x[n] ∗ h[n] =

∞∑

k=−∞
x[k]h[n− k]

For two-dimensional signals (e.g., images and image filters) convolution is

y[i][j] = x[i][j] ∗ h[i][j] =

∞∑

m=−∞

∞∑

n=−∞
x[m][n]h[i−m][j − n]

Note that the index set here is not time, it is spatial location in the image and is there for indexed by two
integers – e.g., i for horizontal and j for vertical.

1. Find y[i][j] = x[i][j] ∗ h[i][j] for the signals shown below. Plot a heat-map of the result using
matplotlib.pyplot.matshow.

. . .
...

...
...

...
...

...
...

...

. . . 0 0 0 0 0 0 0 . . .

. . . 0 x[−2][1] = 1 x[−1][1] = 1 x[0][1] = 1 x[1][1] = 1 x[2][1] = 1 0 . . .

. . . 0 x[−2][0] = 1 x[−1][0] = 1 x[0][0] = 1 x[1][0] = 1 x[2][0] = 1 0 . . .

. . . 0 x[−2][−1] = 1 x[−1][−1] = 1 x[0][−1] = 1 x[1][−1] = 1 x[2][−1] = 1 0 . . .

. . . 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .

and

. . .
...

...
...

...
...

...

. . . 0 0 0 0 0 . . .

. . . 0 h[−1][1] = 1/4 h[0][1] = 1/2 h[1][1] = 1/4 0 . . .

. . . 0 h[−1][0] = 1/2 h[0][0] = 1 h[1][0] = 1/2 0 . . .

. . . 0 h[−1][−1] = 1/4 h[0][−1] = 1/2 h[1][−1] = 1/4 0 . . .

. . . 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .

Note: In both cases, all values at indices not shown are assumed to be zero and you only need to show
the output over the region where it is non-zero.

2. In this part you will filters some images using the following filters: (a) a 2D moving average filter, (b)
a Gaussian blur filter, (c) a vertical edge detector, and (d) a horizontal edge detector.

The (M ×M) moving average filter is given by

HMA =
1

M2
11t

where 1 is an (M × 1) all ones vector.

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.matshow.html
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The Guassian blur has

HGB [i][j] =
K

2πσ2
exp

(−(i2 + j2)

2σ2

)

This is a 2D bell-shaped curve with the term σ is selected to control the width. With M = 2L + 1,
a reasonable choice is σ = L/2 – i.e., this makes the edge fo the filter in the horizontal and vertical
directions the 2σ points. The constant K is selected so that

∑
i,j h[i][j] = 1 – i.e., the DC gain of the

filter is 1.

The vertical edge detector is
HV =

[
−1 0 +1

]

which is a (M × 3) matrix.

The horizontal edge detector filter kernel is the transpose of the vertical edge detector kernel: HH =
Ht
V .

Use M = 2L+ 1 with L = 9 for each of these filters to the following test images:

• Grayscale test image

• airport

• male

For each test image provided, use scipy.signal.convolve2d (or equivalent in Matlab) to apply the
filter. Provide a side-by-side comparison of the input and output images and discuss, qualitatively, the
performance of each filter on the images.

Methods for reading, writing and manipulating images in Python will be discussed in lab.

https://vignette.wikia.nocookie.net/htm/images/7/76/Grayscale_Test_Pattern.png/revision/latest?cb=20140102010249
http://sipi.usc.edu/database/download.php?vol=misc&img=5.3.02
http://sipi.usc.edu/database/download.php?vol=misc&img=5.3.01
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
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4 Computer Problem/Lab: Filtering a Fourier Series

In Problem 3.4, you explored the Fourier series and plotted truncated FS sums. In this problem, we consider
filtering these signals using an LTI system. Specifically, an nth order Butterworth low-pass filter is defined
by

|H(jω)| = 1√
1 +

(
ω
ωc

)2n

where ωc is the cut-off frequency.
For even values of n, the frequency response can be written as

H(jω) =
1

∏n−1
k=d(n−1)/2e

[[
j
(
ω
ωc

)]2
− 2 cos

(
(2k+1)π

2n

) [
j
(
ω
ωc

)]
+ 1

] (5)

where d·e is the ceiling operation – e.g., d3e = 3, d3.01e = d3.5e = d3.99e = 4. As a concrete example, for
n = 2 we have

H(jω) =
1

[
j
(
ω
ωc

)]2
− 2 cos(3π/4)

[
j
(
ω
ωc

)]
+ 1

=
1

[
j
(
ω
ωc

)]2
+
√

2
[
j
(
ω
ωc

)]
+ 1

We will also consider a high-pass version of this filter which can be derived using

|HHP (jω)|2 = 1− |H(jω)|2

It can be show that the associated HHP (jω) can be obtained by using (5) with (ω/ωc) replaced by (ωc/ω).

1. Produce magnitude and phase plots for H(jω) and HHP (jω) for ωc = 2πfc and fc = 3500 and
n = 2, 4, 6, 8. Plot the magnitude in dB – e.g., 10 log10(|H(jω)|2) – and use a log scale for ω. This is
a so-called Bode plot. Note that you can produce these plots by using complex arithmetic in Python
and you do not need to simplify the expression for H(jω) for n = 4, 8.

(a) What is the value of |H(jω)|2, in dB, for ω = 0, ω = ωc, and as ω →∞.

(b) Discuss the behavior of |H(jω)|2 at large frequencies as a function of n. How does this manifest
itself in the plots?

(c) Can you determine what the the phase is at w = 0 and as ω →∞ from the analytical expression?
Does this match your plots?

2. In this part we will consider the following Fourier Series

(a): square wave: Xk =
1

2
sinc(k/2)− δ[k]

(b): triangle wave: Xk =
1

2
sinc2(k/2)− δ[k]

(c): delta train: Xk = 1

This will make the waveforms have amplitude 0.5 and the will be even functions.

Plot the input and output of the LPF and HPF above with n = 2 and when T = 1/1000. For the
input use K = 19 from problem 3.4 for the truncation of the FS.

Discuss the results and the relationship between fc and f0 = 1/T . Also, is using this low-pass filter
the same as truncating the Fourier Series? If not, how does it differ? You may also try using a higher
cut-off frequency – e.g., fc = 8000.



