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For a periodic signal x(t) we have the Fourier Series in terms of complex exponentials
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If z(t) is real-valued, then x(t) also has a Fourier Series in terms of cosines and sines of these
harmonic frequencies

z(t) = Xo + Z [ X% cos(wit) + X sin(wyt)] (4)
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where X is the same as in (2).
To see how these are related, let us conjugate (1) and use the fact that z*(¢) = x(t)
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where we have made the change of variable m = —k and then renamed m to k again in (9).

Comparing (2) and (9) and realizing that this holds for any real, periodic z(t), we can conclude
that
z(t) real <= X=X, (10)
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The result in (10) can be used to simplify (1) to
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where we have used the following facts
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Comparing (4) and (14) we can conclude that
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This coefficient expressions can also be found using orthogonality of the cosines and sines at these

harmonic frequencies.



©K.M. Chugg - February 24, 2021— Fourier Series of a Real Signal 3

In summary we have

2(t) = Xo+ Y [Xf cos(wit) + X3 sin(wyt)] (28)
k=1

Xo = % /T o(t)dt (29)

XE = 2R X} = % /T (1) cos(wit)dt (30)

Xi = —23 {X,} = % /T 2(t) sin(wit) (31)

Therefore, if we have a real periodic signal z(t) we could always use this real F'S expansion. This
real form is often useful when you would like to plot a truncated FS — i.e., it is often easier to work
with sines and cosines than complex exponentials. From this form it is clear that anytime z(t) is
real and even, it can be written as a linear combination of cosines. When z(t) is real and odd, it
can be written in terms of sines.