Signals and Systems – Computer Problem Set – c©K.M. Chugg - April 22, 2021 7

Note: It is a good exercise to program up the frequency response for the butterworth filter as described
above. Some of this is automated in Python, however. For example, the following command will find an
equivalent butterworth filter

b, a = signal.butter(n, omega_c, ’low’, analog=True)

Specifically, this will provide two arrays b, and a and

H(jω) =

∏LN

k=0 bk(jω)LN−k
∏LD

k=0 ak(jω)LD−k

This above command will return a b array of size 1 – divide the a vector by b and you will have the equivalent
of (5). The frequency response can then be computed using signal.freqs

w, h = signal.freqs(b, a)

See the example in the documentation for scipy.signal.butter.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
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5 Computer Problem/Lab: Correlational and Matched Filtering

In many problems in communications, signal processing, and radar, it is desired to detect or locate a known
signal in noise. For the most common type of noise encountered in engineering (broadband, Gaussian noise
or additive white Gaussian noise), the optimal processing for these tasks is provided by performing a signal
correlation.

The correlation between z(t) and p(t) is given by

r(t) = z(t) ? p(t) =

∫ ∞

−∞
z(τ)p∗(τ − t)dτ =

∫ ∞

−∞
z(λ+ t)p∗(λ)dλ

5.1 Correlation Properties and Matched Filters

(a) Show that
r(t) = z(t) ? p(t) = z(t) ∗ p∗(−t)

In other words a correlation between z(t) and p(t) can be obtained by passing z(t) through a LTI
system with impulse response p∗(−t). The filter with impulse response p∗(−t) is called a matched filter
– i.e., a filter matched to p(t).

(b) Consider the case when z(t) = p(t). What is the output of the correlator, r(t)? What is R(f) in terms
of P (f) for this case? What is r(0)? Sketch r(t) for the following cases:

– rect-pulse p(t) =
√
Eprect(t)

– duo-binary-pulse p(t) =
√

Ep

2 [rect(t+ 1/2)− rect(t− 1/2)]

5.2 Binary Digital Communications

A simplified model for a common binary digital communication signal is

z(t) = d p(t) + w(t)

where d ∈ {−1,+1} is the data bit and w(t) broadband noise. A decision on this bit is made by computing
r(t) = z(t) ? p(t), sampling at t = 0, and comparing against 0 as shown in Fig. 1. Specifically, the decision
is:

r(0)
d̂=+1

>
<

d̂=−1

0

where d̂ is the decision.
In this part, you will simulate this processing using fs = 1/Ts samples per second with fs ≥ 16 suggested

– i.e., you will simulate the continuous time processing using fs samples for each unit interval of t. This will
yield

z(nTs) = d p(nTs) + w(nTs)

or, overloading the notation a bit,
z[n] = d p[n] + w[n]

where z[n] = z(nTs), p[n] = p(nTs), and w[n] = w(nTs).
The noise sequence can be generated by using np.random.normal(0, sigma, N) where sigma is

σ =

√
N0

2
fs

and N is the length of the array desired.
The performance measure for this system is the bit error rate (BER) which is he fraction of trials (or

probability) for which d̂ 6= d – i.e., the fraction of trials for which the receiver makes and error. The BER
is a function of Ep/N0 which we often measured in dB – i.e., 10 log10(Ep/N0).
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d̂

Figure 1: A receiver for the binary digital communications case.

(c) In order to visualize the effect of the matched filter, set the data bit to be d = +1, use the rectangular
pulse,1 and generate the noise as described above. Plot r(t) and note the value of this at t = 0. This
should show the signal component of the matched filter output increasing in magnitude and being
disturbed by noise. Do this for no noise, Ep/N0 = −3 dB and Ep/N0 = 6 dB. Repeat this for a few
noise and data realizations for each setting of Ep/N0. Optionally, may also wish to consider a higher
signal to noise ratio – e.g., Ep/N0 = 12 dB.

(d) Repeat this experimentK times, except each time generate a data bit randomly using np.random.choice([-1,

+1]). Specifically, for each of the K trials, generate value for d, the noise, and do the above processing
to obtain a decision d̂. Compute the BER for Ep/N0 = −3 dB and Ep/N0 = 6 dB. You should choose
K to be large enough that you observe ≥ 100 errors.

Optional: Another useful visualization in this case is a histogram of the values of R = r(0) conditioned
on the value of d. Specifically, generate a histogram for the cases where d = −1 and another histogram
for the cases where d = +1.

Optional: Produce a BER curve by plotting your BER vs. Ep/N0 where Ep/N0 is in dB and the
y-axis for BER is on a log scale. In the context of this part of the problem, Ep is the energy per bit
so, this is typically denoted by Eb and the plot is vs Eb/N0.

5.3 Delay Estimation

Suppose that the following is available

z(t) = p(t− t0) + w(t)

where t0 is an unknown delay. A good estimate of t0 can be obtained by computing r(t) = z(t) ? p(t) =
z(t) ∗ p∗(−t) and then finding the value of t that maximizes this quantity. Specifically,

t̂0 = arg max
t
r(t)

You will simulate this using the same technique as in the digital communications problem above – i.e., use
the rect-pulse and same method for generating the noise.

(e) Simulate the case where t0 = 1.5. For this delay value, plot the matched filter output r(t) for the cases
of no noise, Ep/N0 = −3 dB and Ep/N0 = 6 dB. Repeat this for a few noise and data realizations for
each setting of Ep/N0. In each case, note what the delay estimate value is t̂0.

(f) Repeat this experiment K times – i.e., each time generating the noise, and processing it to obtain a
delay estimate t̂0. Compute the mean-squared error (MSE) for this estimate by average (t0− t̂0)2 over
the K noise realizations. Do this for Ep/N0 = −3 dB and Ep/N0 = 6 dB using K > 5000.

Optional: Produce a histogram of the delay estimate for the Ep/N0 values considered.

Optional: Produce a plot of the MSE (in dB) vs. Ep/N0 in dB.

1You may choose to use rect(1/2 − t) in place of rect(−t) for the matched filter. This makes the matched filter causal. It
delays the output by 1/2, so where we have referred to r(0) here, that will be mapped to r(1/2). It is common to assume a
non-casual matched filter for analysis, but when implemented in practice, a delay is inserted to make it causal. Depending on
how you do this in Python/Matlab, you may need to make the matched filter causal.
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6 Computer Problem/Lab: Windows for FIR Filter Design

There are many examples of infinite (length) impulse response (IIR) filters that do not follow a constant-
coefficent, linear difference equation (e.g., ARMA filter). Specific examples include: ideal filters (low-pass,
high-pass, band-pass), differentiators, fractional-sample delays, and interpolators/up-samplers. In these
examples, we have an ideal impulse response h[n] that is non-zero over the range n ∈ {0, pm1,±2, . . .}. The
practical way to implement this filter is to window h[n] to obtain

g[n] = w[n]h[n]

where w[n] = 0 for |n| > M . This means that g[n] is L = 2M + 1. In examples in lecture, we used a
rectangular window which corresponds to simply truncating h[n].

After windowing, the filter impulse response can be delayed to make the resulting FIR causal – i.e., the
implemented filter is g[n−M ].2. Because of this, an alternative notation is to use

g[n] = w[n]h[n−M ]

where w[n] is defined to be zero for n < 0 and n ≥ L. The windows defined below follow this second
convention.

6.1 Window Definitions

There are many different windows that have been proposed and are used in practice. Like many engineering
design problems, there is no one right answer and, instead, window design is about trade-offs. In this
problem, you will consider the following windows. In all cases, w[n] = 0 for n 6∈ {0, 1, . . . L− 1}.

• rect: This is just the truncation used in the lecture examples:

w[n] = 1, 0 ≤ n < L

• Bartlett (Triangle): This is a triangle shape that decays linearly from its center to zero at the edges:

w[n] =
2

L− 1

(
L− 1

2
−
∣∣∣∣n−

L− 1

2

∣∣∣∣
)

=
2(M − |n−M |)

L− 1
0 ≤ n < L

This window is available in Python as np.bartlett

• Hanning: This window is available in Python as np.hanning and is given by

w[n] =
1

2

[
1− cos

(
2πn

L− 1

)]
0 ≤ n < L

• Hamming: This window is available in Python as np.hamming

w[n] = 0.54− 0.46 cos

(
2πn

L− 1

)
0 ≤ n < L

• Kaiser: This window is available in Python as np.kaiser

w[n] =

I0

(
β

√
1−

(
2n
L−1

)2
)

I0(β)
0 ≤ n < L

2It is not necessary to have L be odd, but it makes the math a little simpler and it is common to choose L odd in practice.

https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html
https://numpy.org/doc/stable/reference/generated/numpy.hanning.html
https://numpy.org/doc/stable/reference/generated/numpy.hamming.htm
https://numpy.org/doc/stable/reference/generated/numpy.kaiser.htm
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where β is a parameter that adjusts the window shape significantly. In this problem, we will use
β = 2.5. Setting β = 0 yields the rect window and the numpy documentation claims that using β = 5
provides a window similar to the Hamming window while using β = 6 yields a window similar to
the Hanning window. Because of the flexibility of this window with varying beta, it is often used in
automated filter design routines such as Matlab’s.

• Vorbis: Vorbis is an open-source software solution for audio encoding and decoding – e.g., similar to
mp3 and AAC. The Vorbis window is used in this standard and the related voice codec called Opus.
The Vorbis window is defined as

w[n] = sin

[
π

2

(
sin2

(
π(n+ 0.5)

L

))]
0 ≤ n < L

6.2 General Window Trade-offs

A plot of |W (ν)| in dB for each of these windows will have some common characteristics. First, the spectrum
is made up of “lobes.” This is similar to what is observed by plotting |sinc(f)|2 in dB – i.e., , there are nulls
at integer values of f in that case and the plot between these nulls are called lobes. The main lobe is the
lobe near ν = 0 and the other lobes are called side-lobes. Factors of interest are the main lobe width and the
side-lobe roll-off. The width of the main lobe is the value of ν at the first null. The side-lobe roll-off is the
rate at which the side-lobes decay relative to the main-lobe. For example, in continuous time, the |sinc(f)|2
spectrum has main-lobe width of 1 and has a side-lobe roll-off of 1/f2 or 20 dB per decade.

Since the window multiplies h[n] in the time domain, in the frequency domain the spectrum of h[n] is
circularly-convolved with W (ν). It follows that an ideal window would be an impulse in frequency, which is
not achievable due to the fact that the window is finite length in time. In practice, one seeks a window with
low main-lobe width and fast side-lobe roll-off.

6.3 Problem Statement

In this problem we will consider using the above windows to create an FIR filter to approximate an ideal
low-pass filter with impulse response (as derived in lecture)

h[n] = 2ν0sinc

(
n

2ν0

)

We will consider ν0 = 1/8 = 0.125. This could be used, for example, as an anti-aliasing filter for down-
sampling a discrete time signal by a factor of 4. For example, if you have a 48 kHz digital audio file that you
wanted to downsample to 12 kHz, you would first us a LPF with cut-off frequency ν0 = 1/8 to eliminate the
frequencies above the Nyquist band for Fs = 12kHz.

Produce the following set of plots for the two cases of M = 10 and M = 50 – i.e., , L = 21 and L = 101,
respectively.

1. Plot all of the windows on a common plot.

2. Plot |W (ν)| in dB for all of the windows on a common plot. Normalize each W (ν) so that the plot is
at 0 dB for ν = 0.

3. For each window plot the following (use a common y-axis scale when you want to make comparisons):

(a) w[n] (stem plot)

(b) |W (ν)| in dB. Normalize W (ν) so that the plot is at 0 dB for ν = 0.

(c) g[n] (stem plot)

(d) |G(ν)| in dB

4. Plot |G(ν)| in dB for all of the windows on a common plot – zoomed in around the ν = ν0 point.

https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform#Window_functions
https://en.wikipedia.org/wiki/Opus_(audio_format)
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6.4 Qualitative Comparisons

Based on your results above, address the following:

• Rank the windows according to:

– “Compactness” in time; more compact windows have most of the energy around their center –
i.e., the rect window is the least compact.

– “Smoothness” in time – i.e., shapes without abrupt changes are smoother. In continuous time,
continuous, infinitely differentiable functions are smooth.

– Main-lobe width in frequency.

– Side-lobe roll-off in frequency.

• When considering the convolution in the frequency domain, what is the effect of the main-lobe width
on |G(ν)|? What is the effect of higher side-lobes on |G(ν)|?

• What is the effect of the increasing the window length?

• All things considered, what window would you use for this FIR low-pass filter design?
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Signals and Systems – Computer Problems, Labs, Projects

c� Prof. Keith M. Chugg – April 8, 2021

1 Computer Problem/Lab: Spectrograms

It is often valuable to view the short-term frequency composition of signals. For example, consider a frequency
chirp signal that starts at frequency f0 at time t0 and ramps the frequency up linearly to frequency f1 at
time t1. The Fourier transform of this chirp signal will show frequency content across the band from f0 to
f1. However, the short-term spectral properties of this signal will be lost by taking the Fourier transform
over the full time horizon. Specifically, inspecting the Fourier transform will not provide any indication that,
at any point in time, the signal is very localized in frequency.

This motivate Short-term Fourier Transform (STFT) analysis wherein short time chunks of the signal
(frames) are analyzed in frequency and the results are stitched together in time to give a spectrogram –
i.e., a view of the signal with time on the x-axis and frequency on the y-axis. During the semester, we have
viewed spectrograms generated by Audacity for audio signals. In this problem, you will develop your own
spectrogram code and explore audio signals in the time-frequency plane.

1.1 Spectrogram Definition and Notation

Consider a signal x[n] that is defined for n = 0, 1, . . . and defined the mth frame as

xm[n] =

(
x[n + mS] 2 ZN

0 n 62 ZN

where ZN = {0, 1, . . . N �1}. The parameter N is the frame length and S is the frame-skip – 1/S is referred
to as the frame rate. This framing of the signal is shown in Fig. xx. Note that the frames typically overlap
meaning that S < N and a common choice is S = N/2 when N is even.

x[0], x[1], · · · x[S � 1], x[S], · · · x[N � 1], x[N ], · · · x[N + S � 1], x[N + S], · · · x[2N � 1], x[2N ], · · ·

<latexit sha1_base64="zSV+ap9nki9hpBEvV1/WF4t2ERo=">AAACDnicbVDLTgIxFL3jAxFfqEs3jUTjisy4UJckbFxilEcCE9IpBSqddtJ2jBPCP7DVj3Dpzrj1F9z6C/6AZWAz4EmanJxze+/JCSLOtHHdb2dtfWMzt5XfLuzs7u0fFA+PGlrGitA6kVyqVoA15UzQumGG01akKA4DTpvBqDrzm09UaSbFg0ki6od4IFifEWys1Hjuum3hd4slt+ymQKvEW5BSJRe93VPnp9Yt/nZ6ksQhFYZwrHXbcyPjj7EyjHA6KXRiTSNMRnhAx2nGCTqzUg/1pbJPGJSqmbmqwonkOI2ssytwqHUSBnZJiM1QL3sz8T+vHZv+jT9mIooNFWSeoR9zZCSadYF6TFFieGIJJorZ8IgMscLE2MYyV0YhmdiWvOVOVknjsuxdlb07W9c5zJGHEziFC/DgGipwCzWoA4FHmMILvDpT5935cD7no2vO4s8xZOB8/QF3hp/R</latexit>

x0[n]
<latexit sha1_base64="UlJ99THhdIyCdDXlUD5t0TAqeAY=">AAACDnicbVDLTgIxFL3jAxFfqEs3jUTjisy4UJckbFxilEcCE9IpBSqddtJ2jBPCP7DVj3Dpzrj1F9z6C/6AZWAz4EmanJxze+/JCSLOtHHdb2dtfWMzt5XfLuzs7u0fFA+PGlrGitA6kVyqVoA15UzQumGG01akKA4DTpvBqDrzm09UaSbFg0ki6od4IFifEWys1Hjuem3hd4slt+ymQKvEW5BSJRe93VPnp9Yt/nZ6ksQhFYZwrHXbcyPjj7EyjHA6KXRiTSNMRnhAx2nGCTqzUg/1pbJPGJSqmbmqwonkOI2ssytwqHUSBnZJiM1QL3sz8T+vHZv+jT9mIooNFWSeoR9zZCSadYF6TFFieGIJJorZ8IgMscLE2MYyV0YhmdiWvOVOVknjsuxdlb07W9c5zJGHEziFC/DgGipwCzWoA4FHmMILvDpT5935cD7no2vO4s8xZOB8/QF5Lp/S</latexit>

x1[n]
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x2[n]
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x3[n]

Figure 2: Conversion of the signal x[n] into overlapping frames. For the diagram shown, the frame skip is
half a frame – i.e., S = N/2.

7 Computer Problem/Lab: Spectrograms

It is often valuable to view the short-term frequency composition of signals. For example, consider a frequency
chirp signal that starts at frequency f0 at time t0 and ramps the frequency up linearly to frequency f1 at
time t1. The Fourier transform of this chirp signal will show frequency content across the band from f0 to
f1. However, the short-term spectral properties of this signal will be lost by taking the Fourier transform
over the full time horizon. Specifically, inspecting the Fourier transform will not provide any indication that,
at any point in time, the signal is very localized in frequency.

This motivate Short-term Fourier Transform (STFT) analysis wherein short time chunks of the signal
(frames) are analyzed in frequency and the results are stitched together in time to give a spectrogram –
i.e., a view of the signal with time on the x-axis and frequency on the y-axis. During the semester, we have
viewed spectrograms generated by Audacity for audio signals. In this problem, you will develop your own
spectrogram code and explore audio signals in the time-frequency plane.

7.1 Spectrogram Definition and Notation

Consider a signal x[n] that is defined for n = 0, 1, . . . and defined the mth frame as

xm[n] =

{
x[n+mS] ∈ ZN
0 n 6∈ ZN

where ZN = {0, 1, . . . N − 1}. The parameter N is the frame length and S is the frame-skip (or frame shift)
– 1/S is referred to as the frame rate. This framing of the signal is shown in Fig. 2. Note that the frames
typically overlap meaning that S < N and a common choice is S = N/2 when N is even, as shown nominally
in Fig. 2.

The DFT (FFT) of each frame is then taken, typically with a window applied. Specifically, the spectrum
for frame m is DFT {w[n]xm[n]} and the spectrogram is the magnitude squared of this, typically plotted in
dB

Sm[k] = |DFT {w[n]xm[n]}|2 [Sm[k]]dB = 20 log10 (|DFT {w[n]xm[n]}|)

For this problem, you will use a Hanning window, but feel free to explore. An example spectrogram is shown
in Fig. 3.

7.2 Problem Statement

In this problem, you will generate spectrograms for the two audio signals we have used during the semester:
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Figure 3: An example spectrogram for an audio chirp signal generated in Audacity.

• chirp.wav

• chugg welcome.wav

For each of these audio signals, do the following:

1. Generate a spectrogram with y-axis in kHz and x-axis in seconds – label these axes accordiningly.
Plot the y−axis up to the Nyquist frequency for the file’s sample rate. Note that you can use
numpy.fft.rfft() to exploit the spectral symmetry around ν = 0.5. For plotting, you can use
matshow() or the more basic routine imshow()

(a) Produce one spectrogram using NFFT = N – i.e., the FFT size equal to the frame length.

(b) Produce a second spectrogram using NFFT = 216.

(c) Explain how these two spectrograms differ.

2. Use a low-pass to filter out frequencies above 2 kHz, then repeat the two spectrograms above –
i.e., NFFT = N and NFFT = 216.

https://github.com/keithchugg/ee301_spring2021/blob/main/lecture_examples/data/chirp.wav
https://github.com/keithchugg/ee301_spring2021/blob/main/lecture_examples/data/chugg_welcome.wav
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html
https://matplotlib.org/stable/gallery/images_contours_and_fields/matshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
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Typical In-Phase/Quadrature Digital Modulation
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Figure 4: Digital communication system using I/Q modulation with Nyquist pulses.

8 Project: Digital In-phase/Quadrature Modulation Systems

The goal of this project is to understand, simulate, and teach your classmates about the digital commu-
nication system in Fig. 4. This system comprises a transmitter (everything before the noise addition), a
channel (the noise addition), and a receiver (everything after the noise addition). Every symbol time (Ts),
a two-dimensional digital symbol is sent by this transmitter and the receiver attempts to make a decision
regarding which of the allowable digital symbol values was transmitted. Below we provide more details on
the operation of this system and the relation to previous problems worked in the EE301L.

8.1 Background Information

In this system, a sequence of two-dimensional digital symbols

xj =

[
xIj
xQj

]
(6)

is mapped onto a sinusoidal carrier waveform and transmitted. Specifically, the transmitted signal is

y(t) = xI(t)
√

2 cos(2πfct)− xQ(t)
√

2 sin(2πfct) (7)
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Figure 5: The 16QAM constellation with Gray labeling.

where the so-called in-phase (I) and quadrature (Q) carrier channel signals are

xI(t) =
∑

j

xIjp(t− jTs) (8a)

xQ(t) =
∑

j

xQj p(t− jTs) (8b)

and p(t) is the pulse shaping filter impulse response. It it convenient to work with a unit energy pulse
∫ ∞

−∞
|p(t)|2 dt = 1 (9)

8.1.1 Digital Modulation Constellations

The digital modulation format is defined by the finite set of values that xj is allowed to take. For example,
the M = 16 Quadrature Amplitude Modulation (QAM) signal set (i.e., constellation) is shown in Fig. 5.

Note that, for this 16-QAM modulation, xIj and xQj are selected from {−3A,−A,+A,+3A} independently
to define xj as one of the 16 points in the plane. The energy in a symbol is defined as the average of the
norm-squared over all of the signal points. For 16-QAM, it can de shown that the signal separation and this
symbol energy are related by

d = 2A =

√
6Es
16

(10)

Since the source information is typically in binary format, each of these 16 points are labeled by 4 information
bits – i.e., each time that a 16-QAM symbol is transmitted, 4 information bits are sent.

There are many types of signal constellations used in this type of modulation. Another common format
is phase shift keying (PSK). Figures 6 and 7 show an M = 8 PSK constellation, each with a different bit
labeling.

8.1.2 Importance of Pulse Shaping

The choice of pulse shaping is important because the (power) spectrum of the modulated signal y(t) is

Sy(f) = C
[
|P (f − fc)|2 + |P (f + fc)|2

]
(11)

where C is a positive constant. It follows that the amount of bandwidth required to transmit the signal is
determined by P (f) and hence p(t). An obvious choice for p(t) is a rectangular pulse

prect(t) =
1√
Ts

rect

(
t− Ts/2
Ts

)
(12)
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Note that for this choice of pulse, the signal xI(t), for example, depends only on xIj for the interval t ∈
[jTs, (j + 1)Ts). This is the case for any pulse p(t) that is non-zero only for t ∈ [0, Ts).

Restricting the pulse duration to one symbol time is not desirable in terms of the spectral properties.
For example, for prect(t) we have that

|Prect(f)|2 = Tssinc2(Tsf) (13)

which has its first spectral null at f = 1/Ts and has side-lobes that roll of as 1/f2. Note that any pulse that
is non-zero only for t ∈ [0, Ts) will have similar properties.

Is it possible to use a pulse that lasts longer than Ts seconds? This would improve the spectral properties,
but it will also cause intersymbol interference (ISI) – i.e., the signal xI(t), for example, on the interval
t ∈ [jTs, (j + 1)Ts) will depend not only xIj but on xIm for values of m 6= j. In other words the pulses
associated with different information symbols will overlap in time. The next section outlines how a pulse
lasting longer than a symbol duration can be used, thus reducing the bandwidth required.

8.1.3 Nyquist Pulse Shaping

The optimal receiver signal processing is as shown in Fig. 4 which includes an I/Q down-converter and a
matched filter on the I and Q channels. From Problem 4.11, we know that the input to the matched filter
on the receiver I channel is xI(t) plus double-frequency terms, plus noise effects from the channel noise.
Let’s ignore the noise for now. The double frequency terms will be filtered out by the matched filter, which
passes frequencies around f = 0. Thus, neglecting the 2fc terms and noise, the output of the I channel
matched-fliter is3

zI(t) = xI(t) ∗ p(−t) (14)

and the symbol-spaced matched-filter output sample signal on the I channel is zIj = zI(jTs). Similar modeling
applies to the Q-channel in the receiver.

A pulse satisfying the Nyquist criterion for no ISI is one in which zIj only depends on xIj – i.e., there is no
ISI at the output of the matched filter. Any pulse that is non-zero only on [0, Ts) will satisfy this property,
but there are designs that last longer than one symbol time that also satisfy this property. In this project
you will explore using pulses that are longer than one symbol time. A Nyquist pulse, one that satisfies
the Nyquist criterion for no ISI, is one that introduces ISI in the continuous time transmitted waveform
(e.g., xI(t)), but has no ISI in the matched filtered samples (e.g., zIj ).

8.1.4 Post Matched Filter Decision Device

When a Nyquist pulse is used, a decision on the M -ary digital symbol xj is made by a “slicer” – i.e., a device
that maps the post matched filter output zj to a decision x̂j . This simply selects the point in the constellation
that is closest (in the Euclidean sense) to zj . This may be viewed as partitioning the I/Q plane into decision
regions – i.e., regions where zj will be mapped to a given decision. For example, the decision regions for
16 QAM are illustrated in Fig. 8. Note that this is a direct generalization of Correlation/Matched-Filter
computational problem that you have already worked. In that case, no quadrature channel was used, the
constellation was {−1,+1}, and the decision regions were just {z > 0} and {z ≤ 0}.

A symbol error is made if x̂j 6= xj . When a symbol error is made, the number of bit errors depends on the
bit labels of x̂j and xj . In a simulation one would run trials, count errors, and use the ratio of the number
of symbol errors to the numbers of symbol trials as the symbol error rate, an approximation of the symbol
error probability Ps. An estimate of the bit error probability Pb can be computed in a similar way using
the simulated bit error rate. Again, this is a generalization of the Correlation/Matched-Filter computational
problem.

3Here we assume that p(t) is real so that p∗(t) = p(t).



Signals and Systems – Computer Problem Set – c©K.M. Chugg - April 22, 2021 19

© Keith M. Chugg, 2017

Performance (exact): M-QAM
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Figure 8: The post matched filter decision device – i.e., a slicer – for 16 QAM.

8.2 Project Work Guidelines

You are free to explore various aspects of this system as part of your project. Below are some guidelines and
suggestions to aid you in formulating your project. You will also meet with your project mentor to structure
your project.

8.2.1 Analytical Work

Below are a list of results that should review or develop to ensure that you understand the theory behind
the system shown in Fig. 4.

1. Review Problem 4.11 and verify that the input to the matched filter on the I channel is xi(t) plus 2fc
terms, plus the effects of the channel noise.

2. Review the solution to the Correlation/Matched-Filter computational problem.

3. Review Problem 4.27.

4. Write zI(t) in (14) (noise and 2fc terms neglected) in terms of p(t) and xIj and show that the condition

for zIj to depend only on xIj (no ISI) is that

Rp(mTs) = δ[m] (15)

where Rp(t) = p(t) ∗ p∗(−t) is the pulse correlation function. This is the Nyquist criterion in the time
domain.

5. State the above condition in terms of Sp(f) = FT {Rp(t)} = |P (f)|2. Note that this is the problem
considered in Problem 4.27 with X(f) = Sp(f). This is the Nyquist criterion in the frequency domain.

6. Show that the rect pulse in (12) satisfies the Nyquist criterion. Show this in the time and frequency
domains.

7. Show that |P (f)|2 = X(f) where X(f) is from Problem 4.27 also satisfies the Nyquist criterion. Show
this in time and frequency.
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8. A common choice for a pulse shape is to choose Sp(f) = |P (f)|2 to be a raised cosine (RC) spectrum.
This RC spectrum is similar to X(f) in Problem 4.27, but with smoother shape. This design is

|P (f)|2 =





Ts |f | < 1−β
2Ts

Ts

2

[
1− sin

(
πTs

β

(
f − 1

2Ts

))]
1−β
2Ts
≤ |f | ≤ 1+β

2Ts

0 |f | > 1+β
2Ts

(16a)

β ∈ [0, 1) fractional excess bandwidth (16b)

Rp(t) = sinc(t/Ts)
cos(βπt/Ts)

1− 4β2(t/Ts)2
(16c)

P (f) = |P (f)| (16d)

p(t) = 4β
cos((1 + β)πt/Ts) + sin((1− β)π(t/Ts)) [4β(t/Ts)]

−1

π
√
Ts [1− (4βt/Ts)2]

(16e)

Plot |P (f)|2, Rp(t) and p(t) for various values of β and note why this this is a Nyquist pulse (time and
frequency). Note that p(t) is referred to as a root-raised cosine (RRC) pulse.

Following these steps, you will have demonstrated that the output of the I and Q matched filters is

zj = xj + nj (17)

where nj is the effects of the channel noise.
A resource for this material is my EE564 Detection Theory and Performance Analysis Slides. In particu-

lar, the theoretical performance for PSK and QAM is provided on slides 28-36.4 The Nyquist condition and
the RRC pulse results are developed in slides 82-94.5

8.2.2 Simulation Work

You may choose to simulate all of or part of the system in Fig. 4. If you choose to simulate the entire block
diagram, plus the slicer, then you will need to choose a value for fc. In this case, it is suggested that you
normalize to a unit sample time (i.e., Ts = 1) and choose the carrier frequency to be ≥ 100. The simulation
will have to done using a sampled version of the signal models as was the case in the Correlation/Matched
Filter computational problem. Here, the sample rate should be higher than twice the carrier frequency, so
using Fsample = 4fc = 400 should suffice. This means that you will be running your simulation with a sample
time of Tsample = 1/400 or 400 samples per symbol time. In this case, you can generate the noise samples
using np.random.normal(0, sigma, N) where sigma is

σ =

√
N0

2
Fsample

and N is the length of the array desired.
To simulate the matched filter for a RRC pulse, you will have to window it (an RRC pulse is infinite

length) and delay it to make it start at zero. You may wish to do an experiment with just this windowed
RRC and the associated matched filter to verify that the Nyquist condition is still satisfied in practice. In
other words, windowning the RRC pulse will cause the Nyquist condition to not hold exactly, so it is an
engineering design trade-off to choose the window length and the degree of approximation for the Nyquist
condition. In practice, a choice of β = 0.35 is a good choice for the RRC excess bandwidth.

To characterize your simulation, you can produce a scatter plot for the values of zj at various SNR values
(e.g., Es/N0 values). At higher SNR, the values of zj should cluster around the actual transmitted symbols
and at lower SNR, these clusters should be larger resulting in decision errors.

4The Q-function is the integral of the tail of a Gaussian bell and can be computed in Python using scipy.stats.norm.sf.
5These slides are beyond the scope of EE301L, but you will be reproducing some of these results.

https://hal.usc.edu/chugg/docs/564/EE564_Chugg_Detection_2020.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
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A full simulation would include a symbol error rate and a bit error rate computation so as to produce a
curve of SER and BER vs. Es/N0.

More details and help on the simulation can be obtained from the project mentor.
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y[n]

Figure 9: Block diagram for real-time frequency domain filtering using overlap and add. All boldface
quantities are vectors of size N , which is the frame length and the FFT size.

9 Project: Frequency Domain Filtering Using Overlap and Add
with FFTs

The goal of this project is to understand, simulate, and teach your classmates about the filtering system in
Fig. 9 which is a practical way to implement a filter in the frequency domain. Note that, in practice, one
cannot compute the DTFT, apply a frequency gain, and then apply the inverse DTFT since this requires an
infinite time horizon.

This system in Fig. 9 builds on the concept of a spectrogram explored in a previous computational
problem. Specifically, the portion of the diagram in Fig. 9 mapping the input x[n] to X̃m is the spectrum
used to compute the spectrogram considered in the Spectrograms computational problem.6 A vector notation
is adopted in Fig. 9 where xm is the mth frame, wa represents the analysis window, and X̃m is the mth

short-term Fourier transform (STFT) frame.

After producing X̃m, a desired frequency domain filter H is applied and the inverse FFT is applied.
The output is then windowed by a synthesis window ws to produce the output frame ym. These are then
“de-framed” using an overlap and add technique to produce the output signal y[n]. The goal of this system
is to implement a discrete time filter with frequency response H(ν) having frequency samples H(k/N) that
comprise the FFT bin gains contained in H.

If the identity filter is applied (i.e., H = 1), then we would expect y[n] = x[n]. This perfect reconstruction
criterion requires some conditions on the analysis and synthesis windows. Also, since multiplication of two
DFTs yields circular convolution in the time domain, the system in Fig. 9 is clearly not exactly the same
as multiplying the DTFT of x[n] by H(ν). In this project you will explore the conditions needed for the
windows for perfect reconstruction and explore the effective frequency response of the entire system.

9.1 Background Information

The same framing convention used in the Spectrograms computational problem is employed here

xm[n] =

{
x[n+mS] ∈ ZN
0 n 6∈ ZN

(18)

where, again, we will consider the frame skip S = N/2 where N is the even-valued frame length. In other
words, two adjacent frames overlap by 50% as shown in Fig. 10 which is duplicated from the Spectrograms
computational problem. The analysis window is applied to this via

x̃m[n] = wa[n]xm[n] (19)

where wa[n] is the analysis window (length N). We then take the N -point FFT of this windowed frame to
obtain

X̃m[k] = DFT {x̃m[n]} (20)

6In the Spectrogram problem we computed the magnitude of X̃m.



Signals and Systems – Computer Problem Set – c©K.M. Chugg - April 22, 2021 23

Signals and Systems – Computer Problem Set – c�K.M. Chugg - April 8, 2021 1

Signals and Systems – Computer Problems, Labs, Projects

c� Prof. Keith M. Chugg – April 8, 2021

1 Computer Problem/Lab: Spectrograms

It is often valuable to view the short-term frequency composition of signals. For example, consider a frequency
chirp signal that starts at frequency f0 at time t0 and ramps the frequency up linearly to frequency f1 at
time t1. The Fourier transform of this chirp signal will show frequency content across the band from f0 to
f1. However, the short-term spectral properties of this signal will be lost by taking the Fourier transform
over the full time horizon. Specifically, inspecting the Fourier transform will not provide any indication that,
at any point in time, the signal is very localized in frequency.

This motivate Short-term Fourier Transform (STFT) analysis wherein short time chunks of the signal
(frames) are analyzed in frequency and the results are stitched together in time to give a spectrogram –
i.e., a view of the signal with time on the x-axis and frequency on the y-axis. During the semester, we have
viewed spectrograms generated by Audacity for audio signals. In this problem, you will develop your own
spectrogram code and explore audio signals in the time-frequency plane.

1.1 Spectrogram Definition and Notation

Consider a signal x[n] that is defined for n = 0, 1, . . . and defined the mth frame as

xm[n] =

(
x[n + mS] 2 ZN

0 n 62 ZN

where ZN = {0, 1, . . . N �1}. The parameter N is the frame length and S is the frame-skip – 1/S is referred
to as the frame rate. This framing of the signal is shown in Fig. xx. Note that the frames typically overlap
meaning that S < N and a common choice is S = N/2 when N is even.

x[0], x[1], · · · x[S � 1], x[S], · · · x[N � 1], x[N ], · · · x[N + S � 1], x[N + S], · · · x[2N � 1], x[2N ], · · ·
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Figure 10: Conversion of the signal x[n] into overlapping frames. For the diagram shown, the frame skip is
half a frame – i.e., S = N/2 – which will be assumed throughout this project.
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Figure 11: The de-framing operation using overlap and add. The output at y[n] is the sum of two frames
for each value of n.

The desired frequency domain filter gains H[k] are then applied to this spectrum

Ỹm[k] = H[k]X̃m[k] (21)

The inverse FFT of this frequency domain signal is

ỹm[n] = DFT−1
{
Ỹm[n]

}
= xm[n]~Nh[n] (22)

where h[n] = DFT−1 {H[k]} and ~N denotes circular convolution. This signal is then windowed by the
synthesis window producing

ym[n] = ws[n]ỹm[n] (23)

Finally, these output frames are combined using the overlap and add method diagrammed in Fig. 11. This
is the de-framing operation in Fig. 9. Note that each time n, the system output y[n] is the sum of two values
of ym[n] – i.e., for ym[n] and ym−1[n].

The signals xm[n], wa[n], x̃m[n], X̃m[k], H[k], Ỹm[k], ỹm[k], and ym[k] are all length N , so can be
interpreted as vectors. This is the interpretation of Fig. 9.

9.2 Project Work Guidelines

You are free to explore various aspects of this system as part of your project. Below are some guidelines and
suggestions to aid you in formulating your project. You will also meet with your project mentor to structure
your project.
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9.2.1 Analytical Work

Below are a list of results that you should review or develop to ensure that you understand the theory behind
the system shown in Fig. 9.

1. Review the Spectrograms Computational problem solution.

2. Determine the condition on the analysis and synthesis windows for perfect reconstruction. This is the
Princen-Bradley condition [1].7

(a) Show that using the Vorbis window for both analysis and synthesis provides perfect reconstruction.
This can be done analytically or computationally.

(b) Show that using the rectangular window and the Hanning window as an analysis/synthesis pair
provides perfect reconstruction. This can be done analytically or computationally.

(c) Show that the square-root of the Hanning window can be used as the analysis and synthesis
window for perfect reconstruction.

(d) Can you suggest a pair of windows, other than those above, that would satisfy the Princen-Bradley
condition?

3. The circular convolution will cause corruption at the edges of the frame. Explain the intuition for the
overlap and add approach in dealing with this undesired effect – i.e., use the rect window for analysis
and the Hanning window for synthesis for this intuitive explanation.

4. Is the overall system that maps x[n] to y[n] LTI? Is it approximately LTI? If you believe it is LTI, is
it simple to compute the overall frequency response for this system?

5. Discuss the computational complexity of the system in Fig. 9. How does this compare to performing
a convolution in the time domain with an FIR filter with impulse response having length ≤ N . How
does it compare to using an ARMA filter with order L much smaller than N?

6. Discuss the processing delay encountered by the system in Fig. 9 – i.e., if it is used for a real-time
system.

9.2.2 Simulation Work

You may choose to use computer experiments and simulations to better understand the system in Fig. 9.
Below are some suggestions:

1. Audio signal filtering. Use a wav file as the input x[n] and filter the signal using the system of Fig. 9.
You will want to choose a reasonable frame size. For real-time, interactive processing it is typical to
use a frame duration of about 20 msec. If you use an audio sample rate of 48 kHz, this is N = 960.
As a baseline, use the Vorbis window for both analysis and synthesis.

(a) Design the frequency domain filter to be a low-pass filter with cut-off 2 kHz. What is the value
of ν0 for this discrete time filter? What is the value of k0 – i.e., the cut-off frequency in H[k] for
this filter?

(b) Filter a sample audio filter using the overlap-and-add approach. Compare the output with the
result of the filters considered at the end of DTFT example Python notebook – e.g., a windowed
ideal LPF and a Butterworth (AR) filter.

7The cited paper deals with Discrete Cosine Transforms (DCT) and is therefore a bit difficult to read and directly apply
here. When the DCT is used in this overlap and add method with framing, it is called the Modified DCT (MDCT). See the
MDCT wikipedia page for a brief description of windows that satisfy the Princen-Bradley condition.

https://github.com/keithchugg/ee301_spring2021/blob/main/lecture_examples/DTFT_examples.ipynb
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
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(c) If this system can be approximated as LTI, plot the magnitude of the frequency response for the
overall system. Note that you may use the cosine-in/cosine-out method for measuring the fre-
quency response that was developed in the Two-Tap DT Filter computational problem if needed.

(d) Explore the effects of window choice. Specifically, compare the results obatined above with that
of using a rect-Hanning and Hanning-rect window combination. Which set of windows do you
think provides the best filter results?

2. Other considerations to explore are:

(a) Numerical examples of the Princen-Bradley condition for various window combinations.

(b) The effects (e.g., audio artifacts) if a window pair is used that does not provide perfect recon-
struction.

(c) Examples of the system output when an a unit impulse is input at different times.

(d) Comparison of ỹm[n] and the corresponding system output y[n] for simple cases – i.e., to build
intuition regaridng the O & A method.
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Chap. 11 Problems 903 

In this problem, we have seen that the use of feedback provides us with alterna-
tive implementations of LTI systems specified by linear constant-coefficient dif-
ference equations. The implementation in part (a), consisting of feedback around 
a nonrecursive system, is particularly interesting, as some technologies are ide-
ally suited to implementing tapped delay-line structures (i.e., systems consisting 
of chains of delays with taps at each delay whose outputs are weighted and then 
summed). 

11.56. Consider an inverted pendulum mounted on a movable cart, as depicted in Figure 
P11.56. Here, we have modeled the pendulum as consisting of a massless rod of 
length L with a mass m attached at the end. The variable O(t) denotes the pendu-
lum's angular deflection from the vertical, g is gravitational acceleration, s(t) is 
the position of the cart with respect to some reference point, a(t) is the acceler-
ation of the cart, and x(t) represents the angular acceleration resulting from any 
disturbances, such as gusts of wind. 

s(t) 
I 

J I 

a(t) 

Figure P11.56 

Our goal in this problem is to analyze the dynamics of the inverted pendulum 
and, more specifically, to investigate the problem of balancing the pendulum by 
a judicious choice of the acceleration a(t) of the cart. The differential equation 
relating O(t), a(t), and x(t) is 

d 20(t) . 
LdT = g sm[O(t)] - a(t) cos[O(t)] + Lx(t). (P11.56-l) 

This relation merely equates the actual acceleration of the mass along a direction 
perpendicular to the rod to the applied accelerations [gravity, the disturbance ac-
celeration due to x(t), and the cart's acceleration] along this direction. 

Note that eq. (P11.56-1) is a nonlinear differential equation. The detailed, 
exact analysis of the behavior of the pendulum requires that we examine this equa-
tion; however, we can obtain a great deal of insight into the dynamics of the pendu-
lum by performing a linearized analysis. Specifically, let us examine the dynamics 
of the pendulum when it is nearly vertical [i.e., when O(t) is small]. In this case, we 

Figure 12: The inverted pendulum system considered. Diagram copied from [2] Figure P11.56.

10 Project: Feedback Control of an Inverted Pednulum

The goal of this project is to understand, simulate, and teach your classmates about the inverted pendulum
system considered in Oppenheim, et. al., Problem 11.56. In this problem, the inverted pendulum on a cart in
Fig. 12 is considered. As described in the problem, the dynamics of this system are governed by a nonlinear
differential equation

θ
′′
(t) =

g

L
sin θ(t)− 1

L
a(t) cos θ(t) + x(t) (24)

where x(t) is a perturbing input on angular measurement θ(t).8

The problem walks you through a series of steps to show that, for small θ(t), the nonlinear DE can be
linearized and that a proportional-derivative (PD) controller can be used to stabilize the linear model.

10.1 Project Work Guidelines

You are free to explore various aspects of this system as part of your project. Below are some guidelines and
suggestions to aid you in formulating your project. You will also meet with your project mentor to structure
your project.

10.1.1 Analytical Work

Below are a list of results that you should review or develop to ensure that you understand the theory behind
the system shown in Fig. 12.

1. Work Problem 11.56 from [2].

2. For the solution to 11.56(c), develop a root-locus digram as you change the parameter K1 around
the the value for the solution. Similarly, develop a root-locus digram as you change the parameter
K2 around the the value for the solution. In other words, hold one parameter fixed at the designed
solution and vary the other to create a root locus diagram.

3. Investigate other models for the inverted pendulum on a cart and explain how they differ from the
model in problem 11.56. For example, see the notes by Daleh, et. al., example 6.3 on page 63.

8Note that this assumes that the mass of the cart is M = 1, the mass of the pendulum is m � M , and the mass of the rod
is negligible.

https://viterbi-web.usc.edu/~mihailo/courses/ee585/f17/mit-notes//mit-notes.pdf
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10.1.2 Simulation Work

You may choose to use computer experiments and simulations to better understand control of the system in
Fig. 12. Below are some suggestions:

1. Simulate the nonlinear dynamical system in (24) and apply the controller developed in Problem
11.56(c). Plot the step response of the open loop and closed loop systems.

2. Use your simulation to consider initial conditions with θ(0) large enough that the linearization of the
model in (24) no longer applies. Specifically, compare the PD controller from Problem 11.56(c) acting
on the linear model and the nonlinear model when the initial conditions are non-zero.

3. There are numerous extensions to this problem, including a double pendulum and more accurate/com-
plex dynamical models. There are also many examples of real-time control systems that have been
applied to this problem. Furthermore, there are real problems, such as rocket landing, that map to
this problem. Research these topics and provide a summary of the most interesting examples in your
presentation to the class.
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